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1. Introduction

Nonparametric tests of independence are a fundamental problem in statis-

tics and have been studied by, among others, Hoeffding (1948). This prob-

lem is garnering increased interest, owing to its important role in machine

learning and big data analysis.

Numerous testing methods have been proposed, including those of Székely

et al. (2007), Wang et al. (2017), and Han et al. (2017), who generalize the

idea of correlation and R-squared, Shapiro and Hubert (1979), Friedman

and Rafsky (1983), Azadkia and Chatterjee (2019), Deb and Sen (2019),

and Deb et al. (2021), who relate dependence to graphs, Heller et al. (2012),

Heller et al. (2016), and Heller and Heller (2016), who study the distance

matrix of ranks, Berrett and Samworth (2019), Kim et al. (2020), and

Berrett et al. (2020), who consider classical permutation-based statistics,

and Gretton et al. (2008), Chwialkowski and Gretton (2014), Jitkrittum

et al. (2017), Pfister et al. (2018), Zhang et al. (2018), and Chakraborty

and Zhang (2019), who take advantage of the reproducing kernel Hilbert

space to develop Hilbert–Schmidt independence criterion-based statistics.

Other recent works include those of Weihs et al. (2018), Ke and Yin (2019),

Bodnar et al. (2019), Shi et al. (2020), and Drton et al. (2018). Zhu et al.

(2017) proposed a projection method related to the distance correlation
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when testing independence. Excellent reviews can be found in Jaworski

et al. (2010) and Josse and Holmes (2016).

An important problem in nonparametric dependence detection is that

of nonuniform consistency, which means that no test can uniformly detect

all forms of dependency, as described by Zhang (2019). This problem is

particularly severe for nonlinear relationships, which are common in many

areas of science. To avoid the power loss due to nonuniform consistency,

Zhang (2019) considers the binary expansion statistics (BEStat) frame-

work, which examines dependence using a filtration approach induced by

a binary expansion of the uniformly distributed variables. Zhang (2019)

also proposed testing the independence of two continuous variables using

the framework of maximum binary expansion testing (BET). Rather than

one test of independence, this approach uses a carefully designed sequence

of tests based on a filtration to achieve universality. BET also achieves

uniform consistency and is minimax optimal in terms of power (see section

4.2 in Zhang (2019)). In addition, it provides clear interpretability, and can

be implemented efficiently using bitwise operations.

Although BET works well for testing the independence between two

variables, two crucial improvements are needed to make it more practical.

The first requirement is to improve the power of BET under certain cases,
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such as linear dependency. The second requirement is an extension to test

the independence of random vectors. We describe a new approach that

solves both problems. The first problem is addressed using a novel ensem-

ble approach, and the second is solved by using a one-dimensional random

projection. We call the new method the binary expansion randomized en-

semble test (BERET). We use simulation studies to show that the proposed

method has good power properties.

We use example data sets to illustrate how the proposed method pro-

vides clear interpretability, while maintaining good power properties across

various dependence structures, including both linear and nonlinear relation-

ships. In a life expectancy example, our method detects three meaningful

and interpretable relationships and provides similar p-values to those of

competing methods. In a mortality rate example, we show that the canon-

ical correlation test can be interpretable, but fails to detect a nonlinear

dependence structure. This is unfortunate, because the canonical corre-

lation test is the only other method that has inherent interpretability. In

contrast, our method is able to identify meaningful relationships, even when

there is a nonlinear relationship. In a house price example, the mutual in-

formation test fails to reject independence because the linear relationship

is not sufficiently strong. However, our method rejects independence be-
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cause of its stronger sensitivity to linear relationships, and is able to detect

interpretable dependence structures, including linear relationships. The

canonical correlation test also works here and provides good interpretabil-

ity. However, our method is the only method that can detect both linear

and nonlinear relationships, as well as providing interpretable dependency

structures.

The remainder of this paper is organized as follows. Section 2 de-

scribes the ensemble method and the BERET procedure. In Section 3, we

present simulation studies that demonstrate the performance of the pro-

posed method, and in Section 4, we provide three data examples. Con-

cluding remarks are presented in Section 5. All proofs are given in the

Supplementary Material.

2. Proposed Method

2.1 The BET Framework

We briefly introduce the BET and useful notation from Zhang (2019). Let

(X1, Y1), . . . , (Xn, Yn) be a random sample from distributions of X and Y .

If the marginal distributions of X and Y are known, we can use the CDF

transformation so that U = FX(X) and V = FY (Y ) are each uniformly

distributed over [0, 1]. The binary expansions of the two random variables
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2.1 The BET Framework

U and V can be expressed as U =
∑∞

k=1 Ak/2
k and V =

∑∞
k=1 Bk/2

k,

where Ak
i.i.d.∼ Bernoulli(1/2) and Bk

i.i.d.∼ Bernoulli(1/2). The value

of each Bernoulli distributed variable can be found using Ak′ = I{U −∑k′−1
k=1 Ak/2

k ≥ 1/2k
′} or Bk′ = I{V −

∑k′−1
k=1 Bk/2

k ≥ 1/2k
′}. If we truncate

the expansions at depth d, then Ud =
∑d

k=1 Ak/2
k and Vd =

∑d
k=1 Bk/2

k

are two discrete variables that can take 2d possible values. We define the

binary variables Ȧk = 2Ak − 1 and Ḃk = 2Bk − 1 to express the inter-

action between them as their products. We call any products of Ak and

Bk with at least one Ak and one Bk cross-interactions. In other words,

cross-interactions are defined as variables of the form Ȧk1 . . . ȦkrḂk′1
. . . Ḃk′t

