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Abstract— Seabed mapping is a common application for

marine robots, and it is often framed as a coverage path

planning problem in robotics. During a robot-based survey,

the coverage of perceptual sensors (e.g., cameras, LIDARS

and sonars) changes, especially in underwater environments.

Therefore, online path planning is needed to accommodate

the sensing changes in order to achieve the desired coverage

ratio. In this paper, we present a sensing confidence model

and a uncertainty-driven sampling-based online coverage path

planner (SO-CPP) to assist in-situ robot planning for seabed

mapping and other survey-type applications. Different from

conventional lawnmower pattern, the SO-CPP will pick random

points based on a probability map that is updated based on in-

situ sonar measurements using a sensing confidence model. The

SO-CPP then constructs a graph by connecting adjacent nodes

with edge costs determined using a multi-variable cost function.

Finally, the SO-CPP will select the best route and generate the

desired waypoint list using a multi-variable objective function.

The SO-CPP has been evaluated in a simulation environment

with an actual bathymetric map, a 6-DOF AUV dynamic model

and a ray-tracing sonar model. We have performed Monte

Carlo simulations with a variety of environmental settings to

validate that the SO-CPP is applicable to a convex workspace, a

non-convex workspace, and unknown occupied workspace. So-

CPP is found outperform regular lawnmower pattern survey by

reducing the resulting traveling distance by upto 20%. Besides

that, we observed that the prior knowledge about the obstacles

in the environment has minor effects on the overall traveling

distance. In the paper, limitation and real-world implementation

are also discussed along with our plan in the future.

I. INTRODUCTION
Seafloor mapping is an important practice as the bathy-

metric database is a key infrastructure [1] supporting vari-
ous researches and applications, such as marine geological
research [2], seabed habitat monitoring [3], naval mine-
countermeasure [4]. With the rapid development in ocean
technology and instrumentation, there is an increasing trend
of using marine robots (i.e., autonomous underwater vehicles
and autonomous surface vehicles) in seafloor mapping ap-
plications. Compared to manned ship surveys, marine robots
provide an alternative approach that is more effective. For ex-
ample, in deep sea, autonomous underwater vehicles (AUVs)
could stay closer to the seabed to obtain high-resolution
mapping results ([5][6][7]). On the other hand, in coastal
regions, shore-launch autonomous surface vehicles (ASVs)
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are convenient and environmental friendly for mapping the
coastal water, espcially in shallow areas [8].

In robotics, seafloor mapping could be referred to as
a coverage path planning (CPP) problem or a viewpoint
planning problem. The goal is to plan an optimal path such
that the robot could fully explore a user-defined workspace
while avoiding collisions [9]. CPP is a well-explored topic
in robotics. The research focus started in known scenarios
(known environment and known sensor performance, e.g.,
in [10]), then advanced into partially unknown conditions
(unknown environment with known sensor performance, e.g.,
in [11] and [12]). In recent years, the emphasis started to
expand into fully unknown condition (unknown environment
and unknown sensor performance, e.g., in [13] and [14]) and
multi-robot approach (e.g., in [15]).

In general, the CPP algorithms could be categorized into
two classes, offline and online algorithms. The offline algo-
rithms are normally applied to known environments where
the mission is pre-programmed using provided data (e.g.,
seafloor topography) or modeled data (e.g., expected sonar
coverage). In contrast, an online approach allows a robot
to adapt its path actively using in-situ measurements. In
the scenario of robot-based seafloor mapping, we could
refer it to as a CPP problem in unknown conditions. In
these missions, the seafloor topography is normally assumed
unknown prior the mission and the sonar coverage is subject
to change due to the seafloor topography. For example, the
swath of a commonly used multibeam sonar changes with
respect to seafloor depth and surficial properties [16]. As a
result, offline approaches may not be an ideal solution. Using
lawnmower pattern as an example, a large inter-distance
between transects may result in uncovered voids while a
small inter-distance may result in significant overlaps and
extend the mission time. Therefore, an online solution is
needed to allow a robot to perform path re-planning based
on in-situ measurements for a better mission efficiency.

