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We show that geometric frustration in a broad class of deformable and naturally curved, shell-like
colloidal particles gives rise to self-limiting assembly of finite-sized stacks that far exceed particle di-
mensions. When inter-particle adhesions favor conformal stacking, particle shape requires curvature
focussing in the stack, leading to a super-extensive accumulation of bending costs that ultimately
limit the ground-state stack size to a finite value. Using a combination of continuum theory and
particle-based simulation, we demonstrate that the self-limiting size is controlled by the ratio of the
intra-particle stiffness to inter-particle adhesion, ultimately achieving assembly sizes that are tuned
from a few, up to several tens of, particles. The range of self-limiting assembly is delimited by
the two structural modes of “frustration escape” which evade the thermodynamic costs of curvature
focussing. Crucially, each of these modes can be suppressed through suitable choice of adhesive
range and patchiness of adhesion, providing feasible strategies to program finite assembly size via
the interplay between shape-frustration, binding and deformability of colloidal building blocks.

Advanced methods to control the size, shape and inter-
actions of synthetic particles [1–4] continue to drive re-
markable progress in formation of hierarchical structures
via colloidal assembly. Yet, the prevailing paradigms
almost exclusively target nearly strain-free structures,
whose equilibrium dimensions grow to uncontrolled sizes
to minimize free energy. In contrast, several recent stud-
ies and models point to the possibility of exploiting the
size-dependent costs of geometric frustration to control
the equilibrium finite size and shape of assemblies [5–14].
Biological systems taken advantage of functional proper-
ties of a diverse range of finite assemblies from viral cap-
sids [15–17] and bacterial microcompartments [18, 19] to
structurally colored protein superstructures [20–22] and
multi-filament bundles [23, 24].

Self-limitation in frustrated systems occurs when mis-
fits between the subunits shapes incur elastic costs for
assembly that accumulate superextensively with assem-
bly size [5]. When those costs balance cohesive inter-
actions, they define a thermodynamically selected finite
size that can, in principle, substantially exceed the sizes
of subunits or their interaction range. Self-limitation im-
plies a minimum in the assembly free energy per subunit
at finite aggregation number as well as a pseudo-critical
aggregation transition to a state dominated by finite ag-
gregates at high enough subunit concentration [25]. No-
tably, self-limitation by frustration falls into a funda-
mentally distinct class from more familiar self-limiting
equilibrium mechanisms, including finite-diameter pro-
tein tubules and shells [26] and micellar aggregates of
amphiphiles [27]. In these examples, the curvature of
subunits leads the assembly to close upon itself, achiev-
ing a finite size that determined by the degree of cur-
vature per subunit. In frustrated assemblies, the ability
of an aggregate to “sense” the distance between its open
boundaries relies on formation of coherent gradients of
inter-subunit stress [10].

To date, understanding of this paradigm derives almost

exclusively from continuum theories, where the elastic
costs and magnitudes of frustration are phenomenologi-
cal parameters, and intra-assembly stresses are modeled
in simplified morphologies [6, 7, 12, 28–31]. As such,
these models fail to survey the low-energy, symmetry-
breaking modes of “frustration escape” by which physical
assemblies evade the costs of accumulating frustration.
The few discrete -subunit models of frustrated assembly
studied so far consider only minimal descriptions of elas-
tic polygons with infinitely short-ranged binding inter-
actions, and coarse-grained (i.e. vertex based) elasticity
models [8, 10, 11]. Such models leave open key basic
questions: what is the accessible range of self-limiting
assembly for a given frustrated particle design? How are
self-limitation, or frustration escape, controlled by shape,
deformability and interactions of particles?

In this article, we demonstrate the design of frustrated
colloidal particles that exhibit tunable self-limiting as-
sembly sizes. The misfitting subunits are deformable,
curved elastic shells (dubbed ‘curvamers’) that stack
face-to-face due to short-ranged attractions. Uniform
spacing between conformally-contacting curvamers, how-
ever, yields gradients of local curvature along the stacks
(Fig. 1b), a phenomenon well known in focal conic do-
mains of liquid crystals and geometric optics [32–35], but
which here provides a mechanism to propagate frustra-
tion to especially large inter-particle scales. Analogous
frustration is known in nematic-bend phases of repulsive
“banana shaped" particles [36, 37], but it has only re-
cently been recognized to give rise to accumulation elastic
energy with domain size in their ground states [38, 39].
Here, we show by a combination of analytical theory and
coarse-grained particle simulations that careful design of
the ratio of elastic costs of particle bending and inter-
particle adhesion leads to selected finite sizes up to at
least several 10s of curvamers. We further establish that
ground states escape frustration through principally two
distinct mechanisms of “curvature defocussing”, but that
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Figure 1. (a) Curvamers with preferred curvature radius r0.
(b) Top: Stacking of undeformed curvamers with a nominal
separation distance δ. Bottom: Curvature-focussing, concen-
tric stacking of flexible curvamers (i.e. conformal contact).

self-limitation can be maintained through suitable con-
trol of interaction range and patchiness, design princi-
ples that should be readily achievable with a range of
synthetic colloidal building blocks.

