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ABSTRACT

Modeling and inference for heterogeneous data have gained great interest recently due to rapid devel-
opments in personalized marketing. Most existing regression approaches are based on the conditional
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mean and may require additional cluster information to accommodate data heterogeneity. In this article, we

propose a novel nonparametric resolution-wise regression procedure to provide an estimated distribution
of the response instead of one single value. We achieve this by decomposing the information of the response
and the predictors into resolutions and patterns, respectively, based on marginal binary expansions. The
relationships between resolutions and patterns are modeled by penalized logistic regressions. Combining
the resolution-wise prediction, we deliver a histogram of the conditional response to approximate the
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distribution. Moreover, we show a sure independence screening property and the consistency of the
proposed method for growing dimensions. Simulations and a real estate valuation dataset further illustrate

the effectiveness of the proposed method.

1. Introduction

A common nonparametric regression model establishes the
effects of the explanatory variables on the response variable in
the form of

Y = f(X) +e, (1)

where Y is the response variable, X = (Xi,... ,Xq)T is the g-
dimensional explanatory variable vector, and ¢ is the random
error, which is often assumed with mean 0 and variance o2, and
is independent of X.

In recent years there has been a growing demand for explor-
ing regression methods for heterogeneous populations, which
has broad applications in personalized marketing and other
fields. One characteristic of data heterogeneity is the existence of
subpopulations in the data. In practice, the heterogeneity can be
regarded as the result of some latent variables. This happens fre-
quently since it is difficult to collect all the explanatory variables
for the response. For example, in the real estate data in Section 6,
a river and a highway through the city create subpopulations
and heterogeneous distributions of housing prices. However, the
information of this river and this highway is not available in the
data.

Denote the unobserved categorical variable by Z taking val-
ues 1,... T, where T is unknown. Suppose the potential true

relationship of the response and all the explanatory variables can
be expressed by

T
Y= fOIZ=1+e, 2)

t=1

with unknown functions f’s, t = 1,...,T. In this article,
our goal is to relate Y with X without knowing Z. However,
this differs from fitting model (1), since the true relationship
between Y and X may not even be a function. As an illustration,
the housing prices on the two sides of Tamsui river with respect
to longitude and latitude are shown in Figure 1. The plot shows
a mixture of two subgroups: the housing prices on the west and
the east of the river behave differently. The latent variable Z, that
is, the indicator for which side the position on, determines the
two subgroups. Without knowing Z, the relationship between
Y and X cannot be captured by a single function. Hence, new
methods to model the effects of X on Y with such a challenging
heterogeneous population are in great needs.

One possible idea is to use smoothing splines (Green and
Silverman 1994) which can capture local behaviors. A more
general setting is the smoothing spline analysis of variance
(SSANOVA) (Wahba 1990; Gu 2002), which fits an additive
model for main effects and interactions. These approaches use
regression to estimate the overall conditional mean function,
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Figure 1. Left panel: An illustration of heterogeneous data in the housing prices on two sides of Tamsui River (light blue curve). Right panel: The housing prices follow
different distributions: The housing prices on the west monotonically increase with latitude, while those on the east are concave and parabolic.

which tends to fita compromised effect of the subgroups. Hence,
they may fail to identify the subgroups of the population, and
the results might not be informative for either of the subgroups.
Moreover, the estimated distribution might not really reflect the
pattern of the true one.

Another possible strategy is to cluster the data first, then
fit a regression model within each subgroup. Existing model-
based clustering approaches include Jacobs et al. (1991), Pan and
Shen (2006), Raftery and Dean (2006), and Guo et al. (2010).
As alternative approaches, Lindsten, Ohlsson, and Ljung (2011),
Hocking et al. (2011), and Pan, Shen, and Liu (2013) formulated
clustering as a penalized regression problem with fusion-type
penalties. However, these methods focus on finding the groups
based on the similarity of the explanatory variables, instead of
identifying groups with different effects on the response.

In the literature, some individualized methods were pro-
posed to handle heterogeneity. Ma and Huang (2017) employed
subject-specific intercepts to model the unobserved factors
which leads to the heterogeneity. They used a concave pairwise
fusion penalty to shrink some intercepts to be the same, which
can produce a partition of subgroups. Chen et al. (2021)
considered a more general fuzing method than that of Ma
and Huang (2017) to identify subgroups. Tang and Qu (2017)
proposed a multi-directional penalty to shrink individuals to
different groups. The performance of these methods depends
on how well the subgroups are separated. If the subgroups are
close to each other, the performance can be less accurate.

In this article, we tackle the heterogeneity from a new per-
spective. Instead of estimating f;’s in (2) through nonparametric
regressions, we propose to estimate the conditional distribution
of the response variable given observed explanatory variables.
The estimated distribution provides an overall picture of the
response variable, and can indicate the heterogeneity by the
modes of the probability density function (PDF). To achieve this
goal, one single regression is not enough, because the pattern
of two or more possible values of the response corresponding
to one observation of predictor variables cannot be expressed
by an explicit function. Our idea is to consider binary expan-
sion statistics proposed in Zhang (2019) and to decompose the

response variable into several resolutions which can capture the
local information. By establishing a set of logistic regressions,
we relate the resolution information to the predictors. The set
of regressions can model the heterogeneity since various esti-
mations can be obtained from different local logistic regression
models. To achieve the localization, we decompose the response
variable by marginal binary expansions, which provides a bal-
anced design and orthogonal resolutions. Our method eventu-
ally estimates the distribution of the response variable by a his-
togram, which shows the possible heterogeneity and even more
complicated distributions, without any assumption of subgroup
patterns. We show that the method has a sure independence
screening property (Fan and Lv 2008; Fan and Song 2010)
and provides consistent estimates for cell probabilities of the
histogram for growing dimensions.

The rest of this article is organized as follows. In Section 2, we
introduce resolution-wise regression, including the decomposi-
tion of the response variable and the establishment of the logistic
regressions. Section 3 extends the proposed method to high-
dimensional settings. In Section 4, we show the consistency of
the estimated histogram. In Sections 5 and 6, we demonstrate
the performance of our method by the simulated data and the
real estate valuation dataset. Section 7 concludes this article.
Some technical proofs and additional simulation results are
presented in the Appendix and supplementary materials.

2. Methodology

A distribution estimation provides more information than a
point estimation for heterogeneous data, as the estimated distri-
bution can identify the subgroups by the shape of the PDE. For
the case that the subpopulations are not obviously distinguish-
able from each other, the estimated distribution can still reflect
the dispersion of the data.

A direct idea is splitting the range of Y by a partition
min(Y) = a9 < a1 < .-+ < ap = max(Y) and modeling
the probability of Y falling into each interval with X. This idea
handles the heterogeneity by decomposing the information
of Y into several nonoverlapping intervals. These intervals



capture the local information of Y and work together to show
the whole histogram. However, a drawback of this approach
is the possible loss of information from negligence of joint
information in two intervals and insufficient samples in each
interval. In this article, we propose to construct overlapped
resolutions based on binary expansions, where each resolution
groups the distribution information of the union of several
intervals, and includes all corresponding samples. In essence,
the proposed construction leads to a balanced design and has
a nonredundant orthogonality property. A histogram can be
obtained by a transformation from resolution probabilities to
cell probabilities. Here we refer to a cell as a bin of the histogram.
In this section, we consider the one-dimensional X, and then
extend to the high-dimensional case in Section 3. The rest of
this section is organized as follows. In Section 2.1, we introduce
the construction of the resolutions. In Section 2.2, a set of
resolution-wise penalized logistic regressions are established.
In Section 2.3, we introduce the binary interaction design (BID)
equation to accomplish the transformation from the frequency
domain to the probability domain.