In this paper, we present a new online coverage path
planning algorithm to address the seafloor mapping problem
with marine robots. The algorithm is developed based on
probabilistic roadmap (PRM) which was originally designed
and widely used to plan a safe path to a defined location.
There are only few sampling-based approach coverage path
planning in an unknown environment. Therefore, this paper
aims to fill this gap. The proposed method has been evaluated
under extensive simulation runs. From the results presented
later in this paper, the designed algorithm guarantees the cov-
erage in non-convex workspace occupied by priorly unknown
obstacles.



The main novelty of the proposed algorithm can be
summarized as follows.

• A uncertainty model is introduced to quantify the sens-
ing confidence in each ensonified cell in the workspace
based on in-situ sonar measurements. The dynamic
sensing confidence map of the workspace is then used
for sampling possible waypoint candidates. Compared
to a typical PRM with an uniform probability in the
workspace, the sensing confidence will allow more
waypoints candidates to be drawn in the uncertain or
uncovered cells; ultimately shorten the coverage path
and guarantee the desired coverage ratio.

• The algorithm uses two new multi-variable functions to
select the optimal path among all viable paths from the
sampled waypoints.

• The algorithm requires minimum user-defined variables
as most of the parameters, e.g., sample size and swath
width, are determined automatically using in-situ data.
The adaptive approach aims to reduce unnecessary com-
putational resources and to obtain a better prediction on
the vehicle coverage during the planning stage.

The remaining paper is organized as follows. In Section
II, related work on online CPP is reviewed. The SO-CPP
algorithm is introduced with details in Section III. Extensive
simulations have been performed with results and discussion
presented in Section IV. In Section V, we summarize the
paper and outline the directions of our future development
for the SO-CPP.

II. RELATED WORK
Regardless of extensive CPP work surveyed in [17], [18]

and [19], there are only few online algorithms have been de-
signed, especially for underwater environments. The simplest
online coverage algorithm could be designed as a greedy
approach where the algorithm will guide the AUV moving
towards the direction with the highest reward (minimum
time or maximum coverage gain). With this myopic plan-
ning strategy, vehicle efficiency may not be optimized [20].
Therefore, more then one variables are normally included
in the cost function [20] or planned in a recursive way
[21]. In [22], an online CPP algorithm is designed based on
multi-objective function which computes the desired vehicle
heading on-the-fly. The algorithm was demonstrated on an
AUV equipped with a sidescan sonar in seafloor mapping
missions. The advantage of the algorithm is highlighted
by comparing to offline lawnmower missions and random
walk planning methods. An online 3D CPP method for
inspection of complex underwater structures is presented
in [14]. They proposed a replanning algorithm based on
stochastic trajectory optimization that reshapes the nominal
path to cope with the actual target structure. In [7], an
adaptive seabed coverage algorithm is introduced where
the transects of an AUV is determined actively during the
mission based on the uncertainty derived from a Gaussian
process model. In [23], an online CPP approach based on an
optimized backtracking mechanism is presented for mobile
robots in an unknown workspace with static obstacles. A

dynamic path planning approach for multirobot coverage
considering energy constraints is proposed in [24]. The
algorithm constructs the sensor-based coverage paths using
Generalized Voronoi Diagram (GVD) that accounts for robot
energy capacities. Moreover, Biological neural network is
also an effective approach in avoiding obstacle and exploring
uncovered area for CPP problems ([25] and [26]). However,
all the above online approaches has less consideration on the
sensor coverage, and the algorithm normally segments the
workspace into sub-domains then use lawnmower or spiral
pattern to generate local trajectory.

Over the years, sampling based path-planning algorithms,
such as rapidly-exploring random tree [27], probabilistic
roadmap [28] and their iterations, have drawn increased
attentions in robot planning in obstacle-occupied environ-
ments. Sampling-based approach has advantages in saving
computational time by explicit construction of obstacles
in the state space, especially, when dealing with high-
dimensional motion planning [27]. Recently, sampling-based
methods have been also adopted to solve the CPP problem.
A well-studied approach is to transform the CPP problem
to a traveling salesman problem or a Art Gallery Problem
where utilities are assigned to each sampled point. In [11]
and [29], the authors have proposed and demonstrated an
offline sampling-based CPP algorithms for 3D underwater
inspection applications. In [30], the sampling approach were
adopted to plan the next best view point for underwater
exploration applications. Both works consider the utility of
a sampled point that is independent of others.

