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Abstract. Agricultural nitrous oxide (N2O) emission ac-
counts for a non-trivial fraction of global greenhouse gas
(GHG) budget. To date, estimating N2O fluxes from cropland
remains a challenging task because the related microbial pro-
cesses (e.g., nitrification and denitrification) are controlled
by complex interactions among climate, soil, plant and hu-
man activities. Existing approaches such as process-based
(PB) models have well-known limitations due to insufficient
representations of the processes or uncertainties of model pa-
rameters, and due to leverage recent advances in machine
learning (ML) a new method is needed to unlock the “black
box” to overcome its limitations such as low interpretability,
out-of-sample failure and massive data demand. In this study,
we developed a first-of-its-kind knowledge-guided machine
learning model for agroecosystems (KGML-ag) by incorpo-
rating biogeophysical and chemical domain knowledge from
an advanced PB model, ecosys, and tested it by comparing
simulating daily N2O fluxes with real observed data from

mesocosm experiments. The gated recurrent unit (GRU) was
used as the basis to build the model structure. To optimize the
model performance, we have investigated a range of ideas,
including (1) using initial values of intermediate variables
(IMVs) instead of time series as model input to reduce data
demand; (2) building hierarchical structures to explicitly es-
timate IMVs for further N2O prediction; (3) using multi-task
learning to balance the simultaneous training on multiple
variables; and (4) pre-training with millions of synthetic data
generated from ecosys and fine-tuning with mesocosm ob-
servations. Six other pure ML models were developed using
the same mesocosm data to serve as the benchmark for the
KGML-ag model. Results show that KGML-ag did an ex-
cellent job in reproducing the mesocosm N2O fluxes (overall
r2
= 0.81, and RMSE= 3.6 mg Nm−2 d−1 from cross vali-

dation). Importantly, KGML-ag always outperforms the PB
model and ML models in predicting N2O fluxes, especially
for complex temporal dynamics and emission peaks. Be-
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sides, KGML-ag goes beyond the pure ML models by pro-
viding more interpretable predictions as well as pinpoint-
ing desired new knowledge and data to further empower the
current KGML-ag. We believe the KGML-ag development
in this study will stimulate a new body of research on in-
terpretable ML for biogeochemistry and other related geo-
science processes.

1 Introduction

Nitrous oxide (N2O), with its global warming potential
273± 118 times greater than that of carbon dioxide (CO2)
for a 100-year time horizon, is one of the major green-
house gases (IPCC6; Forster et al., 2021). The increasing rate
of atmospheric N2O concentration during the period 2010–
2015 is 44 % higher than during 2000–2005, mainly driven
by increased anthropogenic sources that have increased to-
tal global N2O emissions to ∼ 17 TgNyr−1 (Syakila and
Kroeze, 2011; Thompson et al., 2019). It is estimated that
approximately 60 % of the contemporary N2O emission in-
creases are from agriculture management at global scale
(Pachauri et al., 2014; Robertson et al., 2014; Tian et al.,
2020), but the estimation uncertainty can exceed 300 % (Bar-
ton et al., 2015; Solazzo et al., 2021). Quantifying N2O emis-
sions from agricultural soils is extremely challenging, partly
because the related microbial processes, mainly about in-
complete denitrification and nitrification, are controlled by
many environment and management factors such as temper-
ature and water conditions, soil and crop properties, and N
fertilization rate, all of which together have collectively led
to large temporal and spatial variabilities of N2O emissions
(Butterbach-Bahl et al., 2013; Grant et al., 2016).

Process-based (PB) models are often used for simulating
N2O fluxes from agroecosystems, but they have some in-
herent limitations, including incomplete knowledge of the
processes, low accuracy due to the under-constrained pa-
rameters, expensive computing cost and rigid structure for
further improvements, that we could not resolve by using
PB model itself. For example, an advanced agroecosystem
model, ecosys (Grant et al., 2003, 2006, 2016), simulates
N2O production rates through nitrification and denitrification
processes when oxygen (O2) is limited, with equations con-
sidering the influence from related substrate concentrations
(e.g., NO2

−, N2O and CO2), nitrifier and denitrifier popu-
lations, and soil thermal, hydrological physical and chemi-
cal conditions. The produced N2O accumulates, transfers in
a gaseous phase and an aqueous phase, over different soil
layers, and eventually exchanges with atmosphere at the soil
surface. Other PB models, including DNDC (Zhang et al.,
2002; Zhang and Niu, 2016), DAYCENT (Del Grosso et al.,
2000; Necpálová et al., 2015) and APSIM (Keating et al.,
2003; Holzworth et al., 2014), have also included processes
to simulate N2O production but adopt different parameter-

izations using static partition parameters to estimate N2O
emission from nitrification and other empirical parameters
to control the influence on nitrification from soil water con-
tent, pH, temperature and substrate concentrations. Besides,
N2O is intimately connected with the soil organic carbon
(SOC) dynamics, because soil nitrifiers and denitrifiers inter-
act strongly with aerobic and anaerobic heterotrophs that pro-
cess SOC evolution, and all of these microbes are driven by
shared environmental variables including soil temperature,
moisture, redox status and physical and chemical properties
(Thornley et al., 2007). As expected, these connections make
it difficult for PB models, even the most advanced ones like
ecosys, to find sufficient representations of the physical and
biogeochemical processes or obtain enough data to calibrate
a large number of model parameters with strong spatiotem-
poral variations. Thus, novel approaches are needed for ad-
dressing the big challenge of agricultural N2O flux simula-
tions.

Machine learning (ML) models can automatically learn
patterns and relationships from data. Recent studies have in-
vestigated the potential to predict agricultural N2O emission
with ML models, including random forest (RF, Saha et al.,
2021), metamodeling with extreme gradient boosting (XG-
Boost) (Kim et al., 2021) and deep-learning neural network
(DNN) (Hamrani et al., 2020). Notably, Hamrani et al. (2020)
compared nine widely used ML models for predicting agri-
cultural N2O. That study pointed out that the long short-term
memory (LSTM) model with recurrent networks containing
memory cells as building blocks will be most suitable for
N2O predictions, but the challenge remains with respect to
the ability of capturing the sharp peak of N2O fluxes and
lag time between N fertilizer application and the emission
peak. Although there is an increasing interest in leveraging
recent advances in machine learning, capturing this oppor-
tunity requires going beyond the ML limitations, including
limited generalizability to out-of-sample scenarios, demand
for massive training data and low interpretability due to the
“black-box” use of ML (Karpatne et al., 2017). PB models
with their transparent structures built by representations of
physical and biogeochemical processes seem to be exactly
complementary to ML models. Thus, combining the power
of ML model and PB model understanding innovatively is
likely a path forward.