,

for some r, t > 0. We use the following binary integer indexing. Let a be

a d-dimensional binary vector with ones at k1, . . . , kr and zeros otherwise,

and let b be a d-dimensional binary vector with ones at k′
1, . . . , k

′
t and zeros

otherwise. Using this notation, the cross-interaction Ȧk1,...,krḂk′1,...,k
′
t
can be

written as ȦaḂb. For example, Ȧ1Ȧ3Ḃ2Ḃ4 = ȦaḂb, where a = 1010 and

b = 0101 when d = 4.

Let Ȧa,i and Ḃb,i be the values of Ȧa and Ḃb for the ith observation.

We denote the sum of the observed binary interaction variables by S(ab) =∑n
i=1 Ȧa,iḂb,i, with S(00) = n. These are referred to as the symmetry statis-

tics. If Ud and Vd are independent, (S(ab) + n)/2 ∼ Binomial(n, 1/2), for
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2.2 Univariate Independence Testing Procedure

a ̸= 0 and b ̸= 0. If the marginal distributions are unknown, we use the em-

pirical CDF transformation, and then (Ŝ(ab)+n)/4 ∼ Hypergeometric(n, n/2, n/2),

where Ŝ(ab) is a symmetry statistic with an empirical CDF transformation.

If we truncate the expansions at depth d = dmax, the BET procedure at

depth dmax can be defined as follows. First, we compute all symmetry statis-

tics with a ̸= 0 and b ̸= 0, for d = dmax. For each depth d = 1, . . . , dmax,

we identify the symmetry statistic with the strongest asymmetry and find

its p-value. Finally, we use the Bonferroni adjustment to obtain a p-value

that considers the family-wise error rate.

BET has several advantages. The test is minimax optimal under certain

regulatory conditions. Moreover, it provides both inferences and clear inter-

pretations. For BET, rejecting independence implies that there is at least

one significant cross-interaction. Thus, we can find a potential dependence

structure in the sample by investigating the detected cross-interaction.

2.2 Univariate Independence Testing Procedure

Although BET shows good performance in many interesting dependency

structures, there is room for improvement. In particular, using the maxi-

mum statistic in the BET testing procedure may introduce a loss of power

when the sparsity assumption in Zhang (2019) is violated. We consider a
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2.2 Univariate Independence Testing Procedure

test based on the sum of the squared symmetry statistics.

Consider a binary expansion test with specified dmax. For each depth

d = 1, . . . , dmax, we can find a set of symmetry statistics S(ab). Let Cd be a

set of corresponding ab indices of depth d. The sets Cd have a nested struc-

ture. Because an interaction has different ab indices for two different d, to

avoid confusion, we use ab of depth dmax, for example, when dmax = 2, C1 =

{1010}, and C2 = {0101, 0110, 0111, 1001, 1010, 1011, 1101, 1110, 1111}. Now,

for each depth d, we introduce two measures of dependence. Suppose X ∈ R

and Y ∈ R are two continuous random variables. The population measure

of dependence is defined as

Bd(X, Y ) =
1

(2d − 1)2

∑
ab∈Cd

E(ȦaḂb)
2, (2.1)

for each depth d = 1, . . . , dmax. The joint distribution of (Ud, Vd) with a

finite d is not an exact model for the joint distribution of (U, V ). Therefore,

Bd(X, Y ) = 0 does not necessarily indicate independence between (U, V ).

When d is large, however, we expect that the dependence in (Ud, Vd) pre-

cisely approximates that in (U, V ).

Let {(Xi, Yi)}ni=1 be a random sample from the joint distribution of

(X, Y ). The empirical measure of dependence is defined as

Bn,d[{(Xi, Yi)}ni=1] =
1

(2d − 1)2

∑
ab∈Cd

(
S(ab)

n

)2

, (2.2)
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2.2 Univariate Independence Testing Procedure

for each depth d = 1, . . . , dmax. The following theorem lists some properties

of Bd(X, Y ) and Bn,d[{(Xi, Yi)}ni=1].

Theorem 1. Suppose X and Y are continuous random variables. The

following properties hold:

(i) Bd(X, Y ) = 0 if and only if Ud and Vd are independent.

(ii) 0 ≤ Bd(X, Y ) ≤ 1.

(iii) Bn,d[{(Xi, Yi)}ni=1]
a.s.−→ Bd(X, Y ) as n → ∞.

(iv) If X and Y are independent, then (2d − 1)2nBn,d[{(Xi, Yi)}ni=1]
d−→

χ2
(2d−1)2

as n → ∞.