To address CPP problems with sample-based approach, a
necessary stage is to sample the workspace in such a way
that will drive the robot to cover the defined workspoace. In
[11] and [29] , this process is done under the assumption that
the robot only collect sensor information the the nodes of a
graph. For a seafloor mapping mission, it is more realistic to
quantify the coverage along a transect between two sampled
waypoints and the quantification has to use in-situ sonar per-
formance, e.g., the swath width. Moreover, sampling-based
path planning normally uses a uniform probability distributed
in the workspace. The SO-CPP that will be introduced in
the following section uses a dynamic probability map that
is updated based on sonar measurements, and it quantifies
the ”rewards” of possible paths based on the observed swath
width.

III. THE ALGORITHM
A. Gridded workspace presentation

The goal of the SO-CPP algorithm is to guide a robot
to map a user-defined area to the desired coverage ratio,
e.g., 99.9%. Often time, marine robots are operated in a 2D
horizontal plane, e.g., at the water surface for ASVs or be
kept at a constant depth for AUVs. Hence, our workspace,
W , is defined as a 2D map that is bounded by the lines
connecting a set of user-defined vertexes. It could be non-
convex and may contain obstacles.

In our algorithm, the workspace is divided into small
cells (i.e., 1 m by 1 m grids). Then, the mission goal is



to collect sonar samples in each cell until the total number
of observed cells has reached the user-defined level. In each
cell, we define two values, the observation condition (Ox,y)
and sensing confidence (Sx,y), where the subscript indicates
the cell’s coordinate. The observation condition is initially
set to 1 for all grids, meaning all the cells are unexploited.

The observation condition will be updated based on sonar
measurements (see Eq. 1). Figure 1 depicts that the AUV
is configured with a downward-looking multibeam sonar
(MBS) and a forward scanning sonar (FSS). As indicated
by Eq. 1, different sonar will result in different observation
conditions for computing the updated coverage and obstacle
avoidance purposes.
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Fig. 1. An AUV equipped with sonars for seafloor mapping
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0 a MBS point obtained in the cell
1 no sonar point obtained in the cell
2 a FSS point obtained in the cell

(1)

The sensing confidence, Sx,y , is another property which
indicates the resulting mapping confidence from the sonar
measurements collected in a cell. Initially, Sx,y is set to
0 for all cells, and it will be updated based on the MBS
measurements. By assuming each sonar measurement as an
independent event, the resulting sensing confidence could be
computed using Eq. 2 where Cx,y(k) indicates the sensing
confidence of the k-th measurement in the cell, (x, y).

Sx,y = 1�
kY

i=1

(1� Cx,y(k)) (2)

EI = SL+ 2AL+ 2TL+NL+ TS (3)

Cx,y(k) = cos2 ✓ =

✓
p • N

|p| |N|

◆2

(4)

In this paper, the sensing confidence of a sonar measure-
ment, Cx,y(k), is derived using the sonar equation shown in
Eq. 3, where the terms are in decibels. The target strength
(TS) is a major factor affecting the echo intensity (EI) if we
assume the source level (SL) and nose-level (NL) are iden-
tical for each sonar beam, and the attenuation loss (AL) and
transmission loss (TL) can be compensated using the time-
varying gain. A higher EI means a more distinct acoustic
return that could be separated from background noise. If we
reformat Eq. 3 by converting decibels into power unit, the
power of echo intensity will be proportional to the power
of TS. For seafloor, TS is proportional to the square of the
cosine of the incident angle [31] which is denoted as ✓ in Fig.
1 where the 2D normal vector, N, could be computed from
the MBS swath. Herein, we define the sensing confidence of
a data point in the k-th MBS swath, Cx,y(k), is computed
using Eq. 4 where p is a MBS sonar point relative to the

vehicle body, and N is the normal vector of the swath at p.
Using the vehicle’s pose information, the corresponding cell,
(x,y), of p could be found. For different mapping sensors,
different sensing confidence functions could be developed,
e.g., the one defined in [22] for sidescan sonar.

B. Algorithm workflow
A detailed flow chart of the algorithm is presented in Fig.

2, and Fig. 3 exemplifies a coverage mission in an unknown
obstacle-occupied workspace. The SO-CPP will replan a
robot’s path if the vehicle has reached the last programmed
waypoint or its planned path to the next waypoint intersects
with an newly observed obstacle. For example, Fig.3(a)
shows a planned path that intersects with the obstacles
because that the robot doesn’t know their existence at the
beginning. When the robot has traveled to the location
shown in Fig. 3(b), robot has gained knowledge about the
obstacle from its FSS. A replanning is activated as vehicle
has detected an intersection between its path to the next
waypoint and the newly detected obstacle.