I. CONTINUUM MODEL OF CONFORMAL
STACKING

We begin by developing a simplified analytical theory
of assembly of cylindrically curved shells, which we model
in terms of their 2D cross-sections, ignoring distortions
along their axial direction. As shown in Fig. 1a, the
geometry of each curvamer is defined by a preferred cur-
vature κ0 (i.e. r0 = κ−1

0 is the radius of curvature of
the midline), thickness t, and width w. If curvamers
retain their preferred shape, non-overlap between shells
requires a gap between curvamer surfaces, which is max-
imal at their centers δ ≈ tw2κ2

0/8. The condition of
face-to-face assembly with a perfect, conformal contact
requires the curvamers to bend and deviate from a fixed
shape (Fig. 1b). To stack the (n + 1)th curvamer on
top of curvamer n, perfect contact requires a concentric
stacking, or rn+1 − rn = t, or

κn+1 =
κn

1 + κnt
. (1)

This is the condition of curvature focussing required by
constant spacing between curved surfaces, which intro-
duces shape gradients at the expense of elastic costs of
over- and under-bending of particles. The energy of a
stack of N curvamers is the sum of the adhesive gain
(Ead) and elastic bending costs (Eel),

E(N) = Ead(N)+Eel(N) = −γA(N−1)+
BA

2

N∑
n=1

(
κn−κ0

)2
,

(2)

where γ and B are the adhesive energy (for perfect con-
tact) per unit area and curvamer bending modulus, re-
spectively, and A the area of curvamer surfaces. To un-
derstand the mechanism of self-limitation, we consider
the limit of stacks that are short compared to r0, which
can be analyzed in terms of the curvature at a layer height
z relative to a mid-layer of preferred shape, which ac-
cording to eq. (1) exhibit a linear variation in bending
κ(z) ≃ κ0 − κ2

0z. Averaging bending cost over the stack
of size N , we expect Eel(N) ≈ BAκ4

0t
2N3/24.

Assemblies are dominated by the aggregates that min-
imize the (intra-aggregate) interaction free energy per
subunit [40]. Here, we focus on what limits the exis-
tence of minimum at finite size for sufficiently low T ,
and hence neglect corrections to the assembly energet-
ics arising from intra-aggregate fluctuations, whose dom-
inant entropy is expected to be extensive in aggregate
size for large size. We discuss the role of entropic contri-
butions in the self-limiting assembly of curvamers below.
Considering the “short stack” energy per subunit

E(N)/(AN) ≈ −γ + γ/N +Bκ4
0t

2N2/24 (3)

, we thus expect a selected size

Nmin ≈ (12γ/Bκ2
0)

1/3(κ0t)
−2/3. (4)

A more complete analysis of the continuum model (see
Appendix A) shows that this power-law growth of the
self-limiting stack persists up to a size Nmin ≲ r0/t be-
yond which the selected sizes grow more rapidly as the
mean curvature of all particles begins to flatten with
stack growth. Defining the dimensionless adhesion-to-
bending ratio S ≡ γt/Bκ0, and scaled stack size H =
Nκ0t, the self-limiting size of conformal stacks satisfies
the equation of state (Appendix Eq. A9)

S(Hmin) =
2− 2

√
H2

min + 1

Hmin
+ sinh−1 Hmin (5)

According to this relationship, the power-law scaling for
small stack size, Hmin(S ≪ 1) ∼ S1/3, gives way to ex-
ponential growth Hmin(S ≫ 1) ∼ eS for large S.

II. SIMULATIONS OF DISCRETE CURVAMER
STACKS

A. Finite size selection in colloidal model

Assuming perfect curvamer alignment and conformal
contact, the continuum model predicts that the self-
limiting stack size grows arbitrarily large with increasing
S. To test the limits of self-limitation, specifically the
ability of more complex relaxation modes of curvamer
stacks to circumvent frustration, we turn to numerical
simulations of a 2D coarse-grained curvamer model. We
implement elastic shell mechanics via a bead-spring truss
network (see Fig. 2a and Appendix B for more details),
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Figure 2. (a) Bead-spring construction of the curvamer
model: interaction sites are labeled as colored beads con-
nected by a truss network of harmonic springs (grey). (b)
Pairwise potential between the red-blue pairs and the yellow-
magenta pairs. Inter-curvamer attractions derive from at-
tractive yellow-magenta LJ patches, with shorted-ranged re-
pulsion in the red-blue flanks preventing overlap. (c) Total
adhesion energy between two (flat) particles as function of
scaled center-to-center spacing for variable attractive range
σ = 0.06t, 0.12t, 0.18t.

with rest lengths chosen to set the upper (+) and layer
(-) curvature radii to r± = r0 ± t0

2 and rout = r0 + t0
2 ,

respectively. The isosceles trapezoidal unit cell of this
bilayer structure (Fig. 2a) comprises horizontal, vertical
and diagonal springs with stiffnesses set to achieve the
bending mechanics of an elastic shell of thickness t0 and
Poisson ratio 0.3 (Fig. S3).