The above need to integrate ML and PB models can
be potentially addressed by the newly proposed framework
of knowledge-guided machine learning (KGML) models.
In the review by Willard et al. (2020), five research fron-
tiers have been identified regarding the development of
KGML for diverse disciplines including Earth system sci-
ence. They are (1) loss function design according to physical
or chemical laws (Jia et al., 2019, 2021; Read et al., 2019);
(2) knowledge-guided initialization through pre-training ML
models with synthetic data generated from PB models (Jia et
al., 2019, 2021; Read et al., 2019); (3) architecture design ac-
cording to causal relations or adding dense layers containing
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domain knowledge (Khandelwal et al., 2020; Beucler et al.,
2019, 2021); (4) residual modeling with ML models to re-
duce the bias between PB model outputs and observations
(Hanson et al., 2020); and (5) other hybrid modeling ap-
proaches combining PB and ML models (Kraft et al., 2022).
These recent advances in KGML pave the way to a more effi-
cient, accurate and interpretable solution for estimating N2O
fluxes from the agroecosystem.

In this study, we present a first-of-its-kind attempt of de-
veloping a KGML for agricultural global greenhouse gas
(GHG) flux prediction (KGML-ag) with knowledge-guided
initialization and architecture design, and we demonstrate
the potential of KGML-ag with a case study on quantify-
ing N2O flux observed by a multi-year mesocosm experi-
ments. We designed the KGML-ag structure based on the
causal relations of related N2O processes informed by an
advanced agroecosystem model, ecosys (Grant et al., 2003,
2006, 2016). We used the synthetic data generated from
ecosys to design the KGML-ag input and output and to pre-
train the KGML-ag model to learn the basic patterns of
each variable. Observations from multi-season controlled-
environment mesocosm chambers (Miller, 2021; Miller et
al., 2022) were used to refine the pre-trained KGML-ag and
evaluate the model performance. Since there is limited litera-
ture that guides the development of KGML-ag and none that
directly addressed GHG fluxes, we investigated a range of
ideas to optimize the model performance, including (1) us-
ing initial values of intermediate variables (IMVs) instead of
sequences as model input to reduce data demand; (2) build-
ing hierarchical structures to explicitly estimate IMVs for
further N2O prediction; (3) using multi-task learning to bal-
ance the simultaneous training on multiple variables; and
(4) pre-training with millions of synthetic data generated
from ecosys and fine-tuning with mesocosm observations.
Although we evaluated the KGML-ag models with real mea-
surements only from a mesocosm experiment, the lessons
learned from the development process and various KGML-
ag structures can be transferred to other data, other variables
and large-scale simulations and therefore have broader im-
plications for further KGML-related research in agriculture.
We believe this study will stimulate a new body of research
on interpretable machine learning for biogeochemistry and
other related topics in geoscience.

2 Methods

2.1 Experimental design overview

To develop and evaluate the KGML-ag models and compare
their performance with pure ML models, we designed the
following experiments:

1. With the synthetic data, we developed and pre-trained
multiple KGML-ag models to learn general patterns and

interactions among variables and evaluated their model
performance (Fig. S2 in the Supplement and Table 1).

2. With the observed data, we fine-tuned multiple KGML-
ag models to adapt real-world situations and evaluated
their model performance (Figs. 2, 3 and S3–S5 in the
Supplement; Tables 2 and 3).

3. We further benchmarked KGML-ag models and un-
certainties with other pure ML models without con-
sidering temporal dependence, including decision tree
(DT), random forest (RF), gradient boosting (GB) from
the sklearn package (https://scikit-learn.org/stable/, last
access: 15 September 2021), extreme gradient boost-
ing (XGB) from the XGBoost package (https://xgboost.
readthedocs.io/en/latest/, last access: 15 September
2021) and a six-linear-layer artificial neural network
(ANN) with the mesocosm experiment data by 10 re-
peated ensemble experiments (Figs. 4, 5 and S6–S8 in
the Supplement).

4. We conducted a few small experiments to further in-
vestigate how various model configurations, such as the
pre-training process, data augmentation and IMV initial
values, would influence KGML-ag model performance
(Table 3).

2.2 KGML-ag structure development

2.2.1 Generating synthetic data with ecosys

We generated synthetic data using a PB model, ecosys. The
ecosys model is an advanced agroecosystem model con-
structed from detailed biophysical and biogeochemical rules
instead of using empirical relations (Grant, 2001). It rep-
resents N2O evolution in the microbe-engaged processes
of nitrification–denitrification using substrate kinetics that
are sensitive to soil nitrogen availability, soil temperature,
soil moisture and soil oxygen status (Grant and Pattey,
2008). Two groups of microbial populations, autotrophic ni-
trifiers and heterotrophic denitrifiers, produce N2O with spe-
cific competitive or cooperative relations in ecosys when
O2 availability fails to meet O2 demand for their respira-
tion, and NO2

− becomes an alternative electron acceptor.
N2O transfer within soil layers and from soil to the atmo-
sphere is driven by concentration gradient using diffusion–
convection–dispersion equations, in the forms of gaseous
and aqueous N2O under control of volatilization–dissolution
(Grant et al., 2016). Unlike the pipeline model described by
Davidson et al. (2000), which mainly considers the corre-
lations of N2O production with nitrogen availability and of
N2O emissions with soil water content, ecosys enables in-
tegrative effects of energy, water, nitrogen availability on
N2O production and N2O transfer via the microbial popu-
lation dynamics and their interactions with soil, plant and
atmospheric dynamics, under diverse meteorological and an-
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thropogenic disturbances (e.g., runoff, drainage, tillage, ir-
rigation, soil erosion). Many previous studies have demon-
strated its robustness in simulating agricultural carbon and
nitrogen cycling at different spatial and temporal scales and
under different management practices (Grant et al., 2003,
2006, 2016; Metivier et al., 2009; Zhou et al., 2021). For
the agricultural ecosystems in the US Midwest, whose sim-
ulations are used for synthetic data in this study, the per-
formance of ecosys on CO2 have been extensively bench-
marked, including CO2 exchange (daily Reco, R2

= 0.80–
0.86; daily net ecosystem exchange (NEE), R2

= 0.75–0.89)
and leaf area index (LAI, R2

= 0.78) from six flux towers,
USDA census-reported corn yield (R2

= 0.83) and soybean
yield (R2

= 0.80), satellite-derived gross primary produc-
tion (GPP) for corn (R2

= 0.83) and soybean (R2
= 0.85)

in the US Midwest (Zhou et al., 2021). In addition, ecosys
model can capture the dynamics and magnitude of N2O
flux in hourly frequency (R2

= 0.2–0.4 and RMSE= 0.1–
0.2 mgNm−2 h−1 in Grant et al., 2008; R2

= 0.28–0.37 and
RMSE= 0.2–0.28 mg Nm−2 h−1 in Grant et al., 2003) and
in various ecosystems (e.g., agriculture soil in Grant et al.,
2006, 2008; forest in Grant et al., 2010; and grassland in
Grant et al., 2016). Therefore, ecosys is an appropriate choice
of domain knowledge provider and synthetic data generator
in the development of KGML models. We generated daily
synthetic data including N2O flux and 76 IMVs (e.g., CO2
flux from soil, layer-wise soil NO3