Pick N random samples 
based !!,#

Connect each sample will connect 
to n nearest neighbors 

Compute the edge cost

Search the optimal viable path 
from the vehicle to each node.

Is the best route 
available?

Try to close obstacle contour 
and updates on "!,# and #!,#

Return the best 
route to the robot

No Two consecutive 
occurrences of 
no best route?

Dilate the detected 
obstacle boundary

End of the 
mission

Yes

If the vehicle has reached the last programmed waypoint
Or the path to the next waypoint intersects with an occupied cell

Fig. 2. The workflow the SO-CPP

In the first step during the planning, the SO-CPP will try
to close the contour of the detected obstacles using morpho-
logical closing algorithm which is commonly available in
MATLAB and openCV. In all of our simulations presented
in Section 4, we used an identical morphological structure
of a 10 m disk where 10 m is the turning diameter of the
simulated robot. During this step, the algorithm will update
Ox,y and Sx,y of the flooded cells to 2 and 1, indicating
the cells are explored and are occupied by obstacles. For
example, in Fig.3(d), the square obstacle is flooded since the
robot has profiled the overall contour of the obstacle from
the FSS.

Px,y =
(1� Sx,y)P
(1� Sx,y)

8x, y 2 W (5)

Next, the algorithm will draw N numbers of samples in
the workspace based on the probability map, Px,y , which is
derived using Eq. 5 from the sensing confidence distribution
in the workspace. As a result, more samples (candidate



waypoints) will be made in the regions with low sensing
confidence or uncovered, cells i.e., the darker regions shown
in Fig.3. One constrain we applied here is to avoid any
samples within the 10 m which is also the acceptance radius
for waypoint tracking.

After the candidate waypoints are obtained, SO-CPP will
construct a roadmap by connecting each sample, including
the current vehicle position, to n nearest samples. For each
pair of connected samples (or called nodes), the SO-CPP
computes the cost along each connected line (or called
the edge). The cost consists of two components, traveling
distance and the redundant-to-new information (RTNI) ra-
tio. The traveling distance, Di,j , is the Euclidean distance
between two nodes, i and j, while RTNI is determined
using in-situ sonar measurements. During the mission, the
system will record the minimum width of the sonar swath,
based on which SO-CPP will predict the potential coverage
area, Ai,j along an edge. In Ai,j , the algorithm will count
the number of unobserved cells and observed cells. In a
mathematical format, the RTNI ratio is computed using Eq. 6
where the numerator and denominator quantify the numbers
of observed cells and unobserved cells, respectively. The final
cost of each edge is a combination of the distance cost and
the RTNI ratio as shown in Eq. 7. Both components are
normalized values.

(a) (c)(b)

(e) (f)(d)

Fig. 3. A series of planning result in a single coverage mission. The red
areas indicate obstacles, the blue line shows the vehicle traveled path, and
the green line shows the planned path. (a) shows the a collision-free path
planned at the beginning and the predefined obstacles that was incrementally
detected by the AUV using a mechanically scanning sonar. (b) shows that
the vehicle adjusts its path when the path to the next waypoint intersects
with an obstacle detected during the mission. The designed algorithm closed
the contour of the square obstacle from (c) to (d). The vehicle continued to
cover the workspace and closed the rectangular obstacle. In (e) the vehicle
was stuck since there is no OVP and no viable path to the vehicle’s neighbor
samples. Then, the algorithm dilated the detected obstacle boundary then
applied the morphological closing to close the rounded and triangular
obstacle. Vehicle reached the desired coverage ratio in (f) with an overall
mission time of about 3 hours in the workspace (500 m by 500 m).

