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Abstract. Geometrically frustrated assembly has emerged as an attractive paradigm

for understanding and engineering assemblies with self-limiting, finite equilibrium

dimensions. We propose and study a novel 2D particle based on a so-called “warped

jigsaw” (WJ) shape design: directional bonds in a tapered particle favor curvature

along multi-particle rows that frustrate 2D lattice order. We investigate how large-

scale intra-assembly stress gradients emerge from the microscopic properties of the

particles using a combination of numerical simulation and continuum elasticity. WJ

particles can favor anisotropic ribbon assemblies, whose lateral width may be self-

limiting depending on the relative strength of cohesive to elastic forces in the assembly,

which we show to be controlled by the range of interactions and degree of shape misfit.

The upper limits of self-limited size are controlled by the crossover between two elastic

modes in assembly: the accumulation of shear with increasing width at small widths

giving way to unbending of preferred row curvature, permitting assembly to grow to

unlimited sizes. We show that the stiffness controlling distinct elastic modes is governed

by combination and placement of repulsive and attractive binding regions, providing

a means to extend the range of accumulating stress to sizes that are far in excess of

the single particle size, which we corroborate via numerical studies of discrete particles

of variable interactions. Lastly, we relate the ground-state energetics of the model to

lower and upper limits on equilibrium assembly size control set by the fluctuations of

width along the ribbon boundary.
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1. Introduction

Geometric frustration is a broadly known phenomenon in condensed matter systems,

defined as the impossibility of perfectly satisfying local interactions globally throughout

a system [1]. Historically, the concept was first associated with low-temperature states of

magnetism and spin order [2], but was subsequently generalized to complex states of soft

matter [3], including blue phase liquid crystals [4, 5] and amorphous sphere packings [6].

This classical view of frustration focuses on bulk states where geometric incompatibility

is resolved by extensive array of topological defects [1, 3, 7], resulting in rough energy

landscapes populated by extensive number of degenerate, or nearly degenerate, ground

states.

It has recently been recognized that frustration gives rise to new behaviors in self-

assembling materials [8], deriving from two key features. First, constituent building

blocks (e.g. polymers, colloids, proteins) are relatively “soft” and held together by

weak, non-covalent forces. Second, assemblies need not reach bulk states, and thus,

have additional degrees of freedom associated with the size and shape of the assembled

domain. Unlike bulk or rigid systems where frustration must be resolved by defects, in

soft assemblies shape-misfit can be tolerated, over at least some range of sizes, through

the build up of smooth gradients in the subunit shapes and packings [9]. The self

organization of long-range intra-assembly stress gradients is a defining characteristic

of geometrically-frustrated assemblies (GFAs), as it can give rise to scale-dependent

thermodynamics without counterpart in canonical, unfrustrated assemblies. A singular

outcome of the scale-dependent “misfit” is self-limiting assembly [10]. While the drive to

maximize the number of cohesive contacts generically favors unlimited, bulk aggregates

in assemblies, GFAs are subject to elastic penalties associated with the misfit gradients

in the assembly. An example of this is illustrated schematically for the warped jigsaw

particle model in figure 1, which is the focus of this paper. In GFA, the balance between

cohesion and the superextensive costs of frustration can select equilibrium domain sizes

that are finite and, in principle, arbitrarily larger than the subunits themselves. That

is, in contrast to the prevailing paradigms of geometric frustration in bulk systems, in

GFAs the free boundaries themselves, which can be of variable shape and size, represent

critical degrees of freedom.

This thermodynamic picture has been applied to understand anomalous assembly

properties of a range of existing experimental soft matter systems, from chiral

membranes [11, 12, 13, 14, 12, 15, 16], crystalline domains on spherical surface [17,

18, 19, 20] to twisted fibers of filamentous proteins [21, 22, 23, 24, 25, 26], in part

to rationalize observed finite domain formation. Theoretical models in these cases rely

almost exclusively on generalized continuum elastic models which parameterize the costs

of cumulative gradients in local packing. While these theories can provide a consistent

thermodynamic model of these experimental systems, their predictive power is limited

by the reliance on unknown phenomenological parameters, including the elastic moduli

for different modes of assembly deformation and the effective “strength” of frustration.
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Figure 1. The warped-jigsaw particle model exhibits geometrically frustrated

assembly. (a) The particle consists of sites centered on two nested isosceles trapezoids,

with spacing ∆ between them. The respective heights and smaller bases are equal,

with values d and d′, where d is the nominal particle spacing. The angle φ controls the

amount of frustration, so that the unfrustrated case φ = 0 is a square particle shape.

Along each side, the attractor spacing is t, with repulsive sites at the centers of each

side and halfway between attractors. The blue spheres shown with centers on the inner

trapezoid are volume exclusion sites, while the smaller colored spheres on the outer

trapezoid are attractive and repulsive sites. The interactions are specific: for example,

the red repulsive site on the top of a WJ particle only interacts with the opaque red

site on the bottom of other particles. This leads to a lock-and-key mechanism as in the

puzzle piece representation of the particles shown in the lower row. (b-c) The shape of

the particles causes them to curl up into rows in the x-direction and form straight lines

in the y-direction. (d) Assembly of a 2D (planar) array is frustrated, as highlighted by

the misfitting particle in the upper right.

A recent interest has emerged to understand and design the accumulation of intra-

aggregate stress and its thermodynamic stresses from the properties of the misfitting

particles themselves. That is, given an arbitrarily misfitting particle, what is the range

of self-limiting morphologies it can exhibit and under what thermodynamic conditions?

One motivation to address this point was raised in a study by Lenz and Witten [27],

which pointed out that protein “building blocks” tend to aggregate under a broad range

of conditions, but don’t necessarily take shape-complementary structures. As such, some

degree of shape-frustration in multi-protein aggregation is likely the rule, rather than

the exception, which motivated their study of the planar assembly of a select class of

incompatible elastic polygons, which generically exhibited finite-width fiber formation

upon simulated (non-equilibrium) assembly.

A second motivation to address these questions comes from the desire to potentially

engineer and program the finite size of equilibrium assemblies through the intentional

frustration of their shapes. An expanding array of synthetic techniques afford pathways

to engineer self-assembling building blocks with controlled shapes and interactions [28,

29, 30], from anisotropic colloids to shape programmed DNA and protein particles.
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Attempting to capitalize on this potential, a recent study by Berengut et al. designed

and realized a class of “incommensurate DNA origami” subunit, whose shape was

superficially engineered to give rise to accumulating stretching of cohesive bonds upon

1D assembly [31]. These studies indeed showed, through experiments and simulation,

that frustrated subunits assembled into limited chains of fewer than ∼ 4 − 5 subunits,

in contrast to unfrustrated assemblies which exhibit unlimited 1D assembly lengths

(i.e. exponentially distributed). While this proof of concept study demonstrated a

range of conditions where frustration prevented unlimited aggregation, it remains to

be understood for this, or any other experimentally designable assembly motif, what

is the maximum range of self-assembly sizes that can be reached, what are the range

of thermodynamic conditions where these can be reached, and crucially, how are these

controlled by particle-scale interactions, misfitting shape and deformability?

A critical challenge to answering this question is to predict the relevant mechanisms

of frustration escape that mitigate the cost of misfit as the assembly grows [10]. Simply

put, previously studied mechanisms of GFA exhibit a range of power-law accumulation

of elastic stress at small-size, in which the elastic costs of intra-assembly strain grow

superextensively with finite domain dimension [9]. Because the subunits and their

interactions are “soft” at large domain sizes, large intra-assembly stress inevitably trigger

distinct structural modes of (at least partial) frustration relaxation. For example,

crystalline caps on spherical surfaces eventually reach a size where it is favorable to

incorporate topological disclination defects that screen the far-field stresses of curvature

and ultimately set an upper limit to the thermodyanmic costs of frustration [32].

Alternatively, even in the absence of defect formation, GFA models can undergo a

mechanism of “shape flattening” where the assembly elastically deforms to a motif

that is geometrically compatible with bulk assembly [8]. In this case, the range of stress

accumulation is delimited by the relative elastic costs to propagate intra-assembly stress

vs. deforming the packing to a compatible one from its locally preferred misfitting one.