To model attractive interactions between curvamers,
we parameterize pair-wise interactions between vertices
on the inner and outer faces of two types: finite range
attraction for an inner patch of width ℓ ≤ w (magenta
and yellow beads in Fig. 2a) and pure repulsion in the
outer flanks of the particle (blue and red beads in Fig.
2a). The pairwise attraction between beads in the inner
patch is given by a shifted Lennard-Jones (LJ) potential

Ua(r) = 4ϵ

[(
σ

r −∆

)12

−
(

σ

r −∆

)6
]
, (6)

where σ is the range of the attractive well and ∆ is a
shift parameter that controls the equilibrium separation
r∗ = 0.71t0 between attractive sites independent of σ.
The LJ potential (with beads placed at a high linear
density, λ = 16.1t−1

0 ) is designed to model favorable uni-
form and frictionless contact with center-to-center spac-
ing between bound curvamers t = t0 + r∗. Outside of
this attractive zone, repulsive interactions (with beads at
the same density λ) are modeled by a Weeks-Chandler-
Anderson like potential whose smooth cut-off is matched
to the minimum of Ua(r) at r∗, such that at perfect con-

Figure 3. (a) Bond distortion for a stack with N = 20 at the
ground state, with bright colors representing higher energy.
Over/underbending deformations – stretching/compression of
horizontal bonds on the top and bottom of particles – are
prominent at the ends of the stack. (b) Normalized energy
per curvamer as a function of stack size, where darker col-
ors represent assemblies with higher bending modulus, where
the ratios γ/(Bκ0

2) and S were varied between 0.09 − 1.44
and 0.01 − 0.22, respectively (see design 2 on table S6). (c)
Relationship between the dimensionless adhesion S and di-
mensionless stack size Hmin for three different curvamer ge-
ometries with κ0t = 0.29, 0.14, 0.09. The dashed line shows
the continuum model.

formal contact, repulsive sites do not contribute to the
net interaction energy between bound curvamers (the re-
pulsion strength is set to 10−3ϵ, with ϵ the attractive
strength in Eq. 6). We define −γA as the total attractive
potential between two conformally contacting curvamers,
and compute it as the depth of attractive interactions
for two planar particles (i.e. flattened shells) shown in
Fig. 2c. We expect a dependence of γ ∝ ϵℓ

√
r∗σλ

2 and
a surface-surface interaction range is close to σ (Fig. 2c).
To map coarse-grained curvamer parameters to the di-
mensionless adhesion S, we assume γ to be independent
of particle curvature, and further measure the shell stiff-
ness B by computing curvamer energy for variable circu-
lar curvatures of the midline (see Figs. S2 and S3).

To assess the assembly energy landscape via a particle-
based model of curvamers, we perform energy minimiza-
tion for stacks of N curvamers, analyzing first the case of
ℓ = w/3, σ = 0.06t and r0 = 7.0t. Beginning from a (cur-
vature focussing) configuration of concentrically stacked
particles, energy is relaxed via a conjugate gradient al-
gorithm in LAMMPS [41]. We verify in Appendix I that
minimization from this initial configuration generically
achieves the lowest energy per particle compared to dis-
tinct initial configurations states. The thermal stability
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Figure 4. (a) Self-limiting stack size vs. dimensionless adhe-
sion for three different ratios of attraction range (σ) to nom-
inal gap size (δ). The two stacks on the inset represent the
self-limiting stacks for σ

δ
= 0.22 and σ

δ
= 0.65 at the same

dimensionless adhesion indicated by the small blue and green
squares, respectively.(b) The radii of curvature (rn) of each
curvamer in the two stacks plotted against their position in-
dex n. The dashed line shows the preferred radius r0.

of these ground states was studied via simulated anneal-
ing as described in Appendix F. Fig. 3a shows the energy
density in the horizontal springs due to variable curva-
ture through the stack thickness (Fig.S8) for the ground
state of an N = 20 curvamer stack. The energy per cur-
vamer plotted in Fig. 3b as a function of the stack size for
a sequence of increasing bending stiffness (corresponding
to S = 0.01− 0.22) shows a global minimum at Nmin, in-
dicative of self-limiting stack assembly [42]. Notably, the
energy minimum shifts to smaller Nmin with increased
bending stiffness (Fig. 3b).

These results confirm that the self-limitation derives
from the accumulated bending strain generated via
curvature-focussing stacking geometry, and further that
the equilibrium stack size decreases with that elastic cost.
In Fig. 3c we compare the optimal stack sizes from the
discrete curvamer model to the continuum results in eq.
(5) for uniform conformal contact. Considering more
than two orders of magnitude in dimensionless adhesion
to bending stiffness ratios S, we find that results from
three different particle curvatures collapse onto a sin-
gle curve whose monotonic increase with S shows good
agreement with the conformal contact model, notwith-
standing the fact that equilibrium shapes of discrete cur-
vamers (Fig. 3a) deviate considerably from the idealized
circular shapes assumed in the model. In the cases sum-
marized in Fig. 3, self-limitation relies on the propaga-
tion of curvature focussing from one end of the stack to
the other, leading to self-limiting sizes that far exceed the
single building block size (i.e. Nmin ≫ 1). Next, we in-
vestigate two mechanisms through which assemblies can
“defocus” curvature propagation and escape the cumula-
tive costs of frustration.