We define the scaled sum of the squared symmetry statistics for each

depth d = 1, . . . , dmax as

ξn,d =
∑

ab∈Cd

S2
(ab)

n
. (2.3)

By this definition, each ξn,d can be used to detect dependencies up to depth

d. Consider a test that rejects H0: “X and Y are independent” if at least

one ξn,d is greater than ξn,d,1−αd
, the 1−αd quantile of ξn,d. Then, by Boole’s

inequality, the upper bound of the type-I error is

Pr(reject H0 | H0 is true) ≤
dmax∑
d=1

αd. (2.4)
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2.2 Univariate Independence Testing Procedure

There are many possible versions of the test based on different choices of

αd. Alternatives in Cd for smaller d reflect more global dependencies with

lower resolutions. From this point of view, we propose an exponentially

decaying approach for the choice of αd. If we choose αd = αγd/
∑dmax

d=1 γd,

where 0 < γ ≤ 1, then the upper bound of the significance level is

Pr(reject H0 | H0 is true) ≤
dmax∑
d=1

αγd∑dmax

d=1 γd
= α, (2.5)

guaranteeing a level-α test. A natural choice of γ is one:

Pr(reject H0 | H0 is true) ≤
dmax∑
d=1

α

dmax

= α. (2.6)

The correct depth where the dependency may present is not known a priori.

An appropriate dmax should reflect the desired accuracy in the approxima-

tion. However, considering ∥(Ud, Vd) − (U, V )∥ = Op(2
−d), we believe that

dmax = 4 provides a good approximation in practice.

The power of the proposed test can be improved by compromising be-

tween a distance correlation test and multiple testing over interactions. The

BET framework loses power from the adverse effect of multiplicity control

over depth. This loss of power is particularly severe for linear dependency.

See Section 1.2 in the supplementary material of Zhang (2019) for a detailed

discussion. By considering distance correlation combined with the proposed

test, we can mitigate this power loss. The above test is composed of multi-
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2.2 Univariate Independence Testing Procedure

ple hypothesis tests, and each test has its own set of dependence structures

as its alternative hypothesis. Suppose dmax = 4. Then there is only one

interaction Ȧ1000Ḃ1000 in ξn,1. The cross-interaction Ȧ1000Ḃ1000 falls in the

first or the third quadrant of the unit square [0, 1]2 when Ȧ1000Ḃ1000 = 1,

and in the second or the fourth quadrant when Ȧ1000Ḃ1000 = −1. There-

fore, ξn,1 = S2
10001000/n represents the strength of the linear dependency.

If another independence test performs better than ξn,1 under linear depen-

dency, we can replace the test based on ξn,1 with it, while maintaining the

performance of the test in other dependence structures. Because we are

using a Bonferroni correction for the critical values, this replacement still

maintains the targeted level of the test. We call this approach an ensemble

method because it combines two testing methods. The independence test

with Pearson’s correlation can also be combined with the proposed test.

However, we choose the distance correlation test, because it improves the

power in a wider range of cases and is equivalent to Pearson’s correlation

under normality. The proposed procedure consists of the following steps:

Step 1 : Fix α1, ..., αdmax with
∑dmax

d=1 αd = α.

Step 2 : Find the p-value for the distance correlation test.

Step 3 : For each d = 2, . . . , dmax, compute ξn,d and its p-value.
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2.3 Multivariate Independence Testing Procedure

Step 4 : Reject H0 if at least one of the p-values is less than the respec-

tive αd.

To find the p-value for each depth d ≥ 2, we can use either a permuta-

tion approach or the asymptotic distribution given in Theorem 1, part (iv).

Now, we investigate the behavior of our test in large samples.

Theorem 2. Denote the joint distribution of (Ud, Vd) by P(Ud,Vd) and the

bivariate uniform distribution over { 0
2d
, . . . , 2

d−1
2d

}2 by P0,d. For any fixed

0 < δ ≤ 1/2, denote by H1,d the collection of distributions P(Ud,Vd) such that

TV (P(Ud,Vd),P0,d) ≥ δ. Consider the testing problem,

H0 : P(Ud,Vd) = P0,d v.s. H1 : P(Ud,Vd) ∈ H1,d.

Under H1, each ξn,d → ∞ as n → ∞.

Theorem 2 shows that our test statistics, ξn,d, go to infinity as the

sample size increases. Moreover, the distance correlation test is known to be

consistent. Therefore, the ensemble method is also statistically consistent

against the collection of alternatives described in Theorem 2.

2.3 Multivariate Independence Testing Procedure

In this section, we develop a generalized independence test for random

vectors. To do so, we convert the independence of the random vectors into
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2.3 Multivariate Independence Testing Procedure

the independence of univariate random variables, which yields the following

lemma.

Lemma 1. Let X ∈ Rp and Y ∈ Rq be two random vectors. Then, X

and Y are independent if and only if sTX and tTY are independent for all

s ∈ Rp and t ∈ Rq, with ∥s∥ = 1 and ∥t∥ = 1.

This result shows that to prove the independence of random vectors, it

is sufficient to consider the independence of arbitrary linear combinations of

the components. Therefore, the multivariate independence can be tested by

checking all possible combinations of s and t. However, because this cannot

be implemented, we consider an approximation of the test by including a

finite, but reasonably broad number of combinations. Denote the hyper

unit spheres in Rp and Rq by Sp and Sq, respectively. Now, for each depth

d, we propose two measures of dependence.