2.1. Frequency Domain from Binary Expansions

To overcome the imbalance of nonoverlapping intervals, we use
a balanced design based on binary expansions. A classical result
on the binary expansion of a uniform random variable (Kac
1959) is given as follows:

Lemma 1. For U ~ Uniform[0, 1], we have U = Z,fil %,
where V1, Vs, ..., Vi, .. .iid follow Bernoulli(1/2).

Denote the cumulative distribution function (CDF) transfor-
mation of Y by Uy. By Lemma 1, we have

o0
By iid .
Uy=)_ Jo0 BBa B ™ Bernoulli(1/2).  (3)
k=1
Through the expansion, the information of Y is decomposed
into the information of By’s. In (3), binary variables By’s can
be regarded as indicator functions: By I(Uy € [zik, 2%() U

k_

Figure 2 shows the binary variables By, B, B3, respectively,
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binary expansion, we can truncate the binary expansion of Uy
up to the dyth order

(4)

Now we introduce the notations of resolutions. Using the
binary variables taking values {—1, 1} instead of {0, 1} by the
transformation By 2By — 1, the interactions of B’s can be
written as products. For example, the event {B; = 1,B, =
1} U {B; = 0,By = 0} is equivalent to {B;B, = 1}. In the
remainder of this article, we shall use By € {—1,1}.

To approximate the information given by Y, say the o -field
o (Y), we can use the o-field generated by By’s, denoted by
o(By,... ,de). For the truncation up to the dyth order, we can
find a basis with 2% — 1 variables

dy
Wi = {(B,....Bay, BiBy,.. ., Bay_1Bay,....[ [ B}. ()
i=1

We shall refer to the binary variables in W as resolutions of Y,
and the set of all possible values of these resolutions as the fre-
quency domain. Figure 3 shows the variables in o (By, B,) with
Uy expanded up to the second order. Through this resolution
decomposition, each variable takes value one on half of [0, 1],
and value negative one on the other half.

2.2. Logistic Regression in the Frequency Domain

With the resolutions decomposed from the binary expansion,
we aim to model the relationship between each resolution and
the predictors. The resolutions constructed by the binary expan-
sion are independent with each other, thus, they can be modeled
marginally. Since the resolutions are binary, it is essentially
a classification problem. Note that for every resolution, Y is
divided into two classes with groups of intervals according to the
sign of the binary interaction. Hence, the decision boundary can
be nonlinear. Therefore, we propose to use binary expansions
of predictors as a nonparametric basis to fit a logistic regression
on each resolution. Similar to the construction of Uy, we have
the binary expansion of Uy, up to the dxth order to be Ux =

. . . . . . A A 1
with respect to Uy. As a finite approximation of the infinite ~ >_;L; 5¢. Denote Ay = 2Ax — 1. The o -field generated by A’s,
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Figure 2. Binary variables By, By, B3 from binary expansions of Uy. Regions with By = 1,k = 1,2, 3 are in white and regions with By = 0,k = 1, 2,3 are in blue.
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Figure 3. Basis binary variables in 0(31 , Bz), where Uy is expanded up to the second order.

denoted by o(Ay,... ,Adx), has a basis with 29 — 1 variables
W, = {Al, . )Adx,AlAz) .. >Adx—1Adxa R 1_[531 Az} We
shall refer to elements in W as patterns of X. After the
construction of the patterns, the complicated effect of X
on Y can be captured by logistic regression, which enjoys
efficiency from the orthogonality of the patterns. We establish
a set of 29Y — 1 penalized logistic regressions with the £;
penalty (Tibshirani 1996) on each resolution in Wj, with
all patterns in W as predictors. Denote the pattern vector

corresponding to W, by Al = (Afl),-..,Afde_l))T 2

(Al, . ,AdX,AlAz, .. :AdX—IAdxa R H:Zl Ai)T. Simi.larly,
denote the resolution vector corresponding to Wy by B =
(B(l), . ’B(zdyfl))T £ (B], . ,de,Ble, . ,de_ley, RN
]_[flzy1 B)T. Let {(x;, y)}7, be n independent observations
of (X,Y). Denote Af = (Afl)’i,. .. ’Al(:de),,-)T and B; =
(B(l),,-, s B(zdy),i)T as the ith pattern vector and the ith
resolution vector obtained by binary expansions of the empirical
CDF transformation of x; and y;, respectively. The mth logistic

regression, m = 1,...,2%" — 1, which models the effect of A"
on B, is established as

. . F
P(B(my,i = 114;)

. . F
P(B(m),i = —1|4;)

T
log =A Bpym=1,...,2% —1, (6)

where B, is the coefficient vector. We employ a £ regularization
to give the estimator

R n . .ET

B = argminZlog(l + e Bomidi By 13118111,

i=1

e (7)

The conditional expectation of B, given A", denoted by
- F - F A g )

em(A"), can be estimated by &,(A") = %.

1+exp(A™ Bm)

2.3. Binary Interaction Design: From Frequency Domain
Back to Probability Domain

As a final step of estimating the distribution of Y, we aim
to transform the conditional expectations of resolutions

into the conditional cell probabilities of the corresponding
histogram. First, we simplify the notation of the conditional
expectation by using a dy-dimensional binary index. Namely,

denote the conditional expectation E(Bkl e ka |AF), p €
{L....dy}, {ki,....kp} < {1,....dy}, by Ep, where E(-)
stands for the expectation, b = (by, . . ., bg, ) is a vector of length
dy with value one at ky, . . ., k, and zero otherwise. Let E be the
dy-dimensional conditional expectation vector whose entries
are sorted in an ascending order according to the binary system.
Hence, in some sense, b identifies the resolutions. Note that we
set Eg = E(1) = 1 as the first entry. The (Z?ZYI b2 1 1)th
entry is Ep. For example, the expectation with dy = 3 is

E = (Eo00, Eoo1> Eo10» Eo11, E100» E1015 E110, E111) T
. .F . .F . « oF . .F
= (E(1), E(B3|A" ), E(B>2|A" ), E(B2B3|A" ), E(B1]4"),
. . . F . . . F . . . . F
E(B1B3|A"), E(B1B|A"), E(B1B,B3|A ).

We denote the conditional probabilities of the 29¥ cells in
terms of the index b = (by, ..., bgy) as above. Define the con-
ditional cell probability py, as the conditional probability of By’s

taking values clarified by b given AF, that is, pp = p,,..b iy) =
p (Bl =2b—1,... ,BdY = 2bg, — 1|AF>. As an example, for

dy = 3, plo1 = P(B; = 1,B, = —1,B5 = 1]A"). Let p be
the dy-dimensional conditional probability vector of the cells
whose entries are sorted by a descending order according to the
binary system, that is, the Q4 — Zfzyl b; 29 —1)th entry is pp.
For example, the conditional probability vector of the cells with
dy = 3isp = (p111, P110> P101> 100> Po11> P010> P01 P000) -

With the above notations, we establish the binary interaction
design (BID) equation (Zhang 2019) to transform the expec-
tations of resolutions into cell probabilities. The equation is
established by the Sylvester’s construction of Hadamard matrix
H = H,4, (Sylvester 1867).

Lemma 2 (BID equation). Let E be the conditional expectation
vector of the resolutions from the binary expansion, and p be
the conditional probability vector of the cells. Then

where H is the Hadamard matrix (Sylvester 1867).



From the BID equation, the conditional probabilities of Y
given X falling into each cell can be obtained by estimating the
conditional expectation of resolutions. Denoting the estimator
of Eby E. In a common sense, p can be estimated by p = H_lfi
since the Hadamard matrix H is invertible and H™! = de ——H.
However, this p may not be a probability measure. From the
structure of the Hadamard matrix, the following lemma shows
the summation of the cell probabilities is one.