B. Mechanisms of frustration escape and limits of
finite-size selection

The first mode of escape is observed when adhe-
sive interactions between curvamers are sufficiently long-

Figure 5. (a) The energy density for two different adhesive
path sizes for σ = 0.06t, r0 = 3.5t and S = 0.07. For ℓ = w/3
(blue) a minimum indicates a self-limited stack size Nmin =
5, while for ℓ = w (green) energy density decreases below
a metastable minimum at large N . Curvature radii in the
corresponding N = 13 stacks are plotted in the inset. (b)
Comparison on N = 13 stack configurations for l = w/3 and
ℓ = w.

ranged. Intuitively, this can arise when σ is much larger
than the nominal gap size δ between undeformed cur-
vamers, in which case the pair maintains strong adhe-
sion without shape change, or its elastic cost. Fig. 4
shows results for optimal stack sizes for curvamers of
constant shape (r0 = 3.5t), but varying ratio of adhe-
sive range to nominal gap size, σ/δ. The equilibrium
stack size generally exceeds the values predicted for per-
fect conformal contact, but also increases with the in-
teraction range for a fixed dimensions adhesion S. For
example, for S = 0.14, the optimal stack grows from
Nmin = 7 for σ/δ = 0.22 to Nmin = 25 for σ/δ = 0.65
(Fig. 4a). Further, in clear distinction to the conformal
contact model, which predicts self-limiting stacks for all
S, we observe an upper limit to the adhesion strength
Smax above which no minimum in E(N)/N can be iden-
tified, which decreases with increasing σ (Fig. 4a and
Fig. S10). To explain these effects, we compare the
shape profiles of optimal curvamer stacks with two val-
ues of interaction range, σ/δ = 0.22 and 0.65 in Fig. 4b.
While shorter range interactions (blue curve) yield cur-
vature radii that increase roughly linearly with n, cor-
responding to curvature-focussing, longer range interac-
tions (green curve) provide a slower and non-linear in-
crease of curvature radius along the stack. This non-
linear profile indicates the opening of a small gap be-
tween curvamer faces (see Fig. 14), allowing interior cur-
vamers to maintain relaxed and roughly constant curva-
ture shapes closer to the preferred shape. Hence, the
longer range interactions shift the effect of frustration to
strain inter-particle bonds, weakening the effect of cur-
vature frustration. Thus, as σ increases for a fixed S,
the cumulative elastic costs of frustration are reduced,
allowing optimal stacks to reach larger sizes. Ultimately,
the assembly “escapes” frustration when the accumulat-
ing elastic costs of curvature focussing overwhelm the
cost of uniform shape, gap-strained stacking.

The second mode of escape develops by “misalignment"



5

of curvamer binding, and is observed when the size of
binding patch ℓ is increased, permitting low-cost lateral
sliding of bound curvamers. In Figure 5 we compare as-
sembly for short-range adhesion (σ/δ = 0.22) for parti-
cles with a narrow (ℓ = w/3) and broad (ℓ = w) ad-
hesive binding patch. In particular, we consider the en-
ergetic ground states resolved when subjecting the ini-
tially aligned assemblies to simulated annealing at finite
temperature (see Appendix F). Notably, the curvamer
stacks with narrow binding patches retain their align-
ment, such that curvature focussing propagates through-
out the stack height. In comparison, assemblies of cur-
vamers with broad binding patches become unstable to
lateral rearrangement between adjacent curvamers in the
stack. This results in large complex “super -stacks” com-
posed of looser assembly of multiple aligned and concen-
tric “substacks” of ∼ 2 − 4 units. The lateral sliding
between adjacent sub-stacks effectively redirects the cur-
vature focussing to outside of the assembly, allowing the
super-stack to grow larger without generating superex-
tensive elastic costs for shape change.

III. DISCUSSION AND CONCLUDING
REMARKS

In summary, we have demonstrated that geometry of
curvature focussing can be used to design frustration-
limited assemblies of curved colloidal particles, and cru-
cially, explored how particle-scale features controlling in-
teractions inhibit or allow the assembly to escape the
thermodynamic consequences of geometric frustration.
Taken together, these results point to critical features
required for achieving large self-limiting dimensions for
frustration-limited assemblies of curved colloidal parti-
cles: (i) inter-particle adhesion that is effectively “stiffer”
than required intra-particle deformation and (ii) inter-
actions that maintain alignment of curvature frustration
throughout the assembly. Given that these criteria are
met, self-limitation of curvamer assemblies offers impor-
tant advantages over other mechanism of engineered frus-
tration, specifically, the especially large range of self-
limiting stack sizes relative to the single particle size.
For example, a recent experimental design of incommen-
surate DNA origami particles reports self-limiting chains
of mean length ≤ 5 particles or less [9], while simula-
tions of frustrated tubules reported free energy minima
only up to ∼ 4 − 8 particle lengths [11]. As the “escape
size” of assembly derives from the generic competition
between elastic costs of accumulating frustration versus
“flattening out” misfit in an infinite assembly [25]. In cur-
vamer assembly, the latter cost exceeds the former until
the stack thickness reaches ∼ r0, which can be made
arbitrarily large simply by decreasing precurvature, ac-
counting for the large range of equilibria (Nmin ∼ 3−70)
exhibited in our model.