In this paper, we present and study a model of the planar assembly of “warped-

jigsaw” (WJ) particles, shown schematically in figure 1. This misfitting particle was

first proposed in [33] where it was described heuristically as a simple means to illustrate

how local mechanisms of shape frustration propagate to multi-particle dimensions

in aggregates. The two key ingredients of the particle design are the specific edge

interactions that promote local orientational correlations (i.e. the top (right) edge of

particles only binds favorably to the bottom (left) edge of adjacent particles) and the

trapezoidal particle shape (characterized by taper angle φ 6= 0) that promotes a favorable

rotation of adjacent left-right edges. The tapered particle shape results in preferred

curvature along horizontally assembled rows, κ0 ' 2φ/d. As shown schematically for

the tetrameric assembly in figure 1(b), row curvature frustrates the 2D planar, crystalline

packing of warped puzzle pieces. In this study, we develop a particle-scale description of

cohesively binding WJ particles to study the mechanisms and modes of intra-assembly

strain propagation as a function of misfitting particle shape, as well as the geometric

design of inter-particle cohesive interactions. A feature of this frustrated particle design
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is that the degree of frustration, which we show to be proportional to the row curvature,

is continuously tunable to zero. In the language of curved crystals [3], this is akin to

having a curvature that is continuously tunable to arbitrarily large dimensions. For this

reason, the expected distance between topological defects in elastic ground states can

be tuned to be much larger than the particle size, which is unlike the case of planar

assemblies of elastic pentagons or octagons, where the characteristic spacing between

frustration-screening defects is of order of the particle size [27].

We map the particle-scale description onto a continuum elastic description for

rectangular aggregates of variable size, and directly derive the continuum elastic

parameters (moduli, preferred curvature) in terms of parameters that describe the

discrete particle shape and interactions. We show that the multi-particle ground

states of this WJ particle design (with isotropic binding on its edges) are anisotropic

fiber morphologies with potentially finite multi-particle widths. Using a combination

of numerical simulation and continuum theory, we study the elastic modes of intra-

assembly deformation as a function of assembly sizes and particle features. Specifically,

we trace the mechanism of shape flattening in widening ribbons to the interplay

of between the elastic costs of unbending curved rows and the accumulating costs

of shearing between adjacent rows of the assembly. We show that the range of

frustration accumulation can be controlled through the design of the inter-particle

binding, specifically through a “pull-push-pull” arrangement of attractive and repulsive

binding sites. We find that the range of finite width equilibria can reach sizes that

far exceed the particle width when the net repulsive strength approaches (but does

not exceed) attractive contribution between bound edges. This result shows how the

effects of frustration on assembly depend not only on the degree of shape-misfit, but

also crucially, on the deformability of assembly to distinct elastic modes. Simply

put, reaching large equilibrium self-limiting dimensions requires WJ designs that are

simultaneously stiff to row (un)bending and soft to inter-particle shears.

The remainder of this paper is organized as follows. We first introduce the discrete

model of WJ particles based on specifically interacting trapezoidal subunits, and show

that its elastic ground states select ribbon-like morphologies which extend along the

normal to the preferred bending direction. We then analyze the continuum elasticity

theory and describe the elastic equilibrium for infinite length ribbons. We show that

the characteristic “flattening size” is determined by the ratio of row bending modulus

to inter-row shear modulus, and equivalently by the ratio of repulsion to attraction

interaction strength in the binding design of WJ particles. We then demonstrate how

the repulsion/attraction interaction ratio at the particle-scale controls the range of self-

limiting sizes that may be achieved, based on numerical energy-minimizations of prebuilt

assemblies. We conclude with a simple analysis of the thermal fluctuations of the finite

ribbon widths of assemblies and a discussion of the ramifications of this finding on the

design and implementation of GFA into synthetically engineered particle assemblies.



Shape-frustrated, warped-jigsaw particle assemblies 6

2. Discrete WJ model and energetic ground states

Here, we describe the model of planar assembly of discrete WJ particles, numerical

methods for computing planar ground state energies and the emergence of domain

anisotropy from rectangular domain assemblies. We connect this discrete-particle

description to the continuum (multi-particle) level of aggregates in the subsequent

section.

2.1. Warped-jigsaw particle model

The trapezoidal WJ particles are modeled as rigid arrays of interaction sites of three

different types: 24 volume exclusion sites (5 on each side, and 4 on the corners), 8

attractive sites (2 on each side), and 4 repulsive sites (1 on each side). The attractive

and repulsive sites have centers along a trapezoid, defining the nominal particle size

d (see figure 1). Volume exclusion sites are arrayed along the four edges of the inner

trapezoid of height d′ = 0.645d, with spacing 0.161d. Exclusion sites interact with

all other exclusion sites on other particles with a cut-off Lennard-Jones (i.e. WCA

potential) interaction,

Uex(r) = uex + uex

[(σ
r

)12 − 2
(σ
r

)6]
for r ≤ σ (1)

where σ is the smooth cut-off of potential (i.e. Uex(r > σ) = 0), and uex parameterizes

the energy scale of excluded volume interactions. For this study, σ = 0.323d.

On each face, there are two attractive sites (shown in figure 1) offset from the

midpoint of the face, and a single repulsive site at the side center, between the two

attractive sites. Attractive and repulsive site locations are pushed out from the inner

array of exclusion sites by ∆ = 0.177d to avoid excluded volume contact for bound

particles under sufficiently small deformations. Interactions between attractive and

repulsive sites are specific, meaning that interactions with a given site, are only non-

zero between a particular site on the corresponding edge of an adjacent particle (shown

schematically with complementary colors in Fig. 1). For example, the upper attractive

site of the particle’s right edge only interacts with the upper attractive sites on the

neighbor particle’s left edges, and likewise, the central repulsive site on the top edge

only interacts with repulsive sites on the bottom of edge of neighboring particles. Such

specificity encodes a “lock and key” type binding of the type that can be readily

engineered in DNA origami particles [34, 35], and for the purposes of the WJ particle

maintains local orientational correlations between bound neighbors in the assembly (i.e.

neighbor trapezoids can only bind in nearly ‘parallel’ orientations, notwithstanding the

rotations required by tapered shape). Attractive and repulsive interactions are modeled

by a soft, finite range potential. The attractive interactions are given by

Ua(r) = −u0

(
1 + cos π

r

rc

)
for r ≤ rc, (2)

where rc is the range on the specific interactions (beyond which Ua(r > rc) = 0) and

−2u0 is the depth of the pair binding. Repulsive sites interact via an inverted form of
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the attractive potential, described by the potential

Ur(r) = −2RUa(r), (3)

where R is defined as the repulsive strength relative to the strength of the attractive

sites. By keeping R < 1, edge interactions remain net attractive and the lowest energy

of a bound pair of particles is −4u0(1−R).

As shown in figure 1, d is defined by the length of the top of the trapezoid defined

by being the smallest trapezoid that encapsulates the excluded volume of the rigidly

connected volume exclusion sites, which is the nominal particle size. In the limiting case

φ = 0, particles arrange in a square lattice with spacing d. The wedge angle φ quantifies

the deviation from right internal angles, and thus parameterizes frustration in the WJ

model. Placing three ideally bound particles in horizontal rows as in figure 1(b), leads

to an effective curvature κ0, that can be characterized by the radius of curvature of the

particle centers,

κ−1
0 =

d
√

1 + sin(2φ)

2 tanφ
(4)

Intuitively this curvature frustration vanishes linearly in the limit of small taper angles

κ0(φ� 1) ' 2φ/d.

Unless otherwise stated, the geometric parameters used in this study are wedge

angle φ = 0.03, and elastic thickness parameter t/d = 0.968, with varying interaction

parameters rc/d,R. While vertical and horizontal 1D rows of bound particles are

unfrustrated (figure 1(c) and (d)), assembly into larger 2D clusters requires strains

in the assembly, as illustrated by the variable energy density in the simulated square

cluster in figure 2, obtained via numerical minimization described in the next section.

2.2. Numerical optimization of multi-particle domains

To predict the propagation of particle-scale misfit and interaction to patterns of

intra-aggregate deformation and their associated energetics, we construct and study

numerically minimized arrays of WJ particles. In short, we minimize the total

interaction energy of rectangular arrays (of dimensions W × H) and periodic

arrangements of particles using a conjugate gradient algorithm (implemented with the

SciPy function optimize.minimize [36]), beginning from an initial (pre-stressed) regularly

spaced 2D rectangular lattice of aligned particles arranged in cohesive contact. The

numerical minimization terminated when the norm of the gradient of the free energy

was less than 10−5uex/d, while the total energies involved were never less than uex×10−1.