− concentration, layer-
wise soil temperature and layer-wise soil moisture, detailed
in Table S1 in the Supplement) from ecosys simulations for
2000–2018 over 99 randomly selected counties in Iowa, Illi-
nois and Indiana, USA. We used hourly meteorological in-
puts (downward shortwave radiation, air temperature, precip-
itation, relative humidity and wind speed) from phase 2 of the
North American Land Data Assimilation System (NLDAS-
2, Xia et al., 2012) and layer-wise soil properties (e.g., bulk
density, texture, pH, SOC concentration) from the SSURGO
database (Soil Survey Staff, 2021) as inputs to ecosys. Crop
management except N fertilization rates were configured to
the same settings as mesocosm experiments (described in
Sect. 2.2.2). To increase the variability in synthetic data, we
implemented 20 different N fertilization rates ranging from
0 to 33.6 gNm−2 (i.e., 0 to 300 lbNac−1) in each simulation
of 99 counties; for more detailed information on model setup,
see Zhou et al. (2021).

The generated synthetic data were then processed for
further use by KGML-ag development. Meanwhile, the
hourly weather forcings were converted to seven daily vari-
ables, including the maximum air temperature (TMAX_AIR,
◦C), difference between the maximum and the minimum
air temperature (TDIF_AIR, ◦C), the maximum humidity
(HMAX_AIR, fraction), difference between the maximum
and the minimum humidity (HDIF_AIR, fraction), surface
downward shortwave radiation (RADN, Wm−2), precipita-
tion (PRECN, mm d−1) and wind speed (WIND, ms−1). Six
soil properties were retrieved from the SSURGO database,

including total averaged (depth weighted averaged for all
layers) bulk density (TBKDS, Mgm−3), sand content (TC-
SAND, gkg−1), silt content (TCSILT, gkg−1), pH (TPH),
cation exchange capacity (TCEC, cmol+ kg−1) and soil or-
ganic carbon (TSOC, g Ckg−1); and two crop properties
were retrieved, including planting day of the year (PDOY)
and crop type (CROPT, 1 for corn and 0 for soybean). Fi-
nally, each synthetic data sample has daily N2O flux, 76 se-
lected IMVs, 7 weather forcings (W), 1 N fertilization rate
(FN, gNm−2) and 8 soil and crop properties (SCPs) (Fig. 1a
and Table S1). The periods from 1 April to 31 July (122 d)
were selected to cover the mesocosm observations (around
30 d before and 90 d after N fertilizer date). The total amount
of synthetic data sample is 122 d× 18 years× 99 counties×
20 N fertilizer rates (about 4.3 million data points). We ran-
domly selected the samples from 70 counties for training, 10
counties for validation and 19 counties for testing.

2.2.2 Mesocosm experiments for KGML-ag model
fine-tuning and evaluation

Observations were acquired from a controlled-environment
mesocosm facility on the St. Paul campus of the Univer-
sity of Minnesota. Soil samples were sourced in 2015 from
a farm in Goodhue County, MN (44.2339◦ N, 92.8976◦W),
which had been under corn–soybean rotation for 25 years.
Six chambers with a soil surface area of 2 m2 and column
depth of 1.1 m were used to plant continuous corn during
2015–2018 and monitor the N2O flux response to differ-
ent precipitation treatments. The experiment also measured
other environmental variables including air temperature and
photosynthetically active radiation (PAR), which were con-
trolled to mimic the outdoor ambient environment. Granular
urea fertilizer was hand broadcasted and incorporated to a
depth of 0.05 m to each chamber at a rate of 22.4 gNm−2

(200 lbNac−1) on 1 May 2015, 4 May 2016 and 3 May
2017, and 10.3 gNm−2 (92 lbNac−1) on 8 May 2018. Corn
hybrids (DKC-53-56RIB) were hand planted to a depth of
0.05 m in two rows spaced 0.76 m apart 3–5 d after fertil-
izer application, at a seeding rate of 35 000 seedsac−1 in
2015 to 2017 and 70 000 seedsac−1 in 2018 but thinned upon
emergence to ensure 100 % emergence at 35 000 seedsac−1.
Crops were harvested at the end of September by cutting
the stover five inches above the soil. Hourly N2O fluxes
(mgN m−2 h−1) and CO2 fluxes (gCm−2 h−1) were mea-
sured using non-steady-state flux chambers with a CO2 ana-
lyzer (LI-10820 for 2016 and LI-7000 for 2017 and 2018, LI-
COR Biosciences, Lincoln, NE) and a N2O analyzer (Tele-
dyne M320EU, Teledyne Technologies International Corp,
Thousand Oaks, CA) (a detail method can be retrieved from
Fassbinder et al., 2012, 2013). We also collected soil mois-
ture at 15 cm depth (VWC as abbreviation of volumetric wa-
ter content, m3 m−3), weekly 0–15 cm depth soil NO3

−
+

NO2
− concentration (NO3

− for short in the following text,
gN Mg−1), soil NH4

+ concentration (NH4
+, gN Mg−1) and
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Figure 1. The model structures. (a) The ecosys model; (b) gated recurrent unit (GRU) model; (c) KGML-ag1 model with a hierarchical
structure; (d) KGML-ag2 model with a hierarchical structure with separated GRU modules for IMV predictions. Specifically, in our KGML
model design, weather forcings (W) include temperature (TMAX, TDIF), precipitation (PRECN), radiation (RADN), humidity (HMAX and
HDIF) and wind speed (WIND); soil/crop properties (SCP) include bulk density (TBKDS), sand content (TCSAND), silt content (TCSILT),
pH (TPH), cation exchange capacity (TCEC), soil organic carbon (TSOC), planting day of the year (PDOY) and crop type (CROPT); IMVs
include CO2 flux, soil NO3

− concentration, soil NH4
+ concentration and soil volumetric water content (VWC).

related environment variables including air temperature, ra-
diation, humidity, and soil and crop properties from three
growing seasons during 2016–2018 and six mesocosm cham-
bers (Fig. S1 in the Supplement). The magnitude of N2O
flux and NO3

− soil concentration and their responses fol-
lowing fertilizer application from this mesocosm experiment
are slightly higher than several field studies of agricultural
soils (Fassbinder et al., 2013; Grant et al., 1999, 2006, 2008,
2016; Hamrani et al., 2020; Venterea et al., 2011). More de-
tails about the mesocosm facility and experimental design
can be found in the thesis of Miller (2021).

The observed data were then processed to fine-tune and
evaluate the KGML-ag models. The N2O flux and four IMVs
and weather variables were collected from the measurements
in the selected period (i.e., 1 April to 31 July). Weekly NO3

−

(short for soil NO3
− within 0–15 cm depth) and NH4

+ (short
for soil NH4

+ within 0–15 cm) were linearly interpolated to
the daily timescale on days containing VWC (short for soil
VWC in 15 cm) data. Hourly air temperature, net radiation,
N2O (short for N2O fluxes from soil), CO2 (short for CO2
fluxes from soil) and VWC were resampled to daily scale.