We note that this large range of self-limiting sizes is
expected to be experimentally accessible with synthetic,

shape-controlled colloidal systems. Curved shell-like col-
loidal particles meeting the design specifications illumi-
nated here can be synthesized using shape-shifting hy-
drogel [43] or geometrically-programmed DNA origami
particles [44, 45]. Recently, photolithography of bilayer
hydrogel films has been used to fabricate curved particles
on the colloidal scale [46]. Potential routes to drive cur-
vamer assembly include short-ranged depletion [6, 47] or
DNA-hybridization interactions [48], both of which can
be engineered to maintain a patchy character. Consider-
ing an adhesive attraction of γA ≈ 10 kBT between shell-
like colloids with w ∼ 5 µm and t ∼ 50 nm for elastomeric
curved shells with pre-curvatures κ0t ∼ 10−3 − 10−1 we
expect a bending stiffness in the range B ∼ 103kBT
[49], for which our model predicts self-limitation up to
Nmin ∼ 102. This especially large size range depends
on the unique mechanism of elastic energy accumulation
in curvature focussing assembly, and therefore exhibits
a strong dependence precurvature, Nsim ∼ κ

−4/3
0 , which

grows especially large as curvature is tuned down.
We conclude with a brief discussion of the role of en-

tropy in the self-limiting assembly of curvamers. The
primary entropic costs of assembly arise from the transla-
tion entropy a free subunit gives up to join a large aggre-
gate. For self-limiting assemblies [25, 27], this entropic
trade-off sets a concentration and temperature depen-
dent criterion for assembly, quantified by the so-called
critical aggregation concentration, ϕ∗ ≃ eϵ∗/kBT , where
ϵ∗ is the minimum of the aggregation free energy per
subunit ϵ(N = Nmin). Above saturation, i.e. when
ϕ ≫ ϕ∗, the energetic benefits to assemble into aggre-
gates of size Nmin ≫ 1 overwhelm the translational en-
tropy loss of free subunits, and all but a neglible frac-
tion of the total subunit mass is distributed in aggre-
gates peaked around N = Nmin (and with a size dis-
persity inversely proportional to

√
Nminϵ′′(Nmin)/kBT ).

To a first approximation, at sufficiently low-temperatures
ϵ∗ ≃ E(Nmin)/Nmin, which is directly given by the ener-
getic balance between adhesion and elastic energy accu-
mulation in curvature stacks described above.

Non-zero temperature will lead to aggregation free
energy corrections for a stack of size N of the form
∆F (N) ≈ kBT

[
Nδϵ0 + δϵsub

]
. Here, δϵ0 represents the

leading contributions arising from both the orientational
entropy difference between free and assembled curvamers
as well as the leading terms in the vibrational entropy
of the aggregate (i.e. akin to a fluctuating 1D chain),
both of which are expected be of order unity. Note
this leading term does not alter the N -dependence of
ϵ(N) (or the size of optimal stack), but only shifts the
N -independent value of ϵ∗, and hence the temperature
and concentration dependent threshold for aggregation
ϕ∗. The subleading terms δϵsub are O(N0) (or logarith-
mic) and hence primarily alter the N dependence of ϵ(N)
through a shift of the magnitude of the 1/N terms, in
other words, a temperature dependent correction to the
γ/N surface contributions. As the selected size (deep
in the self-limiting regime) scales weakly with the sur-
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face term, i.e. Nmin ∼ γ1/3, a downward shift in the
effective value of γ by a few kBT will not alter the or-
der of magnitude optimal size, which is most strongly
sensitive to the controlled precurvature of particles. The
expected insensitivity of size limitation to entropic cor-
rections to the aggregation free energy in the curvamer
model is consistent with recent non-zero-T simulations
of a distinct discrete-unit model of frustrated assembly,
non-Euclidean tubules [11].
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Appendix A: Continuum model of aligned,
conformally-stacked curvamer energetics

Here, we describe the energetics of aligned,
conformally-stacked curvamers. Specifically, we consider
stacks of N particles, each of which is assumed to obey
the condition for perfect, conformal contact,

κn+1 =
κn

1 + κnt
, (A1)

where κn is the curvature of the nth particle in the stack,
and the (n+1)th particle is attached to the convex face of
the nth particle. Here we assume that curvature is uni-
form along the curvamer so that the condition of eq. (A1)
implies that curvamers are concentrically stacked circu-
lar arcs throughout the stack, such that the curvature of
all particles can be parameterized by the curvature κ− of
a fictitious n = 0 particle at the bottom of the stack,

κn =
κ−

1 + κ−nt
. (A2)

From this the total elastic energy of the stack is simply,

Eel(N,κ−) =
BA

2

N∑
n=1

(
κn−κ0

)2 ≃ BA

2

∫ N

0

dn
(
κn−κ0

)2
.

(A3)
where in the limit of N ≫ 1 the discrete sum is well-
approximated by the integral given on the right-hand
side. To evaluate this, it is most convenient to define
the reduced curvature k ≡ κ−/κ0 and the scaled height
in the stack h ≡ nκ0t, such that the elastic energy takes
the form,

Eel(H, k) =
BAκ0

2t

∫ H

0

dh
( k

1 + kh
− 1

)2

(A4)

=
BAκ0

2t

[H + kH(H + k)

1 + kH
− 2 ln

(
1 + kH

)]
,

where H = Nκ0t is the reduced stack size. For a given
stack size the curvatures adjust to minimize the elastic
energy, with an equilibrium determined by ∂Eel/∂k = 0,
which has the solution k∗(H),

k∗(H) = 1−H−1 +
√
H−2 + 1. (A5)

At the bottom of the stack the curvature varies from
the preferred precurvature for short stacks (i.e. k∗(H →
0) → 1) to a maximal overcurvature at large stack sizes
(i.e. k∗(H → ∞) → 2).

