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This paper presents a new method of detecting incipient
immobilization for a wheeled mobile robot operating in de-
formable terrain with high spatial variability. This approach
uses proprioceptive sensor data from a four-wheeled, rigid
chassis rover operating in poorly bonded, compressible snow
to develop canonic, dynamical system models of the robot’s
operation. These serve as hypotheses in a multiple model
estimation algorithm used to predict the robot’s mobility in
real-time. This prediction method eliminates the need for
choosing an empirical wheel-terrain interaction model, de-
termining terramechanics parameter values, or for collect-
ing large training datasets needed for machine learning clas-
sification. When tested on field data, this new method warns
of decreased mobility an average of 1.8 meters and 2.9 sec-
onds before the rover is completely immobilized. This system
also proves to be a reliable predictor of immobilization when
evaluated in simulated scenarios of rovers with passive sus-
pension maneuvering in more variable terrain.

Nomenclature

8 Pitch

© Hypothesis matrix

P Yaw angular acceleration

Az Additional sinkage due to slip

Wl Angular wheel acceleration of front left wheel
Wy Angular wheel acceleration of front right wheel
Wrl Angular wheel acceleration of rear left wheel

Wyr Angular wheel acceleration of rear right wheel

* Address all correspondence to this author.
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Wrl
Wrr

Yaw rate

Acceleration along longitudinal axis
Specific weight of snow or soil
Posteriori state estimate

A priori state estimate

Grouser height normalized to wheel radius
Sinkage normalized to wheel radius
Wheel sinkage ratio

State space input matrix

State space disturbance matrix

State space system matrix

Measurement model matrix

State space output matrix

Kalman filter gain

Posteriori state estimate covariance matrix
A priori state estimate covariance matrix
Process disturbance covariance matrix
Measurement noise covariance matrix
Measurement residual vector

Residual covariance matrix

Input vector

State vector

Output vector

Measurement vector

Angular wheel speed

Angular wheel speed of front left wheel
Angular wheel speed of front right wheel
Angular wheel speed of rear left wheel
Angular wheel speed of rear right wheel
Angle of internal friction

Yaw

W) Check for updates
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Roll

Normal stress

Shear stress

Angle from BDC of wheel

Angle from BDC of wheel to surface of the terrain
in front region

Angle from BDC of wheel to where wheel exits the
terrain in rear region

Angle from BDC of wheel to the point of max pres-
sure

Wheel pairing nominal mobility value

Wheel nominal mobility value

Hypothesis number

Number of immobilization hypotheses

Number of nominal mobility hypotheses

Sum of number of immobilization and nominal mo-
bility hypotheses

Wheel width

Mechanical damping term

Cohesion

Coefficient 1 used to determine location of 6,,,
Coefficient 2 used to determine location of 6,,,
Distance from center of mass to front axle

Distance from center of mass to rear axle

Drawbar pull

Normal force on wheel

Drawbar pull of front left wheel

Drawbar pull of front right wheel

Drawbar pull of rear left wheel

Drawbar pull of rear right wheel

Normal force on front left wheel

Normal force on front right wheel

Total normal force on both wheels of front axle
Normal force on rear left wheel

Normal force on rear right wheel

Total normal force on both wheels of rear axle
Acceleration due to gravity

Height of center of mass above axles

Slip ratio

Wheel moment of inertia about its center of rotation
Moment of inertia of rover about the z-axis at its
center of mass

Shear displacement

Terrain stiffness

Cohesive modulus, Bekker pressure-sinkage model
Shear deformation modulus, poorly bonded shear
stress-shear displacement model

Friction modulus, Bekker pressure-sinkage model
Mass of rover

Restoring moment

Exponent, modifying sinkage in pressure-sinkage
equations

Pressure

Distance step number for random walk models
Wheel radius

Slip-sinkage coefficient

Time step number in discrete state space model
Torque applied by wheel

t Time

T, Resistive torque

tw Track width

Ty Torque applied by front left wheel

Ty, Torque applied by front right wheel

Tr71  Resistive torque applied by terrain to front left wheel

T,¢r  Resistive torque applied by terrain to front right
wheel

T Torque applied by rear left wheel

T~  Resistive torque applied by terrain to rear left wheel

T, Resistive torque applied by terrain to rear right

wheel

T Torque applied by rear right wheel

v, Velocity of left wheels along longitudinal axis

VR Velocity of right wheels along longitudinal axis

Vg Velocity along longitudinal axis

W Weight on each wheel

z Sinkage, distance from terrain surface to BDC of
wheel

20 Sinkage, without taking into account slip-sinkage ef-
fect

Zy Sinkage of front axle wheels

Zm Maximum sinkage, Preston-Thomas pressure-
sinkage model

Zr Sinkage of rear axle wheels

2t Depth of transition point of forward region and rear

region flow regimes
Zactual Slnkage, taking into account slip-sinkage effect

1 Introduction

A primary design consideration in developing any
ground vehicle is the terrain it is expected to encounter and
traverse. This constraint needs to be balanced with require-
ments for the power budget, efficiency of operation, cost and
complexity. For rovers meant to operate on deformable ter-
rain, such as sand or snow, these requirements result in an
intractable optimization problem due to the wide range of ter-
rain parameters that are likely. It is impossible to ensure that
the rover’s mechanical design alone allows it to gain traction
in all types of terrain encountered. This renders the rover
continually susceptible to immobilization.

For missions where an autonomous vehicle needs to op-
erate in remote regions, an immobilization event could ne-
cessitate an expensive, potentially dangerous, and resource
intensive recovery of the robot or if a rescue is not possi-
ble, it could result in the end of the scientific survey be-
ing conducted and loss of the vehicle. The application on
which this paper is focused is the autonomous collection of
ground-based measurements on the ice sheets of Greenland
and Antarctica. Measurements of snow temperature, albedo,
and mass balance in these remote areas are necessary to build
climate models and predict sea-level rise [1] [2]. While these
data can largely be collected via remote sensing, the high ac-
curacy of ground-based measurements are necessary to cali-
brate and validate the data from satellite or airborne sensors.
Utilizing autonomous rovers to traverse the ice sheets and
collect these ground-truth data provides higher spatial res-
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olution than in siru point measurements, such as automatic
weather stations. They also have the potential to replace
manned traverses, which are often limited in scope by high
costs or dangerous conditions. These concepts also extend to
autonomous operation of ground vehicles on other worlds,
where immobilization can abruptly end a mission.

Given the advantages of autonomous surveys in these re-
mote areas, we have designed and deployed three lightweight
rovers designed to tow scientific instruments on snow. All
three rovers follow the same basic scheme, with four inde-
pendently driven wheels instead of tracks to minimize cost,
weight and complexity and to maximize efficiency. With
each design iteration, the range of terrains over which the
rover could sustain mobility is expanded. The first rover,
Cool Robot, has a rigid chassis and off-the-shelf ATV tires
as the tractive elements. The rigid chassis means that the
rover can lose traction on undulating terrain [3]. Yeti incor-
porated a central pivot that allows for rotation of the front and
rear axles about the roll axis enabling it to maintain four-
wheel contact even when traversing sastrugi in Antarctica,
but Yeti can still get mired in soft or low cohesion snow [4].
FrostyBoy incorporates wider, custom wheels in order to re-
duce ground pressure, limit sinkage, and improve trafficabil-
ity in this type of snow [5]. While these rovers have proved
largely reliable in executing surveys on the order of tens to
hundreds of kilometers in Antarctica and Greenland [6-9],
their intermittent immobilizations prevent them from being
a viable option for longer duration scientific traverses of the
ice sheets. Despite the modification of the rover’s tractive el-
ements, patches of low stiffness or low cohesion terrain can
put an end to a traverse if the robot does not adjust to the
changing conditions.

This paper presents a new method by which proprio-
ceptive sensor data can be used to detect incipient immobi-
lization. With enough warning of an impending loss of mo-
bility, the rover’s control algorithm could adapt to optimize
traction, choose an alternate route, or temporarily release a
towed load to reduce required drawbar pull, making reli-
able detection of impending immobilization a need for robots
driving on soft terrain. Prior methods of incipient immobi-
lization detection focus on one of two approaches - 1) estima-
tion of terrain parameters associated with the semi-empirical
Wong-Reece model [10] and subsequently assessing traffi-
cability of the terrain given these parameter estimates, and
2) machine learning approaches that, absent any dynamic
model of the vehicle or terrain, use signatures of a sensor
suite to detect impending immobilization. Both methods
have drawbacks, as detailed in section 2. The former lacks
mathematical uniqueness and has computational complexity
and sensing requirements rendering it difficult for real-time
implementation. The latter requires ample training data for
both good and poor mobility conditions, which presents chal-
lenges in obtaining such data. This paper presents a new
method by which proprioceptive sensor data can be used to
detect incipient immobilization. The method incorporates
simple, canonical models identified from a modest data set,
as predictors of the near-term evolution of robot motion. Us-
ing these models, this new approach incorporates Bayesian

decision-making to determine which model is most likely
to be governing the dynamics in a given instance. To de-
velop the method, we use field data from immobilization
events and simulated data from a truth model derived from
these field data. We present data from field tests used to de-
velop the model that show the complex dynamics of immobi-
lization of a four-wheeled vehicle, whereas previous studies
have considered immobilization characteristics through con-
trolled, single-wheel studies. Our study shows that models of
immobilization require attention to the characteristics of the
full four-wheel vehicle dynamics interacting with variable
terrain. The truth model is used to assess the algorithm in im-
mobilization scenarios expected as vehicle design is altered,
but that were not directly encountered in the field. Section
2 presents the relevant background in terramechanics theory
and the pertinent examples of previous efforts to detect im-
pending mobility loss in real time. Section 3 describes how
the immobilization data was collected and details the devel-
opment of the truth model. Section 4 outlines all aspects
of the incipient immobilization detection algorithm and dis-
cusses the effectiveness of this algorithm when applied to
both the collected and simulated data. Finally, section 5 sum-
marizes the impact of this research and the further studies
that need to be conducted to validate this method for a range
of terrain types and rover designs.