All SCPs were derived from mesocosm measurements ex-
cept that TCEC was derived from the SSURGO database ac-
cording to the soil origin. We used the leave-one-out cross-
validation (LOOCV) method for the evaluation process. Each
time, we used five chambers’ data for model fine-tuning and
one other chamber’s data for validation. For example, if we
used chambers 1–5 to train the model, then chamber 6 would
serve as the out-of-sample data to validate the results. Only
the validation results would be presented in our study.

To reduce overfitting and increase the generalization of the
trained model based on the small number of mesocosm data,
we applied the following method to augment the experimen-
tal measurements and weather forcings by a factor of 1000
by sampling hourly data and averaging them to daily scale.
In this method, 16 h (or maximum valid hours) of data are
randomly selected from 24 h of data to compute their mean
as the daily value. Since up to two-thirds of the day is cov-
ered by the selected data (16h/24 h), the augmented daily
values should be representative enough for the source day
with slight variations from each other. Furthermore, the ob-
servation ratio, (24h−missing hours)/24h, can be used as
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the weights in loss function to inject the data quality infor-
mation in model optimization. If the day has more than 16 h
missing values, we consider the observations in that day as
not trustworthy and drop the day by setting the weight to 0.
This method can not only augment the data by a factor of
1000 but also deal with the missing values in observed data
inherently. The total number of observed mesocosm data and
related weather forcings are augmented to 122 d× 3 years×
6 chambers × 1000 data samples in this study.

2.2.3 Gated recurrent unit as the basis of KGML-ag

Hamrani et al. (2020) compared different models and re-
ported that LSTM provided the highest accuracy in pre-
dicting N2O fluxes because N2O flux is time-dependent by
its production and consumption nature, and LSTM simu-
lates target variables by considering both current and histor-
ical states. The LSTM model, proposed by Hochreiter and
Schmidhuber (1997), uses a cell state as an internal memory
to preserve the historical information. At each time step, it
creates a set of gating variables to filter the input and histori-
cal information and then uses the processed data to update the
cell state. Similar to LSTM, GRU is a gated recurrent neural
network but only keeps one hidden state (Cho et al., 2014).
Though it is simpler than LSTM, GRU is proven to have
similar performance (Chung et al., 2014). Our preliminary
test on synthetic data for N2O prediction showed that GRU
indeed provided similar or higher accuracy and model effi-
ciency under different model settings than LSTM (Table S2
in the Supplement). This is possible because simpler mod-
els with fewer weights and hyperparameters are more robust
in combating the overfitting problem. Therefore, we choose
GRU as the basis of KGML-ag development.

2.2.4 Incorporating domain knowledge to the
development of KGML-ag

To quantitatively reveal the correlations between N2O fluxes
and IMVs and guide the KGML-ag development, we con-
ducted feature importance analysis by a customized four-
layer GRU ML model (Fig. 1b). Each layer of the model
has a GRU cell with 64 hidden units. The four-layer struc-
ture makes the model deeper and capable of capturing com-
plex interactions. Between each GRU cell, 20 % of the output
hidden states are randomly dropped by replacing them with
zero values (the so-called 20 % dropout) to avoid overfitting.
A dense linear layer is used to map the final output to N2O.
We first trained GRU models using synthetic data with differ-
ent combinations of IMVs as inputs to predict the N2O fluxes
(original test, Table S2). The feature importance analysis of
well-trained models was then implemented by replacing one
input feature with a Gaussian noise with mean µ= 0 and
standard deviation σ = 0.01, while keeping others untouched
(new test). The importance score was calculated by the new
test’s root mean square error (RMSE) (replacing one feature)

minus the original test’s RMSE (no replacing). RMSE was

calculated by
√∑N

1 (yi − y
′

i)
2/N , where N is the total num-

ber of observations across time and space, yi is the ith mea-
surement from synthetic data or observed data and y′i is its
corresponding prediction.

To find important variables for N2O flux prediction in
an ideal situation where all variables are available, we con-
ducted a feature importance analysis for GRU models with
all IMVs and basic inputs including FN, 7W and 8SCP
(Fig. S2a). Results indicated that flux variables including
NH3, H2, N2, O2, CH4, evapotranspiration (ET) and CO2
had significant influence on the model performance. Vari-
ables ranked high in feature importance analysis are con-
sidered with priority during model development. To develop
a functional KGML-ag, we further investigated the feature
importance of four IMVs that are available from mesocosm
observations including CO2, NO3

−, VWC and NH4
+, which

were ranked 7th, 20th, 58th, 60th respectively in 92 input fea-
tures of synthetic data (Fig. S2a). We used these four avail-
able IMVs to create two input combinations: (1) CO2 flux,
NO3

−, VWC and NH4
+ (IMVcb1), and (2) NO3

−, VWC
and NH4

+ (IMVcb2). The objective of building IMVcb2 was
to investigate the importance of the highly ranked variable
CO2 flux (by removing it from the inputs) and the impact
of mixing up flux and non-flux variables on model perfor-
mance. We tested the feature importance of the GRU mod-
els built with IMVcb1 and IMVcb2 to check whether they
would help in N2O prediction (Fig. S2b and c). All the fea-
ture importance results above indicated the correlation inten-
sity between N2O and many other variables, which would
help the KGML-ag model development and interpretation in
this study (rest of this section and Sect. 3.1) and would guide
future N2O-related measurements and KGML model devel-
opment (discussed in Sect. 4.3).

Next, we used the knowledge learned from synthetic data
to develop the structure of KGML-ag (Fig. 1c and d). Previ-
ous studies for KGML models have used physical laws, e.g.,
conservation of mass or energy, to design the loss function
for constraining the ML model to produce physically con-
sistent results (Read et al., 2019; Khandelwal et al., 2020).
However, for complex systems like agroecosystems, it is
challenging to incorporate physical laws, such as mass bal-
ance for N2O, into the loss function due to the incomplete
understanding of the processes and the lack of mass-balance-
related data for validation. An alternative solution is to incor-
porate such information in the design of the neural network
(Willard et al., 2021). Effectiveness of such an approach was
demonstrated by Khandelwal et al. (2020) in the context of
modeling stream flow in a river basin using Soil and Wa-
ter Assessment Tool (SWAT). They used a hierarchical neu-
ral network to explicitly model IMVs (e.g., soil moisture,
snow cover) and their relationships with the target variable
(streamflow) and showed that this model is much more effec-
tive than a neural network that attempts to directly learn the
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Figure 2. Leave-one-out cross validation of time series of N2O flux (mgNm−2 d−1) predicted by the pure non-pre-trained GRU model
(blue line) and KGML-ag1 model (red line). Observations are shown as black line dots. Validation results for each chamber were based on
out-of-sample predictions by models trained by the other five chambers.

relationship between input drivers and the target variables.
Following this idea, we identified four desired features of an
effective KGML-ag model, including the following. (1) We
used initial values instead of sequence of the IMVs from syn-
thetic data or observed data to provide a solid starting state
for the ML system and reduce the IMV data demand and
then used the rest of the data to further constrain the pre-
diction of IMVs. (2) We built a hierarchical structure based
on the structure of process representation in ecosys to first
predict IMVs and then simulate N2O with predicted IMVs.
(3) We trained all variables together using multi-task learn-
ing to reach the best prediction scores, which generalized
the model and incorporated interactions between IMVs and
N2O. (4) We initialized the KGML-ag model by pre-training
with synthetic data before using real observed data to trans-
fer physical knowledge, which further reduced the demand
on large training samples and aided in faster convergence for
fine-tuning.