Inserting the size-dependent curvature into eq. (A4)
yields the variation of elastic energy on stack size,

Eel(H, k∗(H)) =
BAκ0

2t
[
2
√
H2 + 1− 2 +H2

H

− 2 sinh−1 H
]
. (A6)

Notably, this elastic energy exhibits superextensive
growth for small stack sizes Eel ∼ H3. This derives from
the fact that for short stacks, bending strain varies lin-
early in the stack about a “neutral” central particle. For
large stacks, constituent particles flatten with increased
size, leading to an asymptotically constant elastic cost
per particle Eel ∼ H.

Combining the size-dependent elastic energy with co-
hesive energy between the curvamers, we have the total
stack energy,

E(N) = −γA(N − 1) + Eel(N), (A7)

where γ is the cohesive energy per unit length of curva-
ture contact. To assess the size selectivity of the com-
petition between cohesion and elasticity, we consider the
scaled energy per particle,

E(H)

N
= BAκ2

0

(
S

H
+

1

2

[2√H2 + 1− 2 +H2

H2

− 2

H
sinh−1 H

])
− γA, (A8)

where S ≡ γt
Bκ0

is the reduced adhesion. For a given S
the equilibrium stack size is determined by the minimum
of eq. (A8) with respect to H, yielding an equation of
state relating optimal stack size H∗ to cohesion,

S(Hmin) =
2− 2

√
H2

min + 1

Hmin
+ sinh−1 Hmin (A9)

This relationship exhibits a power law relationship at
small size, S ∼ H3

∗ , corresponding to Hmin ∼ S1/3.
Whereas in the large stack limit, S ∼ ln 2Hmin, corre-
sponding to an exponential growth of stack size with co-
hesion Hmin ∼ eS

Appendix B: Design of a curvamer

The geometry of a curvamer is determined from three
independent parameters, r0, θ0, and t0 as shown in table
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Figure 6. Design of a curvamer particle.

Table I. Radius, thickness, and width of curvamers

Parameter Design 1 Design 2 Design 3
r0 30 60 90

θ0 (◦) 90 45 30
t0 5.0 5.0 5.0

w = r0θ0 47.124 47.124 47.124

I. Design 1, design 2, and design 3 represent the cur-
vamers on Fig. 3c of the main manuscript. The internal
network of elastic springs is a repeating array of trape-
zoidal trusses, of vertical height t0 and respective upper
(top) and lower (bottom) horizontal edge widths dt and
db .

To calculate the Cartesian coordinates of the beads in
the curvamer, their corresponding polar angles θi were
calculated from the total angular envelope θ0. From the
minimum angle θmin = 90− θ0

2 and the maximum angle
θmax = 90 + θ0

2 , we find θi = θmin + i θmax−θmin

n−1 , where
n = 150. The radius of curvature of the first bead layer,
rb = r0− t0

2 and the radius of curvature of the second bead
layer, rt = r0+

t0
2 . From these values, the positions of all

beads on both of the layers are calculated as described
below.

Beads on the first layer:

xi,b = A+ rb cos(θi), (B1)

yi,b = B − t0
2
− rb(1− sin(θi)) (B2)

Beads on the second layer:

xi,t = A+ rt cos(θi) (B3)

yi,t = B +
t0
2
− rt(1− sin(θi)), (B4)

where (A,B) is the center of the curvamer.
The spring constants are chosen to match the elas-

tic response of a thin isotropic plate of thickness t0,
Young’s modulus E and Poisson’s ratio ν, derived for
the flat case κ0 = 0. The moduli of such a plate associ-
ated with uniform bending, stretching and shear defor-
mations are B = Et30/(12(1−ν2)), Y = Et0/(1−ν2) and
S = Et0/(2(1 + ν)), respectively. The deformations are
related to the spring deformations of each trapepezoidal
unit cell within the particle (considering the symmetric
case d = db = dt): bending strain κ results in elastic
energy per unit cell

Ebend =
1

4
d2h2khκ

2, (B5)

for transverse stretching ratio ϵ

Estretch =
d4(kc + kh) + d2h2kh(2kc + kv)

d2kv + h2(2kc + kv)
ϵ2 (B6)

and shear σ,

Eshear =
d2h2

d2 + h2
kcσ

2. (B7)

From these three relations, conditions on the ratio of
spring constants are

kv
kh

=
12t20(1− ν)

4t20 − 3d2(1− ν)
(B8)

and

kc
kh

=
3(t20 + d2)(1− ν)

2t20
, (B9)

where d is the average distance between the beads and
ν is the Poisson’s ratio of the curvamer. Since the dis-
tance between the beads of the top (dt) layer and the
bottom layer (db) are different in the isosceles trapezoid,
when κ0 > 0 as shown in Fig. 2a, we consider the mean
distance, davg = d = db+dt

2 , calculated from the bead
positions. We keep the ratios kv

kh
and kc

kh
constant for all

curvamer designs and bending moduli.

Appendix C: Measuring bending energy in curvamer
model

To prepare a curvamer with a radius of curvature r′

that is different from its preferred radius r0, we calculate
its new angular envelope θ′ = w

r′ . Then we find the co-
ordinates of the beads following the equations S11-S14.
When the curvamer relaxes from a flat state to a curved
state with preferred r0, the first (bottom) layer of the
beads shrinks and the second (top) layer of the beads
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Figure 7. Bond energy mapping of a flattened curvamer that
relaxes to its ground state. The higher bond energy at the
initial state is shown by the red color. The bottom layer of the
beads is stretched and the top layer of the beads is compressed
in this state.