2 Background

Many methods exist for characterizing snow cover, in-
cluding a Rammsonde, a SnowMicroPenetrometer, and a
drop cone [11]. Trafficability is then judged through mod-
eling of vehicle-terrain interaction and determining if the
snow properties allow for sufficient tractive force. The de-
velopment of these mobility models for all types of terrain
was largely supported by the United States military. Or-
ganizations such as the U.S. Army Engineer Research and
Development Center (ERDC) and the U.S. Army Tank Au-
tomotive Research, Development, and Engineering Center
(TARDEC) were interested in predicting the trafficability of
tanks and armored vehicles [12]. Their models, such as the
Nepean Wheeled Vehicle Performance Model (NWVPM)
and the NATO Reference Mobility Model (NRMM) use clas-
sical Bekker-Wong and Wong-Reece theory to define how a
wheel sinks into the terrain, how this sinkage resists forward
motion, and how the pressure distribution below the wheel
impacts its ability to gain traction [10] [13] [14]. The bal-
ance of forces of this model can be described by the follow-
ing equations:

01 61
/ o(0) cos 0dl + / 7(6) sin 6df e
0 0

2

0, 01
F, =ryub / 7(0) cos 0df — / o(0) sin 6do 2)
02 02
01
T, =12b 7(0)do 3)
02
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where W"is the weight of the robot, F), is the drawbar pull,
T, is the resistive torque and () and 7(0) are the pres-
sure distribution and shear distribution below the wheel (see
Fig. 1) [10]. The physical dimensions of the wheel are cap-
tured with r,, being the wheel radius and b, the wheel width.
Equation (1) defines the amount of sinkage the robot wheels
will experience by balancing the force exerted on the wheels
by the terrain with the normal force of the robot. With this
sinkage known, the shear force that can be applied by the
wheel to the terrain before failure can be calculated (first
term of Eqn. (2)). This force must be greater than the com-
paction resistance force in opposition to the robot’s motion
(second term of Eqn. (2)), in order for drawbar pull to be
positive and for the robot to successfully traverse the terrain.
The resistive torque (3) is the minimum torque that must be
transmitted to the wheels in order to overcome the terrain
forces.

O'm( gm)

Fig. 1: Stress distribution below a rigid wheel in deformable
terrain, replicated with permission [15]

This previous work focused on a larger class of off-
road vehicles, with Bekker himself noting that these mod-
els would lose accuracy in predicting performance of lighter-
weight vehicles with wheel diameters less than 50 cm [16].
Even assuming these models were 100% accurate, there is
still the issue of accurately determining the terrain properties
needed as inputs to the equations. These parameters typ-
ically require a plate-sinkage device to determine pressure
vs. depth parameters. For deep snow, the most widely ac-
cepted model is described by Wong and Preston-Thomas to

be
o(z) =k [— In (1 - ;)} 4)

where the terrain stiffness parameter, k, defines a linear
regime where pressure is proportional to sinkage, but a sharp
increase in pressure occurs as the snow compacts against a

much denser layer within the snowpack at z,, [17]. This
general paradigm makes sense when thinking about how a
layer of snow, exposed to an extended period of sunlight and
wind, could form a sintered, dense crust over which a series
of precipitation events deposit fresh, unconsolidated snow.
Fully defining terrain also requires a shear ring or shear plate
test to determine the terrain’s cohesion, ¢, angle of internal
friction, ¢, and the shear displacement modulus, K, to de-
termine the shear stress at failure, 7, according to the Mohr-
Coulomb failure criterion

T = (c+ otan¢) (1—e_j/KS) 5)

where j is the shear displacement [16]. Yet, this still does
not result in the full suite of parameters necessary to fully
define the wheel-terrain interaction. The pressure distribu-
tion below the wheel, o as a function of @, remains unknown
without direct measurement using a spatially resolved pres-
sure sensor or estimates of the angle of maximum pressure,
0., and the angle at which the wheel loses contact with
the terrain, #, (see Fig. 1). Vehicle mounted bevameters
and vehicle mounted single-wheel field testers have been de-
veloped to evaluate these properties semi-autonomously in
situ [18] [19] [20]. A similar method that removed the need
for additional, specialized equipment on-board the vehicle
was developed by NASA in using one of the Mars rover So-
journer’s wheels as a trenching device to determine a subset
of the terrain parameters [21]. While these methods prove
to be effective in characterizing terrain and comparing actual
mobility with predicted mobility from the model, they can-
not prevent immobilization. These measurements require the
vehicle to stop, losing all forward momentum, and assume
low spatial variability of the terrain since they take measure-
ments only at discrete locations. Since snow has been found
to have a high degree of spatial variability from bevameter
tests performed manually [22], this method would not work
in predicting mobility of the rover even one wheel rotation
beyond the test location.

To evaluate trafficability of the terrain in real-time as
the rover is in motion, researchers turned to extracting ter-
rain parameters using proprioceptive sensor measurements.
A method proposed by lagnemma [23] can approximate the
cohesion and friction angle of a terrain by measuring each
wheel’s normal load, torque, sinkage, angular speed, and lon-
gitudinal speed. These parameters are then used with simpli-
fied Wong-Reece equilibrium equations to estimate a rover’s
mobility on the terrain being encountered. One problem with
this method is that in order to calculate closed-form solu-
tions to the equilibrium equations, simplifications need to
be made to the normal and shear stress distributions at the
wheel-terrain interface. Iagnemma assumes this stress dis-
tribution to be symmetric, sets f, to zero degrees, and pre-
sumes 6,,, to be exactly halfway between #; and 6. Wong
and Reece proved experimentally that this symmetry only oc-
curs at one value of slip, with empirically determined param-
eters ¢; and co defining how the angle of maximum stress,
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0., moves based on the wheel’s slip ratio, i, according to the
equation [10]:

0m = (Cl + CQi)el (6)
with the slip ratio, ¢, defined as:

(row —v)/ryw

(ryw —v)/v

o [row| > vl
1=

)

[rww| < [v]

with r,, being the wheel radius, w being the wheel speed,
and v being the longitudinal velocity of the vehicle. Since
all terrain-wheel interaction forces are based on these stress
distributions, approximations in terrain models can have sig-
nificant impacts on determining mobility. This method also
is non-unique in determining terrain parameters using sensor
measurements and from the need for a significant number of
data points before the model converges. Even with a per-
fectly accurate understanding of the normal pressure distri-
bution below a wheel, as well as an exact calculation of draw-
bar pull for that wheel, the cohesion parameter, ¢, and the an-
gle of internal friction, ¢, both contribute to the shear stress
according to Eqn. (5), each with significantly different im-
pacts on mobility at varying slip ratios. Therefore, multiple
data points need to be employed to extract each parameter’s
respective value. Additionally, torque and normal load are
typically not directly measured for wheeled mobile robots
(WMRs), as this would require a multi-axis force sensor in
each wheel adding significant complexity, cost, and mass
to a rover. Since these inputs are estimated from a quasi-
static analysis based on mass distribution and from current
supplied to the motor, the approximations will be inherently
noisy or inaccurate. In trying to account for sensor noise,
Tagnemma corrupted the inputs with white noise, and this,
combined with the issue of non-uniqueness, necessitated at
least thirty measurements before the model converged [23].
Depending on the sampling rate and speed of the rover, the
need for thirty samples before convergence could require a
long stretch of homogeneous terrain to obtain an accurate
estimate of mobility and provide an ample time window for
the robot to lose all traction. In [23], the robot was traveling
at 5-10 cm/s, the sensor sampling rate was 5 Hz, and the ter-
rain can be assumed to be somewhat homogeneous resulting
in this method providing adequate warning. However, for
FrostyBoy traveling at 1-2 m/s, sampling at 10 Hz, and on
highly variable terrain, all four wheels could be immobilized
by the time the model converges.

Other online estimation methods have relied on specific
maneuvers to be performed by the rover before parameters
can be estimated. Specifically, Ojeda performs turns at vary-
ing yaw rates while measuring motor currents in order to
develop an analog to the shear-stress vs. shear-displacement
curve [24]. Another study conducted by Liu [25] extracts
terrain parameters only when a WMR is skidding (negative
slip) down a slope. Both these methods prove limited in their

application since requiring the rover to perform turns could
incite an immobilization event, and downhill slopes are not
guaranteed (nor likely on a flat ice sheet), and the parameters
estimated during these maneuvers may not be applicable to
upcoming terrain.

These methods have the same four drawbacks in predict-
ing mobility.

1. They require an assumption that the terrain is homoge-
neous to make accurate predictions about future mobil-
ity.

2. They calculate a subset of the terrain parameters, with
average values assumed for the remaining terrain param-
eters.

3. They require simplifications of the pressure and shear
stress distributions at the wheel-terrain interface to solve
the Wong-Reece equilibrium equations in real-time.