In the initial (uncurved) reference state, bonds between horizontal neighbors are

pre-strained, wedged open by an amount that depends on the taper angle φ. Given this

pre-strained state, for sufficient short attractive ranges, energy barriers can prevent the

conjugate gradient algorithm from reaching a stable aggregate states which maintain

cohesive throughout the assembly. To account for this effect of finite interaction range,
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Figure 2. Frustrated assembly exhibits gradients in stress, evidenced by the excess

energy density in a numerically relaxed 10× 10 assembly, for the case φ = 0.03, t/d =

0.968, rc/d = 0.323, and zero repulsive interaction strength R = 0. The interaction-site

representation is overlaid with a representation of particles as trapezoids, colored by

their respective interaction energy in excess of an unfrustrated reference state.

we perform minimization in two ways dependent on the range of attractions, with

method used for each set of data is summarized in Appendix B.

Method 1: When rc is sufficiently large compared to the inter-attractive site gap in the

uncurved 2D lattice, we relax via the conjugate gradient algorithm from this 2D reference

state: a rectangular array of particles defined by a center to center difference in the x-

direction, ∆x = d(1 + 2 tanφ), a center to center difference in the y-direction, ∆y = d,

and with all particles aligned to the lattice directions. For the periodic arrangement of

particles (for modeling infinitely tall, H →∞, ribbons), the initial state was defined in

the same way, based on a periodic vertical stacking of a single row of the rectangular

lattice with optimized vertical spacing.

Method 2: When the ultimate target value of rc is small compared to the inter-

attractive site gap in the uncurved reference state, we first apply Method 1 for the

same particle array but with the binding range artificially larger than the target value

and sufficiently large to provide cohesion between neighbors in the uncurved reference

state. The output of the larger-rc equilibration is used as the starting point for the

next minimization, and the process is iterated until the binding range is ramped down

to its target value. In all final configurations, we analyze the energetics by normalizing

the energy per particle relative to a bulk state with uncurved rows, denoted as ε∞, a

value that can be computed to an excellent approximation using the “flattening energy”

described in the continuum theory in the following section. We also define the local

elastic energy of particle i as 1/2 of the bond energy of i with its zi neighbors minus

the energy of zi perfect cohesive bonds (i.e. −4ziRu0). This results in spatial maps of

the elastic energy density as shown in figure 2, where particles are most strained in the
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center of the particle and tend to relax toward the free boundaries of the aggregate,

particularly its corners, due to the fewer geometric conflicts with neighbors. Following

the description of GFA introduced in ref. [10] we refer to this elastic energy per particle

as the excess energy, εex, as it is the energetic cost of assembly in excess of the per

particle energetics of ideal (strain-free) cohesion.

2.3. Energy landscape and ribbon morphology selection

Based on the WJ model introduced above, we may in general consider the energetics (i.e.

the T = 0 thermodynamics) of aggregated states of different size and shape. In this

study we focus on the branch of aggregate structures with the lowest energy density

(when edge interactions are equal on all sides), which take the form of finite-width,

“vertical” ribbons. The focus on this morphology can be understood by analyzing the

landscape of excess energy in figure 3, which is computed for aggregates of variable width

W and height H, for WJ particles with rc/d = 0.323, R = 0. This landscape shows that

the elastic cost increases with either increased W or H, due to the accumulation of

inter-particle elastic stresses. Notably, the excess energy landscape is not symmetric

with respect to W and H, as the preferred direction of curvature imposes a strong

anisotropy in the nature and magnitude of intra-aggregate stress that propagate in

the distinct directions. “Tall and narrow” aggregates (H � W ) form straight vertical

ribbons of stacked curving rows, with elastic energy predominately varying in the width

directions, with the exception of narrow boundary regions at the top and bottom free

ends of the ribbon. Likewise, “short and wide” aggregates (H � W ) from arched

horizontal ribbons, with a mean curvature that tends to flatten with increased height

and with energy density that varies predominantly in the height direction.

The total energy density for this assembly, can be written as

ε(W,H) = ε0 + 2Σ
( 1

W
+

1

H

)
+ εex(W,H), (5)

where ε0 is the (strain free) per particle cohesive gain of particles in the bulk and Σ is

the edge energy penalty accounting for the deficit of cohesive bonds at the free ends of

the rectangular cluster. Notably the thermodynamic tendencies of the edge energy favor

large (unlimited size) aggregates to minimize the fraction of particles at the boundary,

a tendency which competes with the elastic costs of frustrations.

Analysis of these total energy landscapes reveals for low enough Σ the minima of

the total energy landscape fall into two branches, one of which corresponds to channel of

finite width vertical ribbons, while the second corresponds to the to a channel of finite

height horizontal ribbons. The absolute local minimal of these branches correspond to

the case of infinite height ribbons in the first case and the end-free or fully closed annular

ribbons in the second case. In both cases, the favored structure is effectively symmetric

along its long direction and has open boundaries only perpendicular to the long axis.

The tendency for frustration to lead to highly-anisotropic morphologies is apparently

generic [8], driven by the fact that frustration introduces gradients in the packing but
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Figure 3. (a) Vertical ribbons, numerically minimized structures with constant length

of L/d = 15 and increasing width W are shown. felas is the discrete version of the elastic

energy density defined in section 3.2. (b) Horizontal ribbons of fixed W/d = 15 and

with dimension L increasing. (c) Mean excess energy density landscape as a function

of assembly width and assembly length for rc/d = 0.323, R = 0 for rectangular WJ

assemblies that are less that 150 total units (larger sizes correspond to white region).

(d) A comparison of excess energy vertical vs. horizontal structures for equal total size

as a function of the narrow dimension. In these plots, the large dimension is fixed to

15 units in size as indicated by the orange and purple arrows in (c).

those gradients need not extend in all directions in the assembly. By keeping one of the

assembly dimensions finite, the ground state can at least partially “escape frustration”

by extending a finite width motif to an infinite extent. For example, this mechanism

has been observed and studied in models of crystallization [17, 18] on spherical surfaces,

twist-frustrated filament bundles [24] and flexible polygon assemblies [27, 9].

In the present case of WJ particles, the symmetry of the particle introduces an

effective polarity to the assembly that breaks the symmetry between the different ribbon

morphologies. In figure 3 we compare the excess energy density vertical (straight) vs.
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horizontal (arched) ribbons as a function of the finite dimension for the same fixed large

dimension, i.e. height and width respectively. These show that the excess energies of

both states vanish for narrow dimensions and asymptotically approach the same bulk

cost ε∞ for large dimensions, and that the elastic cost of frustration of vertical ribbons

is always less than the horizontal ribbons. As the horizontal and vertical edges have

the same surface energy in this model, this implies that if the thermodynamic ground

state of the assembly is finite in any dimension, it will be a vertical ribbon. Below,

we show that the nature of the elastic energy accumulation with increasing width of

vertical ribbons derives from the costs of inter-layer shears, while it can be intuitively

understood that horizontal ribbons are essentially “bent 2D crystals” and must also

generate elastic costs of differential compression and dilation of the horizontal rows.

Evidently, as we will describe in detail elsewhere, the distinct kinematics of frustration

propagation normal to vs. along the curvature direction accounts for distinct energetics

of stress propagation in those directions of assembly, biasing assembly thermodynamics

to the minimal-energy vertical ribbon morphology. For the remainder of this article we

focus our analysis on the mechanics and thermodynamics of finite-width vertical ribbon

assembly in the WJ model.

3. From discrete particles to continuum elasticity

Underlying the complex, multi-scale thermodynamics of GFA is the propagation of

inter-assembly gradients and stress, whose elastic costs compete with cohesion to limit

assembly size. In this section, we describe the continuum theory of planar arrays of

WJ particles, tracing the parameters that govern the stress to the particle shape and

interactions. We then describe the equations of mechanical equilibrium and their exact

solution in the limit of finite width (vertical) ribbon domains, and deduce the mechanics

of the shape-flattening transition between accumulating and saturated elastic costs with

domain width.