Table II. Bead spacing, Poisson’s ratio, and spring constant
ratio

Parameter Value
d 0.3163
ν 0.3
kv
kh

2.1044
kc
kh

1.0542

expands. We measure the bending energy in the sim-
ulation by relaxing a curvamer from different flattened
states (different r′ values) and confirm its linear relation-
ship with increasing (∆κ)2, (where ∆κ = 1

r0
− 1

r′ ), that
resembles a linear elastic material.

Appendix D: Adhesion between two flat plates

The total interaction potential between two flat plates
are calculated by taking the sum of all the inter-bead
potentials.

Figure 8. Linear elastic bending of a model curvamer demon-
strated by the bending energy plot achieved from bending
simulations.

γA =
n∑

i=1

n∑
j=1

4ϵ

[(
σ

rij −∆

)12

−
(

σ

rij −∆

)6
]

(D1)

The yellow-magenta pairs contribute to the total plate
potential significantly as their interaction strength ϵ is
much larger than the interaction strength between red-
blue pairs ϵ′ < 0.0001ϵ where ϵ′ is the repulsive interac-
tion coefficient.

Figure 9. Adhesion energy γA is calculated by integrating the
LJ-potential between the beads at top layer of plate 1 and the
bottom layer of plate 2.

a. Choice of potential parameters To keep the equi-
librium separation distance (t = t0+r∗ = 1.71t0) and the
total adhesion energy (γA) between the plates constant
for all different potential ranges σ, as shown in Fig. 2c in
the main text, we adjusted the ∆ and the ϵ parameters
of the inter-bead potentials to maintain constant t and
γA.

The values of the inter-bead LJ-potental parameters
used in the simulations are listed in tables III, IV and V.

Table III. Short-ranged interaction σ1 = 0.06t

Potential type Parameter Value

Attractive
σ1 0.5
∆1 3.02
ϵ1 3.0

Repulsive
σ′
1 0.5

∆′
1 3.2

ϵ′1 0.0001

Appendix E: Energy ratio, dimensionless
parameters, and self-limiting size

The values of the spring constants, bending energy,
adhesion energy, dimensionless parameters, and self-
limiting stack size shown in plots of Fig. 3c and Fig.
4a of the main text are listed in tables VI and VII.
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Table IV. Medium-ranged interaction σ2 = 0.12t

Potential type Parameter Value

Attractive
σ2 1.0
∆2 2.5
ϵ2 2.1

Repulsive
σ′
2 1.0

∆′
2 2.7

ϵ′2 0.0001

Table V. Long-ranged interaction σ3 = 0.18t

Potential type Parameter Value

Attractive
σ3 1.5
∆3 2.0
ϵ3 1.7

Repulsive
σ′
3 1.5

∆′
3 2.1

ϵ′3 0.0001

Table VI. Simulation parameters used in Fig. 3c

Parameter Design 1 Design 2 Design 3
r0 30(3.5t) 60(7.0t) 90(10.5t)
σ 0.06t 0.06t 0.06t
kh 2.00× 103 − 3.98× 104 6.31× 103 − 1.0× 105 2.00× 104 − 3.16× 105

BA 7.42× 105 − 1.48× 107 2.34× 106 − 3.73× 107 7.42× 106 − 1.18× 108

γA 1.00× 103 9.97× 102 3.31× 102

γ
B

1.00× 10−3 − 6.8× 10−5 4.00× 10−4 − 2.68× 10−5 4.46× 10−5 − 2.81× 10−6

S 0.34− 0.02 0.22− 0.01 0.03− 0.002

Nmin 14− 3 19− 5 10− 5

H 3.96− 0.85 2.69− 0.71 0.94− 0.47

Table VII. Simulation parameters used in Fig. 4b

Parameter Range 1 Range 2 Range 3
r0 30(3.5t) 30(3.5t) 30(3.5t)
σ 0.06t 0.12t 0.18t
kh 8.81× 102 − 3.98× 104 2.15× 103 − 3.98× 104 5.29× 103 − 3.98× 104

BA 3.27× 105 − 1.48× 107 7.98× 105 − 1.48× 107 1.97× 106 − 1.48× 107

γA 1.00× 103 1.00× 103 1.00× 103

γ
B

3.00× 10−3 − 6.83× 10−5 1.3× 10−3 − 6.83× 10−5 5.1× 10−4 − 6.83× 10−5

S 0.78− 0.02 0.32− 0.02 0.14− 0.02

Nmin 69− 3 39− 3 25− 4

H 19.55− 0.85 11.05− 0.85 7.08− 1.13

Appendix F: Energy minimization methods

The initial state of a curvamer stack is prepared so
that the first curvamer at the bottom of the stack is in

its preferred radius r0 and the subsequent curvamers have
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Figure 10. The initial (left) and the minimum-energy final
(right) state of a curvamer stack.

increasing radii of curvature rn = rn−1 + t, as shown in
Fig. 10.

a. Conjugate gradient algorithm Energy minimiza-
tion was implemented by using the built-in Polak-
Ribiere version of the conjugate gradient (CG) algorithm
in LAMMPS (https://docs.lammps.org/minimize.
html). The stopping tolerance for energy, stopping tol-
erance for force, maximum iterations of minimizer, and
maximum number of force/energy evaluations were set
to 10−12, 10−12, 105, and 5× 104.

b. Simulated Annealing We utilize Langevin dy-
namics to control the system’s temperature over the
course of the simulation https://docs.lammps.org/
fix_langevin.html. The curvamers were cooled from
Ti = 1.2ϵ/kB to Tf = 0.0001ϵ/kB over a period of 106

iterations, where each iteration represents a time step of
τ = 0.001s. During each time step, the mean squared dis-
placement of each particle is |∆r|2 = 4Dτ = 4 kBT

γdrag
τ =

0.5× 10−4t2(kBT ).