Ni,j =

P
|Ox,y � 1|P

1� |Ox,y � 1| 8x, y 2 Ai,j (6)

Costi,j =
Di,jP

i

P
j Di,j

+
Ni,jP

i

P
i Ni,j

(7)

After that, the algorithm will search for the optimal viable
path (OVP) from the vehicle to each sampled waypoint using

a typical graphic search algorithm. Herein, we implemented
the Dijkstra’s algorithm with edge costs computed in Eq.
7. For each OVP, the algorithm will also compute a reward
which is equals to the summation of the inverse of RTNI
ratio that is normalized by the mean turning angle along
the OVP. The mean turning angle is included because 1) we
want to minimize turning motion which may degrade the
vehicle navigation especially for AUVs [22], and 2) a large
turn angle between consecutive edges will produce a large
overlapped coverage area resulting in double counting Ni,j

in the overlapped region. Eventually, SO-CPP will select the
OVP with the highest reward to be the best route, then send
the waypoint list to the robot’s guidance system.

There is a possibility that there is no OVP available for
all nodes. This happens most likely in two scenarios in an
obstacle-occupied environment towards the end of a coverage
mission. First, the unobserved cells are sometimes separated
in a small cluster. With the existence of obstacles, it is
highly like that the vehicle could not connect to the samples
that is further away. Secondly, the obstacle contour may not
be closed due to the inefficiency of morphological closing
algorithm on obstacles in a rounded or triangular shape. (see
Fig.3 (e)). To handle these scenarios, SO-CPP will guide
the vehicle to the nearest sampled waypoint. If the straight-
line to the nearest sampled waypoint is also obstructed by
an obstacle, normally happens in the second scenario, the
algorithm will apply binary dilate to thicken the detected
obstacle boundary, then apply the morphological closing
algorithm again. By doing so, the area occupied by rounded
and triangular obstacles maybe flooded (see the comparison
between Fig. 3(e) and (f)). After that, the robot will repeat
the planning process. This time, the robot will avoid taking
samples inside an obstacle, increasing the chance of finding
optimal viable paths. If there is a best route available, the
robot will continue the mission with the the route. Otherwise,
the algorithm will declare the end of the mission which may
resulting in the final coverage slightly less than the desired
value.

One key parameter that is expected to affect the path
planning result is the number of samples. A high number of
samples is likely to produce a better and smoother path with
a trade-off of increased computational time. We later found
that the total coverage mission time will converge after the
sample number has increased beyond a value. We believe
such value varies with respect to the workspace size. For
example, on a larger workspace, the best sample size may
be a larger value. Also, we would like to avoid oversampling
that may happen when there is only a small portion of
the workspace left unexplored. Therefore, we designed the
SO-CPP to determine the sample number and connected
neighbors adaptively. When the workspace is small or the
uncovered region is small, the algorithm could reduce the
sample size to accelerate the computation.

n =

sX

x

X

y

(1� |Ox,y � 1|) (8)

As shown in Eq. 8, the sample size, n, is equal to the



square root of the total number of unobserved cells, and
we define that the number of connected neighbors for each
sample is the square root of the sample size,

p
n. One could

set the minimum and maximum value according to their
computer and workspace. Herein, we set the lower threshold
of n to be 100.

IV. ALGORITHM EVALUATION

The proposed algorithm has been evaluated in a simulated
environment where the seafloor topography (1-m resolution)
is linearly interpolated from a 30-m grid bathymetric map of
the Narragansett Bay, RI, provided by National Oceanic and
Atmospheric Administration (NOAA). The AUV is modeled
using a 6-DOF dynamic model with coefficients from a
REMUS AUV [32]. We constrained the AUV to move at
a constant depth of 10 m at the desired speed of 1 m/s. The
waypoint tracking is realized using the line-of-sight guidance
law [33] with an acceptance radius of 10 m. The sonars
shown in Fig. 1 are modeled using a simple ray-tracing
sonar model which was used in [31] without considering
the multi-path effects. During the simulation, the MBS is
configured with 120 beams (1 deg separation) pinging at 2
Hz with a maximum profiling range of 120 m, and the FSS is
configured to ping at 5Hz with a stepping size of 1.8 deg and
a maximum range of 75 m. The sonar specification represents
a common MBS available from Imagenex or Kongsberg and
a compact FSS available at Tritech, Ecologger or Imagenex.

TABLE I
A SUMMARY OF PERFORMED SIMULATION RUNS WITH SO-CPP

Set workspace [m]
No. runs sample no. obstacle condition W L D
1 360 fixed no 200 500 30-40
2 50 adapitve yes & known 300 500 30-40
3 50 adaptive yes& unknown 300 500 30-40
4 30 adaptive yes& unknown 500 500 30-40

We have run four sets of simulations with the SO-CPP as
summarized in Table 1. At least 30 Monte Carlo runs are
applied to each setting in order to quantify the randomness
induced by the sampling process. The coverage goal for all
simulations is set to 99.9%, and the maximum mission time
is set to 10,000 seconds.