To meet these desired features, we proposed two KGML-
ag models (Fig. 1c and d). The first model, KGML-ag1,

is a hierarchical structure containing two modules to simu-
late IMVs and N2O sequentially. Each module is a 2-layer
64 units GRU ML model. The inputs to the module of the
KGML-ag1 model for IMV predictions (KGML-ag1-IMV
module) are FN, 7W and 8SCP together with the initial val-
ues of IMVs, and the outputs are IMV predictions. The in-
puts to the module of the KGML-ag1 model for N2O pre-
dictions (KGML-ag1-N2O module) are FN, 7W, 8SCP and
predicted IMVs from KGML-ag1-IMV, and the output is the
target variable N2O. Linear dense layers were coded for both
modules to map output states to IMVs or N2O. The dropout
method was applied to drop 20 % of the state output between
GRU cells and dense layers. The second model, KGML-ag2,
is also a hierarchical structure similar to KGML-ag1, but
has multiple KGML-ag2-IMV modules to explicitly simu-
late IMVs by tuning them separately in the fine-tuning pro-
cess (discussed in Sect. 2.2.5). Each KGML-ag2-IMV mod-
ule in KGML-ag2 is a two-layer 64 units GRU cell with the
inputs of FN, 7W, 8SCP and one IMV initial value and the
output of one IMV prediction. The KGML-ag2-N2O module
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collects the IMV predictions from KGML-ag2-IMV modules
and predicts the N2O with inputs of FN, 7W and 8SCP and
predicted IMVs.

2.2.5 Strategies for pre-training and fine-tuning
processes

To increase the efficiency of the training process, we used
the Z-normalization ((X−µ)/σ , where X is the vector of a
particular variable over all the data samples in the dataset;
µ is the mean value of X; σ is the standard deviation of
X) method to normalize each variable separately on syn-
thetic data. Then the scaling factors (µ, σ ) derived from
ecosys synthetic data for each variable were used to normal-
ize observed data into the same ranges as synthetic data. As
mentioned in Sect. 2.2.1, the TDIF_AIR, HDIF_AIR were
used instead of absolute min temperature (TMIN_AIR) and
humidity (HMIN_AIR). This is done because TMIN_AIR
and HMIN_AIR follow similar trends as TMAX_AIR and
HMAX_AIR, making Z-normalization numerically poorly
defined. Using the difference between maximum and mini-
mum can provide a clearer information of daily air tempera-
ture and humidity variation.

During the pre-training process, we initialized the IMV of
KGML-ag using the first day value of synthetic IMV time se-
ries. Adam optimizer with a start learning rate of 0.0001 was
used for the training process. The learning rate would decay
by 0.5 times after every 600 training epochs. At each epoch,
synthetic data samples were randomly shuffled before being
input to the model to predict N2O (and IMVs if any). The
mean square error (MSE) loss (calculation was equal to the
square of RMSE) or sum of MSE loss (if multi-task learning)
between predictions and ecosys synthetic observations were
calculated to optimize the weights of GRU cells. After the
training process updated the model’s weights, the validation
process was performed to evaluate the model performance
based on untouched samples with RMSE and the square of
Pearson correlation coefficient (r2). The r2 was calculated
as (

∑
i(y
′

i − y
′

i)(yi − yi))
2/(

∑
i(y
′

i − y
′

i)
2(yi − yi)

2), where
yi is the ith measurement from synthetic data or observed
data, y′i is its corresponding prediction, yi is the mean of the
measurement y in diagnosing space and y′i is the mean of

the predicted y′ in diagnosing space. If both validated r2 and
RMSE were better than the best values in previous epochs,
the updated model in this epoch would be saved. Normal-
ized RMSE (NRMSE, calculated by RMSE/(max–min) of
each variable observation) was introduced to evaluate IMV
predictions between variables with different value ranges.

During the fine-tuning process, we used estimated IMV
initial values of 1.0 gCm−2, 0.2 m3 m−3, 0.0 gNMg−1 and
20.0 gNMg−1 for CO2, VWC, NH4

+ and NO3
− respec-

tively, from starting day (1 April) to the day before the
first day of real observations, as input to KGML-ag models.
Then the first-day values of observed IMVs were input into
KGML-ag during the rest of the days of the period as IMV

initial values. In addition, as described in Sect. 2.2.2, we used
a data augmentation method to augment the total number of
data by a factor of 1000 for the fine-tuning process. The pur-
pose of this data augmentation method was to increase the
generalization of the fine-tuned model and to overcome the
overfitting due to small sample size. The mask matrix was
elementarily multiplied to the output matrix to calculate the
MSE, r2 and RMSE only for days with observations. The
similar optimizer was used with an initial learning rate of
0.00005 and decay fraction of 0.5 per 200 epochs. Other
training and validation methods in each epoch were similar
to the pre-training process. Specifically, in the KGML-ag1
model fine-tuning process, we first froze the KGML-ag1-
N2O module and only trained the KGML-ag1-IMV module
for IMVs. After finishing the KGML-ag1-IMV module train-
ing, we froze the KGML-ag1-IMV module and trained the
KGML-ag1-N2O module for N2O. In the KGML-ag2 fine-
tuning process, the similar freezing method was used but dif-
ferent KGML-ag2-IMV modules were trained separately one
by one.

2.3 Development environment description

We used the Pytorch 1.6.0 (https://pytorch.org/get-started/
previous-versions/, last access: 15 September 2021) and
Python 3.7.9 (https://www.python.org/downloads/release/
python-379/, last access: 15 September 2021) as the pro-
gramming environment for the model development. In or-
der to use the GPU to speed-up the training process, we in-
stalled CUDA Toolkit 10.2.89 (https://developer.nvidia.com/
cuda-toolkit, last access: 15 September 2021). A desktop
with NVIDIA 2080 super GPU was used for code de-
velopment and testing. The Mangi cluster (https://www.
msi.umn.edu/mangi, last access: 15 September 2021) from
High-Performance Computing of Minnesota Supercomput-
ing Institute (HPC-MSI, https://www.msi.umn.edu/content/
hpc, last access: 15 September 2021) with two-way NVIDIA
Tesla V100 GPU was used in training processes which con-
sumed longer time and bigger memory space.