4. The terrain parameters are inextricably linked in their
contribution to mobility and cannot be uniquely identi-
fied from single force measurements or estimates.

To solve these issues and predict mobility in nonho-
mogeneous terrain, Ray [15] employed Bayesian multiple
model estimation (MME) to evaluate the most likely set of
terrain parameters that could describe the robot’s current and
past sensor readings. In this method, Ray uses multiple hy-
potheses of almost a complete set of terrain parameters (62
is assumed to be zero degrees) as inputs to the Wong-Reece
equilibrium equations to generate expected forces from the
terrain on a rigid-wheeled, lightweight rover [15]. The forces
estimated through an Extended Kalman-Bucy Filter (EKBF)
from the proprioceptive sensor measurements of the wheels
can then be compared to those generated from the hypothe-
ses, and the most likely set of terrain parameters can be deter-
mined based on their conditional probability given the mea-
surements. Ray [15] tested this method on simulations of a
constant terrain type and found that this method converged
within two iterations of the MME algorithm to the closest
terrain parameter hypothesis even when no hypothesis was
an exact match of the terrain parameters being simulated.
As Cook [26] found, this rapid convergence meant Ray’s
method was effective in detecting terrain parameters quickly
in non-homogeneous snow, allowing traction control meth-
ods to be developed to maintain mobility in changing condi-
tions. Cook added the shear deformation modulus, K, in his
terrain parameter hypotheses, meaning one fewer parameter
that is fixed to the average value found in the literature [26].
The third drawback of previous methods is also solved, since
the force-slip curves generated for each hypothesis can be
calculated numerically ahead of deployment, meaning that
no simplifications to the Wong-Reece equations are neces-
sary for the algorithm to run in real time. However, the is-
sue of non-uniqueness still plagues this method, as Ray [15]
found overlap in differentiating high-cohesion soils in her
simulations and Cook’s algorithm [26] was computationally
expensive as it ran 320 parallel Kalman filters, one for each
of the hypotheses in a large set of terrain parameter combi-
nations.

While the MME method is effective at rapidly con-
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verging on a set of terrain parameters, the forces these ter-
rain parameters predict and the resulting mobility judgment
are still rooted in the Wong-Reece terramechanics model.
This model was developed for heavier vehicles, with larger
wheels, operating in sands and soils. Modifications to
the model have been proposed to better fit the data from
lightweight vehicle tests, but these often add parameters to
the existing set, are not specific to snow, and none of these
adaptations have been universally adopted. In addition, ob-
servable effects of the vehicle-terrain dynamics that cause
immobilization are not considered in these models.

The primary effect that is not considered explicitly in
the methods presented above is the dynamic sinkage that oc-
curs from excessive wheel slip and the resultant excavation
of terrain. The model relies on an accurate definition of the
pressure distribution below a rigid wheel to accurately pre-
dict a vehicle’s mobility. This distribution defines the overall
sinkage and therefore the compaction resistance and resistive
torque applied to the wheel by the terrain. However, while
Reece’s equation (6) takes into account the radial movement
of the angle of maximum stress, 6,,, based on the wheel’s
slip, there is no equation that redefines the pressure distribu-
tion after slip-sinkage occurs. The boundaries of the contact
patch are also poorly understood when slip-sinkage occurs.
Even in Ray’s study [15], 62 was assumed to be directly be-
low the wheel axle, but it has been experimentally shown in
single-wheel studies that at higher slip ratios, the backward
flowing zone of soil under the wheel enlarges until at 100%
slip, there is no forward flowing zone and the contact patch
extends well behind the point directly below the axle (05 is
much less than 0°) [16]. This slip-sinkage effect was the
primary cause of Cool Robot’s immobilizations observed in
the 2017 field season near Summit Station, Greenland and
shown in Fig. 2. The robot would encounter a patch of low
cohesion, low stiffness snow. While making very little for-
ward progress, the robot wheels would slip and dig them-
selves deeper until the chassis was touching the snow sur-
face. While simple models predicting additional sinkage due
to slip as proportional to initial sinkage have been proposed
and serve as a good approximation, it does not consider how
slip-sinkage develops over time. The vehicle-terrain inter-
action has been observed to be more complicated when this
slip-sinkage effect occurs [27].

With so many deviations of terrain models from obser-
vation of how lightweight, wheeled vehicles operate in snow,
a new immobilization detection method needs to be devel-
oped that will capture the dynamics of the system without
relying on unknown and marginally applicable terrain pa-
rameters.

One such method of predicting mobility avoids the prob-
lems inherent in measuring or estimating terrain parame-
ters by instead using a machine learning approach. Traut-
mann [28] used classified proprioceptive sensor data during
normal operation and immobilization events of a rover on
snow to train a machine learning algorithm. Instead of a ter-
ramechanics model, the method relies on supervised learn-
ing of a support vector machine for deciding whether the
terrain being traversed is a threat to mobility. This method

Fig. 2: Immobilization of Cool Robot due to slip-sinkage
effect.

was proven experimentally using Yeti, instrumented with en-
coders and current sensors on each motor, an IMU, and an
optical ground speed sensor [28]. The machine learning ap-
proach proved to be very effective in predicting a loss of trac-
tion, however the large training data set required renders it
impractical. This method is ‘expensive’ for the operator, as
Trautmann hand labeled the robot sensor measurements to
characterize them to be one of three conditions: fully mo-
bile, almost immobilized, or immobilized. In addition, field
seasons to collect this data are typically short and costly,
and many examples of the robot’s performance on both im-
mobilizing and traversable terrains are required for a robust
model.

There is a need for a mobility prediction method that
does not rely on estimating terrain parameters, can run in real
time, and is not predicated on an enormous amount of train-
ing data. It also must be reliable enough to detect an immo-
bilization in a wide variety of terrain conditions, as snow has
been observed to be highly variable. The method proposed
here addresses this need by using the limited experimental
data set to create low-dimensional models of the dynamics
of a vehicle under both incipient immobilization and under
normal operation in order to leverage a Bayesian approach to
mobility prediction that runs in real time due to low compu-
tational complexity. The method avoids the need for a large
amount of training data for a machine learning approach as
in [28] and also avoids parameter estimation approaches that
require complex, nonlinear dynamics models as in [15,26].

3 Data Collection and Truth Model

The first step in developing an algorithm to detect an
incipient immobilization is to collect proprioceptive sensor
data from naturally evolving immobilizations using an in-
strumented rover, similar to the in sifu testing performed by
Trautmann [28]. These data are used both to develop a truth
model and also to evaluate the immobilization detection al-
gorithm.

The truth model is used to provide simulation data
to evaluate the immobilization detection algorithm, supple-
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Fig. 3: Data from a typical immobilization event, with the top graph showing longitudinal velocity of the rover, v,, and
the four subsequent graphs showing wheel speed, w, wheel torque, 7', and wheel slip, ¢, for each of the four wheels. This
example clearly shows that the front left and rear right wheels stalled and the front right and rear left wheels reached 100%

slip.

menting the field data and accommodating robots with ge-
ometries that differ from the one robot used to acquire field
data. The truth model is rooted in Wong- Reece terrame-
chanics but enhanced by real-world observations to mimic
observed dynamics. The truth model developed here mod-
els dynamics observed in field data but that are not elicited
by Wong-Reece terramechanics alone and that highlight the
importance of the vehicle dynamics in concert with terrame-
chanics in inducing immobilization evolution observed in the
field experiments.

Both of these components, the collected data of the rover
losing traction and the simulated data of the modeled rover
becoming immobilized, are used to develop the Immobiliza-
tion Detection Algorithm (IDeA) - a detection algorithm that
can warn the rover of an impending mobility loss. This pro-
posed method has many advantages when compared to the
state-of-the-art immobilization prediction approaches. The

models for nominal operation, and those characteristic of
an immobilization, are derived directly from data measured
with the pertinent robot operating in the range of terrain
types for which it was designed. These canonical models
produce an immobilization signature and are free from all
underlying assumptions regarding the underlying terrame-
chanics or the relationship between terrain parameters and
immobilization. This ensures the immobilization detection
algorithm is model agnostic, which is particularly important
to lightweight rovers in low cohesion terrain, such as snow,
where terramechanics model parameters have wide varia-
tions. The method also goes beyond single-wheel studies,
by considering the collective role all four wheels in a loss of
traction.

With an accurate truth model, these algorithms can also
be tested on new scenarios and new terrains that are not
tested with the instrumented robot. This allows for a small
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dara set, meaning a less costly, shorter field season for col-
lecting these data, to provide a broadly applicable incipient
immobilization detection method.