Suppose X ∈ Rp and Y ∈ Rq are two random vectors. For s ∈ Sp and

t ∈ Sq, we define a measure of dependence for the multivariate setting by

Bd(X,Y) =
1

cpcq

∫
Sq

∫
Sp

Bd(s
TX, tTY)dsdt, (2.7)

where cp =
2πp/2

Γ(p/2)
and cq =

2πq/2

Γ(q/2)
.

Let {(Xi,Yi)}ni=1 be a random sample from the joint distribution of
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2.3 Multivariate Independence Testing Procedure

(X,Y). The empirical measure of dependence is defined as

Bn,d[{(Xi,Yi)}ni=1] =
1

cpcq

∫
Sq

∫
Sp

Bn,d[{(sTXi, t
TYi)}ni=1]dsdt. (2.8)

The following theorem lists several properties of Bd(X,Y) and Bn,d[{(Xi,Yi)}ni=1].

Theorem 3. Suppose the distributions of X and Y are continuous. Let U s
d

and V t
d be truncated binary expansions at depth d of U s and V t, respectively,

where U s = FsTX(s
TX) and V t = FtTY(t

TY), for s ∈ Sp and t ∈ Sq.

Similarity transformations consist of all Euclidean transformations and all

(nonzero) scaling (Móri and Székely (2019)). The following properties hold:

(i) Bd(X,Y) = 0 if and only if U s
d and V t

d are independent, for all s ∈ Sp

and t ∈ Sq.

(ii) 0 ≤ Bd(X,Y) ≤ 1.

(iii) Bd(X,Y) is invariant with respect to all similarity transformations.

(iv) Bn,d[{(Xi,Yi)}ni=1]
a.s.−→ Bd(X,Y) as n → ∞.

Note that Bn,d[{(Xi,Yi)}ni=1] = ES,T(Bn,d[{(STXi,T
TYi)}ni=1] | {(Xi,Yi)}ni=1),

where S and T follow uniform distributions on Sp and Sq, respectively. This

expectation can be estimated by

B̂m
n,d[{(Xi,Yi)}ni=1] =

1

m

m∑
j=1

Bn,d[{(ST
j Xi,T

T
j Yi)}ni=1], (2.9)
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2.3 Multivariate Independence Testing Procedure

where {(Sj,Tj)}mj=1 is a random sample generated from uniform distribu-

tions on Sp and Sq. We call this statistic the BERET measure of depen-

dence. The following theorem shows this measure is a consistent estimator

of the population measure of dependence.

Theorem 4. Suppose X and Y are continuous random vectors. Then,

B̂m
n,d[{(Xi,Yi)}ni=1]

a.s.−→ Bd(X,Y) as m, n → ∞.

Now, to develop an independence test, we define the statistic

ζmn,d = n(2d − 1)2B̂m
n,d[{(Xi,Yi)}ni=1], (2.10)

for each depth d = 1, ..., dmax. By computing 1 − αd quantiles of ζmn,d,

for d = 1, . . . , dmax, we can consider the test that rejects H0 : “X and Y

are independent” if at least one ζmn,d, for d = 1, . . . , dmax, is greater than

ζmn,d,1−αd
. If

∑dmax

d=1 αd ≤ α, this procedure provides a level-α test. To put

the proposed test into practice, we estimate the asymptotic null distribution

using a random permutation method.

For better performance, under possible linear dependency, we combine

this procedure with the distance correlation test, as above. If the scales of

the elements in the random vectors differ greatly, normalization may help

to reduce the number of s and t values to be sampled when the marginal

variance of each entry in the random vector cannot degenerate to zero or
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2.3 Multivariate Independence Testing Procedure

diverge to infinity. The following procedure summarizes the approach:

Step 1 : Set α1, ..., αdmax , with
∑dmax

d=1 αd = α.

Step 2 : Normalize marginally each element of the random vectors.

Step 3 : Find the p-value for the distance correlation test.

Step 4 : Fix m ∈ N and generate the random samples s1, . . . , sm and

t1, . . . , tm from uniform distributions on hyper spheres.

Step 5 : For each d = 2, . . . , dmax, compute ζmn,d and its p-value using the

permutation method.

Step 6 : Reject H0 if at least one of the p-values is less than the respec-

tive αd.

The name of the test reflects the random projection and ensemble struc-

ture. Again, we investigate the behavior of our test in large samples. The-

orem 5 shows that the BERET is uniformly consistent against the alterna-

tives in the theorem.

Theorem 5. For any fixed 0 < δ ≤ 1/2, denote by Hs,t
1,d the collection of

distributions P(Us
d ,V

t
d )

such that TV (P(Us
d ,V

t
d )
,P0,d) ≥ δ. Consider the testing
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2.3 Multivariate Independence Testing Procedure

problem

H0 : P(Us
d ,V

t
d )

=P0,d for all s ∈ Sp, t ∈ Sq

vs. H1 : P(Us
d ,V

t
d )

∈ Hs,t
1,d for some s ∈ Sp and t ∈ Sq.

Then, the following properties hold:

(i) Under H1, ζ
m
n,d → ∞ as m,n → ∞.