SO-CPP vs. boustrophedon. The first set of simulation
is done at different sample sizes ranged from 20 to 240 with
an increment of 20. The purpose is to compare the cov-
erage performance between SO-CPP and pre-programmed
lawnmower patterns at different inter-distance ranges from
10 m to 50 m. The red and blue markers in Fig. 4(a) show
the final coverage with respect to the total traveling distance
from lawnmower pattern and SO-CPP runs. We observed that
lawnmower pattern could reach the desired coverage ratio
only when the inter-distance is less than 20 m. In contrast,
all the SO-CPP runs yields a final coverage over 99.9%. In
the zoom-in plot, we observed that the the traveling distances
from the 360 runs vary from 4 km to 6.5 km. There are
334 runs and 26 runs on the left-hand-side and right-hand-
side of the red reference curve from the lawnmower surveys,
respectively.

Figure 4(b) shows the resulting traveling distance and
SO-CPP computational time at different sample sizes. The
mission time is observed longer with small sample size
(less then 60), and the averaged mission time was slightly
increased after the sample size has exceeded 100. On one
hand, the long mission time with small sample size may due
to under sample, which results in sub-optimal coverage path
during each planning. On the other hand, the small increase
occurred with larger sample sizes may due to oversampling.
When the vehicle has obtained a relatively high coverage,
e.g., 80%, a large sample size will result in sample clusters
on separated uncovered regions. During the graph building
process, connection may not be established between clusters.
As a result, SO-CPP will produce a sub-optimal route for
the robot. We also have shown the relation between compu-
tational time and the sample size in Fig. 4(b). The SO-CPP
was implemented in MATLAB on a standard configuration
laptop (dual core 3.1 GHz i-7 CPU). A moderate embedded
computer, e.g., Jetson TX-2 or Raspberry PI-4, could offer
a similar computational resources, and we expect the run
time could be reduced if it is implemented in C

++. As a
result, SO-CPP is feasible to implement on marine robots
on a backseat computer for real-world deployments.
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Fig. 4. (a) Final coverage ratio versus traveling distance (blue points:
the SO-CPP runs, red points: lawnmower runs at different inter-distance,
�d). (b) The resulting traveling distance and computational time at different
sample sizes.

Known vs. priorly unknown workspace. Simulation
set No.2 and No.3 are performed on the same workspace
with different initial conditions. In simulation set No. 2,
the obstacles’ shape and location are known. In contrast,
in simulation set No. 3, the obstacles are assumed unknown
initially, and the vehicle uses the FSS to gain incremental
knowledge about the workspace. The CPP algorithm intro-
duced in Section III.B have the replanning feature when the
vehicle finds its path to the next programmed waypoint is
not feasible due to the newly discovered obstacles from the
FSS.

Figure 5(a) presents the resulting vehicle path and the



observation conditions from one simulation run in set No.3.
In Fig. 5(b), we present the histogram of resulting traveling
distances from two simulation sets. We observed that the
mean values from two distributions are similar, meaning the
initial condition of the workspace has minimal effects on the
overall length of the coverage mission.

(a) (b)
Fig. 5. (a) An example coverage mission from simulation set 6, the red
region indicates obstacles, (b) histogram of the resulting vehicle traveling
distance for simulation set No.2 and No. 3.

Limitation and discussion So far, we have presented
promising results that the SO-CPP could be used to cover a
non-convex, convex, or obstacle occupied workspace with
or without prior knowledge about the obstacles and the
seafloor topography. However, during our simulation runs,
we discovered several limitations of the SO-CPP that will
need attention during field deployments. First, the obstacle
shape may be slightly larger due to the morphological closing
algorithm. As shown in Fig. 6 (b) the obstacle’s corners have
been smoothed due to the morphological closing algorithm
and the shape has been enlarged due to the image dilation.
As a result, the coverage ratio maybe slightly over estimated,
especially, when the occupied space is high in the workspace.
One way to overcome this limitation is to implemented
a more universal obstacle contour closing algorithms, e.g.,
image flooding methods.
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Fig. 6. A coverage mission from set No. 4 Left: coverage ratio vs.
traveling distance. Right: overall path and obstacles. Zoom-in: the difference
between the actual obstacle (red) and the SO-CPP described obstacle (black).
The vehicle trajectory is displayed in three stages (blue, red, and black)
corresponding to the coverage stage indicated in the left panel.