3 Results

3.1 Pre-training experiments using synthetic data from
ecosys

In the pre-training stage, the GRU model with 76 IMVs
achieved the best performance in predicting N2O fluxes
(r2
= 0.98, RMSE= 0.54 mg Nm−2 d−1 and normalized

RMSE (NRMSE)= 0.01) on the test set of synthetic data
generated from ecosys (Table 1). The high performance was
due to some flux IMVs such as NH3, H2, O2, CO2 and ET,
which are highly correlated to N2O (Fig. S2a), were used
as input to the model. The good performance of GRU with
all IMVs indicates that ML models are able to perfectly
mimic ecosys when sufficient information about IMVs is
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available. The GRU model with only basic input of N fer-
tilizer rate, seven weather forcings, and eight soil and crop
properties (FN, 7W and 8SCP) had the accuracy of r2

= 0.89
and RMSE= 1.37 mg Nm−2 d−1 (Table 1). The relatively
low performance is likely because this model failed to cap-
ture several highly nonlinear pathways that are employed
by ecosys to predict N2O (e.g., one influence pathway from
precipitation to N2O can be precipitation → soil moisture
→ N component solubility and concentration → nitrifica-
tion and denitrification rate and amount→ soil N2O concen-
tration → gas N2O flux). When adding sequences of IMV
combinations (i.e., IMVcb1 of CO2 flux, NO3

−, NH4
+ and

VWC, and IMVcb2 of NO3
−, NH4

+ and VWC), the GRU
models performed slightly better than the GRU model us-
ing only basic inputs, achieving r2 of 0.92 and 0.90, respec-
tively (Table 1). The KGML-ag1 with IMVcb1 and IMVcb2
initial values provided better performance (both r2

= 0.90)
than GRU with basic input and comparable performance to
the GRU with inputs of IMVcb1 and IMVcb2 sequence. Be-
sides, KGML-ag1 provided predicted IMVs of CO2, NO3

−,
NH4

+ and VWC with r2 over 0.91 and NRMSE below 0.06
(Table 1). KGML-ag2 also provided comparable N2O per-
formance but relatively better IMV performance of r2 over
0.92 and NRMSE below 0.05. Results indicated that KGML-
ag models with IMV initial values as extra input performed
similar or better than pure ML models in synthetic data.

3.2 KGML-ag evaluation using observed data from
mesocosm

After being fine-tuned with observed data, KGML-ag1 had
N2O prediction overall accuracy of r2

= 0.81 and RMSE=
3.6 mg Nm−2 d−1, while the non-pre-trained GRU model
provided r2

= 0.78 and RMSE= 4.0 mg Nm−2 d−1, and the
pre-trained GRU model provided r2

= 0.80 and RMSE=
3.77 mg Nm−2 d−1 (Table 3). The time series of N2O predic-
tions from KGML-ag1 and the non-pre-trained GRU model
were further compared (Fig. 2), from which we found at least
two advantages of using KGML-ag1 for N2O predictions.
(1) For the region without observation data (normally be-
fore day 25), KGML-ag1 predicted stable N2O fluxes close
to 0 mg Nm−2 d−1 (which is close to the reality in the ex-
periment setting), while GRU caused anomalous peaks of
fluxes. This is because KGML-ag1 has learned knowledge
for the whole period from the pre-training process with
ecosys model-generated synthetic data, but the GRU model
has no prior knowledge for the period without any data in
observations. (2) Although KGML-ag1 had a lower accuracy
than GRU in some chambers, KGML-ag1 can better capture
the temporal dynamics of N2O fluxes compare to GRU, espe-
cially when the fluxes are highly variable (e.g., Fig. 2, cham-
ber 2).

To validate KGML-ag1 robustness, we further investigated
the KGML-ag1 and GRU model performance in different
temporal windows, shrinking from the whole period to the

N2O peak occurrence time (days 1–122, days 30–80, days
40–65 and days 45–60 for the years 2016–2018) and per-
formance in N2O flux, first-order gradient of N2O (slope)
and second-order gradient of the N2O (curvature) (Table 2).
Slope represents the speed of N2O flux changes through
time and curvature represents the acceleration. Assessing
prediction performance with these two metrics will reveal
the model robustness on capture variable dynamics, which is
critical when predicting fast-change variables with hot mo-
ments (a short period of time with rare events like flux in-
creasing quickly) like N2O. First of all, the overall r2 and
RMSE of KGML-ag1 for values, slope and curvature were
always better than GRU. In particular, KGML-ag1 captured
the peak region (e.g., days 45–60) much better than GRU in
both magnitude and dynamics (Table 2 and Fig. 2). Even for
chambers 2 and 5 in which KGML-ag1 made worse N2O
predictions than GRU (1r2 ranging from −0.07 to −0.03),
it better captured temporal dynamics than GRU in terms of
slope (1r2 ranging from 0.08 to 0.16) and curvature (1r2

from 0.11 to 0.23) (Table 2). For other chambers, KGML-
ag1 outperformed GRU consistently. For chamber 1, KGML-
ag1 had worse N2O predictions RMSE than GRU but the
1r2 increased as the window shrinks to the peak emission
time (0.07→ 0.13). The slope and curvature for chamber 1
also indicated that KGML-ag1 captured the dynamics much
better than GRU. For chamber 3, KGML-ag1 predicted bet-
ter N2O but presented worse slope and curvature RMSE
than GRU (Table 2). However, when explicitly investigat-
ing the time series of N2O flux, slope and curvature in each
year, KGML-ag1 outperformed GRU more significantly in
2017, the year with more complex temporal dynamics of
N2O fluxes, than in 2016 and 2018, especially for cham-
ber 3 (Figs. 2, S3 and S4). This investigation supported that
KGML-ag1 was more capable for complex dynamics predic-
tions.

Interestingly, the fine-tuned KGML-ag1 model predicted
reasonable IMVs including CO2, NO3

−, NH4
+ and VWC

with overall r2 of 0.37, 0.39, 0.60 and 0.33 and NRMSE of
0.14, 0.21, 0.09 and 0.18, respectively (Table 3). The time se-
ries comparisons between IMV predictions and observations
further indicated that KGML-ag1 could reasonably capture
both magnitude and dynamics (Fig. 3). KGML-ag2 presented
better IMV predictions than KGML-ag1, with overall r2 of
CO2, NO3

−, NH4
+ and VWC increasing by 0.37, 0.17, 0.06

and 0.51, and NRMSE decreasing by 0.05, 0.03, 0.01 and
0.10, respectively, but a slightly lower r2 (decreasing 0.02) of
N2O (Table 3 and Fig. S5). This indicated that explicitly sim-
ulating each IMV with separated KGML-ag2-IMV modules
did not benefit the N2O flux prediction accuracy, likely due to
increasing model complexity which resulted in reduced sta-
bility and ignoring the IMV interactions. In addition, we also
found all KGML-ag models would perform better by using
IMVcb1 (with CO2) than using IMVcb2 (without CO2) in
real data tests, indicating feature importance analysis based
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Table 1. Pre-train results for different model and IMV combinations using ecosys synthetic data. Only the performance from testing datasets
(synthetic data from 19 counties) was presented.