Lemma 3. For any E, the estimation of p by p = H~'E has a
sum of entries of one.
Proof of Lemma 3. Denote p = (p1,...,p,ay)T. Since E =

(1, él(AF), sy (AF)), the summation of p is

24y
. 1 13
ZP:‘ = 2dYP ldeH E
i=1
— dY E = O
2dy(2 0, ..., 0)E=1
Note that we cannot guarantee p;,i = 2% to be

positive. Instead of p = H~'E, we consider the following
optimization problem to solve p:

min ||Hp — E|s,
st. pi=0,i=1,...,2%,

E:ﬁzL )

Since the cells can be viewed as the bins of the histogram of Y, we
essentially estimate the distribution of Y as the resolutions are
decomposed in an arbitrary delicate fashion. In practice, a finite
dy is used, and we can smooth the histogram to approximate the
distribution.

3. Multivariate Extensions

Now we extend our framework to the multivariate case. For a
q-dimensional X = (X, ... ,Xq)T, we perform a binary expan-
sion to every marginal CDF-transformation variable, denoted

by Ux;,j = 1,...,q, up to the dx-th order, and we have
dx
Ajk
J
UX] = Z F’] =1, »q (10)
k=1
Denote Ajk =2Aj—Lj=1,...,9.k=1,...dx. The o-field
o(Uxy>-- s UXq) = G(An, e ,Aldx, . ,Aql, ce. ,Aqu)

is generated by the binary filtration of all g covariates. We
can find a basis of this o-field with totally 29% — 1 variables.
This basis set includes all possible patterns with respect to
Xj,j = 1,...,q. These patterns can be divided into two groups.
One group has terms involving binary variables from only one
dimension of X, which capture the marginal patterns. For exam-

ple, both the terms Ajy and Aj1A;, are marginal patterns with
respect to X;. The second group has terms with binary variables
from at least two covariates, which reflect interactions of the

JOURNAL OF BUSINESS & ECONOMIC STATISTICS . 5

corresponding covariates. For example, A11A21 corresponds to
the interaction of (X, X5), and A11A21A31, A11A21A31A32 are
terms with respect to the three-way interaction (Xi,X3,X3).
Therefore, we refer to interaction terms as the patterns reflecting
interaction of X, instead of product of some Ajk’s. Note that
the basis set considers until g-way interaction terms. However,
three-way and higher-order interactions often contribute lit-
tle to the model, and they are quite complex and difficult to
interpret. Thus, we only consider the main effects and two-way
interaction terms in the basis set. Including 2% — 1 main effect
terms for each of the g explanatory variables, and (2% — 1)2
interaction terms of each pair of the explanatory variables, there
are L = q(ZdX -+ Cé (2% —1)2 patterns in total.

To cope with high-dimensional data, some prescreening pro-
cedures can be performed to reduce the dimension of the pat-
terns. We do not rashly reduce the maximum number of vari-
ables in a pattern term, since each of them includes information
of some specific pattern, due to the orthogonal property of the
binary expansion. Instead, an approach to pairwisely test the
effect of each pattern on the response variable is reasonable.
To this end, we modify the binary expansion testing (BET)
method (Zhang 2019), which was originally developed to test
independence of two variables, as a prescreening method for
patterns. We also extend BET to a general version, which tests
the independence of multiple variables and is used to prescreen
interactions.

In the following, we first revisit the BET method, and extend
it as a method of pattern prescreening in Section 3.1. In Sec-
tion 3.2, we generalize BET to prescreen interactions by testing
the independence of the response and the interaction patterns.

3.1. BET as a Prescreening Approach

BET is a nonparametric method of testing dependence between
two continuous variables in a distribution-free setting. Hence,
BET can be used on Y and X. With the binary expansion
on Uy and Uy, the interactions of the basis of the o-field
o(By,... ,BdY) and o(A,... ,Adx) show all possible depen-
dence patterns. Similar as the definition of b in Section 2.3,
we use a = (al,...,adX)T to identify the patterns of X.
We denote the interaction pattern of a and b by ab :=
(al,...,adx,bl,...,de)T. The interaction pattern ab can
partition the unit square [0, 1] with half positive regions and
half negative regions. The difference of the counts in the two
regions reflects whether Y and X are independent in terms
of the particular interaction pattern. When Uy and Uy are
independent, the counts of the observations in the positive
and negative regions should be similar. When they are not
independent, there will be significant difference of counts.
Denote S, as the difference of the counts with respect to the
interaction pattern ab. Zhang (2019) gave the result of the
distribution of S, in the following lemma.

Lemma 4.

1. When marginal distributions are known, Uy and Ux are
independent if and only if

Sab + 1

~ Binomial(n,
2

%La#&b#u
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Figure 4. The dependence of Y on X is from the model ¥ = X2 + &, where X ~ Uniform(—2,2) and & ~ N(0,0.25). BET detects the dependence through the nine
patterns. The pattern A1A;B1 shows the most obvious difference of counts of blue and white regions.

2. When marginal distributions are unknown, Uy and | Uy are
estimated by the empirical CDF transformations Uy and
UX, respectively, then Uy and UX are independent if and
only if

’S\ab +n

— " Hypergeometrlc(n,

) a#0,b+#0,
where Sab denotes the difference of the counts w1th respect to
the interaction pattern ab according to Uy and Uy.

In this way, BET decomposes the information of the relation-
ship between Y and X into interaction patterns. Figure 4 shows
all the nine interaction patterns with depth dy = 2 and dy = 2.
An obvious dependence pattern is A1 A, B, which includes most
points in the white region.

With dx and dy large enough, BET can detect arbitrarily
complicated dependence. BET also helps indicate the pattern of

dependence, since the significant patterns from BET imply how
Y depends on X. This inspires us to focus on the detection of
the significant patterns and regard BET as a pattern-screening
approach. Performing BET pairwisely on {(V,Xj),j=1,...q},
one can reduce all the patterns on X; to only those dependent
ones. We regard the patterns of X that are detected to be
dependent with at least one resolution of Y as relevant variables
in the penalized logistic regressions. Namely, denoting the
pattern vector of X; by A/ = (Aj(l), . ,A](de_l))T A
(A],...,A{iX,A]lAJ,...,A]dX_lAJ ,

Hdél A];)T, we obtain
the sets of relevant patterns R]r.nain = (A K : 3Bmys.t.(Bmy A](l))

2% 1), i=1,...

Rmajn

is dependent, I = 1,..., ,q. Note that we
consider the patterns in U}Ll as predictors in regressions
for all resolutions of Y, rather than only in the regression for

the particular By, such that (B(m),A](l)) is dependent. This can
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A11A2B4

id
Figure 5. The dependence of Y and X7, X3 is from the model ¥ = X1 X; + &, where X7, X, < Uniform(—2,2) and & ~ N(0,0.25). The generalized BET detects the pattern
A11A21B1 with the most obvious difference in counts of the positive region (white region with red points) and the negative region (blue region with yellow points).

help to avoid false negatives. False positives can be controlled
by the lasso shrinkage.