Appendix G: Radius of curvamers in a stack

We measure the radius of curvature of each curvamer
in a stack rn from the positions of the bead pairs. First,
we find the midpoints of the line segments that connect
the beads of the top layer (P1, Q1, R1, ...) to the beads
of the bottom layer (P2, Q2, R2, ...). From the coordi-
nates of every three midpoints (as shown by P,Q,R on
the left panel of Fig. 12), we calculate a local radius of
curvature. Finally, we calculate the average of all lo-
cal radii measured from the triplets of adjacent points

Figure 11. Energy density plot calculated using conjugate gra-
dient algorithm and simulated annealing method show good
agreement, both resulted in the energy minimum at N = 5.

Figure 12. Left panel: the midpoints (P,Q,R) of the line
segments connecting the beads on the two layers of a model
curvamer. Right panel: All the midpoints in the patchy region
of the curvamer, from which the average radius of curvature
rn is calculated.

Figure 13. The radii of curvature of each curvamer in a stack
of N = 20 as a function of their position index. The black
plot shows the curvature at the initial state and the blue plot
shows the curvature calculated at the ground state after en-
ergy minimization. The horizontal dashed line shows the pre-
ferred radius of curvature, r0 = 60.

https://docs.lammps.org/minimize.html
https://docs.lammps.org/minimize.html
https://docs.lammps.org/fix_langevin.html
https://docs.lammps.org/fix_langevin.html
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Figure 14. Gaps between n-th and n + 1-th curvamer in the
two stacks plotted as a function of curvamer position index.
The magnified image of the gap between the 10th and 11th
curvamer in the large stack (σ/δ = 0.65) shows a small gap
opening compared to the conformal contact between the 3rd
and 4th curvamer in the small stack (σ/δ = 0.22).

along the midline of the attractive patch of the particle
(1, 2, 3), (2, 3, 4), (3, 4, 5), ..., (48, 49, 50) (as shown in the
right panel of Fig. 12), where the local curvature of is
the radius of the circle defined by that triplet. For each
curvamer, we compute a mean curvature radius, rn, by
averaging those radii along the length of the particle.

Appendix H: Escape of curvamer stacking assembly

The gap between the curvamers in two representative
curvamer stack assemblies (shown in Fig. 4b of the main
manuscript) is measured. We define this gap as δ′ and
show that the ratio of this gap to the maximum gap δ
increases in the case of long-ranged interaction σ

δ = 0.65
(Fig. 14).

The escape through long-ranged interaction was inves-
tigated using the energy per curvamer plots as shown
below in Fig. 15. The largest stacks found in these plots
– Nmin = 69 for σ/δ = 0.22, Nmin = 39 for σ/δ = 0.43,
and Nmin = 25 for σ/δ = 0.65 correspond to the largest
H values shown on the plots of Fig. 4a in the main
manuscript.

Appendix I: Ground states vs. stack initialization

We have examined multiple initial stack configurations
and found that the concentric stack with conformal con-
tact is the configuration closest to the T = 0 ground
state. As shown in Fig. 16 (b-c), we achieved the self-
limiting stack with the lowest energy (Nmin = 8) using

Figure 15. (a) Energy per curvamer plots as a function of
stack size for different values of S (σ/δ = 0.22). Because of
the short-ranged interaction, stack size as large as Nmin = 69
is observed for S = 0.783. (b) Energy per curvamer plots as
a function of stack size for different values of S (σ/δ = 0.43).
No energy minimum was found while searching for stack size
up to N = 100 for S = 0.340, resulting in an escape at a
smaller value of S compared to the case of (a). The largest
possible stack size in this case is Nmin = 39. (c) Energy per
curvamer plots as a function of stack size for different values
of S (σ/δ = 0.65). The largest stack found in this case is even
smaller (Nmin = 25) at S = 0.142.
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this initial condition, for both conjugate gradient and
simulated annealing algorithms. The other two initial
conditions (one where all particles have radius r0, an-
other where every other particle has radius r0, shown in
Fig. 16a) result in the formation of two substacks with

N = 4, which has higher energy compared to the N = 8
stack. A stack of flattened curvamers also find the energy
minimum at Nmin = 8. These observations point to the
kinetic barrier related to the merging of two substacks of
N = 4.
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Figure 16. (a) Different initial geometry of a curvamer stack of N = 8: curvature-focused stack with conformal contact
(rn = rn−1 + t), gapped stack (rn = r0), an ensemble of N = 2 substacks, and stack of flattened curvamers (rn >> r0).(b)
Energy per curvamer plot calculated using the conjugate gradient algorithm for four different initial conditions presented in (a).
(c) Energy per curvamer plot calculated using simulated annealing for initial conditions of curvature-focused state and gapped
state. Using both energy minimization algorithms (b-c), the energy minimum at Nmin = 8 is found when initial conditions of
curvature-focused and flattened curvamer stack were applied.
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