N2O CO2 NO3
− NH4

+ VWC

No. Pre-train
model

Input feature N r2 RMSE r2 NRMSE r2 NRMSE r2 NRMSE r2 NRMSE

1 GRU+76IMVs 76 IMVs+FN+
7Ws+8SCP

0.98 0.54 –∗ – – – – – – –

2 GRU+IMVcb1 4 IMVs+FN+
7Ws+8SCP

0.92 1.15 – – – – – – – –

3 GRU+IMVcb2 3 IMVs+FN+
7Ws+8SCP

0.90 1.26 – – – – – – – –

4 GRU FN+7Ws+8SCP 0.89 1.37 – – – – – – – –

5 KGML-ag1+
IMVcb1_ini

FN+7Ws+
8SCP+4IMV_ini

0.90 1.24 0.91 0.06 0.95 0.03 0.98 0.03 0.95 0.04

6 KGML-ag1+
IMVcb2_ini

FN+7Ws+
8SCP+3IMV_ini

0.90 1.26 – – 0.94 0.03 0.97 0.03 0.95 0.04

7 KGML-ag2+
IMVcb1_ini

FN+7Ws+
8SCP+4IMV_ini

0.90 1.27 0.92 0.05 0.95 0.02 0.98 0.03 0.96 0.04

8 KGML-ag2+
IMVcb2_ini

FN+7Ws+
8SCP+3IMV_ini

0.91 1.19 – – 0.95 0.00 0.99 0.02 0.95 0.04

∗ The empty slot indicates that the model does not predict that variable.

Table 2. Prediction accuracy comparisons between non-pre-trained GRU model and KGML-ag1.

N2O, N2O first-order gradient, N2O second-order gradient,
KGML-ag1 minus GRU KGML-ag1 minus GRU KGML-ag1 minus GRU

All Days Days Days All Days Days Days All Days Days Days
No. timeb 30–80 40–65 45–60 time 30–80 40–65 45–60 time 30–80 40–65 45–60

1r2 a

All data 0.03c 0.04 0.07 0.10 0.07 0.07 0.07 0.15 0.08 0.08 0.09 0.11
Chamber 1 0.07 0.10 0.20 0.13 0.18 0.18 0.19 0.14 0.08 0.09 0.09 0.02
Chamber 2 −0.04 −0.05 −0.07 −0.05 0.08 0.09 0.09 0.16 0.20 0.20 0.20 0.23
Chamber 3 0.06 0.06 0.08 0.06 0.04 0.04 0.04 0.13 −0.01 −0.01 −0.01 0.07
Chamber 4 0.06 0.08 0.12 0.07 0.05 0.05 0.05 0.14 0.07 0.07 0.08 0.12
Chamber 5 −0.05 −0.06 −0.07 −0.03 0.09 0.09 0.10 0.16 0.13 0.13 0.15 0.11
Chamber 6 0.03 0.04 0.08 0.17 0.14 0.14 0.15 0.22 0.12 0.13 0.14 0.23

1RMSEa

All data −0.41 −0.56 −0.84 −1.19 −0.07 −0.10 −0.14 −0.20 −0.03 −0.05 −0.07 −0.08
Chamber 1 0.80 1.06 1.21 1.70 0.00 0.00 −0.02 0.00 0.05 0.07 0.10 0.18
Chamber 2 0.08 0.11 0.07 −0.04 −0.10 −0.13 −0.18 −0.14 −0.10 −0.14 −0.19 −0.22
Chamber 3 −0.71 −0.96 −1.30 −2.09 0.03 0.04 0.07 −0.25 0.09 0.13 0.17 0.08
Chamber 4 −1.68 −2.27 −3.09 −3.81 −0.11 −0.15 −0.21 −0.26 −0.05 −0.07 −0.09 −0.16
Chamber 5 0.53 0.69 0.86 0.99 −0.10 −0.14 −0.20 −0.23 −0.09 −0.12 −0.18 −0.14
Chamber 6 −0.20 −0.27 −0.37 −0.61 −0.14 −0.20 −0.29 −0.33 −0.07 −0.10 −0.15 −0.19

a Leave-one-out cross validation results for each chamber were based on out-of-sample predictions by models trained by other five chambers. The “all data” performance was calculated
by comparing out-of-sample predictions from all validated chambers with observations. The difference of r2 (1r2) and difference of RMSE (1RMSE; units are mg N m−2 d−1,
mg N m−2 d−2, mg N m−2 d−3 for N2O value, first-order gradient and second-order gradient, respectively) were calculated by values from KGML-ag1 minus values from GRU. b

Results from different time windows of different chambers during the period of 1 April–31 July (days 1–122) were detected. c The values not in italics mean KGML-ag1 outperforms
GRU, while values in italics mean the opposite.
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Table 3. Experiments for measuring GRU and KGML-ag model performance and the influence of pre-training process, training data aug-
mentation and IMV initial values.