3.2. A Generalized BET as an Interaction Prescreening
Method

The pairwise BET procedure selects dependent marginal pat-
terns. Furthermore, aiming to select interaction patterns, we
first generalize the original BET to test independence of Y
and the joint distribution of X; and Xj,i,j = 1,...,q. With
marginal binary expansions on Uy, Uy, Ux;, respectively, the o'-
field generated by Uy, Uy, and Ux; areo (Uy) = o(By,..., de)
and o (Ux,, Ux) = o(Aj,. .. ,A,-dX,Ajl,. .. ,Ajdx). We aim to
test all possible dependence patterns from each pair of the two
o-fields. Denote the pattern of Xj, j = 1,...,q, by aj =
@j1>--» ajdX)T, and the three-way interaction pattern of a;,
aj and b by a,-ajb = (Ll,‘l, e ,aidx,aﬂ, e ,ajdx, bl, ey de)T.
Similar to the idea of the original BET, a;a;b can be viewed as a
partition of the cube [0, 1]* with half positive and half negative
regions. One can test the dependence of Y and the joint X;, X;
by the different counts of the two regions Sg,q;b. Figure 5 shows
three aspects of a significant interaction pattern. Hence, we use
the generalized BET to prescreen the interaction predictors in
the regressions. We perform the generalized BET pairwisely on
{(V,X;,Xj),j=1,...,9,i = 1,...,j — 1} and obtain the sets of
significant interactions

. . .. .j . . . . .j
R;]pteractlon = {(Al(ll)’A(lz)) :3B(y) st. (B(m)’Al(ll)’A(lz))
is dependent, I, = 1,...,2% _ 1},
i=L..,qi=1...,]
With the two prescreening procedures, eventually, the pre-
dictor set is
R = (U?:lngnain> U (Uij}]pteraction) ) (11)
We refer to the prescreening based on BET and the general-
ized BET as the BET screening. Algorithm 1 gives the procedure

of resolution-wise regression, including the prescreening and
the framework of the estimation.

Algorithm 1
Step 1. Consider the binary expansions of Uy and Uyx;, j =
1,...,q as in (4) and (10). List the binary variables in the
resolutions of Y in W} as in (5). List the binary variables in
the patterns of X in W similarly.
Step 2. Prescreen the main effects and the interactions by BET
screening, respectively, and obtain the relevant predictors as
in (11).
Step 3. Perform a set of 24" 1 penalized logistic regressions
as in (7) and obtain the estimated expectation vector E.
Step 4. Obtain the cell probability vector by the optimization
problem (9).

4. Theoretical Studies

In this section, we first show that the BET screening is a sure
independence screening approach (Fan and Song 2010), which
reduces the number of patterns L from exponential growth to
O(n). The consistency result of the estimated cell probabilities
is also established with the random design and a fixed dy. We
allow the dimension g and dx to grow with n.

For the mth logistic regression, assume that the binary
data {Z,;}7, = {(A,-,B(m),,')}?zl from the marginal empirical
CDF transformation observations {(x;, y;)}7_; are iid copies of
(A,B(m)), where 4; = (A(l),b e ,A(L),,-)T is the ith sample of
the L-dimensional binary random vector A = (A1), ..., Aq)) 7,
and By, is the ith sample of the binary response B(y,). Denote
A; = (A(l),,-, .. ,A(L),,-)T, i = 1,...,n, as the samples of the
covariates A = (A(yy,...,A(r)) that are standardized to have
mean zero and standard deviation one for each covariate. We
have A; = Ai/ﬁ. Denote E(m),,- as the ith sample of E(m)
taking values from {0, 1}. We have By = (B(m) + 1)/2. The
maximum marginal likelihood estimator (MMLE) Em J for the
logistic regression (6), which is a special case of the models in
Fan and Song (2010), is defined as the minimizer of the negative
log-likelihood of the component-wise regression,

n

3 1 - -
Bmj = argmin - E —B(m),iA(j),iBm,j
Brm,j i=1

+log(1 + etiibmiy, j=1,... L. (12)
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We correspondingly define the population version of the MMLE
by

o LN EmLB A
B = argmin — % " E[—Biu) iA(j),iBm;
B

m,j i=1

+log(1 + eAobmiy] j=1,...,L.

Denote the true regression coefficient vector by B9 :=
Bops-- B ) Let My == {1 <j<L: ﬂfnJ £ 0} b
the true index set of nonzero coeflicients. We remark here that
our overall goal of the analysis is prediction of the response
rather than inference of slopes. Therefore, although when dy
and dy are large, and the overall parameterization might become
unidentifiable, it will not harm the prediction results, as studied
in Greenshtein and Ritov (2004).

We now provide the theoretical justifications of our method.

ATBY s )
cov | ——, A
( 1A B v

with constants ¢1,, > 0and 0 < «,, < 1/2.

Assumption 1. = cymn “m forj € M,

Assumption 1 is analogous to Condition E of Fan and
Song (2010). It ensures that the marginal signals are stronger
than the stochastic noise. Within the selected set R, denote
a(j)bm) as the pattern corresponding to A, and By, and
let the index set of selected variables using BET screening
be Mpugs,,, = {1 < j < L : Sagbu = Onmb for
some threshold §,,,. The following theorem shows that
BET screening possesses the sure independence screening

property.

Theorem 1. For any cy,, > 0, there exists a positive constant
3,m such that

P( max |,3~m,] - ﬂ%ﬂ > comh ™)
1<<L
<L{exp(—c3,mn' %" [ (knmKnm)?) + nhym exp(—homKSm)},

where ky, 1, Kipm> ho,m»> h1,m> 0¢m are some positive constants. If,
in addition, Assumption 1 holds, the BET screening possesses
a sure independence screening property. By taking 8,, =

O(n%*"'"), we have
P(M:;l C Mm,Bn,m)

>1-— sm{exp(—C3,mn1_2K"‘/(kn,mKn,m)z)
+ nhym exp(—homKym)},

where s, := | M} |, the number of nonsparse elements.

Assumption 2. The variance Var(ATﬂgn) is bounded from above
and below.

Assumption 2 is analogous to Condition F of Fan and Song
(2010). The following theorem shows that the BET screening
can reduce the dimension from O(q24dX ) to O(n<m).

Theorem 2. Under Assumption 2, we have for any 8,,, =

1
O(n27"m), and the same constants 3, kum> Knm> Ho,m> B1,m»
oy, as in Theorem 1 such that

P(IMumg,,.| < O(m*m))
>1-— L{eXp(—C3,mﬂ1_2Km/(kn,mKn,m)z)
+nhy m exp(—homKpm)}.

Here, we briefly describe the results, whose details are given
in the Appendix. Let r := max, ., <5y _; [Mmg,,,| and AS =
(Afl), .
r patterns. Denote the true coefficient vector of B, by Y. The
estimate of B, is

,Afr))T is the predictor vector including the selected

n
« . s
Bm = argmin Zlog(l + e*B<m),u’m(Ai))
B =1
+amllBIL), m=1,...,2% —1,

. . . .S .
where || - ||1 is the £1-norm, A, is a tuning parameter, A; is the

. . . < S , .
binary expansion corresponding to A™ for the ith observation,
and f;,, is the mth logistic regression function, m = 1,...,2% —

1. Let f0 be the true function between B, and A®. Denote the
index set of nonzero coefficients by S, := {j : g2 ;j 7 0}, and
the cardinality of S, by s, := |S5,].

According to the BID equation, we estimate p by solving the
optimization (9). From the optimization, Hy,+1p is an approxi-
mation of e,,, where H,,1 1 is the (m + 1)th row of H, since ¢, is
the (m+ 1)th entry of E. Hence, g(Hpy41p) is the estimated mth
regression function corresponding to p. The following theorem
gives the consistency of cell probability vector p in terms of
excess risk of g(Hp4+1P)-

Theorem 3. Assume Assumptions 1 and 2, and 3-5 given in
the Appendix hold, where Assumption 3 in the Appendix holds
with the set SO . For the logistic regression with covariates cor-
responding to the BET screening set My, s, .., suppose that A,
satisfies A, > 819,. Then on the set T;,, we have,

E@Q@Hum+1P)) + AmllBm — Bl

1642 s 320Ks2%
<6E(fo) + —2 ,
= " Cmd);%q C¢2
where K > 0 is a constant, A = max, ¢, <ody Ams § =

_ . 2 . L.
MaX; ¢, <ody _ Sm> € = My < ody _y Cms ¢;, is a compatibil-
ity constant, and ¢ = mlnlgmgzdy_l bm.