3.1 Data Collection

Measurements of robot ground speed, roll, pitch, and
yaw rates, motor currents, motor speeds, longitudinal and
lateral accelerations, as well as drawbar load were logged
during outdoor tests on relevant terrains. The robot Frosty-
Boy [29] was used for this testing. It is similar to Cool
Robot [3] and Yeti [4] in that it has four electric motors that
are powered by lithium ion batteries, optionally charged by
solar panels towed behind on a sled. FrostyBoy is heavier
than the other two robots with a mass of about 90 kg. Its
chassis is constructed of T-channel aluminum extrusion, with
a pivot on the front axle to give the robot some compliance
about the roll axis and +9° about the yaw axis to reduce lat-
eral bulldozing resistance in a skid-steer turn. The heavier
chassis is necessary to support the wider wheels. This robot
has been operationally tested in Greenland during a 2018
and a 2019 field season [5]. After the 2019 field season,
the robot was outfitted with sensors to measure the parame-
ters listed above. The ground speed, as well as accelerations
of the robot, are derived using the VectorNav VN-200 GPS-
aided Inertial Navigation System (INS) mounted on the robot
chassis with built-in Kalman filtering algorithms to improve
accuracy. This device can measure accelerations with a reso-
lution less than 0.5 mg and has velocity accuracy of less than
0.05 m/s. Roll and pitch accuracies have a standard deviation
of 0.03° and heading accuracy, when moving, has a standard
deviation of 0.2°. The motor currents and motor speeds were
read using the RoboteQ FBL2360 brushless DC motor con-
troller. An INTERFACE STA-3 S-beam load cell with a rated
load of 4900 N and an accuracy of 1 N was mounted on
the tow point of FrostyBoy and measured the instantaneous
force required to move a weighted sled. All sensor data was
logged at a sampling rate of 10 Hz by a Campbell Scientific
CR1000X configured with a CFM100 CompactFlash Mem-
ory Module. Final sinkage of each wheel can be inferred
from pictures taken after an immobilization.

The instrumented robot was tested in two locations out-
side Lebel-sur-Quévillon in Québec, Canada in loose, un-
consolidated snow that measured more than 55 cm in depth.
The goal of these tests was to gather sensor measurements
during an immobilization event. At each test site, Frosty-
Boy was run in an open-loop configuration in which all four
motor controllers sent the same voltage, around 40% of the
rated voltage, to each of the four motors. The rover was left
to operate at this voltage, tracking relatively straight, until it
became naturally immobilized by what can only be deduced
are natural variations in the snow properties, since the snow
appeared highly uniform and completely undisturbed from
the surface. To better characterize the terrain, four pressure-
sinkage curves were generated from load vs. distance data
logged by a custom device designed to drive a flat puck of a
known area down into the snow. Two penetration tests were
performed at locations where the rover was able to main-

Fig. 4: Top view of FrostyBoy after becoming immobilized

Fig. 5: Side view of FrostyBoy after becoming immobilized

tain mobility and the other two were taken next to the front
wheels after FrostyBoy lost traction.

Important findings from these data were the easily dis-
cernible patterns and signatures from slip, wheel speed, and
torque measurements that have the potential to predict and
prevent immobilization. The rover became immobilized fre-
quently at both test sites, typically traveling less than 20 me-
ters before becoming stuck, even without any towed load.
The pattern observed in every one of these immobilization
events was an increase in torque and decrease in wheel speed
for two of the wheels and a decrease in torque and increase
in wheel speed for the other two wheels. The wheels show-
ing the same behavior were always at a diagonal to one an-
other. An example is shown in Fig. 3, with the front right
and rear left wheels exhibiting the same behavior while the
front left and rear right wheels exhibit the opposite behavior.
As shown in this example, two of the wheels’ torques climb
to the motor controllers’ current limit restriction as their ro-
tational speeds drop to zero (the oscillations observed in the
torque record is an artifact of the motor controllers’ program-
ming to prevent the motor from overheating by dropping the
current by a set amount each time the current limit of 40
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Fig. 6: Pressure-sinkage data collected in Lebel-sur-
Quévillon, with the best-fit Preston-Thomas curve (4) shown
for each data set

amps is reached). The other two wheels’ rotational speeds
increase as their torques decrease, appearing to almost reach
a no-load condition that also results in their slip ratios jump-
ing up quickly to 100%. Figures 4 and 5 show observed
characteristics of these immobilization events. One is that
the two wheels with high slip ratios are observed to excavate
the terrain below the wheels, evidenced by the buildup of
snow behind them. It is also evident from these photos that
there is significant snow ‘trapped’ inside the frames of the
two stalled wheels, which adds to the resistance torque. The
robot pitching up is another signature of this event which can
be seen in Fig. 5. While this added resistance, due to gravity,
can be accounted for using the pitch angle measured by the
IMU and knowledge of the robot’s center of mass, it serves
as valuable insight into modeling the dynamics of these im-
mobilizations. Specifically, this example shows that immo-
bilization events are not only impacted by the vehicle-terrain
interaction but also depend on the vehicle’s rigid-body dy-
namics. The cause of immobilization can therefore not be
completely understood by single-wheel studies, and full sys-
tem testing must be performed to be able to detect incipi-
ent immobilization, which is an important conclusion of this
study.

To further understand the cause of this complete loss
of mobility, we examine the data collected from the pene-
tration tests to better grasp the pressure distributions below
the wheels. The four sets of pressure vs. sinkage measure-
ments are shown in Fig. 6 with the best-fit Preston-Thomas
(4) pressure-sinkage curves plotted over them. It is evident
from these data that the immobilizing snow (Data 3 and 4)
is highly compressible, having low values of k, with deeper
denser layers, higher values of z,,, than the terrain on which
the rover maintained mobility (Data 1 and 2). Figure 6 also
shows the variability of the snow, with values of k ranging
from 19.2 to 65.0 kPa/m and values of z,,, ranging from 0.29
to 0.54 meters, with a difference of ~10 kPa/m between Data
3 and 4, taken just two meters apart. The variation in snow

o=
° Far |
— J

Fig. 7: Robot body-fixed coordinate conventions and rele-
vant dimensions

conditions further reinforces how robust an incipient immo-
bilization detection method must be if it is to ensure rover
mobility across deep snow.

3.2 Truth Model
3.2.1 Dynamics

While the collected data is invaluable in developing an
incipient immobilization detection algorithm, it is limited in
its scope. Immobilization events were only recorded dur-
ing two days of testing in March 2020, with two types of
snow and two sets of environmental conditions. This lack of
control over the independent variables influencing the rover’s
mobility is the nature of in situ testing. Also, a key goal of
this work is to generate a mobility prediction method with-
out requiring the exhaustive training data sets necessary for
machine learning. Therefore, a truth model is developed
to complement the data collected from this relatively small
sample size of conditions. Once this model, rooted in the ter-
ramechanics models of Bekker, Wong, and Reece, has been
adapted to incorporate the dynamics seen in the real-world
data, the prediction method can then be tested using simula-
tions of the rover. The truth model allows for more extensive
testing of the reliability of incipient immobilization detection
for conditions not encountered during field testing, leading to
a more comprehensive incipient immobilization detector.

The truth model is developed as a custom MATLAB
script to allow for easy customization and adaptability to the
effects seen in the real-world data. The truth model is based
on rigid-body dynamics with body-fixed equations for a four-
wheel drive robot with skid steering in longitudinal motion
to mimic FrostyBoy. These body-fixed equations of motion
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Table i: Values for parameters measured from FrostyBoy and used in the truth model to simulate its behavior.

FrostyBoy Parameter Values

Description Variable | Value Units
Mass m 90 kg
Wheel radius Tw 0.265 m
Track width tw 1.142 m
Distance from COM to front axle ds 0.579 m
Distance from COM to rear axle d, 0.515 m
Height of COM above axles h 0.140 m
Rover moment of inertia about z-axis at COM 1., 36.05 kg m?
Wheel moment of inertia about axis of rotation 1, 0.415 kg m?
Restoring moment constant Myes 0.3 Nm/(rad/s)
Mechanical damping constant B, 0.327 | Nm/(rad/s)

are given by

1
.1 [t
= - Fw r err
VP Izz{ 5 [(Fepr+ Forr)
. )
- (szl + Fzrl)] - Mres/(/)}
. 1
wr = Tp —Trgpr — wafl)r (10
. 1
Wr = (Tfr - Trfr - wafr)r (1D
. 1
Wrl = (Trl - Trrl - warl)f (12)
1
wrr = (Trr - Trrr - warr)f (13)

where the F),’s are drawbar pull forces on the four wheels
in the longitudinal, z, direction and the 7,.’s are the resistive
torques for all four wheels applied by the terrain. The geom-
etry and properties of the robot are captured in the terms m,
being the robot’s mass of 90 kg, ¢,,, being the track width
of the vehicle (see Fig. 7), I.,, the yaw moment of inertia
about its center of mass, and I, the wheel moment of inertia
about its center of rotation. The lateral forces on the wheels
are not captured explicitly, but a restoring moment, M.,
is applied to the robot based on its yaw rate, ¢, to account
for the lateral resistance from the terrain on the sidewalls of
the wheels. Also, since the rover’s yaw is controlled by skid
steering rather than by changing the heading of the wheels
or axles relative to the body of the robot, the lateral velocity,
vy, is not included in the model. The B, term takes into ac-
count the mechanical damping in the drivetrain. The values
for these parameters measured from FrostyBoy and used in
the truth model are outlined in Tab. 1.

The truth model calculates normal load and sinkage at
each time step, as described here. Typically, in these simu-
lations, the sinkage for each wheel is iteratively calculated,
using Eqn. (1), until the normal load from the terrain bal-

Fig. 8: Diagram showing conventions and variables involved
in calculating the normal force for front and rear axles.

ances the robot weight. Even assuming that the weight of
the robot is evenly distributed between all four wheels, if the
terrain below each wheel has different properties, the resul-
tant sinkage will be different for each wheel. However, this
is not realistic since the rover has a rigid chassis and all four
wheels could never be at different relative heights. Instead,
this simulation assumes a roll angle, p, to be zero since this
observed variable in the test data had a mean of zero and an
absolute maximum less than 1.5°. Also, this maximum roll
angle would result in less than 1.5 N of weight shift between
the left and right wheels on a given axle considering the ge-
ometry and weight of FrostyBoy at 0° pitch. Therefore, for
a given axle, the minimum sinkage among the two wheels is
applied to both wheels in the next time step. Pitch angle is
calculated using these minimum sinkage values for each axle
according to

zp = min(zgp, 2fr) (14)

2 = man(zp, Zrr) (15)
B Y B

B = sin (df +dr> (16)
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Tabic2: Final terrain parameters used to simulate low stiffness, poorly bonded, low cohesion snow.