3.1. Pairwise particle elasticity

We begin with a discrete rectangular lattice of particles: we assign each particle

horizontal and vertical indices (m,n), corresponding particle center coordinates are

denoted rm,n ≡ (xm,n, ym,n), and particle orientations are determined by angle θm,n with

reference to a global frame defined by the lattice directions, as shown in figure 4(a). The

orientation of the rigid particle is described by a local orthonormal frame {êm,n
1 , êm,n

2 },
where

êm,n
1 = cos(θm,n)x̂− sin(θm,n)ŷ; êm,n

2 = sin(θm,n)x̂+ cos(θm,n)ŷ; (6)

describe the local base and height directions of the (m,n) trapezoidal particle. We

consider sufficiently small local strains from the reference configuration above such that

we may approximate inter-particle bond energies by harmonic distortions from the local

minima (maxima) of attractive (repulsive) interactions. The existence of such a small
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Figure 4. (a) Schematic of particle coordinate frame, respective attractive site

distances δ+, δ− and repulsive site distance δ0. Inset graph shows the interaction

potentials along with their second order expansions. Note that θ is defined with

respected to fixed coordinate directions x̂ and y of the reference rectangular grid.

(b) Schematic of stretch, shear and bend deformations and the resultant separations of

interaction sites. (c) Plot of the characteristic flattening length scale λ/t normalized by

attractive site separation t, as a function of the relative repulsive/attractive interaction

strength R.

strain limit is achieved in the φ → 0 limit of vanishing frustration. Given the form of

the interaction potentials, equations 2 and 3, this takes the form,

Uedge ' −2u0(1−R) +
u0π

2

2r2
c

(δ2
+ + δ2

− − 2Rδ2
0) (7)

where δ± refer to Euclidean separation between the two attractive sites and δ0 is the

corresponding distance between the central repulsive site, as shown in figure 4(a). In the

elastic description, we replace these soft interactions by harmonic springs with stiffness

ka = u0π
2/r2

c and kr = −2Ru0π
2/r2

c , for attractive and repulsive sites respectively (inset

of 4a). Based on the harmonic approximation of bound neighbors, the elastic energy

of horizontal and vertical neighbors (which correspond, respectively, to neighbors in x̂

and ŷ direction of reference 2D lattice) take the form

Ex(m,n) =
(2ka − kr)

2
|∆xr− d〈ê1〉x|2 +

kat
2

4
|∆xê2 + 2φ〈ê1〉x|2 +O(φ4)(8)

and

Ey(m,n) =
(2ka − kr)

2
|∆yr− d〈ê2〉y|2 +

kat
2

4
|∆yê2|2, (9)

where ∆i refer to the discrete difference between sites along i = x, y directions and

〈·〉i refer to the mean value taken over the neighbor pair. The first terms in Ei favors
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uniform center-to-center spacing along the (mean) edge orientation equal to the particle

size, whereas the second terms represent angular interactions. Binding over vertical

faces favors parallel orientations, while the tapered edge shape introduces a preferred

rotation by 2φ of horizontal neighbors. The full elastic energy is then given by summing

over the 2D reference lattice of the particles,

Eelas =
∑
m,n

Ex(m,n) + Ey(m,n). (10)

For the present study, we consider domain shapes of rectangular shape (i.e. M columns

×N rows).

3.2. Continuum elasticity of WJ domains

We transform our discrete particle description to a continuum limit, based on the

assumption that domains are sufficiently large to be described by smooth functions

of the reference coordinates xm,n ≡ d(mx̂ + nŷ). We take this limit for a function f

of the reference coordinates as fm±1,n±1 → f(x ± d, y ± d) and ∆if → d∂if followed

by taking the limit that particle dimensions are infinitesimal compared to the domain

size. We define the elastic energy as a function of particle orientation θ(x) and particle

displacement,

u(x) = r(x)− x, (11)

where x is the particle position in the reference state and r(x) is its position in the

deformed state (i.e. both coordinates are Lagrangian displacement fields). We expand

the elastic energy to quadratic order in displacements and rotations away from the

rectangular lattice, yielding a compact form for a (linearized) continuum elastic energy,

Eelas[u(x), θ(x)] ' 1

2

∫
Ω
d2x

{
Y (∂iuj − εijθ)2 +B(∇⊥θ − κ0x̂)2

}
(12)

where εij is the 2D Levi-Cevita tensor (we follow standard Einstein summation

conventions of indices), ∇⊥ = x̂ ∂x + ŷ ∂y is the planar gradient and Ω is a rectangle

domain on the reference lattice Ω = [0,W ] × [0, H]. Notably the coarse-graining

introduces three continuum parameters: the preferred row curvature κ0 = 2φ/d, the

stretch/shear modulus,

Y ≡ 2ka − kr =
2u0π

2

r2
c

(1−R) (13)

and the bending modulus of particle rows

B ≡ kat
2

2
=
u0π

2t2

2r2
c

. (14)

We consider the implications of the dependence of these effective moduli on particle

interaction parameters for the equilibrium intra-particle stress distributions below.

The first term in eq. (12) penalizes deformations that disrupt the local 2D

crystalline packing, including intra-row stretching/compression and inter-row shears.

The coupling of positional displacements to particle orientations is precisely of the form
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that preserves rotational invariance of the elastic energy. A rotation by constant δθ is

described by θ(x) → θ(x) + δθ and ui(x) → ui + δεijxj (for small enough rotations),

such that the local strain ∂iuj − εijθ is invariant to O(δθ2). Hence, this term favors

particles co-oriented to lattice directions. The second term favors uniform gradients

of particle orientation, ∇⊥θ = κ0x̂, which implies a favored local configuration with

straight vertical columns and constant curvature along horizontal rows. While uniform,

global rotations introduce no lattice strain, variable local rotations favored by gradient

of θ(x) are effectively Goldstone modes of the frustration-free elasticity [37], and hence

require an elastic cost which can accumulate with domain size.

Notably, this order of expansion only holds for sufficiently small strains and

rotations. We find below that the magnitudes of strains and rotations are proportional

to the row curvature κ times the finite width W of rows we expect the elastic energy

to be accurate with κW � 1, which we find is self-consistently satisfied by the elastic

ground states for the particle parameters considered here.

Variational analysis of the elastic energy functional gives the following conditions

for mechanical equilibrium in the interior of the domain: force balance gives

∇2
⊥ui = εij∂jθ, (15)

and torque balance gives

B∇2
⊥θ = Y (∇⊥ × u + 2θ), (16)

where ∇2
⊥ and ∇⊥× are the respective Laplacian and (2D) curl operators on the plane.

Additionally, free boundary conditions require that, at the domain boundary denoted

∂Ω with local normal direction n: vanishing normal stress gives

ni(∂iuj − εijθ)
∣∣∣
∂Ω

= 0, (17)

and vanishing torque gives

[(n · ∇⊥)θ − κ0nx]
∣∣∣
∂Ω

= 0. (18)

Based on the results in section 2 above, we focus on the ground state energetics of

the bulk state and of finite-width vertical ribbon morphologies (H →∞ in both cases).

As shown for the finite ribbon simulations in Fig. 3, equilibrium stresses are uniform

along the length of the ribbon (i.e. sufficiently far from its free ends) and hence, we

consider the solutions which are uniform in y. We solve the equations of mechanical

equilibrium for a ribbon of width W , which yield the following profiles for displacements

and particles orientations for x ∈ [0,W ]:

θeq(x) = κ0λ
[1− cosh(W/λ)

sinh(W/λ)
cosh(x/λ) + sinh(x/λ)

]
, (19)

ueq
y (x) = −κ0

[1− cosh(W/λ)

sinh(W/λ)
sinh(x/λ) + cosh(x/λ)− 1

]
, (20)

and ueq
x = 0, where the characteristic length scale λ is defined by the ratio of bending

to stretch/shear moduli

λ ≡ 2

√
B

Y
. (21)
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These displacements can be evaluated in Eelas to map the local elastic energy distribution

(i.e. local energy density at x)

felas(x) ≡ Y

2
θ2

eq(x) +
B

2
(∂xθeq(x)− κ0)2 (22)

which we analyze below, and further, to compute the per particle excess (elastic) energy

due to frustration,

εex(W ) =
1

2
Bκ2

0

(
1− λ

W
tanhW/λ

)
. (23)

In the following section, we compare this continuum prediction of internal stress in WJ-

ribbons to discrete particle minima and discuss the mechanical origins and implications

of its complex width dependence.