5. Simulation Studies

In this section, we perform simulations to show the perfor-
mance of resolution-wise regression approach. We compare our
method with the following four methods:

1. Naive method, which first finds a small neighborhood of
each test sample in the training set, where ||X — Xpewl|2
is bounded by a constant, and predicts the distribution of
Y|Xnew by the kernel density estimation of the responses in
this neighborhood.

2. SSANOVA, which fits a cubic spline with all main effects and
interaction effects. Its pre@iction distribution is Y| Xnew ~
N(Yssanoval Xnews 62+var (YssanovalXnew))> where Ysanova | Xnew
is the SSANOVA estimation of Y given a new Xpey, and 62
is the estimated variance of the random error.



3. Random Forest, which fits a multitude of regression trees and
then averages the predictions. Its prediction distribution is
Y Xnew ~ N(¥yf|Xnew G5°), where Yyf|Xpew is the estima-
tion of Y from random forest given a new Xyey, and 6% is
the standard error.

4. Regression mixture model (only for Example 2), which
identifies the subgroups of dataset and fits multiple linear
regression models. Its prediction distribution is Y[Xpew ~
N(Yrmixreg | Xnew> G5°), where VinixreglXnew is the estimation
of Y from the regression mixture model given a new Xpey
which is randomly assigned into subgroups with the weights
derived from training data, and 67 is the standard error.

We study the following four examples with 1024 samples for
both training and testing sets.

id
Example 1 (Crossing lines). The predictor x; < U(—10,10), i =
1,...,n. For the example with one cross on the plane, the
response y; is generated by y; = x;I(g; = 0) — xil(gi = 1) + &,

”
where the error ¢; < N(0,0.5),i = 1,...,n, and I(-) is the

A
indicator function with g; ~ Bernoulli(1/2),i = 1,...,n. For
the example with multiple crosses, the response y; = (in (g1i
D) —xil(gi = 2) + (xi — 10)(g1; = 3) + (—x; + 10) (g1
D) (xi = 0) + (xil(g2i = 1) — xil (g2 = 2) + (—x; — 10)I (g2
3) + (xi + 10)I(gi = 4))I(xi < 0) + &, where the error
id
& ~ N(0,0.5),i = 1,...,n,and I(-) is the indicator function
iid

with g ~ Multi-Bern({1,2,3,4}, (1/4,1/4,1/4,1/4)), i =
,...,n, k=1,2.

Example 2 (A mixture of linear and quadratic effects). The

predictor vector (xj1,. . ., xiq)T is generated by x;; i U(-2,2),
i=1,...,nj=1,...,q withg = 1, 5, 10. The response y;
is generated by y; = x;11(gi = 0) + x41(gi = 1) + &;, which
depends on only the first variable x;; and other variables are

i1

regarded as noise. The error ¢; ~ N(0,0.05),i = 1,...,n,
i

and I(-) is the indicator function with g; ~ Bernoulli(1/2),

i=1,...,n

Example 3 (Circular and spherical implicit functional relation-
ship). The predictor vector (x;1,...,xiq)’ has g = 5. For the
circle example, the predictors and the responses are generated

from the polar coordinates x;; = sin(6;), yi = cos(6;) + &,
id
where the latent variable 6; < U(,2r),i = 1,...,n, and

o
the error ¢; ~ N(0,0.05), i = 1,...,n. The noise variables

iid
(x5 . .. ,xiq)T are generated by x;; ~ U(-1,1),i =1,...,n,
j=2,...,q. For the sphere example, where the latent variables

-
0; < U(0, ), the predictors and the responses are generated
from x;; = sin(f;) cos(¢h), xip = sin(fy)sin(¢;), y; =
"
cos(6;) + &;, where ¢; ~ U(0,2m),i = 1,...,n, and the error
iid
& ~ N(0,0.05),i = 1,...,n. The noise variables (x;3,. .. ,xiq)T

4
are generated byx,-j ~ U-1,1),i=1,...,n,j=3,...,q.

Example 4 (Heterogeneous mean vs. heteroscedastic error). The

iid
predictor x; N U(=2,2),i=1,...,n The response y; is gener-
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atedby y; = (xi +2+xi)I(gi = 0) + (xiz1 +¢))I(gi = 1), where

the error &; id N(0,02),i=1,...,n,0%=0.05, 0.25, 0.5.

In each example, BET with depth 5 and a threshold of Zlngp
for symmetry statistics, where p is the total number of inter-
actions and # is the sample size, is performed for main effects
screening, while generalized BET with depth 4 and the same
threshold is performed for interaction effects screening. For
the selection of depth, with a small depth 3, BET reaches a
high power (Zhang, Zhao and Zhou 2021). We perform sim-
ulation with different depths and the results are reported in the
Appendix. We pick a depth 5 and 4, which is high enough. Two
types of smoothing approaches are considered: fixed smoothing
parameter (“Fixed smoothness”), and tuning the smoothing
parameter by cross-validation (“CV?).

We repeat the simulation 100 times for each example. To
measure the test error, we calculate the differences of predic-
tion distributions from different methods and the underlying
true distributions, the following distance measures are used: (a)
Kolmogorov-Smirnov statistic Dgs(P, Q) = sup, [P(x) — Q(x)l,

(b) Kullback-Leibler divergence Dk, = [ * p(x) log(w)dx,

—00 q(x)
(c) Ly distance Dy, = ffooo |p(x) — q(x)|dx, where P and Q
are two distributions with corresponding PDFs p(-) and q(-),
respectively.

Here we display the results of Example 1-4, which are het-
erogeneous data, and the result from a case of a nonlinear func-
tional relationship is in supplementary materials. Tables 1-4 list
the results of testing errors for the three simulation examples.
Figures 6-9 show the heatmaps of the prediction distributions
of all test data, where the x axis is the involved variable of the
predictors. We discard the heatmap of the spherical case, since
it has two involved variables and cannot be shown explicitly in
a heatmap.

The results indicate the best performance of resolution-wise
regression. For Example 1, resolution-wise regression espe-
cially with cross-validation smoothness can identify the sub-
groups, while the regression mixture model does not perform
well as the number of subgroups increases. The naive method
has a good performance since the dependence is linear. For

Table 1. Comparison of average test errors (and corresponding standard errors
in parentheses) for Example 1 with respect to one or multiple crosses and three
distance measures. Bold numbers represent the smallest error of each case.

Example Measure Naive Mixreg SSANOVA Random Fixed v
Forest smoothness
onecross  KS 0.151  0.351 0.294 0.377 0.165 0.129
(0.015) (0.010) (0.016) (0.017)  (0.009)  (0.005)
KL 0362 139  1.031 1.835 0.386 0.265
(0.032) (0.067) (0.062) (0.156)  (0.025)  (0.014)
Ly 0639 108  1.181 1.120 0.717 0.364
(0.034) (0.063) (0.073) (0.069)  (0.035)  (0.019)
multiple KS 0.188  0.405  0.229 0.394 0.165 0.145
(0.007) (0.026) (0.016) (0.020)  (0.010)  (0.008)
KL 0319 2511 0.548 1.615 0.338 0.257
(0.016) (0.128) (0.036) (0.084)  (0.024)  (0.016)
Ly 0653 1212 0850 1.054 0.658 0.397
(0.033) (0.052) (0.042) (0.057) (0.034) (0.019)

NOTE: The results for naive method, mixture of regression, SSANOVA, resolution-
wise regression with fixed smoothness, and resolution-wise regression with CV
are listed in the columns from left to right, respectively.
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Table 2. Comparison of average test errors (and corresponding standard errors
in parentheses) for Example 2 with respect to dimension ¢ = 1,5,10 and three
distance measures. Bold numbers represent the smallest error of each case.

Table 4. Comparison of average test errors (and corresponding standard errors in
parentheses) for Example 4 with respect to different variances of random errors and
three distance measure. Bold numbers represent the smallest error of each case.