Terrain parameters for simulation
Parameter k Zm c ¢ K cl Co 02 S
[Units] [%2] | [em] | [kPa] | [°] | [em] | - - [°] -
Simulation || 20-65 | 54 | 0.6-1.8| 9 .03 | 018 | 032 | -12 | 1.82 ‘

where the z values are the calculated sinkages and d¢ and d,.
are the distances from the center of mass to the front and rear
axles, respectively. The distribution of weight, I,y and F,,
between the two axles is then calculated by taking pitch and
the effect of acceleration into account:

—h(mg sin 8 +mu,) + d,. mg cos 3

F,;= 17

zf df+dr ( )

F— h(mg sin 8 + mv,) + d; mg cos 3 (18)
df-‘r-d,«

The variables and parameters in Eqn. (17) and (18) are de-
fined in Fig. 7 and 8. Then, for each axle, the weight sup-
ported by the wheel with the adjusted sinkage is calculated
based on the minimum sinkage, with the opposite wheel on
the same axle assumed to support the remaining weight of
that axle. For example, assume that zy; > zy, in the previ-
ous time step, then the normal force from the terrain, I,
for the current time step is calculated using the given mini-
mum sinkage, z, which is equal to zy,. Then, the normal
force supporting the right, front wheel, F’, ¢, is calculated
from

szr: zf_szl (19)

with the sinkage, z¢,, being iteratively calculated according
to the balance of forces equation (1). These calculations are
critical in defining the wheel-terrain interaction that corre-
sponds to observation, as they serve as the basis for the reac-
tion forces from the terrain.

3.2.2 Terrain

The terrain resistance torques and forces used in the
truth model are calculated from the Wong-Reece terrame-
chanics model. While the drawbacks and limitations of these
empirical equations in simulating a lightweight vehicle in
snow are discussed in section 2, it serves as a widely ac-
cepted, standard foundation for an investigation of mobility.
Therefore, the range of values for the empirical parameters
that define the terrain being investigated need to be defined.

The pressure-sinkage distributions at the wheel-terrain
interface are defined by the Preston-Thomas equation (4), as
it matches well with the data gathered from the penetration
tests. The parameters that best fit the measured pressure-
sinkage curves (see Fig. 6) were found to be k ranging from
~20 to ~65 kPa/m and z,,, ranging from 0.3 to 0.54 meters.

Given this measured variability in the terrain, the parameters
of cohesion, angle of internal friction, and shear deformation
modulus were tuned to match the average drawbar pull per
wheel vs. slip and the resistance torque per wheel vs. slip
given measured data. Lines of drawbar pull vs. slip and
torque vs. slip were generated using the terrain model equa-
tions for a single wheel while varying these parameters over
the expected range. From this sensitivity study it was deter-
mined that the cohesion parameter in the simulation was to
be limited to the lower end of the range defined in the litera-
ture for snow [30] to simulate observed immobilizations and
match the measured torque. The values for the angle of inter-
nal friction, ¢, and the shear deformation modulus, K, were
found to have a limited effect on drawbar pull and torque.
Therefore, these can be treated as static parameters, with the
full range of observed mobility conditions being captured by
the measured variability in the pressure-sinkage stiffness pa-
rameter, k, and with slight changes in cohesion, c.

The most notable effect that is not captured by varying
these two parameters is the observed reduction in drawbar
pull at higher slip and the steep increase in resistive torque
as slip increases up to =50%. To increase the slope of re-
sistance torque vs. slip, while also reducing drawbar pull
at higher slips, the dynamic effect of sinkage induced from
wheel slip is added to the model using a modified version of
a formula developed for sands and clays

Zactual = 20 + 15720 (20)

where ¢ is the slip and 2y is the sinkage that would occur
were there no excavation and S is the slip-sinkage coefficient
calculated to be approximately 1.8 [31]. Since this equation
was only verified for slips up to 33% [31], it was modified
when incorporated into the truth model to limit the additional
sinkage at elevated slip ratios, where the added sinkage from
slipping, Az, can be defined by

iSzo, i < 0.33
Ar=1" @1)

S .
3 |:1+e:cp[—8(i—0.25)] 20, 1>0.33

This limits the additional slip-sinkage to be only ~90% of 2,
at 100% slip, rather than ~180%, as described by Eqn. (20).
This modified slip-sinkage model resulted in an improved
approximation of the real data, with the drawbar pull only
becoming positive at higher values of k for a narrow band of
slip ratios below 50%. At the lower values of k, the sink-
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age becomes so great that the tractive force the wheel can
apply to the terrain before it fails is not enough to overcome
the terrain resistance force. At high values of slip, the slip-
sinkage becomes so much that even with a relatively high
stiffness, k, the drawbar pull still drops below zero. Stepping
up the cohesion parameter steps up both the drawbar pull and
torque, with its effects more significant at higher slip ratios.
Ultimately, the variability of the snow observed in Lebel-sur-
Quévillon and the resultant behavior of FrostyBoy can be ad-
equately estimated by varying only k£ and c. Therefore, the
parameters, outlined in Tab. 2, are used in simulating Frosty-
Boy operating on low stiffness, poorly bonded, low cohesion
Snow.

3.2.3 Simulations

Determining the most likely range of terrain parameters
by looking at torque and drawbar pull data serve as valida-
tion for the performance of each wheel. This could be more
rigorously studied using a single-wheel testbed filled with a
homogeneous snow with tightly controlled terrain parame-
ters. However, the value of the data obtained during testing
is that they were collected in situ, with a four-wheeled robot
becoming immobilized on a natural snowpack. This means
that validation of the model dynamics of the robot as a whole
must be performed by trying to replicate the four-wheeled
immobilization signature, rather than solely by the individual
wheels operating at steady state. As discussed in section 3.1,
the immobilizations were characterized by two of the wheels,
at a diagonal to one another, experiencing a rapid increase in
resistance torque until they reach the motor controller current
limit, and the other two wheels increasing in rotational speed
with a rapid decline of resistance torque until they are al-
most at a no-load condition. Comparing the torque-slip data
points during an immobilization with those of steady-state
conditions shows the separation in operating points that oc-
curs and the divergence from the defined torque-slip curves
given the range of terrain parameters determined.

Looking at each wheel individually to account for this
behavior proved unsuccessful, as no change in the terrain
stiffness or cohesion parameters could reproduce the torque-
slip operating point during an immobilization, given the sink-
ages observed. As aresult, the dynamic interaction of all four
wheels of the rover with the terrain was investigated. Specif-
ically, simulation of transferring the weight of the robot from
four wheels to two wheels resulted in the observed effect of
high torque and low slip for the weighted wheels and low
torque and high slip for the unweighted wheels, with a uni-
versal decrease in drawbar pull. This match in wheel behav-
ior resulted in the hypothesis that natural variation in the ter-
rain parameters elicits a shift in weight from all four wheels
to only two-wheels, ultimately resulting in an immobiliza-
tion. These two wheels supporting most of the weight must
be at a diagonal to one another since this is the only sta-
ble configuration. The truth model was then used to inves-
tigate how irregularity in the terrain properties could incite
this behavior. The simulated terrain parameters below pairs
of wheels at a diagonal were arbitrarily changed to the ex-

tremes of the ranges outlined in Tab. 2 (e.g., simultaneous
change in stiffness or cohesion of the terrain below the front
left and rear right wheels). These unrealistic extreme and
sudden changes in terrain properties only resulted in a slight
change in operating points for the four wheels and minimal
(=75 N) difference in normal force between the wheels on
each axle, with no combination resulting in an immobiliza-
tion.

One effect that was not captured in these tests but was
observed during the experiments in Lebel-sur-Quévillon is
the excavation of the snow that occurs at high slips. While
slip-sinkage was taken into account in these simulations, it
was only considered for the case of increased sinkage due to
slip. However, with a rigid chassis robot, the high slip wheels
are restricted to the sinkage reached by the opposite wheel on
the same axle. Therefore, this increase in slip and resultant
excavation, which would normally cause additional sinkage,
had no effect on the wheel in the model. To remedy this,
the truth model is modified to inclued an excavation sinkage
term for the wheels that cannot reach their calculated depth
due to the rigid chassis. The excavation sinkage is a pseudo-
sinkage calculated by subtracting the Az term from zg rather
than adding it and is then used to calculate the resistance
forces applied to the wheel by the terrain. This has the ob-
served effect of setting up a positive feedback loop between
increased slip and weight transfer, as the slipping wheel ex-
cavates the terrain that would have supported it. The second
parameter added to the model was a wheel sinkage ratio, A,
that is used to calculate the exit angle at the rear of the wheel
based on the sinkage at the front of the wheel, instead of
keeping this angle constant [32].

0y = cos ! (1 — /\Z> (22)

Tw

When used with the excavation sinkage as the z in the above
equation, #, goes to zero as z goes to zero. The wheel sink-
age ratio, A, was then tuned to ensure that the steady-state
torques still matched those observed in the data collected,
given the previously defined range of terrain parameters. The
exact value of this wheel sinkage ratio in various types of
snow needs further study, but for these simulations, a A value
of 0.07 was chosen to give the previously estimated 5 value
of -15° at the observed average sinkage of approximately 13
cm.