4. Intra-ribbon stress, accumulation and shape-flattening

We combine the continuum elasticity decsription developed in the previous section with

discrete particle numerics to analyze the mechanics of inter-particle stresses that emerge

from local misfit. As shown in figure 5(a), for finite-length vertical ribbons, sufficiently

far away from the upper and lower boundaries, deformations are nearly uniform along the

length and well modeled by the periodic (i.e. end-free) equilibrium, shown in figure 5(b).

We first consider a case for fixed interaction parameters, specifically R = 0.95,

and analyze the variation of internal packing and elastic energy for ribbons of variable

finite width. Results in figure 5(c-e) show the elastic distortion of ribbons varying for

widths of 2 to 30 particles for a fixed taper of φ = 0.03(' κ0d/2). The corresponding

discrete-particle ribbons are shown in figure 5(g), with spatial maps of equilibrium elastic

energy, felas(x), highlighted in heatmap, with blue and red indicating, respectively,

low and high magnitudes of elastic strain. The sequence of increasing ribbon width

illustrates the effect of accumulated elastic costs of frustration, with magnitude of felas

increasing with width. For large ribbons, the elastic energy concentrates and saturates

in magnitude in the inner region of the ribbons flanked by partially relaxed zones near

the free boundaries.

The spatial organization of the mechanical equilibria and their variation with

ribbon width is analyzed in figure 5(c) and (d), which show, respectively the row

curvature κeq(x) and the xy shear strain s(x) ≡ (∂yux + θ) = θeq(x) for ribbons of

increasing width. We note that (fit-free) comparison between the continuum theory

and corresponding values of the discrete WJ particle ground states show remarkable

quantitative agreement, even for ribbons of only very few particles in width. For

relatively narrow ribbons, equilibria tend to maintain significant row curvature along

their lengths, κeq(x) ≈ κ0, which in turn leads to a nearly linear shear profile throughout

the width. For sufficiently wide ribbons, the equilibrium structure adopts a two-zone

structure. In the interior, rows are unbent (i.e. “flattened”) and correspondingly shear

strains are nearly eliminated from this “defrustrated” zone. Near the free edges of large

ribbons, rows bend up approaching their preferred curvature as required for vanishing
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Figure 5. (a) A numerically minimized, finite length ribbon with L/d = 40 and

W/d = 15 with strain energy density profile indicated by colors of the particles. (b)

An infinite-length and finite width W/d = 15 ribbon simulated with periodic boundary

conditions. The strain energy density distribution is close to that of in the finite ribbon

in (a), sufficiently far from the finite ribbons top and bottom boundaries.(c) The row

curvature distribution of an infinite ribbon normalized by the preferred row curvature,

where x is the particle position in the assembly. The curves are from continuum

theory and data points from infinite-ribbon numerics. The sequence of colors are for

different assembly width W/d, showing that particles near the center flatten for wider

assemblies. (d) The particle shear distribution for a series of assemblies with varying

width. (e) The elastic energy density contains contributions from the strains in (c) and

(d), normalized by the value at which the energy density saturates for particles near

the center of wide ribbons. (f) The mean elastic energy density captures the flattening

transition in its approach to an asymptote defined by the energy cost of the flattening

of a row of a ribbon. The inset shows the small size power-law growth of the mean

elastic energy density, before the flattening transition. These simulations were run

with R = 0.95 and rc/d = 0.417 from W/d = 2 → 30. (g) Visualization of the elastic

energy distributions in ribbons of increasing width.

torque at the free boundary, eq. 18, which in turn leads to a build up of shear strains

in these boundary layers.

It is straightforward to rationalize this behavior with a simple analysis of the 1D

elastic energy density in eq.(22) based on the value of row curvature at the center of

the ribbon, κc. Ignoring, for simplicity, the variation of curvature along the width,

row curvature leads to a linear shear profile s(x) ' κcx and corresponding shear
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elastic energy density ∼ Y κ2
cW

2. Deviations of row curvature from the preferred

curvature result in bending strain κc − κ0 and corresponding bending elastic energy

density ∼ B(κc−κ0)2. Hence, it can be expected that row bending elasticity dominates

over lattice shearing in the narrow ribbon limit, such that rows keep natural curvature

κc ≈ κ0. In this regime, we therefore expect a power-law accumulation of elastic energy

from the cost of shearing curved rows, εex(W → 0) ∼ Y κ2
0W

2. When the width grows

sufficiently large, the shear cost to maintain preferred curvature ∼ Y κ2
0W

2 eventually

overwhelms the bending cost to unbend rows, ≈ Bκ2
0/2, and hence in this large width

regime, we expect κc → 0 and the elastic energy density saturates to the cost to unbend

rows εex(W → ∞) = Bκ2
0/2. We can use these energetic arguments to estimate that

the crossover between the shear accumulation and flattening occurs at a characteristic

flattening size

Wflat ≈
√
B

Y
∝ λ, (24)

such that for w � Wflat we expect powerlaw growth of the excess energy with increasing

width due to accumulating shears, which eventually saturates to the flattening energy

ε∞ = Bκ2
0/2 for w � Wflat.

We note that this energetic argument oversimplifies the spatial dependence of elastic

ground states. In particular, while the interior of wide ribbons flattens, there is always

a bent and sheared zone, of width roughly equal to λ, near to the free edges. The effect

of this finite-size boundary layer is reflected in the dependence of excess energy in eq.

(23) on the ratio W/λ which crosses over from quadratic dependence for W � λ to

asymptotically saturated for W � λ. Nonetheless, the simple argument captures the

narrow ribbon scaling of the elastic energy accumulation and the fact that the crossover

lengthscale is set by the characteristic ratio between bending and shear moduli, λ. In

figure 5(f), we analyze the elastic excess energy as function of ribbon width, and show

that by rescaling the εex by the flattening energy ε∞, and the width by λ, collapses the

width dependence of excess energy for different values of row curvature (i.e. different φ

values of WJ particle edge taper). The strong numerical agreement between the detailed

mechanical ground states of discrete particle assemblies and the linearized continuum

elastic model indicates that condition for small rotations is self-consistently maintained,

with rows flattening sufficiently rapidly with increased width such that κW � 1 holds

for arbitrarily large widths.

This analysis and the continuum elastic energy show that the range accumulation

versus saturation of excess energy is controlled by the characteristic elastic length λ,

which is itself determined by the ratio of row bending to inter-row shear stiffness, B/Y .

The discrete-to-continuum mapping for WJ particle assemblies, eqs. (13) and (14),

shows that both elastic moduli are controlled by the ratio of the interaction depth to

the square of the interaction range, u0/r
2
c , as the elastic strain between rigid particles can

only be born by deformation of those interparticle bonds. However, these two elastic

constants depend differently on the repulsive interactions in the binding regions, the
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relative strength of which is parameterized by R. Heuristically, this can be understood

via the pair-wise elastic modes shown in figure 4(b). Stretching or shearing two properly

oriented, bound WJ particles loads all of the binding sites in parallel, such that this

modulus is simply set by the difference between stiffness of attractive and repulsive

“springs”, i.e. Y = 2ka − kr ∝ (1 − R). In contrast, bending the angle between bound

particles simply pivots around the central repulsive site, loading only the attractive

“springs” under compression/tension, such that Bkat
2/2, is independent of R. Hence,

the elastic length that controls shape flattening in WJ particle assemblies varies with

repulsive strength as

λ =
t√

(1−R)
. (25)

In the attractive-only case (R = 0) this length scale is limited by the discrete size of the

particle because t ≤ d. However, as shown in figure 4(c), as R increases the effective

elastic cost of shear and stretch deformations of the 2D lattice decreases, while the elastic

cost of bend deformations is unchanged, leading to an increase of the elastic scale λ,

and ultimately a divergence as R→ 1.