To validate that the SO-CPP is capable of guaranteeing
the coverage goal, we performed additional 30 runs on a
larger domain with more obstacles. A time series example
of the result is already shown in Fig. 3, and a final result

is also shown in Fig. 6. From the 30 runs, we observed
that there were 2 runs aborted with a final ratio (98.75%
and 99.84%). During these runs, the robot could not find
a viable route after it has dilated the obstacles’ boundary.
For the remaining successful runs, the resulting traveling
distance is 9.78 km (max. 10.18 km and min. 8.73 km).
To overcome this limitation, one may increase the lower
threshold of the sample size such that more samples could be
drawn to increase the possibility of producing a viable path,
or implement another planning logic (e.g., move towards a
safe direction for a certain distance) to handle this scenario.
However, the first approach will increase the computation
load while the later approach may increase the mission time.

For real world deployment, there are two more factors
needed to be account for. First, we assumed that the vehicle
knows its position during the mapping mission. This assump-
tion is applicable to autonomous surface vehicles (ASVs)
equppied with a GNSS module. On the AUV, localization
is a known problem. In order to compliment the assumption
and make the SO-CPP applicable, approaches could be made
besides implementing sophisticated SLAM algorithm. Since
the path planning are performed intermittently, the AUV
could surface to obtain GPS fixes then use the information
to back propagate its path for the best localization result.
Meanwhile, the sensing confidence map could be updated
based on the updated vehicle trajectory. Alternatively, for
deep water operation, acoustic localization could be used to
derive the geo-referenced location for AUV for trajectory
back propagation. Moreover, environmental factors, such as
waves, tides, and currents are not considered in our simula-
tion as we focus on evaluating the systematic performance of
the algorithm. The environmental disturbance has two major
effects that require attentions during field deployments. First,
the disturbance will make our predicted area coverage less
accurate, affecting the best route selection. Secondly, the
disturbance will affect the moving cost of the robot along
a viable path. To this end, current speed and attack angles
could be integrated into our cost function shown in Eq. 7.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a sampling-based online cov-
erage path planning (SO-CPP) algorithm for robot-based
seafloor mapping applications. The SO-CPP utilizes a guided
probabilistic sampling process to generate candidate way-
points, then applies two-stage optimization to select the
most-rewarding waypoint combination that will be updated
in robot’s guidance system intermittently. The SO-CPP was
validated in a realistic simulation environment. A series of
Monte Carlo runs was conducted to investigate the mission
performance due to different sample sizes and workspaces.
The new algorithm guarantees the overall coverage per
user’s request at a shorter mission time compared to pre-
programmed lawnmower surveys. The algorithm has also
been tested in a obstacle-occupied workspace. The desired
coverage is highly achievable while several limitations has
to be considered during the actual field deployments.



There is still room to improve the SO-CPP. First, robot’s
motion constraint and environmental influence is currently
not considered in the SO-CPP. Implementing a track smooth
procedure (e.g., the optimization mentioned in [34]) could
greatly improve the SO-CPP integration for underactuated
vehicles,. Meanwhile, additional environment-related costs
could be integrated into the multi-variable cost function
as mentioned earlier. Moreover, the vehicle is currently
constrained moving in a 2D horizontal plane. In reality, the
underwater robot could be controlled at different desired
depths to provide mapping data at different resolutions. As
we observed in the simulation, a survey from a further
distance doesn’t always result in a shorter coverage mission
as voids may be left in a swath. It would be interesting to
expand the SO-CPP to a 3D planing space where the sensing
confidence shown in Eq. 4 should be modified to account for
the sensing confidence at different altitudes. Besides covering
a 2.5D seafloor, the SO-CPP should be generalized into
3D environment to fulfill infrastructure inspection missions
both on land and in underwater environments. Currently, the
authors are integrating a sonar system onto an ASV. Field
experiments are planned in the Fall 2022 to demonstrate the
SO-CPP in a real-world environment.
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