With these empirically-modeled phenomenological ef-
fects in place, the rover behavior in the model is consistent
with the unique immobilization mode seen in the test data. In
addition, the model did not require that the natural, random
terrain variation be such that the terrain below two wheels at
a diagonal have higher & values and the other two wheels si-
multaneously encounter low cohesion terrain in order to in-
cite a loss of traction. Instead, in the updated model, rela-
tively small variations in the stiffness of the terrain alone can
instigate the immobilization behavior consistent with field
observations.
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4 "~ Incipient immobilization Detection

The challenges in developing a truth model using ex-
isting Bekker-Wong and Wong-Reece terramechanics theory
and tuning a variety of terrain parameters to match collected
data for a wheeled vehicle further reinforces the need for an
online mobility assessment algorithm that is independent of
these models and parameters. This is proven especially im-
portant for operating in a terrain, like snow, with such a wide
range of terrain parameters. In snow, a lightweight, wheeled
rover must strike a delicate balance between slipping enough
to produce the requisite shear displacement to gain traction
and slipping so much that slip-sinkage results in high terrain
resistance, overwhelming the robot’s tractive effort. How-
ever, instead of the circuitous method of using estimates of
the wheel forces to determine terrain parameters to then cal-
culate a change in operating point, the objective is to look
for signatures in the data that can more directly be used to
evaluate mobility. The collected data is used to generate a
bank of behaviors that are indicative of normal steady-state
operation and another set that serve as evidence of incipi-
ent immobilization. The multiple model estimation (MME)
method is used in real time to decide which hypothesis is
the most likely and whether it signifies nominal mobility or
immobilizing terrain. In order for this to be valuable for a
robot traversing an ice sheet, it must be able to operate in
real-time. The detection must occur early enough that the
rover has time to adapt and maneuver out of the hazardous
terrain. Yet, the detection method must be robust enough that
it is not triggered by a temporary loss of traction from which
the robot can recover. Finally, the bank of models indicative
of the two states must be sufficiently universal to predict in-
cipient immobilization even when terrain conditions or robot
configurations are different than those directly tested.

4.1 Hypothesis Generation

The first step in developing a multiple model estima-
tion algorithm is to generate the models that serve as the hy-
potheses for how the robot is operating at a given instance in
time. To ensure the algorithm is robust, these models need
to clearly and unambiguously fall into one of two groups:
those that signify mobility and those that signify impend-
ing immobility. Here, these models take the form of simple
canonic, dynamical system models that evolve according to
linear equations given an input-output relationship between
measurable state elements. To generate hypotheses, various
combinations of measured variables were analyzed as inputs
and outputs to a simple discrete-time state-space model:

X511 = Pxs + ug (23)
Ys+1 = Hx, (24)

For each combination, the system parameters are generated
using the canonical variate analysis (CVA) approach for sys-
tem identification [33], forcing the output matrix, H, to the
identity matrix, with the system and input matrices, ® and
T', obtained using a prediction error minimization algorithm

[34].

This process is easily performed in the System Identi-
fication Toolbox in MATLAB, allowing for rapid testing of
input/output combinations with different model orders spec-
ified to fit various sections of the time domain data. Each
identified system is evaluated based on its goodness of fit
with the data from which it is generated using the normalized
root-mean-square error cost function. The system parame-
ter values identified from characteristic immobilization seg-
ments of data are also compared with those from segments
of normal mobility, to assess their uniqueness.

Based on this process, the system model with the best fit,
uniqueness, and potential for incipient immobilization detec-
tion is a first order model with wheel torque and wheel speed
as the inputs, u, and robot velocity as the state, x.

o
u= M (25)
%= [0a] (26)

Therefore, each hypothesis, p, is made up of a 1x1 ma-
trix, ®, and a 1x2 matrix, I', that modify the state and in-
put respectively. Hypotheses of nominal mobility are gener-
ated from the time series data in which the rover accelerates
and reaches steady state. The immobilization hypotheses are
generated from the data leading up to the complete loss of
forward velocity. Of the seventeen immobilization events
from the two different test sites, only those six with the most
distinct ramp ups to steady-state operation and subsequent
immobilizations were used to generate the hypotheses, with
one nominal and one immobilization hypothesis generated
for each wheel. The values were plotted for ® vs. I'(1,1)
and I'(1,2) and the duplicate hypotheses within the same set
were removed to limit the number of parallel filters required,
leaving eleven nominal hypotheses (Ao, = 11) and nine
immobilization hypotheses (A;p,.m = 9) for a total of twenty
(Atotal =20).

Since the torque-speed curve for a brushless DC motor
is well understood and characterized, monitoring the oper-
ating torque and wheel speed of the motor and evaluating
how this translates to overall rover velocity allows hypothe-
sis selection to run much faster than the 10 Hz rate of data
collection without requiring any assumptions about, or so-
lutions to, the equations describing the pressure distribution
below the wheels. This method is similar to other condi-
tion monitoring techniques, such as the motor current signa-
ture analysis (MCSA) used in sensing faults with induction
motors [35]. While MCSA uses current spectral analysis to
detect anomalies instead of a Bayesian inference algorithm,
the basic principle of identifying the operating characteris-
tics of a motor to sense any changes before a rapid decline
in performance or a catastrophic failure occurs is embodied
by this MME immobilization detection method [36]. It also
allows for a robust set of hypotheses to be identified from a
small set of immobilization data, meaning that the extensive
training data required to train a machine learning algorithm
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1s unnecessary. 'fo prove this, the following sections show
how selecting between these twenty hypotheses can be used
to reliably detect immobilization not only in the collected
data but also in simulated immobilizations generated using
the truth model.

4.2 Bayesian Multiple Model Estimation Method

The algorithm that forms the basis of selecting the most
likely hypotheses uses recursive Bayesian inference to find
which hypothesis best accounts for the wheel’s operation at
each point in time [37]. In this multiple model estimation
(MME) approach, each hypothesis, p, is assigned a Kalman
filter that determines the likelihood of a measurement given
the system parameters within each hypothesis. A poste-
rior probability for each hypothesis is then calculated using
Bayes’ rule to combine the likelihood probability of the cur-
rent time step with the a priori probability for that hypothesis
from the previous time steps. Typically, each hypothesis is
defined by the values of the system matrices (®, ', and H)
as well as a disturbance input matrix, Q, and a measurement
noise matrix, R [37]. For this application, the hypotheses are
only defined by matrices ¢ and T', with H, Q, and R being
the same for all hypotheses. Therefore, at each time step, s,
the Discrete Time Kalman Filter (DTKF) for a given hypoth-
esis, 1, to calculate an estimate of the state, X, is given by
the sequence

%7 = ®x! , +Tu,_ 27)
P, =®P; &' +AQ, A" (28)
K,—P,H' [HP;H' +R,] (29)
%t = %7 + K, [z, — H&;] (30)
P =[P +H R;'H] 31)

where the state estimate is the expected rover velocity. The
measurement residual, rg, and the residual covariance ma-
trix, S, are calculated with respect to the measured ground
speed, zg, according to

r, =z, — HX (32)
S.=HP_H' +R, (33)

which is used to estimate the probability distribution of the
measurement, z,, given the estimated state predicted by the
hypothesis parameters, Xs(gt). This distribution is defined
by

i 1 e
bl ()] = G ¢ TS 09

Since each hypothesis has its own Kalman filter, this process
is repeated for all A hypotheses, with the probability of each

hypothesis given the measurement defined by

pr[ZS X (ll’a)] Pr(p,|zs—1)

Pr(p,|zs) = (35)

NgES

3= ol ()] Pr(aufze) |

The most likely hypothesis for each individual wheel can
then be determined from the highest conditional probabil-
ity. The wheel can then be classified as almost immobilized
or running nominally based on the group to which the most
likely hypothesis belongs.

Testing this algorithm on the data collected in Lebel-
sur-Quévillon allowed for certain parameters of the Kalman
filter to be tuned and for new criteria for the triggering of an
immobilization response to be developed. The state estimate
depends on the relative weights of the disturbance matrix, Q,
and the measurement noise matrix, R. In general, the ratio of
Q to R defines the relative confidence in the measurements
vs. the model. Through testing, the best results came when
Q is set to 20 (m/s)® and R is set to 1 (m/s)2. However,
both values can vary by +20% without any significant im-
pact on detection, showing that the algorithm is not overly
sensitive to these parameters. The other tuning mechanism is
the adjustment of how frequently a priori probabilities are re-
set. The recursive Bayesian inference process is designed for
convergence, with each new measurement either reinforcing
the ‘belief’ that the wheel system is behaving according to
the model of a given hypothesis or undermining this ‘belief’.
Gradual convergence would be well suited for slowly chang-
ing terrain but is not ideal for the use case for which this in-
cipient immobilization detection method is being designed.
The patches of immobilizing terrain are sporadic on the ice
sheets of Greenland and Antarctica, and the loss of mobility
happens quickly. Therefore, if the a priori probabilities have
been converging on the hypotheses indicating good mobility
for even a few seconds, the sensitivity of the system is re-
duced. To improve the response time of the system, various
methods of flattening the prior distributions at each time step
were tested. Resetting the prior distributions to be uniform
naturally resulted in the highest sensitivity, but also caused
an unacceptable rate of false alarms. Even when requiring
that immobilizing hypotheses are chosen for multiple time
steps before a wheel is flagged to be ‘at risk’, the false alarm
rate is still too high, as it would cause the robot to unneces-
sarily maneuver and expend excess energy to avoid perfectly
trafficable snow. Fusing the observed dynamics from all four
wheels improves the sensitivity and specificity of predicting
mobility with this method.