(ii) The rejection probability of the permutation test is bounded by α under

H0 and converges to one under H1 as m,n → ∞ if dmax ≥ d.

The BERET has the following advantages. First, the method achieves

robust power by a compromise between the distance correlation test and

multiple testing over interactions (see the simulation results in Section 3).

There is also a power loss in the multivariate case owing to the multiplic-

ity control over the depth. By considering the distance correlation result

together with the proposed measure of dependence with d ≥ 2, we can

improve the power over a wide range of plausible dependencies.

The second benefit of our method is clear interpretability, which is par-

ticularly important when evaluating multivariate relationships. However,

most multivariate independence tests provide only the results of the tests,

with no information on potential dependence structures in the sample. In
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2.3 Multivariate Independence Testing Procedure

contrast, when the proposed test rejects independence, the s and t vectors

indicate the linear combinations of the vectors that have strong dependen-

cies (see section 2.3 of the Supplementary Material). Using these vectors,

we can detect possible dependence structures in the sample; see the three-

dimensional double helix structure in Figure 1, in which white positive

regions and gray negative regions of interactions provide the interpretation

of global dependency. The double helix structure is detected by two linear

combinations. Additional interesting interpretation examples are provided

in Section 4.

[Figure 1 near here]

The third benefit of our method is its “invariance.” Móri and Székely

(2019) introduced axioms for a measure to be a dependence measure. If a

measure ∆ satisfies ∆(f(X), g(Y )) = ∆(X, Y ), where f and g are similarity

transformations, it is called invariant with respect to similarity transforma-

tions. Because of the random projection and the CDF transformation steps

in the proposed method, translations, orthogonal linear mappings, and uni-

form scalings do not affect the value of the measure of dependence.

Lastly, our method provides useful exploratory information for model

selection. A small entry in the unit vector s or t may indicate that the

corresponding variable is not related to the other random vector; see the
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data examples in Section 4 for details.

3. Simulation Studies

3.1 Univariate Independence

For comparison, we consider Hoeffding’s D test (Hoeffding (1948)), the

distance correlation test (Székely et al. (2007)), the mutual information test

(MINTav, Berrett and Samworth (2019)), Fisher’s exact scanning method

(Ma and Mao (2019)), and the maximum binary expansion test (Zhang

(2019)). We use the sample size n = 128 as a moderate sample size for

the power comparison. We set the level of the tests to be 0.1, and simulate

each scenario 1,000 times. We adopt dmax = 4, because this depth provides

a good approximation to the true distribution; see Section 4.5 in Zhang

(2019) for a detailed discussion. The p-values of the proposed method are

calculated using the asymptotic distribution of Theorem 1, part (iv). Lastly,

we verified that the p-value under the null hypothesis is controlled at the

level 0.1.

We compare the power of the above methods using linear, parabolic,

circular, sine, checkerboard, and local relationships described in Zhang

(2019). At each noise level l = 1, . . . , 10, ϵ, ϵ′, and ϵ′′ are independent

N (0, (l/40)2) random variables. Here, U follows the standard uniform
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3.1 Univariate Independence

distribution, ϑ is a U [−π, π] random variable, and W , V1, and V2 follow

multi-Bern({1, 2, 3}, (1/3, 1/3, 1/3)), Bern({2, 4}, (1/2, 1/2)), and multi-

Bern({1, 3, 5}, (1/3, 1/3, 1/3)) distributions, respectively. G1 and G2 are

generated from N (0, 1/4); see Table 1. These scenarios are displayed visu-

ally in the Supplementary Material.

[Table 1 near here]

Figure 2 shows the performance of the six methods. With the excep-

tion of the proposed test, the other methods all show the lowest power in

at least one scenario. The ensemble approach and the BET show similar

power across the scenarios, except for the linear and local dependency. The

ensemble approach improves the power considerably in the linear and local

dependency scenarios. As discussed previously, the ensemble approach uses

the information on dependence remaining in the symmetry statistics that

is not reflected in the calculation of the maximum BET. Therefore, small

asymmetries in many symmetry statistics can be combined to provide a

significant result in the ensemble approach when the sparsity assumption

is violated. This result is related to the second finding that the ensem-

ble approach outperforms Fisher’s exact scanning in terms of both global

and local dependence structures. Zhang (2019) reported that the maxi-

mum BET provides better power for global dependence structures, whereas
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3.2 Multivariate Independence

Fisher’s exact scanning performs better for local dependence structures.

The simulation results suggest that the ensemble approach works better

than Fisher’s exact scanning, even in the local dependency scenario.

[Figure 2 near here]

3.2 Multivariate Independence

Although the proposed method can be applied to arbitrary p and q, we

choose p = 2 and q = 1 for better illustration. We compare the proposed

method with the distance correlation test (Székely et al. (2007)), Heller–

Heller–Gorfine test (Heller et al. (2012)), d-variable Hilbert–Schmidt in-

dependence criterion (Gretton et al. (2008)), and mutual information test

(MINTav, Berrett and Samworth (2019)). We again use the sample size

n = 128. We set the level of the tests to be 0.1, and simulate each scenario

1,000 times. For our method, we adopt m = 30, because there is no consid-

erable difference in performance compared with larger m, such as m = 360.