In figure 6(a) we test the dependence of the excess elastic energy in WJ particle

ribbons on λ, via its dependence on relative repulsion/attraction strength between

neighbors. Here, we compare ribbons at a fixed width of W = 10d but with several values

of R = 0 to 0.99 (corresponding to a predicted range of λ/d ' 1 to 10). Comparison of

the spatial profiles of elastic energy density felas(x) shows a transition from the shape-

flattened energy profile for W/λ� 1, which is largest and concentrated in the interior of

the ribbon, to uniform bending profile for W/λ ≈ 1, which is distributed throughout the

assembly, but largest in the high-shear zones near the free boundaries. The continuum

theory shows agreement with discrete-particle ground states for the magnitudes and

qualitative spatial patterns of elastic distortion over the full range of repulsion strengths,

and shows full quantitative agreement in the regime where the elastic scale extends much

larger than the particle size, i.e. λ ≥ 5d, when row curvature (and its elastic effects) are

distributed throughout the assembly.

The effect of the repulsive strength on the range of frustration propagation is further

reflected in the dependence of excess energy on ribbon width, compared in figure 6(b),

for three values of repulsive strength. These show that all elastic ground states follow the

same basic trends of power-law accumulation at small widths followed by a saturation

to a finite (flattening) cost a large size. However, we find that increasing the strength of

the repulsive pivot can have a profound effect on the range over which that accumulation

occurs. For more modest repulsion, when λ = 2.6d, εex(W ) very quickly reaches

the saturating regime for W ≥ 5d, consistent with the fact that shear is confined to

effectively narrow regions beyond that size. However, for large repulsive strength, when

λ = 10d, the shear-accumulation deformation extends across the entire assembly until

W greatly exceeds this multi-particle dimension, ultimately driving a transition to the

shape-flattened configuration only at especially large sizes.
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Figure 6. (a) The elastic energy density of infinite ribbons with W/d = 10 and varying

λ via varying R = 0− 0.99. The ribbons with values of λ larger than the ribbon width

have not yet begun the flattening transition here, while the ribbons with λ less than

the ribbon width have begun the flattening transition. The data points are from the

numerical energy minimization, and the solid lines are from the continuum elasticity

theory. (b) Another way of understanding this idea is in the rate of approach of the

mean elastic energy density to its asymptotic value, ε∞. Inset shows that the curves

collapse upon rescaling the assembly width by λ. (c) Infinite ribbons, W/d = 10 and

λ/d = 1 − 10 colored by excess interaction energy. Here the scale of elastic energy

density is rescaled for each λ according to the value of ε∞.

In the following section, we consider the effect of this variable range of accumulating

vs. saturating elastic cost of frustration, and its dependence on the repulsion/attraction

strength ratio R, on the thermodynamics of finite ribbon width selection.

5. Thermodynamics of self-limited ribbon widths

Here we describe the thermodynamic competition between cohesion, which favors bulk

structures, and frustration, whose elastic costs grow domain size, and its effects on the

equilibrium width of ribbon domains of WJ particles. We consider the infinite length,

H → 0, limit of the generic model introduced in eq. (5), yielding

εribbon(W ) = ε0 +
2Σ

W
+ εex(W ). (26)



Shape-frustrated, warped-jigsaw particle assemblies 20

In the WJ model, the bulk cohesive energy density (i.e. modulo the elastic costs of

frustration) is ε0 = −4u0(1 − R)/d2 while the energy per unit length due to the fewer

cohesive bonds is Σ = 2u0(1 − R)/d, while the excess cost of frustration captured by

εex(W ). Assuming that thermodynamic ground state maintains cohesion throughout

the assembly, and neglecting the possibility of internal defects, the width-dependence

of excess energy is modeled by the continuum solutions in eq. (23). For a system

in the canonical ensemble, well above the point of aggregation (i.e. supersaturated

conditions), we consider a thermodynamic model where all (but a negligible fraction) of

WJ particles assembled into ribbon domains, which we assume to have a uniform width

W∗, momentarily neglecting fluctuations of width. In this case, the width of equilibrium

WJ ribbons is determined by the minimization of εribbon(W ) eq. (26) [10], yielding an

equation of state Σ(W∗) relating the edge energy to equilibrium width W∗

Σ(W∗) ≡
W 2
∗

2
ε′ex(W∗) =

ε∞λ

2

[
tanh(W∗/λ)− λ

W∗
sech2(W∗/λ)

]
, (27)

where ε∞ = Bκ2
0/2 is the elastic cost of flattening the preferred row curvature in the limit

of large widths. The variation of W∗ with Σ encodes the intuitive result that increasing

edge energy relative to elastic costs of deformation favors increasing the equilibrium

width of assembly.

The predicted dependence of selected width on edge energy follows from simple

consideration of the small and large-W thermodynamics. For small-W thermodynamics,

the excess energy grows quadratically due to width-dependent shearing between curved

rows εex(W � λ) ≈ Y κ2
0W

2, which balances the edge cost 2Σ/W at a width that

grows as fractional power with Σ and decreases with preferred row curvature as

W∗ ≈ (Σ/Y )1/3κ
−2/3
0 . Hence, the equilibrium size grows with the ratio of edge energy

(i.e. cohesion) to elastic moduli. Both Σ and Y are proportional to the net depth in

interparticle binding (i.e. 2u0(1−R)), but Y is also inversely proportional to the square

of the interaction range rc, hence the ratio Σ/Y ∝ r2
c decreases as interactions become

shorter ranged, and effectively stiffer.

In figure 7 we plot the (normalized) total energy density vs. ribbon width for varying

rc/d = 0.181, 0.256, 0.363, 0.417 corresponding to varying Σ/Σmax defined below. These

results illustrate that for short enough rc, where cohesion to elastic stiffness Σ/Y ∝ r2
c

is also small, that there is a minimum in εribbon(W ) at a finite W∗, the value of which

grows with interaction range. We note, however, beyond a certain value of interaction

range there is no minimum in the range up to 20 particles in width, the upper limit of

discrete particle assembly sizes studied. The equation of state from continuum elasticity

theory indeed predicts that there is an upper limit to range of cohesive energies where a

finite-W∗ minimum exists. This follows from taking the infinite width limit of eq. (27)

lim
W∗→∞

Σ(W∗) ≡ Σmax =
ε∞λ

2
, (28)

which implies that equilibrium width diverges in the limit of Σ → Σmax. Specifically,

eq. (27) predicts a continuous divergence of the form W∗/λ ∼ − log
√

1− Σ/Σmax in

the asymptotic limit W∗ � λ. The upper critical value of Σ for finite ribbon width is a
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Figure 7. (a) The total energy per WJ particle in ribbon assemblies (minus bulk

contribution) filled circles and solid curves, and the contributions due to surface energy

density, ’X’ symbols and dashed curves, and elastic deformations εex, shown in black,

for varying rc/d and R = 0.95. With increasing surface energy, the optimal ribbon

width grows from W = 2d for Σ/Σmax = 0.18 to W = 5d for Σ/Σmax = 0.35 and

then there is no finite minimum for larger Σ/Σmax. (b) The corresponding total free

energy density, for the same parameters and showing highly deformed, low-energy

structures at larger W/d. (c) Typical low-energy structures that deviate from theory

show internal boundaries (i.e. weakly cohesive cracks between sub-ribbons).

consequence of the shape-flattening transition. When ribbons exceed the size Wflat ≈ λ,

it is favorable from an elastic point of view to expel row curvature to a finite boundary

layer at the free edge of the ribbon. Notably, relative to the flattened interior, the

row curvature within the boundary layer relaxes the elastic energy density by order

ε∞ = Bκ2
0/2 over a range λ. Hence, in this large W � λ regime, elastic relaxation at

boundary layers effectively decreases the edge energy by −λε∞/2 = −Σmax. This implies

that for sufficiently weak cohesion, when Σ < Σmax, the elastically renormalized edge

energy of ribbons is negative, in effect stabilizing finite ribbon widths (in combination

with stabilizing sub-leading terms in the elastic energy). When Σ > Σmax, it becomes

favorable for the assembly pay the bulk elastic costs to expel frustration everywhere,

and grow ribbons to infinite width.

In figure 8 we show the full predicted variation of equilibrium width W∗ as a function

of Σ, comparing minima obtained from numerical ground states of the discrete WJ

particle model to the continuum predictions. In particular, we compare the equilibrium

widths for variable ratios R of repulsive to attractive strength of WJ bonds. These

show that, for a given value of Σ/Σmax, the equilibrium width is an increasing function

of R. This can be attributed to the effect of repulsive interactions to extend the range
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of frustration propagation before shape flattening (i.e. Wflat ≈ λ ∝ (1− R)−1/2), which

effectively extends the size scales for the self-limiting assembly by reducing the elastic

costs of row shear while maintaining stiffness of row curvatures.