Example Measure  Naive  SSANOVA Random Fixed v Example  Measure  Naive SSANOVA Random Fixed v
Forest ~ smoothness Forest  smoothness
qg=1 KS 0.103 0.215 0.256 0.169 0.167 62 =005 KS 0.192 0.189 0.243 0.153 0.154
(0.006)  (0.005)  (0.008) (0.013) (0.014) (0.008)  (0.009)  (0.016) (0.005) (0.005)
KL 0.261 0.605 0.787 0.089 0.693 KL 0435 0417 0512 0.229 0.743
(0.010) ~ (0.021)  (0.049)  (0.008)  (0.037) (0.022)  (0.026) (0.030)  (0.012)  (0.034)
Ly 0.383 0.765 0.716 0.283 0.517 Ly 0.656 0.622 0.652 0.424 0.569
(0.018)  (0.033)  (0.035) (0.015) (0.027) (0.034)  (0.035)  (0.033) (0.022) (0.024)
qg=>5 KS 0.345 0.219 0.222 0.180 0.179 62=025 KS 0156  0.131 0.239 0.123 0.123
(0.019)  (0.016)  (0.012) (0.015) (0.014) (0.006)  (0.006)  (0.014) (0.009)  (0.010)
KL 0.701 0.589 0.730 0.146 0.532 KL 0.258 0.245 0.430 0.166 0.330
(0.034)  (0.025)  (0.037) 0.011) (0.028) (0.016)  (0.014)  (0.026) (0.009)  (0.020)
Ly 0.937 0.774 0.693 0.348 0.506 L 0.491 0.452 0.571 0.346 0.400
(0.039)  (0.035)  (0.028) (0.015) (0.022) (0.025)  (0.030)  (0.033) 0.017)  (0.023)
q=10 KS 0344 0210 0213 0169~ 0.183 o2=05 KS 0139 0121 023 0098 0110
(0.006)  (0.006) ~ (0.015)  (0.018) ~ (0.018) (0.008)  (0.007)  (0.018)  (0.007)  (0.009)
KL 0767 058 0666 0185 0.572 KL 0201 0208 0421 0142 0167
0033)  (0.024)  (0.050)  (0.022)  (0.035) (0013)  (0017) (0035  (0.009)  (0.012)
L 0952 0735 0693 0346 0498 L 0422 0408 0554 0296 0308
(0038)  (0.032)  (0.035)  (0.015)  (0.026) (0.035)  (0.024) (0.038)  (0.019)  (0.020)

NOTE: The results for naive method, SSANOVA, Random Forest, resolution-wise
regression with fixed smoothness, and resolution-wise regression with CV are
listed in the columns from left to right, respectively.

Table 3. Comparison of average test errors (and corresponding standard errors in
parentheses) for Example 3 with respect to circular and spherical implicit functional
relationship and three distance measures. Bold numbers represent the smallest
error of each case.

Example Measure  Naive  SSANOVA Random Fixed (@Y
Forest ~ smoothness
Circle KS 0.175 0.201 0.398 0.172 0.156
(0.010)  (0.014)  (0.030) (0.010) (0.008)
KL 0.378 0.436 4.180 0.264 0.404
(0.019)  (0.032) (0.322)  (0.008)  (0.027)
Ly 0.677 0.761 1.384 0515 0.535
(0.039) (0.034) (0.108) (0.022) (0.025)
Sphere KS 0.170 0.184 0.413 0.183 0.161
(0.012) (0.010) (0.037) (0.009) (0.006)
KL 0.369 0.411 4.553 0310 0.339
(0.015)  (0.021)  (0.355) (0.009) (0.016)
Lq 0.664 0.735 1.439 0.580 0.570
(0.026)  (0.038)  (0.080)  (0.024)  (0.025)

NOTE: The results for naive method, SSANOVA, Random Forest, resolution-wise
regression with fixed smoothness, and resolution-wise regression with CV are
listed in the columns from left to right, respectively.

Example 2, resolution-wise regression can predict the probabil-
ities around the two subgroups, thus, has the best performance.
SSANOVA does not perform well since it cannot recognize the
subgroups. The naive method performs well only in the low-
dimensional case, because in the high-dimensional case, it is
difficult to find a small neighborhood with substantial train data.
Random forest does not perform well because it averages the
predictions from multiple regression trees and mixes the two
subgroups up. Resolution-wise regression performs well in the
high-dimensional case, and the distance to the true distribution
only increases slightly with the effect of noise variables. For
Example 3, resolution-wise regression performs the best, while
the naive method has poor performance due to the dimension
issue; SSANOVA fails to capture the relationship, since it cannot
be expressed in an explicit regression function form; Ran-
dom forest gives an averaged prediction and fails to recognize
the multiple patterns at one position. For Example 4, only the
resolution-wise regression successfully distinguishes the two

NOTE: The results for naive method, SSANOVA, Random Forest, resolution-wise
regression with fixed smoothness, and resolution-wise regression with CV are
listed in the columns from left to right, respectively.

subgroups of the heterogeneous mean with homogeneous error
model and the homogeneous mean with a heteroscedastic error
model.

Based on the simulation results, we can see that resolution-
wise regression has a better distribution prediction when the
variance o2 of the error is larger, which seems paradoxical
with the point prediction of some common regression methods.
In fact, for point prediction, the loss comes from the random
error term. A large variance leads to a large loss. However, for
distribution prediction, the loss comes from the accumulated
probability of possible response values.

The variance affects the shape of the distribution of the
response. For a smaller variance, the data are concentrated, and
more precise resolutions are needed, which bring the difficulties
for the estimation of the corresponding logistic regressions.
Hence, for the same expansion order dy, our method gives less
accurate results on smaller variances. This also shows some
insights for a general prediction problem that distribution pre-
diction is a good alternative to capture the whole picture if the
random error is relatively large.

6. Real Data Analysis

We analyze the real estate valuation dataset (Yeh and Hsu
2018), obtained from UCI machine learning Repository (https://
archive.ics.uci.edu). The dataset contains the unit-area price
and the corresponding six explanatory variables of 414 houses
collected from Sindian District, New Taipei City. The six
explanatory variables include the transaction date, the house
age, the distance to the nearest MRT station, the number of
convenience stores in the living circle on foot, the latitude, and
the longitude. We are interested in how the house price can be
explained by these variables. We consider three methods: (a)
Naive method with the small neighborhood of the nearest 10
samples, where the distance is measured by the Mahalanobis


https://archive.ics.uci.edu
https://archive.ics.uci.edu
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Figure 6. Heatmaps of prediction distributions for Example 1 with respect to one or multiple crosses and six methods: naive method, regression mixture, SSANOVA, Random
Forest, resolution-wise regression with fixed smoothness, and resolution-wise regression with CV, from left to right, respectively. A darker color indicates a larger PDF value
at the corresponding predicted response.
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Figure 7. Heatmaps of prediction distributions for Example 2 with respect to dimension ¢ = 1,5, 10 and five methods: naive method, SSANOVA, Random Forest,
resolution-wise regression with fixed smoothness, and resolution-wise regression with CV, from left to right, respectively. A darker color indicates a larger PDF value at
the corresponding predicted response.
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Figure 8. Heatmaps of prediction distributions for Example 3 with respect to circular implicit functional relationship and five methods: naive method, SSANOVA, Random
Forest, resolution-wise regression with fixed smoothness, and resolution-wise regression with CV, from left to right, respectively. A darker color indicates a larger PDF value
at the corresponding predicted response.

distance (Rosenbaum 1995) of the rank vector within each There are three interesting results we find from the applica-
predictor; (b) SSANOVA with cubic splines on each main effects  tion of resolution-wise regression.
and interactions; (c) Resolution-wise regression with dx = 5 House prices rely on some features through a nonlinear

and dy = 5. relationship. Such a nonlinear pattern can be detected by the
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Figure 9. Heatmaps of prediction distributions for Example 4 with respect to different variances of random errors and five methods: naive method, SSANOVA, random
forest, resolution-wise regression with fixed smoothness, and resolution-wise regression with CV, from left to right, respectively. A darker color indicates a larger PDF value
at the corresponding predicted response.
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Figure 10. Relevantvariables and the corresponding most significant patterns. For the distance to the nearest MRT station and the latitude, there exists a linear relationship
to the housing prices. For the longitude, the most asymmetric interaction is A1A; B, which implies a nonlinear dependence.
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Figure 11. Interaction of latitude and longitude. The high-price houses concentrate around the downtown area.