We also use a permutation method with 1,000 replicates to calculate the

p-values of the proposed approach. We verified that the p-value under the

null hypothesis is controlled at the level 0.1.

We compare the power of the methods over linear, parabolic, spheri-

cal, sine, and local dependence structures. These scenarios are generalized
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3.2 Multivariate Independence

from the univariate dependence simulations. In addition, we include an

additional interesting relationship, namely, the double helix structure. At

each noise level l = 1, . . . , 10, ϵ, ϵ′, and ϵ′′ are independentN (0, (l/40)2) ran-

dom variables, U1 and U2 follow the standard uniform distribution, ϑ follows

U[0, 4π], G1, G2, and G3 are independent N (0, 1/4) random variables, and I

follows the Rademacher distribution; see Table 2. These three-dimensional

scenarios are provided in the Supplementary Material.

[Table 2 near here]

Before we compare the statistical performance of the methods, we re-

port the computation time of 100 runs for each method in Table 3.

[Table 3 near here]

Figure 3 shows the simulation results. The BERET provides the best

power in more complex dependency structures, such as the sine and double

helix dependencies, and it outperforms the distance correlation test and

the d-variable Hilbert–Schmidt independence criterion in at least five sce-

narios. Moreover, our method provides stable results across the scenarios

considered. It ranks at least third in all scenarios. The mutual informa-

tion test performs best in the highest number of scenarios. In linear and
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sine relationships, however, there is a significant loss of power in the mu-

tual information test compared with the proposed method. Note that our

method provides additional insight. Other methods provide only test results

of independence, whereas our method also provides potential dependence

structures. The simulation results show that BERET provides competitive

performance, while providing a much clearer interpretation.

[Figure 3 near here]

4. Data Examples

4.1 Life Expectancy

We use the proposed method to test the independence between geographic

location and life expectancy, and compare its performance with that of the

distance correlation test (dCor), Heller–Heller–Gorfine test (HHG), mutual

information test (MINT), and canonical correlation test (CC). We include

the canonical correlation test because it provides some insight on the depen-

dence structure, as does the proposed method. For the proposed method,

we set dmax = 4 and m = 30. The p-value of the test is calculated us-

ing a permutation method with 1,000 replicates. The data set is obtained

from the life expectancy report released by the World Health Organization

in 2016, and includes males and females and total life expectancy for 189

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0100



4.1 Life Expectancy

countries and special administrative regions estimated in 2015. We use the

latitude (X1), longitude (X2), and total life expectancy (Y ) in the analy-

sis. Table 4 presents the testing results for the five methods. All five tests

provide p-values close to zero, indicating a significant dependence between

geographic location and life expectancy.

[Table 4 near here]

To identify the dependence structure, we investigate the symmetry

statistics. Figure 4 shows the three largest symmetry statistics and the

corresponding s in each case. The most asymmetric result is shown in

the first row, that is, Ȧ2Ḃ1, with s = (0.516, 0.857)T . The horizontal

axis is the empirical cumulative distribution function transformation of

0.516X1 + 0.857X2, wherein a smaller value implies that the country is

located in the southwest, and a larger value implies that it is located in

the northeast. There are four groups. Each gray cell represents a specific

region, namely, America, Africa, Europe, and Asia, from left to right. The

countries in America and Europe show a higher life expectancy than do

countries in Africa and Asia. The four points in the top-right corner are

Hong Kong, Japan, Macau, and South Korea. These can be interpreted as

potential outliers distinct from the global pattern.
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4.1 Life Expectancy

[Figure 4 near here]

The second row shows that there is a positive relationship between lati-

tude and life expectancy. That is, countries in North America, Europe, and

Northeast Asia have a higher life expectancy than do countries in Africa,

South America, and the other parts of Asia. The last row shows that a cir-

cular dependency can exist, indicating that countries in America and Asia

have a medium life expectancy, whereas countries around the prime merid-

ian have different life expectancies, higher in Europe and lower in Africa.

These findings prove clearly that our method detects the dependence struc-

tures between geographic location and life expectancy.

A canonical correlation analysis can also be used to find information

on the dependence structure. The canonical correlation is 0.43, and it is

calculated using 0.991X1 − 0.137X2 and Y . The coefficients of X1 and X2

are similar to the elements of s in the result of the proposed method in

the second row. However, a canonical correlation provides information only

on the linear dependence structure, whereas our method provides richer

information by considering various nonlinear dependence structures.
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4.2 Mortality Rate

4.2 Mortality Rate

In this section, we investigate the relationship between mortality rate, birth

rate, and income level. We use the Central Intelligence Agency’s world fact

data, estimated in 2018. The data set includes the income level (X1), birth

rate (X2), and mortality rate (Y ) of 224 countries and special administrative

regions. The p-values of the five methods are presented in Table 4. Once

again, the proposed method and two other methods provide p-values close

to zero, thus rejecting the null hypothesis, whereas the mutual informa-

tion test and canonical correlation fail to reject it. The poor performance

of the canonical correlation can be explained by investigating the results

of our method. The strongest asymmetry is in Figure 5, which shows a

strong quadratic relationship. This relationship explains the failure of the

canonical correlation for these data. Although the canonical correlation test

provides both an inference and information on the dependence structure, it

performs poorly in nonlinear dependency settings.