Notably, in the limit of pure attraction (R = 0), the predicted finite widths from

the continuum model do not exceed even a single particle over most of the range of

0 < Σ < Σmax and we are not able to resolve an energy minimum with the discrete WJ

calculations. This demonstrates that, for this class of frustrated assembly, it is essential

to carefully control the interparticle mechanics through the their microscopic design in

order to have self-limitation that occurs at non-trivial (i.e. W∗ > d) sizes. In the next

section, we consider fluctuations of ribbon width and their impact on the possibilities

for self-limitation near to the flattening transition where continuum theory predicts a

divergent finite width.

We note briefly the breakdown of the continuum theory to capture the energetic

ground states of WJ ribbons at large width, reflected in the energy density plots in

figure 7(b). Specifically, we find that discrete particle ground states eventually “crack”

and form structures with energies that fall below the continuum theory, which assumes

that structures maintain cohesive elastic contact at all sizes. As the cohesive interactions

in the discrete model have a finite range, they exhibit yielding beyond a critical bond

strain.

Examples of the lower-energy, “cracked” states found via numerical minimization

are shown in figure 7(c). These take the form of weakly adhered states of two or

more elastically coherent “sub-ribbons”. The existence of these lower-energy states,

aggregates of finite-domains, is a generic consequence of T = 0 considerations of

frustrated assembly. If there is local minimum in energy density ε(W∗) at finite width

W∗, then it is possible to construct an equal energy density state with twice the size

(i.e. with 2W∗/d particles in lateral dimension) from two separated finite ribbons.

Bringing these two sub-ribbons into at least weak cohesive contact can only lower the

total energy, such that it is always possible to find “multi-ribbon” aggregates where

ε(nW∗) < ε(W∗) for any integer n. This basic argument is consistent with the structure

of cracked and weakly-adhered sub-ribbons resulting from the energy minimization,

although at present, we make no attempt to rigorously identity the ground states of

these post-yield morphologies. Analysis of the onset of yielding of elastically coherent

ribbons shows that it occurs at larger sizes than the local minima ε(W∗) set by the

competition between elastic costs of frustration and cohesion. While strictly-speaking

ground states of any particulate model of GFA are likely of the form of weak-aggregates

of finite domains, it can be expected that at large enough temperature (but well above

the critical aggregation concentration), entropic effects break such weak contacts and

stabilize at states dominated by self-limited domains size W ' W∗.
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Figure 8. Equilibrium width of WJ ribbons versus surface tension for differing

repulsive site strengths R, i.e. varying λ. As R gets larger, the range of target ribbon

widths before the divergent growth increases. The data points are from the numerical

energy minimization, and the solid lines are from the continuum prediction, eq. (27).

6. Width-fluctuations of self-limited ribbons

In the above, we showed that energetic ground states of the WJ-particle model exhibit

a selected, finite width below a critical upper limit of edge energy Σmax. The continuum

theory and discrete-particle ground states demonstrate that the size of the selected width

is an increasing function of the ratio of the row bending to inter-row shear moduli, as

well as Σ/Σmax. The continuum theory predicts that the growth of the selected width

exhibits a second-order transition at the critical surface energy, that is, it diverges

continuously to the bulk state as Σ → Σmax. This prediction seemingly implies that

self-limited domains of arbitrarily large size are possible, provided that there is very

careful control of the (subcritical) surface energy. In this section, we describe a simple

model of capillary fluctuations of the ribbon width, to understand how changes in the

curvature of the minimum of ε(W∗) effect the possible range of controlled domain size.

We consider an infinite length ribbon with a mean finite width W∗, but with variable

width W (z) = W∗ + δW (z) as a function of vertical height in ribbon. As detailed

in Appendix A, this leads to a change in ribbon free energy,

∆F [δW (z)] ' 1

2

∫
dz
[Σ

2
(∂zδW )2 +M(W∗)(δW )2

]
, (29)

where the first term derives from the capillary cost of excess edge length, while the

second term describes the harmonic cost of deviations from the frustration selected

width with,

M(W∗) ≡ ∂2
W [Wε(W )]

∣∣∣
W∗

=
2ε∞
λ

sech2
(W∗
λ

)
tanh

(W∗
λ

)
. (30)

Note that as W∗ � λ, M(W∗) decreases exponentially to zero, which indicates that
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as W∗ grows large, the minimum becomes more and more shallow as a consequence

of the shape-flattening of large domains. Hence, as the mean width grows arbitrarily

larger than λ, so too should the thermal fluctuations of width. Considering capillary

width modes δW (k) =
∫
dz eikzδW (z) of wavevector k, equipartition at finite T gives

〈|δW (k)|2〉 = kBT/[Σk
2/2 +M(W∗)], or at a given local height along the ribbon

〈|δW (z)|2〉 =
kBT√

2ΣM(W∗)
. (31)

This result suggests that absolute thermal width fluctuations diverge both as edge energy

vanishes (Σ→ 0) and as ribbons approach the bulk state (Σ→ Σmax) where W∗ →∞.
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Figure 9. Analysis of thermal capillary fluctuations of ribbon width as a function of

scaled edge energy. The solid blue curve shows the predicted mean width W∗ of the

ribbon (left axis) and the dashed red curve shows the ratio of r.m.s. width fluctuations

to mean width (right axis). Shaded orange denotes the region of increasing minimal

relative functions, which rapidly diverge as Σ→ Σmax.

In figure 9, we plot the relative magnitude of width fluctuations as a function of edge

energy, and compare these to the growth of mean width W∗ over the same range. We note

that the relative width fluctuations depend non-monotonically on surface energy, and

in particular, they grow unbounded at the transition to the bulk state. Hence, while

the mean finite width extends continuously to infinite size, this point is preempted

by divergent width fluctuations. As these relative fluctuations always diverge close

to the (mean-field) bulk transition, we interpret the practical range of self-limitation

as delimited by the growth of size fluctuations. For simplicity, we can estimate the

range of size-controlled, width-limited assembly as the range of Σ for which relative

fluctuations are minimal (i.e. magnitude of 〈|δW |2〉1/2/W∗ rapidly diverges beyond this

point). From eq. (31) we estimate that self-limitation is occurs only for Σ < 0.9Σmax.

This corresponds to a maximal size of the self-limited state Wmax ' W∗(0.9Σmax) ' 2.5λ.
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7. Concluding remarks

In summary, we have introduced a theoretical model for a new class of GFA: WJ

particle assemblies. The relatively simple geometric design of WJ particles makes

it possible to trace microscopic features of the WJ subunits (i.e. their shape and

interactions) to the emergent elasticity of inter-particle misfit gradients and their

thermodynamic consequences for self-limitation of ribbon widths. Notably, this

mapping from particulate properties to mesoscale description demonstrates that particle

interactions and elasticity of the assembly cannot be considered independently for GFA,

particularly for the case where subunit shapes are relatively rigid in comparison to the

inter-particle bonds.

We find that frustration propagation in WJ ribbons relies on the competition

between two elastic modes: row-(un)bending elasticity, dominant for narrow widths;

and inter-row shear elasticity, which dominates at large widths and forces ribbon

interiors to flatten. The crossover between these two regimes determines an elastic

flattening scale Wflat ≈ λ, controlled only by the stiffness ratios of these two elastic

modes, and notably independent of degree of shape frustration (i.e. preferred row

curvature κ0). Additionally, this length scale defines the boundary between regimes

of accumulating (W � λ) and asymptotically saturating (W � λ) elastic costs. As

pointed out previously [10, 9], generic considerations of GFA thermodynamics suggest

that self-limiting domain formation relies on the existence of an accumulating regime of

elastic costs, while the asymptotic saturation of shape-flattening progression of elastic

ground states typically implies a thermodynamic escape to infinite size beyond a critical

surface cohesion. We show for the WJ model at T = 0, that this manifests for planar

and vertically oriented ribbons as a second-order transition between finite width and

unlimited (bulk) domains at a critical edge energy Σmax which itself is proportional

to the product of the flattening elastic cost and the flattening size. Consideration of

the finite-temperature fluctuations show that the depth of the energy minimum that

selects mean ribbon width becomes arbitrarily shallow as this (mean-field) critical point

is approached. Analysis of these divergent width fluctuations suggests that practical

regime of self limitation is rather better described by the regime W∗ < 2.5λ. Hence,

both of these results imply that the range of accessible self-limiting states, their size

and cohesive energy, is strongly dependent the elastic length scale defined by the ratio

of bending to shear stiffness. In light of this, we demonstrate how spatial design of

locally attractive and repulsive patches in the binding domain can effectively extend

this characteristic size, and thereby the effective range of self-limitation, to size scales

that extend for multiple particles.