To fuse detections from four wheels, each wheel has
Ayorq; Kalman filters running in parallel, estimating the like-
lihood of the measured rover velocity given the torque and
wheel speed for each hypothesis. These likelihoods are com-
bined with a uniform prior to obtain the respective probabil-
ity of each hypothesis given the measurement. The average
of the probabilities for immobilization hypotheses are sub-
tracted from the average of the probabilities for nominal hy-
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Fig. 9: Longitudinal velocity and each wheel’s speed, applied torque, and slip shown for Event 1-7. The first black vertical
band marks the start of the immobilization, the second black vertical band indicates when the vehicle has become fully
immobilized, with the dashed red line showing the time of detection. All immobilization events from Lebel-sur-Quévillon

can be found in the supplemental material.

potheses to get a value, £, for each wheel, with more negative
values signifying higher risk of that wheel becoming immo-
bilized.

Anom Atotal

Pr(p,|zs
e= 3 e S

a=1 a=Anom+1

Pr(p,|z;)

mm

(36)

Finally, to reduce the rate of false alarms, the ¢ values
from pairs of wheels are summed, requiring two wheels to be
‘at risk’, before a full immobilization is flagged. The pairs
of wheels that most accurately predict an immobilization are
those at a diagonal and those on the same axle. Pairing the

left-side wheels or the right-side wheels of the robot resulted
in false alarms during turning maneuvers. While the robot
is highly susceptible to becoming immobilized during a turn,
as it needs to overcome the added lateral terrain resistance, a
simulated immobilization event during a turn is still detected
with these pairings. Therefore, the final detection algorithm
calculates = values for each pairing:

Er=&nu+&m (37
o =&+ & (38)
E3=C&p+ &r (39)
By =& +&n (40)
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Table 3:'Results from applying the MME algorithm on data collected from immobilization events in Lebel-sur-Quévillon.
The first number of the event number corresponds to the test site. The "early" entries mean that an immobilization was
flagged by the algorithm before the start of the immobilization event that actually resulted in the rover’s complete loss of
mobility and are not included in the results’ statistics.

Summary of MME Results - Lebel-sur-Quévillon Data
Event .Stop S'top Velocity at | Distance Time to
Number Distance Time Detect tov, =0 v =0
[m] [s] [m/s] [m] [s]
1-1 0.54 1.2 0.97 0.45 1.1
1-2 0.88 1.5 0.86 0.38 1.0
1-3 1.34 1.8 0.45 early early
1-4 1.58 2.6 0.91 early early
1-5 0.46 1.0 0.82 0.15 0.7
1-6 2.66 4.7 0.58 0.67 2.1
1-7 2.31 3.7 0.95 1.26 2.8
1-8 6.07 8.0 0.98 4.42 6.6
1-9 4.69 5.2 0.99 early early
2-1 2.64 4.0 0.88 1.51 3.0
2-2 0.38 1.3 0.84 early early
2-3 1.95 24 0.65 early early
2-4 0.78 24 0.56 0.61 2.1
2-5 0.67 1.7 0.70 early early
2-6 0.45 1.1 0.70 0.21 0.8
2-7 1.00 34 0.29 0.28 1.8
2-8 2.29 3.6 0.82 0.99 2.2
AVG 1.81 2.92 0.76 0.99 2.20
MIN 0.38 1.00 0.29 0.15 0.70
MAX 6.07 8.00 0.99 442 6.60

where the subscripts denote the wheel location on the rover,
either front left (fI), front right (fr), rear left (rl), or rear
right (rr). If any of the four = values drop below a thresh-
old, an immobilization is considered imminent, and the robot
needs to take immediate action to maintain mobility.

4.3 Detection Results
4.3.1 Collected Data

The method described above was developed and refined
using the immobilization event data collected in Lebel-sur-
Quévillon. From these data, a threshold value of zero was
established for all = values. If any of these four values, in
Eqn. (37) to (40) drop below zero, it indicates the likelihoods
of the immobilization hypotheses outweigh the likelihoods
of the nominal operating hypotheses for that pair of wheels,
and the algorithm flags an immobilization. In addition, to
prevent false alarms, an immobilization flag is not triggered
unless the robot velocity dips below 1 m/s, as the rover’s
momentum at higher speeds occasionally allows it to push
past immobilizing terrain even if multiple wheels show the
signature of an unsustainable motor operating point.

The results of applying the MME method to the data

from Lebel-sur-Quévillon are analyzed by looking at two
tests. The first test ensures that the algorithm does not trig-
ger in cases where a user initiates a stop and the rover comes
to rest due to the motors’ programmed deceleration profiles.
For the eight events tested in which FrostyBoy was com-
manded to stop rather than becoming immobilized due to
the terrain, the algorithm never detected an incipient immo-
bilization. With this simple check accomplished, the algo-
rithm’s performance was then assessed on cases where the
rover’s velocity did reach a steady state zero value due to
immobilizing terrain. The results of these tests are summa-
rized in Tab. 3, with Fig. 9 showing an example of when
detection occurs (red-dotted line) in relation to the rover’s
velocity and to each wheel’s rotational speed, torque, and
slip. The supplemental material show similar plots for all
immobilization events observed during the tests near Lebel-
sur-Quévillon. For each event, bounds are established for
when the rover begins to lose mobility and when the rover
has become stuck. While the exact point in time when the
robot starts to lose traction is difficult to determine, this is
estimated as when the IMU velocity begins to steadily de-
cline to zero and is marked by the first vertical black line in
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Fig. 9. The second vertical black line marks the time at which
the robot’s velocity reaches zero. This allows for algorithm
detections that occur outside of these bounds to be excluded
from the results’ statistics. Instead, these "early" detections,
that did not result in a complete loss of mobility, were ana-
lyzed qualitatively, and it was found that the velocity, torque,
and wheel speed signatures, with which these "early" flags
are associated, are comparable to ones that did result in the
robot becoming stuck. In addition, the terrain on which the
rover was being tested was already at the edge of traffica-
bility, meaning that if the rover was to encounter this patch
of snow on a traverse, it is better to limit how far the rover
travels on questionable terrain before raising an alert. So, for
all of these cases of "early" detections, it appears that the al-
gorithm functions as intended and does not falsely identify
nominal mobility as potentially immobilizing. Also in these
"early" cases, the MME method’s final warning was within
the established bounds, meaning that the immobilizing ter-
rain that ultimately brought the robot to a halt is identified.

For all of the events observed in Lebel-sur-Quévillon,
Tab. 3 shows the wide range of results in how quickly and
over what distance the rover can become immobilized. The
table also shows that the velocity at the time of detection
is generally quite high, with an average value of 0.76 m/s,
meaning that a simple threshold on rover velocity would per-
form significantly worse than the MME algorithm presented.
However, the best way to judge the performance of this al-
gorithm is by looking at the distance and time between the
immobilization flag and the complete loss of forward veloc-
ity for the events without early detection. In these cases, the
MME could notify the robot of an impending loss of mo-
bility, on average, ~1 meter, or about 60% of a wheel rev-
olution, before zero velocity. However, this ranged from a
mere 0.15 meters to a full 4.42 meters of warning. While
15 cm is not enough distance to avoid driving into an area
of either low cohesion or low stiffness snow, the 0.7 seconds
of response time could drastically reduce the excavation and
slip-sinkage that occurs at high slips. Also, if the rover has
specific control modes to improve its mobility over question-
able terrain, or if it’s towing a load on a winch, this gives
plenty of warning to either alter its operation or pay out ca-
ble on the winch to reduce the towed load. The first step
is warning the rover of its decreased mobility, and since the
MME method triggered an alert for all immobilizations ob-
served with FrostyBoy in Lebel-sur-Quévillon, with at least
0.7 seconds before a complete loss of forward momentum,
this method has proven to be a valuable tool in incipient im-
mobilization detection.

4.3.2 Simulated Data

Due to the unique characteristics of FrostyBoy’s immo-
bilizations, from which the system hypotheses were gener-
ated, the Immobilization Detection Algorithm (IDeA), that
I present here, is also evaluated by simulation to assess its
effectiveness in a different scenario. FrostyBoy’s unique im-
mobilizations are attributed to its rigid chassis and the trans-
fer of weight from four wheels to two wheels, as discussed

in section 3.2.3. To prove the algorithm’s viability for al-
ternate designs of a snow rover, all simulations are run with
the assumption that each axle has compliance about the roll
axis but otherwise has identical parameters to the FrostyBoy
rover. The truth model described in section 3.2.1 is used to
generate simulated data on which IDeA acts. To incite im-
mobilization, the variability of snowy terrain is modeled by
generating random walk models of the terrain stiffness, k,
and the cohesion, ¢, within the bounds defined by Tab. 2.
Three distinct tests were performed. The first test assessed if
the algorithm detects an immobilization for a rover driving
straight with all four motors receiving the same open-loop
voltage. The second experiment tests the IDeA when all four
motors operate under closed-loop speed control. And the fi-
nal test investigates the operation of the rover under closed-
loop speed control but with different speed setpoints for the
left and right sides, simulating the rover performing a turn.