[Figure 5 near here]

Two conflicting phenomena explain the observed quadratic relationship.

First, developed countries have low birth rates, but high mortality rates,

owing to population aging. However, developing countries have high birth
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rates because of a lack of family planning, and high mortality rates because

of insufficient public health. Thus, mortality rates are high in countries

with low or high birth rates. The BERET detects an interesting structure

that can be explained by widely recognized relationships between mortality

rate and birth rate.

4.3 House Price

The third data example is based on the market historical data set of real

estate from the University of California, Irvine machine learning reposi-

tory. The data include 414 transactions from the Xindan district of Taipei

between August 2012 and July 2013. We use these data to detect the re-

lationship between geographic location and house price. The p-values of

the five methods are presented in Table 4. All methods except the mutual

information test provide p-values close to zero, which is consistent with

the commonly assumed relationship between location and house price in a

city. The mutual information test fails to reject the independence. Figure 6

presents the two strongest dependencies identified by the proposed method.

[Figure 6 near here]

The symmetry statistic with the strongest asymmetry is Ȧ1Ḃ1, which

means there may be a linear relationship between geographic location and
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house price. The corresponding s for the horizontal axis is (0.964, 0.268).

That is, houses have higher values in the north and lower values in the south.

This is because the central part of Taipei is above the Xindan district. The

symmetry statistic with the second strongest asymmetry is Ȧ1Ȧ2Ḃ1. The

corresponding s for the horizontal axis is (0.215, 0.977)T . That is, house

prices are high at the center of the district, where two main roads intersect,

and decrease toward the periphery. These results accord closely with the

general characteristics of real estate prices in a city. Therefore, we conclude

that the proposed method properly detects the relationship between house

price and geographic location.

5. Conclusion

Detecting dependence in a distribution-free setting is an important problem

in statistics. Existing methods find it difficult to detect complicated depen-

dence structures. For example, in our simulations, the distance correlation

test does not detect circular dependency well, but does provide good power

in linear, parabolic, and sine settings. The BET procedure in Zhang (2019)

suggests a novel way of solving this problem. However, it is limited to the

independence test of two random variables, and there is room to enhance

the power when the sparsity assumption is violated.
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We have introduced an ensemble approach and a binary expansion ran-

domized ensemble test. The ensemble approach uses both the sum of the

squared symmetric statistics and the distance correlation test. It shows

better power in linear and local settings, while maintaining power for other

dependence structures. Moreover, it can be easily generalized to an inde-

pendence test for the multivariate setting, the binary expansion randomized

ensemble test. Using random projections, the BERET transforms the mul-

tivariate independence testing problem into a univariate testing problem.

The BERET also maintains the clear interpretability of the maximum BET.

Simulation studies suggest that the BERET is more powerful than sev-

eral competitors considered in meaningful dependence structures. Three

data examples show that the BERET reveals hidden dependence struc-

tures in the data, while maintaining a level of power similar to that of the

best of the competing methods.

Several improvements are worth considering for future work. For in-

stance, there may be a different method of combining the symmetry statis-

tics that offers better performance. It would also be useful to derive the

limiting null distribution of the test statistic for the multivariate setting to

avoid a permutation method.
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Supplementary Material

The online Supplementary Material provides technical details and proofs.

Acknowledgments

This research was partially supported by DMS-1613112, IIS-1633212, and

DMS-1916237 from the National Science Foundation and a grant P01 CA142538

from the National Cancer Institute.

References

Azadkia, M. and S. Chatterjee (2019). A simple measure of conditional dependence. arXiv

preprint arXiv:1910.12327 .

Berrett, T. B., I. Kontoyiannis, and R. J. Samworth (2020). Optimal rates for independence

testing via u-statistic permutation tests. arXiv preprint arXiv:2001.05513 .

Berrett, T. B. and R. J. Samworth (2019). Nonparametric independence testing via mutual

information. Biometrika 106 (3), 547–566.

Bodnar, T., H. Dette, and N. Parolya (2019). Testing for independence of large dimensional

vectors. The Annals of Statistics 47 (5), 2977–3008.

Chakraborty, S. and X. Zhang (2019). A new framework for distance and kernel-based metrics

in high dimensions. arXiv preprint arXiv:1909.13469 .

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0100



REFERENCES

Chwialkowski, K. and A. Gretton (2014). A kernel independence test for random processes. In

International Conference on Machine Learning, pp. 1422–1430. PMLR.

Deb, N., B. B. Bhattacharya, and B. Sen (2021). Efficiency lower bounds for distribution-

free hotelling-type two-sample tests based on optimal transport. arXiv preprint

arXiv:2104.01986 .

Deb, N. and B. Sen (2019). Multivariate rank-based distribution-free nonparametric testing

using measure transportation. arXiv preprint arXiv:1909.08733 .

Drton, M., F. Han, and H. Shi (2018). High dimensional consistent independence testing with

maxima of rank correlations. arXiv preprint arXiv:1812.06189 .