We note that the relatively simple design of WJ particles has clear potential

for implementation in experimental studies of intentionally shape-misfitting particle

assembles. In particular, recent approaches to DNA origami particles realize anisotropic,

self-assembly particles with anisotropic shapes that defined the relative geometries of

bound neighbors [31], but also combine specific (i.e. lock and key type) interactions
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between specific binding sites [34, 35, 38], of the type incorporated in the WJ model. Our

results hold key lessons for the experimental design of such particle. Beyond the intuitive

result that the maximal cohesive strength for limitation grows with particle taper

(squared), we find that the practical range of accessible self-limited sizes is dominantly

controlled by the ratio of elastic modes of inter-particle deformation. Hence, realizing

experimental WJ particles that exhibit non-trivial ranges of self-limiting assembly (i.e.

larger than ∼ 1 − 2 particles wide) requires careful engineering of interactions that

selectively control distinct deformations (i.e. bending vs. shear/stretch). Here, we

find that this requires careful control of interactions for particles of strictly rigid shape.

In experimental systems, such as DNA origami particles, it might also be expected

that intra-particle deformations may contribute to (and potentially dominate in certain

situations) the elastic contributions of interaction [39]. Although as of yet, a sufficiently

careful analysis of the relative compliance of such particles vs. their binding sites remains

to be conducted for DNA programmed shape-defined particles.

We conclude by remarking on two possible extensions of the WJ model, both of

which will be addressed in future study. First, we note that it is straightforward to

consider more anisotropic binding properties of WJ particles (i.e. strength and stiffness

of horizontal vs. vertical row bonds need not be the same). In the case of anisotropic

binding, vertical and horizontal edge energies become unequal. When horizontal edge

energy is sufficiently large compare to vertical edge energy, it is possible to shift the

thermodynamic ground state from vertical type ribbons to horizontal and globally

curved ribbons, of the type shown in figure 3(b). Hence, the general phase diagram of

even strictly planar assembly of WJ particles exhibits polymorphism between different

states of finite thickness ribbons. It remains to be seen if the frustration build up in this

distinct class of curved ribbon morphologies exhibits distinct thermodynamic growth

of self-limiting dimensions, and whether that growth relies on a distinct set of elastic

modes (and corresponding moduli).

Beyond the polymorphism of planar assembly, it is far from clear how ground

states of the WJ model behave when allowed to buckle out of the 2D plane. In certain

2D GFA models, such as assembly of pentagonal or heptagonal particles [27], it is

possible to identify non-Euclidean geometries that fully relax frustration that would be

required by planar assembly (e.g. spherical tilings of pentagonal particles). In this

context, it reasonable to ask if there are surface shapes that relax all, or at least

some of the frustration of WJ particle assembly, and if so, how does this modify

thermodynamics of domain formation? One clue to resolving this question may be

to note a similarity to aspects of WJ assembly and 2D textures of so-called “bent

core” liquid crystals [40, 41]. Like the horizontal rows of WJ assemblies, such bent core

mesogens favor uniform bending along their long axis, but without splaying the distances

between those field lines. Niv and Efrati derived generic compatibility conditions

for such textures embedded in 2D surfaces of arbtirary shape, and showed that it is

possible to achieve this uniform bend/zero splay texture on surfaces of constant, negative

Gaussian curvature, thereby fully relaxing the frustration cost of orientational gradients
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in the liquid crystal [42]. Therefore, we might expect at least some degree of frustration

relaxation in WJ-particle assemblies if their membranous assemblies are sufficiently

flexible to adopt such shapes. However, it should be noted that WJ assemblies possess

additional elastic constants beyond the orientational elasticity of 2D liquid crystals,

such as inter-row shear and intra-row stretch moduli. It is not yet known what are the

complex 3D shapes that are favored by frustrated assembly WJ particles, how much of

the elastic cost of planar assembly can be eliminated by out-of-plane deformation, and

ultimately, how this alters the basic limits of self-limited domain formation relative to

the planar case.
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Appendix A. Fluctuations of ribbon width

Here, we describe a continuum model for thermal width fluctuation of long-ribbons. As

we are interested in the limit where ribbons grow unbounded in length, we consider

a case where L → ∞. We begin by decomposing the capillary modes of finite width

ribbons into two modes. Describing the a vertically oriented ribbon by the horizontal

positions of the left and right edges as a function of vertical position z, x−(z) and x+(z),

respectively. I.e. for the ground state ribbon, we have that x+(z) = W∗+x−(z) = const..

The lengths `± of the free edges are simply,

`± =
∫
dz
√

1 + (∂zx±)2 ' L+
1

2

∫
dz (∂zx±)2. (A.1)

The total edge energy of the ribbon is

Eedge ' 2ΣL+
Σ

2

∫
dz [(∂zx+)2+(∂zx−)2] = 2ΣL+Σ

∫
dz [

1

4
(∂zW )2+(∂zx̄)2](A.2)

where W (z) = x+(z) − x−(z) is the local width and x̄(z) = [x+(z) − x−(z)]/2 is the

central axis of the ribbon. We note that the second term in integrand, proportional

to (∂zx̄)2, penalizes tilting ribbon orientations away from the (low edge energy) bond

vertical, but it is decoupled from fluctuations of width W (z) to quadratic order. Hence,

below we consider only the edge energy penalty to width gradients.

In addition to penalties in edge energy, edge fluctuations are suppressed by

combined effects of frustration and boundary energy that select a finite equilibrium

width. The free energy per unit of uniform width ribbon is simply

F/L = W [ε(W )− µ] ' W∗[ε(W∗)− µ] +
(δW )2

2
∂2
W [Wε(W )]

∣∣∣
W∗
, (A.3)

where µ is the chemical potential cost of adding a free particle to a ribbon and

δW = W −W∗ is the fluctuation from the selected width. Using eq. (27) and defining

M(W∗) ≡ ∂2
W [Wε(W )]

∣∣∣
W∗

=
2ε∞
λ

sech2
(W∗
λ

)
tanh

(W∗
λ

)
(A.4)

we have the free energy functional for width fluctuations,

∆F [δW (z)] ' 1

2

∫
dz

[Σ
2

(∂zδW )2 +M(δW )2
]

(A.5)

=
1

2

∫ dk

2π

[
Σk2/2 +M

]
|δW (k)|2, (A.6)

where

δW (k) =
∫
dz eikzδW (z), (A.7)

is the Fourier-transformed width fluctuation. From equipartition at finite temperature

we have

〈|δW (k)|2〉 =
1

β(Σk2/2 +M)
(A.8)

with β−1 = kBT , which can be Fourier transformed back to yield the Gaussian thermal

fluctuations of width,

〈|δW (z)|2〉 =
∫ dk

2π

β−1

(Σk2/2 +M)
=

β−1

√
2ΣM

. (A.9)
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Appendix B. WJ particle model parameters

As described in the main text, the geometry of the WJ particles are the same for all

of our simulations. The dimensionless parameters that were changed are R, rc/d, and

u0/uex. The parameters used in each figure are given in the following tables.

R rc/d u0/uex

Fig. 2 0 0.323 1

Fig. 3 0 0.323 1

Fig. 5 0.95 0.417 1.85

Fig. 6 0–0.98 1.393 20

Fig. 6 0.99 1.358–1.461 19–22

Fig. 6 0.95 0.424 1.85

Fig. 6 0.85 0.194 1.4

Fig. 7 0.95 0.184–0.696 0.35–5

Fig. 8 0.99 0.440–0.985 2–10

Fig. 8 0.95 0.121–0.429 0.15–1.9

Fig. 8 0.85 0.082–0.194 0.25–1.4
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van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew

R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
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