BET screening, as shown in Figures 10 and 11. The latitude and
the longitude show skewed quadratic effects which are captured
by the relevant patterns in depth 1 and depth 2, respectively. For
the screening of interaction patterns, all the CZ interactions are

significant. As an example shown in Figure 11, the interaction
of the latitude and the longitude shows a concentration of high-
price houses, which can be pinpointed around the downtown
area. There is also some linear pattern found in the data. As



shown in Figure 10, the distance to the nearest MRT station and
the number of convenience stores in the living circle on foot
has a linear effect on the house price which is captured by the
relevant pattern in depth 1.

Potential heterogeneity can be detected by resolution-wise
regression, as shown in Figure 12. The proposed method clearly
predicts the house price concentrating on two groups around 30
and 60, which is new information that is not provided by existing
methods. For examples, the SSANOVA completely misses such
heterogeneity. The naive method provides a distribution which
vaguely suggests probability mass toward the right tail. However,
the subgroup information identified by the naive method is not
very clear (Figure 12).

The detected heterogeneity can also be demonstrated
through the additional information from the map of the city.
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Figure 12. Predicted distributions by naive method by the nearest 10 samples,
SSANOVA, and resolution-wise regression.
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As shown in Figure 13, the nearest 10 samples measured by
the Mahalanobis distance form two groups classified by the
river and the highway. The two groups differ in the house
price, and both contribute to the distribution estimation. The
effect of the river and the highway play the role of unobserved
variable, which leads to the bimodal shape of the prediction
distribution. The prediction from our method suggests that
the price of the particular house is more likely to be close to
the three houses on the lower-left side of the river, which has
an average price of 25.75. This is verified as correct prediction
through the actual map. In particular, the location of the house
is indeed on the lower-left side of the river. This example thus
illustrates the advantage of the proposed method. Specifically,
it can detect heterogeneity in the data and provide accurate
probability statements about subgroup information.

In summary, this real data analysis indicates that resolution-
wise regression model can capture the heterogeneous pattern,
thus, can deliver more detailed prediction information than tra-
ditional methods. Since no distribution assumption is required,
our method is rather general and robust.

7. Conclusion

In this article, we propose resolution-wise regression model to
predict the distribution of the response with heterogeneous data.
The complicated relationship between the response and the
explanatory variables can be decomposed into the relationship
of resolutions of the response and patterns of the predictors
based on binary expansions. A set of penalized logistic regres-
sions establish the effect of patterns having on the resolutions. By
BID transformation, our method can estimate the cell probabil-
ity of the histogram of the response, which is an approximation
of the distribution of the response. We also show the consistency

an Park

Map data ©2019 Google _ United States _ Terms _ Send feedback 500 ft——1

Figure 13. The testing sample (red pin) and the nearest 10 samples measured by the Mahalanobis distance of the rank vector within every predictor (blue pins, where two
samples on the power left side have the same location, and two samples on the lower left side have the same location) on the map. In these 10 houses, four are on the
lower left side of the river with an average price of 25.75, and six are on the upper right side of river with an average price of 43.87.
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of the cell probabilities. Numerical studies demonstrate the
effectiveness of the proposed method.

Appendix

Proof of Theorem 1:

We split the whole proof into two steps: (a) the selected variables
from the BET screening are equivalent to those from the sure inde-
pendence screening based on the MMLE, (b) the proposed logistic
regression satisfies the conditions in Fan and Song (2010) to achieve
the sure independence screening property.

(1). The BET test statistic

n n
Y IAG B, =1 = ) IAg),iBmy,i = =1

i=1 i=1

n
> AGiBomyi

i=1

—Vn

Sa b =

n ~
D A,iBomil-

i=1

By the definition in (12), and B(m) = (B(m) + 1)/2, the MMLE can be
obtained by the optimization with respect to B (m),i s> that is,

- 1N Bumyitl-

Bm,j = argmin " Z —%A@jﬂmj
Bmj " im1

+log(1 4 eA0iPmiy j =1, . L.

Setting the derivative of the above objective function with respect to

Bm,j to be zero, we have that By, ; satisfies
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The second equation holds since there are n/2 samples with A(j),i =

1/4/n and the other n/2 samples with A(j),i = —1/4/n, due to the
binary expansion from the empirical CDF transformation. Denote
t(Bmj) n A O entiating with tto B
i) = Y.L, —=————. Differentiating with respect to i»
(ﬁm,] i=1 1 AP g P ﬁm,]
B U P
By _ o A O
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strictly increasing with respect to B, j- For Ympn > 0, if B j = Ynm
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we obtain > 0. Hence, t(Bm,j) is
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Since S ; p,,,, = 2ﬁ|t(BmJ)|, we have Sq 5, = 2/nyn,m. Hence,
we have the variable selection index set{l < j < L : Sa(j)b(m) >

2/nt(yam)} 2 {1 < j < Lt [Bmjl = yum). Similarly, we
have{l < j < Lt Sapp,, = 2vntlyam)} € {1 < j < L:

|Bmjl = Vnm). Denote Ij+ = {1 < i< n:Ajg; = 1/Jn,

Ij ={l1<i<n: A(j),i = —1/4/n}). Taking yy,m = camn *m
for some c4,;, > 0, we have
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Hence, the BET screening is equivalent to the sure independence
screening based on MMLE. This ensures that the estimation methods
are the same as those in Fan and Song (2010).

(2). Under the binary expansion, the variables are bounded in [0, 1]
after empirical CDF transformation, so that the conditions A— Cin Fan
and Song (2010) are naturally satisfied. Assumption 1 is analogous to
Condition E. So we only need to check Condition D. For the proposed
logistic regression, let wo = 1, and we have

~T ~T
Eexp(log(l + e Pnt0) —log(1 + A Pm))
. .
+E exp(log(1 + A Pn="0) _log(1 + ¢4 Fmy)
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—2+E ~T
1+e A B
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Taking w1 = 2, h1m = 3, ho,m = 1, @ = 1 satisfies Condition D.
Hence, by Theorem 4 in Fan and Song (2010), for 8, =

1
O(n2~m), the sure independence screening property is achieved.

Proof of Theorem 2: For logistic regression, the function b(-) of
Condition G in Fan and Song (2010) is b(x) = log(1 + €¥). Since

0 < dzdl;(zx) — (I-ﬁ;")z < 1, Condition G in Fan and Song (2010)
is met. Together with Assumption 2, by Theorem 5 in Fan and Song
(2010), the proof is completed.

Let F be a normed real vector space. For the mth logistic
regression function f, € F {-1,1}Y — R, where r :=

Max; ., <ody _y [Mins,,.|> the negative log-likelihood loss Pf

{(—1,1)r+1 P (A% Bmy) = log(l +
e_B(m)f(As)), m=1,... ,2dY— I,WhereAS = (A?I)’ . ,A‘(Sr))Tis the
predictor vector including the selected r patterns. For a loss function
Pfy> define the empirical risk for Py by Py, Pfyy = % Z;’zl Pfys Zm,i)»
and the theoretical risk by Ppg, = % >y Epy,, (Zm,i)- Consider the
collection F to be a linear-model class, that is, F := {fﬁ : B e RPY,

— R is me(Zm) =



where B +— fg is linear. For the mth regression, note that the true
coefficient vector B9, is the minimizer of the theoretical risk

ﬁ?n = argmin Pp g, (13)
g
0
and 2 := f;,". We assume for simplicity that the minimum exists and
unique. Forfﬁ € F, the excess risk is defined by E(f,ﬁ) = P(pf;; -
m
pfo). The lasso estimator is ,3,” = argming {Pnpfﬂ + AmllBllL}, m=
m m

1,...,297 —1, where [I-]1 is the £1-norm and A, is a tuning parameter.
The estimation of the regression function is fm =fm".