Friedman, J. H. and L. C. Rafsky (1983). Graph-theoretic measures of multivariate association

and prediction. The Annals of Statistics , 377–391.

Gretton, A., K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf, and A. J. Smola (2008). A kernel

statistical test of independence. In Advances in neural information processing systems, pp.

585–592.

Han, F., S. Chen, and H. Liu (2017). Distribution-free tests of independence in high dimensions.

Biometrika 104 (4), 813–828.

Heller, R. and Y. Heller (2016). Multivariate tests of association based on univariate tests. In

Advances in Neural Information Processing Systems, pp. 208–216.

Heller, R., Y. Heller, and M. Gorfine (2012). A consistent multivariate test of association based

on ranks of distances. Biometrika 100 (2), 503–510.

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0100



REFERENCES

Heller, R., Y. Heller, S. Kaufman, B. Brill, and M. Gorfine (2016). Consistent distribution-free

k-sample and independence tests for univariate random variables. The Journal of Machine

Learning Research 17 (1), 978–1031.

Hoeffding, W. (1948). A non-parametric test of independence. The annals of mathematical

statistics , 546–557.

Jaworski, P., F. Durante, W. K. Hardle, and T. Rychlik (2010). Copula theory and its applica-

tions, Volume 198. Springer.
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Table 1: Simulation scenarios for the univariate independence test

Scenario Generation of X Generation of Y

Linear X = U Y = X + 6ϵ

Parabolic X = U Y = (X − 0.5)2 + 1.5ϵ

Circular X = cosϑ+ 2ϵ Y = sinϑ+ 2ϵ′

Sine X = U Y = sin(4πX) + 8ϵ

Checkerboard X = W + ϵ Y =


V1 + 4ϵ′ if W = 2

V2 + 4ϵ′′ otherwise

Local X = G1 Y =


X + ϵ if 0 ≤ G1 ≤ 1 and 0 ≤ G2 ≤ 1

G2 otherwise

Table 2: Simulation scenarios for multivariate independence testing

Scenario Generation of X Generation of Y

Linear X =

U1

U2

 Y = X1 +X2 + 7ϵ

Parabolic X =

U1

U2

 Y = (X1 − 0.5)2 + (X2 − 0.5)2 + 1.5ϵ

Spherical X =


G1√

G2
1+G2

2+G2
3

G2√
G2

1+G2
2+G2

3

 Y = G3√
G2

1+G2
2+G2

3

+ 3ϵ

Sine X =

U1

U2

 Y = sin (5πX1) + 4ϵ

Double helix X =

 Icos(ϑ) + 1.5ϵ

Isin(ϑ) + 1.5ϵ′

 Y = ϑ
2
+ 2ϵ′′

Local X =

G1

G2

 Y =


X1√

2
+ X2√

2
+ ϵ

2
, if 0 ≤ G1 +G2 ≤ 2 and 0 ≤ G3 ≤ 1.

G3, otherwise.
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Table 3: Computing time (in seconds) of each method for 100 runs

BERET dCor HHG d-HSIC MINT

CPU Time (seconds) 74.89 0.17 510.42 16.96 65.19

Table 4: p-values from five tests of independence

BERET dCor HHG MINT CC

Life expectancy <0.0001 <0.0001 0.0010 0.0010 <0.0001

Mortality rate 0.0040 0.0050 0.0010 0.3077 0.4303

House price <0.0001 <0.0001 0.0010 0.6204 <0.0001
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Figure 1: The first plot shows a sample with a double helix dependency

between a random vector (X1 X2)
T and a random variable Y with n = 128.

The second and third plots show the linear combinations of X1 and X2

with the strongest asymmetries and the corresponding symmetry statistics

(S(ab)). Positive regions (ȦaḂb = 1) are in white, and negative regions

(ȦaḂb = −1) are in gray.
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Figure 2: Comparison of the power of six tests of independence: the binary

expansion randomized ensemble test with dmax = 4 (square), the maximum

binary expansion test with dmax = 4 (plus sign), the distance correlation test

(cross), Hoeffding’s D (diamond), the mutual information test (triangle),

and Fisher exact scanning (circle).
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Figure 3: Comparison of the power of five tests of independence: the binary

expansion randomized ensemble test with dmax = 4 (square), the Heller–

Heller–Gorfine test (plus sign), the distance correlation test (cross), the

d-variable Hilbert–Schmidt independence criterion (diamond), and the mu-

tual information test (triangle).
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Figure 4: The three strongest dependency structures between geographic

location and life expectancy, as well as the corresponding values of the

symmetry statistics (S(ab)) and the coefficients of linear combination (s) of

X1 and X2. The arrows in the world maps represent the horizontal axes in

the scatterplots.
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Figure 5: The plot shows the strongest dependency structure between birth

rate, income level, and mortality rate, as well as the corresponding value of

the symmetry statistic (S(ab)) and the coefficients of the linear combination

(s) of X1 and X2.
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Figure 6: The plots show the two strongest dependency structures between

geographic location and house price. The plots also present the symmetry

statistics (S(ab)) and the coefficients in the linear combinations s and t.

The arrows in the map represent the horizontal axes in the scatterplots.
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