In all three tests, the IDeA detected the impending im-
mobilization with enough warning that the rover could enter
control modes to prevent getting stuck. An example simu-
lation of the first test is shown in the supplemental material.
In this example, the rover travels at 0.8 m/s when the im-
mobilization is detected, with 0.25 meters and 0.6 seconds
until its longitudinal velocity drops to zero. While this is
just one example with one random walk model for k and c,
the trend with this test shows that the IDeA detects all sim-
ulated immobilizations, but the time and distance between
detection and zero velocity decreases compared to the eval-
uation conducted with field data. This is primarily a result
of the rover decelerating much faster in the simulation once
entering a high slip condition than that observed in Lebel-
sur-Quévillon. This could be an artifact of the simulation, or
it could be that in the very different immobilization scenario
of all four wheels slipping, the dynamic slip-sinkage does
cause this rapid rise in terrain resistance as modeled. This
requires further investigation in future studies with a newly
designed rover.

In operating each motor in the simulation at a constant
speed with a closed-loop PI controller and feeding in the
same random walk models for k and c as the open-loop cases
above, the IDeA is more effective at detecting immobiliza-
tions earlier, and at a longer stopping distance, compared to
running in open-loop mode. For example, in a simulation
with closed-loop speed control with identical terrain parame-
ter variation as the first test, the IDeA flags a potential immo-
bilization 0.2 seconds earlier, meaning that the rover speed
at detection is 0.92 m/s and has 0.32 meters before its veloc-
ity drops to zero. Data from this closed loop test is found
in the supplemental material. A comparison of the open-
loop vs. closed-loop speed control shows this trend across
the board, no matter the random walk model that resulted in
an immobilization. This is very important since closed-loop
speed control is commonly used in autonomous robot con-
trol.

The final test adds a turning maneuver to the simula-
tion. During testing in Lebel-sur-Quévillon, the robot was
commanded to go straight by giving all four motors the same
voltage setpoint in an effort to reduce the variables contribut-
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ing to its immobilization. In a turn, lateral bulldozing resis-
tance reduces the rover’s ability to gain forward traction and
therefore makes it more susceptible to immobilization. Thus,
it is most important for the IDeA to warn of a potential loss
of mobility during a turn. These simulations are run over a
longer timespan, with a different set of k£ and c variables than
the test above, to ensure that the robot reached a steady-state
yaw rate before an immobilization was initiated. After four
seconds of driving straight, the left-side wheels are set to a
closed-loop speed setpoint of 3.5 rad/sec, while the right-side
wheels maintain 5.8 rad/sec to turn the rover towards the pos-
itive y-direction. Of all the simulations run, this study is the
furthest departure from the experiments actually performed
in the field with FrostyBoy. There is no data from Lebel-
sur-Quévillon collected during a commanded turn, making it
difficult to accurately determine the restoring moment that
resists yaw, M,.s from (9). Also, the truth model is de-
signed for simple longitudinal motion, so there is no ex-
plicit v, term, and the lateral bulldozing resistance forces
are not calculated. Without these factors, the turning maneu-
ver’s negative impacts on mobility are less pronounced in the
simulation. However, the model does replicate the negative
drawbar pull for the wheels with lower relative speeds (left
side wheels in this case) and the potential for high slips for
the wheels with higher relative speeds (right side wheels).
An example of a simulated immobilization that results from
this difference between left and right side wheel speed com-
mands can be found in the supplemental material. The IDeA
is able to predict this loss of mobility in a turn when the sim-
ulated rover still has a longitudinal velocity of 0.75 m/s, with
0.8 seconds and 0.62 meters before it comes to a halt. Once
again, this proves to be the norm as various random walks
of the terrain variables are simulated, as well as different
speed setpoints for the right-side and left-side wheels, with
the IDeA detecting all immobilizations before the rover loses
all momentum.
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Fig. 10: X and Y position of the rover tracked for turning
simulations with and without immobilization detection

In these simulations, once a potential loss of traction is
detected, the setpoint for all four wheels is set to the same,
low speed value in an attempt to gain full longitudinal trac-
tion by commanding the rover to go straight and eliminat-
ing the negative effects on mobility resulting from turning.
When this simple "traction control" sequence is initiated
upon the warning of incipient immobilization during these
maneuvers, recovery of mobility is feasible. An example of
the effect this had on the rover’s mobility is shown in the
supplemental material, which uses the same terrain model as
the previous turning test, but with both the right and left side
wheels set to run at 3.5 rad/s once the IDeA warns of an im-
mobilization at 9.3 seconds. In this simulation, the simple
reduction of speed and the command to go straight results in
the rover continuing in the longitudinal direction for another
2.7 meters beyond where it became immobilized in the pre-
vious simulation, where no corrective action was taken (see
Fig. 10). The IDeA is also still able to warn of the rover’s
final immobilization after recovering from the first. The goal
of detailing this example is not to prove out the traction con-
trol sequence necessary to navigate low stiffness or poorly
bonded terrain when executing a turn. Instead, this example
showcases the Immobilization Detection Algorithm’s relia-
bility and its potential in preventing immobilizations, even
in scenarios against which it was not specifically ground-
truthed.

5 Conclusion

The results from applying the IDeA to both real and sim-
ulated immobilization data shows its effectiveness and reli-
ability in quickly identifying an incipient loss of mobility.
The MME only requires torque, wheel speed, and speed over
ground measurements as inputs to the model, making it fea-
sible and inexpensive to implement on most rovers. Also,
by producing useful results with only twenty hypotheses per
wheel and small input matrices, the MME algorithm imple-
mentation has a very low computational cost. It is able to
run much faster than solving the terramechanics equilibrium
equations and faster than similar algorithms involving many
more hypothesized terrain parameter sets that each require a
separate Kalman filter. Testing this algorithm on field data
proves that the dynamics of individual wheels cannot re-
liably predict impending immobilization and therefore, the
method could not have been developed from single-wheel
testbed studies. Instead, detection with a low false alarm rate
requires analyzing the response of pairs of wheels and their
combined impact on the velocity of the rover. Finally, testing
this algorithm on simulations shows that this method is not
only applicable to the data set from which it was generated.
Instead, the promising results from flagging immobilizations
generated by the truth model in scenarios outside the scope of
the experiments with FrostyBoy in Lebel-sur-Quévillon indi-
cate that this method could be applied to rovers that are of
a different design, that encounter more variation in the ter-
rain, and that operate under a different control scheme. The
truth model, the detection algorithm, and the data from the
immobilization events are made available on GitHub [38] to
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promote further research of this technique. Additional stud-
ies need to be performed to test this detection method with
the configurations and robot geometries that have only been
simulated. In addition, for a wider set of nominal and immo-
bilization hypotheses to be generated from a small data set in
the future, the truth model should be further refined and val-
idated from in situ testing. Ultimately, the results from this
study show that the IDeA is a simple, robust, and reliable
method for detecting incipient immobilization of a rover op-
erating in snow.
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Supplemental Material

INCIPIENT IMMOBILIZATION DETECTION FOR LIGHTWEIGHT

ROVERS OPERATING IN DEFORMABLE TERRAIN
Austin P. Lines, Joshua J. Elliott, Laura E. Ray

1 Immobilization Detection Results - Collected Data

The Immobilization Detection Algorithm (IDeA) was tested on the immobilization event data col-
lected with FrostyBoy on snow near Lebel-sur-Quévillon. The summary of the results are presented
in section 4.3.1 of the main paper. The following figures give context for these results by presenting
longitudinal velocity, wheel speed, applied torque, and slip data for all immobilization events observed,
with a red dotted line denoting the time at which the algorithm flags an incipient immobilization. The
black vertical lines show the approximate bounds of when the rover begins to lose mobility and when it
stops moving. Detections outside of these bounds were excluded from the results’ statistics. The events
are numbered with the first digit signifying whether the immobilization occurred at test site #1 or #2 and
the number after the dash indicating the sequence in which they occurred.
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-

2 “'Tiinovilization Detection Results - Simulated Data

The Immobilization Detection Algorithm (IDeA) was also evaluated on rover driving data simulated
by the truth model described in section 3.2 of the main paper. Four main tests of the algorithm were
performed with simulated data of a four-wheeled rover. The first test, shown in Fig. 18, assessed if the
IDeA would detect an impending immobilization with all four motors receiving the same open-loop
voltage. The second test, shown in Fig. 19, was run to compare these results with a rover operating
under closed-loop speed control. The third test, shown in Fig. 20, looked at the IDeA’s ability to warn
of incipient immobilization when the simulated robot is executing a turn. And the final test, shown in
Fig. 21, implemented a simple traction control sequence once the IDeA first detects a loss of mobility in
the turning test of Fig. 20. This simple method of improving traction by commanding all wheels to the
same, low speed and stopping the rover from continuing the turn is shown to prevent the immobilization
seen in Fig. 20, with the simulated rover eventually being immobilized by the deteriorating trafficability
of the modeled terrain.
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Supp. Fig. 18: Data from a simulated immobilization with the modeled rover running in open-loop
mode. The red-dotted line shows when the IDeA flagged the upcoming loss of mobility.
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Supp. Fig. 19: Simulated immobilization of the modeled rover with all four wheel speeds under closed-

loop control.
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Supp. Fig. 21: Simulation of the modeled rover entering a traction control mode once the IDeA flags an
impending immobilization during the previous simulation’s turning maneuver. This mode commands
the front right and rear right wheel speeds to match those of the left wheels, ending the turn and allowing
the rover to drive further than in the previous simulation.
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