Denote 7 (A%) = P(B(yy = 114°) and em(4°) = E(Byy|A%).

We have e, (AS) =2, (AS) — 1. Hence, based on the link function of
logistic regression, we can define a functional ¢ mapping ey, (-) to the

regression function fyﬁ ()

m()"rl
B Tm (") _ 5 2

Denoting e(,)n (AS) as the true expectation corresponding to ,82, ,by (14),

we have f,?l = g(e?n). Similarly, recall that ém(AS) is the estimated
expectation, and thus we havefm = g(em).

For a given index set S C {1,...,r}, define By g,
Bujlli € Smbh m = 1L...,2% —1,j = 1,..
the estimator restricted to B,

.,r. Denote
B 1S+ - Bmrs,) " by
Bm,sm = argminﬁzﬂm S Pn,Ofﬁ. Write fm,s = fnfim’s"‘. Restricted

0
ﬂm,Sm

to Bm,s,, s> the best approximation of f,% is f,oﬂ s = fm ", where

0 — 7
ﬂm)sm =argming_g o prﬁ'
The following assumption requires a certain compatibility of £1-

norm with the norm on F, which is a regular assumption for the
theoretical framework for lasso.

Assumption 3. (Compatibility condition) We say that the compatibility
condition is met for the set S, with constant ¢,,, > 0, if for all
Bm satisfying ||B,sc 111 < 311Bms,, ||, it holds that ||Bps,, 1] <
Ul 1Psm /b

Next, we show the definition of the margin condition (Biilmann
and van de Geer 2011) and demonstrate that the penalized logistic
regression satisfies the condition with a quadratic margin.

Definition 1 (Margin condition). Denote a “neighborhood” of f € F
by Fom = {f € F: IIf = fOlloc < nm} with constant 1, > 0. We say
that the margin condition holds with a strictly convex function G, if for
allf € Fy,,, we have £(f) > G(||f —f,91||), where || - || is the norm
defined on F.

Assumption 4. For any fixed AS, there exists some constant 0 <&l <
lsuchthatefn < nm(AS) <1 —821,7}’1 =1,...,29v — 1.

Lemma 5. Under Assumption 4, the margin condition holds for all
29 _ 1 penalized logistic regressions with a quadratic margin, that
is, Gy (1) = cpyu? for the mth regression.

The technical proof of Lemma 5 can be found in supplementary
materials. For the mth regression, the oracle 8, (Billmann and van de
Geer 2011) is defined by

827
B, = argmin 35(f,ﬁ) + mszﬁ , (15)
B:Spew cm®im
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where Sg = {j : Bi # 0}, sg == IS4l denotes the cardinality of Sg,
¢?2, is a compatibility constant, and W is a suitable large collection of
index sets. Denote the index set of nonzero coefficients by 8, := {j
/321 j # 0}, and the cardinality of S, by s, := [S%,|. Assuming f3) is
linear, we can take ¥ = { S(,)n}. Hence, the definition of ), is consistent
with the definition of /321 in (13), since the second term of (15) does
not rely on B. In this context, we only use the notation gJ,. Denote

- « 0 812 sm
the minimum of (15) by 2¢\, = 3E(f;) + p ':;2

SUPy 30 <My |71 (B) = V(B where v (Bm) = (P = P)psn
is the empirical process. Set M}, := € /A0, and Ty, := {Zmz, <

)L(,)nM,’;} = {Zm:, < €, }. Billmann and van de Geer (2011) showed

that one can choose A(,)n = /log(n%m)/n such that the set T, holds
with large probability.

. Define Zyy,, =

Assumption 5. For some constant 1, > O,frﬁ”‘ € Fy = Ulf" —
fr(,)1||oo < ) forall || By — ,39”||1 < M*, as well asf,?1 € Fop-

According to the BID equation, we estimate p by solving the opti-
mization (9). From the optimization, Hy,]p is an approximation of
em, where Hy, 41 is the (m + 1)th row of H, since &, is the (m + 1)th
entry of E. Hence, g(Hpm1p) is the estimated m-th regression function
corresponding to p. The following theorem gives the consistency of cell
probability vector p in terms of excess risk of g(Hp+1p)-

We now turn to the proof of Theorem 3. Below is its statement again
for convenience.

Theorem 4. Assume Assumptions 1-5 hold, where Assumption 3 holds
with the set 80,. For the logistic regression with covariates correspond-
ing to the BET screening set My, 5, ,,» suppose that Ay, satisfies Ay >
8A9n. Then on the set T, we have,

E@Hps1P)) + 2ml1Bm — B

16225,  32AKs29Y
< 6E(fO) + —m ,
= (fm Cmd’zn C¢2
where K > 0 is a constant, A = max1<m<2dy_lkm, s =

max, , ody g Sm> € = MiNy ) cody g Omy ¢ = Miny ) oay 4
-

Before the proof of Theorem 3, we first state the oracle inequality
for penalized logistic regression by Biilmann and van de Geer (2011) as
follows.

Lemma 6. Assume Assumptions 3-5 hold, where 3 holds with the set
S9,. Suppose that A, satisfies the inequality A, > 8A0,. Then on the
set T, we have

5 . 0 or  162%sm
E(fm) + AmllBm — Bmllt < 6E () + 5
Cmbm

where ¢;;; = (e’le +1)72
Em

Then we have the proof for Theorem 3 as follows.

Proof of Theorem 3: For the excess risk of g(Hp,1p), we have

EQHm+1P) = Pog(p,, ) — PPry = PPg(H,p) — PPy(el)

= (PPg(H,1p) ~ PPeen)) + PPg(z,) — PPy(cl,))
~ A
= (PPg(H,ui1p) ~ PPg(en) + Em) =T+

It can be shown that the function Ppg,,) is Lipschitz continuous, with
the Lipschitz constant Ky, obtained from the first derivative



16 JUIETAL

dPpg(e,,)
dem

3 efm - ( Lol )
B l—l—ef’“ T 1+em 1 —em

201 — &%) Ay
Sro1a-292 ™"

For part I, denoting the true expectation vector by E° and the corre-
sponding true cell probability vector by p° = H~1E?, we have

1| <KmlHmt1p — ém| < Km|[Hp — Ell1 < Kml|Hp® — E|l1
<Km(1HP® — E%l[1 + [1E® — E|l1).

161 . z 2
omam. Since fn — ful < |lBm —
m¥m

,821||1 with predictors taking values from {—1,1}, we have [fm —

0 1648
fal <

is Lipschitz continuous with Lipschitz constant two. Hence, we have

p 2 321 -

lem — eyl < 2lfm — fpl < 225m, and thus |IE0 — Bl <
m

324524

b , where A = maxlgmgde—l)‘m’ § = maX; ., cody g Sm>

By Lemma 6, Bm — ,3,91||1 <

. One can similarly show that the function g~!(-)

c= min1<m<2011,71 cm>and ¢ = minlgmgde—l Om.
For the true expectation vector and the true cell probability vector,
0 0 — —
we have ||Hp” — E’||; = 0. Denote K = max; <, ody K.
Together with the inequality in Lemma 6 to handle the partII, the proof
is completed.

Supplementary Materials

Supplement materials of this article include additional simulation studies,
additional proofs and R code.
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