N2O N2O N2O CO2 NO3
− NH4

+ VWC
first-order second-order
gradient gradient

No. Retrain
model

Experiment r2 c RMSEc r2 RMSE r2 RMSE r2 NRMSE r2 NRMSE r2 NRMSE r2 NRMSE

1 GRU,
baselinea

No
Pre-train

0.78 4.00 0.45 1.27 0.20 0.90 –b – – – – – – –

2 GRU Pre-train 0.80 3.77 0.57 1.12 0.34 0.82 – – – – – – – –
3 KGML-ag1+

IMVcb1_ini
Original
setting

0.81 3.60 0.51 1.20 0.28 0.87 0.37 0.14 0.39 0.21 0.60 0.09 0.33 0.18

4 KGML-ag1+
IMVcb2_ini

Original
setting

0.80 3.71 0.49 1.22 0.21 0.91 – – 0.37 0.22 0.53 0.10 0.33 0.19

5 KGML-ag2+
IMVcb1_ini

Original
setting

0.79 3.77 0.48 1.23 0.22 0.90 0.74 0.09 0.46 0.18 0.66 0.08 0.84 0.08

6 KGML-ag2+
IMVcb2_ini

Original
setting

0.78 3.91 0.47 1.24 0.20 0.91 – – 0.49 0.18 0.69 0.08 0.84 0.08

7 KGML-ag1+
IMVcb1_ini

No
augmenta-
tion

0.80 3.73 0.49 1.22 0.22 0.90 0.38 0.14 0.38 0.21 0.61 0.09 0.37 0.17

8 KGML-ag1+
IMVcb2_ini

No
augmenta-
tion

0.77 4.04 0.41 1.31 0.13 0.95 – – 0.38 0.21 0.53 0.10 0.35 0.18

9 KGML-ag2+
IMVcb1_ini

No
augmenta-
tion

0.76 4.06 0.45 1.27 0.16 0.95 0.69 0.10 0.21 0.25 0.60 0.09 0.80 0.09

10 KGML-ag2+
IMVcb2_ini

No
augmenta-
tion

0.74 4.27 0.48 1.23 0.21 0.90 – – 0.40 0.21 0.60 0.09 0.81 0.09

11 KGML-ag1+
IMVcb1_ini

Zero initial
values

0.48 6.27 0.26 1.49 0.08 1.00 0.19 0.16 0.25 0.25 0.47 0.12 0.14 0.25

12 KGML-ag1+
IMVcb2_ini

Zero initial
values

0.49 5.94 0.31 1.41 0.13 0.95 – – 0.31 0.25 0.38 0.13 0.24 0.25

13 KGML-ag2+
IMVcb1_ini

Zero initial
values

0.48 6.05 0.12 1.66 0.01 1.09 0.58 0.12 0.34 0.25 0.21 0.13 0.56 0.31

14 KGML-ag2+
IMVcb2_ini

Zero initial
values

0.39 6.60 0.15 1.59 0.04 1.01 – – 0.16 0.27 0.27 0.12 0.53 0.31

a Nos. 1–6 include the experiments with original simulation settings as described in Sect. 2, and values in italics refer to the baseline GRU simulation; nos. 7–10 include the experiments without data augmentation during the
fine-tuning process; and nos. 11–14 include the experiments of replacing original IMV initial values with zeros. b The empty slot indicates that the model does not predict that variable. c The leave-one-out cross-validation
overall performance was calculated by comparing out-of-sample predictions (each chamber’s predictions were from models trained by other five chambers) from all validated chambers with observations.

on synthetic data can be a reasonable substitute for analysis
with the often limited real-world data.

3.3 KGML-ag comparing with other pure ML models

The results from eight different models showed that KGML-
ag1 comparing with other pure ML models consistently
provided the lowest RMSE (3.59–3.94 mgN m−2 d−1, 1.14–
1.23 mgNm−2 d−2 and 0.84–0.89 mg Nm−2 d−3) and high-
est r2 (0.78–0.81, 0.48–0.56 and 0.23–0.31) for N2O fluxes,
slope and curvature, respectively (Fig. 4). This indicated
that KGML-ag1 outperformed other pure ML models in
capturing both the magnitude and dynamics of N2O flux.
Meanwhile, we have calculated the uncertainty of meso-
cosm measurement due to converting hourly data to daily
data during 30–80 d by using augmented values minus the
mean of the augmented values with lower and upper lim-
its being −10.2 and 10.4 mg Nm−2 d−1, respectively (stan-
dard deviation = 1.4 mgNm−2 d−1). KGML-ag1 during the
same period has comparable uncertainties based on ensem-

ble simulations with lower and upper limits being −14.4
and 15.2 mgNm−2 d−1, respectively (calculated by ensem-
ble values minus the mean of ensemble values; standard de-
viation of 1.3 mgN m−2 d−1). KGML-ag2 presented slightly
better mean scores for N2O flux predictions than KGML-
ag1, but worse scores for slope and curvature and larger un-
certainties. This proved the hypothesis discussed in Sect. 3.2
that KGML-ag2 did not benefit the magnitude and dynamics
predictions of N2O flux with its more complex structure and
less connections between IMVs.

Within the tree-based models (DT, RF, GB and XGB),
the simplest model DT provided the worst predictions for
N2O flux, slope and curvature. The XGB model provided the
highest N2O flux accuracy with r2 of 0.61–0.63 and RMSE
of 5.07–5.17 mgN m−2 d−1, while the GB model provided
best slope and curvature predictions with r2 of 0.38–0.40
and 0.23–0.26, and RMSE of 1.34–1.37 mgNm−2 d−2 and
0.91–0.95 mgNm−2 d−3, respectively. The highest N2O flux
accuracy and relatively low slope and curvature accuracy of
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Figure 3.
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Figure 3. Leave-one-out cross validation of time series of IMVs predicted by KGML-ag1 model (red line). Observations are shown as black
line-dots. Validation results for each chamber were based on out-of-sample predictions by models trained by other five chambers. Chmb is the
abbreviation for chamber. r2 and RMSE are calculated and present in each year and chamber. The CO2 flux (a) and soil NO3

− concentration
(b) units are gCm−2 d−1 and gNMg−1, respectively. The soil NH4

+ concentration (c) and soil VWC (d) units are gNMg−1 and m3 m−3,
respectively.
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Figure 4. The comparisons of overall prediction accuracy from leave-one-out cross validation for N2O value (a), first-order gradient (slope,
b) and second-order gradient (curvature, c) between four tree-based ML models (DT, RF, GB and XGB), two deep-learning models (ANN and
GRU) and KGML-ag models. The overall performance was calculated by comparing out-of-sample predictions (each chamber’s predictions
were from models trained by other five chambers) from all validated chambers with observations. Different color symbols represent the
different models. The x- and y-error bars are coming from the maximum and minimum scores of ensemble experiments. The dot represents
the mean score of the ensemble experiments.

the XGB model implied that there is a trade-off between the
abilities of capturing dynamics and magnitude.

In the group of deep-learning models including ANN,
GRU and KGML-ag1, ANN provided the worst predictions.
Even with the better N2O flux predictions than most tree-
based models (except XGB), the slope and curvature predic-
tions of ANN were the worst among all eight models. This
implied that the trade-off between accurately capturing N2O
dynamics to magnitude in ANN was significant. But when
considering the temporal dependence, deep-learning models
GRU and KGML-ag1 outperformed all other models in flux,
slope and curvature predictions. This indicated that without
considering temporal dependence the improvement in N2O
flux prediction accuracy could be risky by causing the per-
formance drop in capturing dynamics.

The detailed model comparisons in each chamber are
shown in Fig. 5 (N2O flux) and Figs. S6 and S7 (N2O slope
and curvature), where the results are found to follow the same
pattern as described above. In addition, time series compar-
isons of chambers 3 and 4 in 2017 between different models
are presented in Fig. S8 as two examples. For periods with-
out any observed data, we assumed that the good model pre-
dictions should be stable, consistent with the nearest period
and close to the reality in the experiment setting (e.g., no er-
ratic peak and N2O flux near 0 mgN m−2 d−1 before day 25).
From these comparisons, we infer that without considering
temporal dependence and pre-training process, the tree-based
model including DT, RF, GB and XGB and deep-learning
model ANN predicted erratic peaks in almost every missing
data point, while the GRU model was stable in short missing
period (1–2 d of missing data) and only presented poor per-
formance in long missing period (before day 25). This im-
provement by the GRU model may be attributed to the struc-
ture of GRU that naturally keeps the historical information

using hidden states, which enables GRU to consider the tem-
poral dependence and make consistent predictions over time.

3.4 Influence of pre-training process, data
augmentation and using IMV initial values as input
feature

After we pre-trained the GRU model with synthetic
data, the overall r2 of N2O flux predictions in ob-
served data increased by 0.02, 0.12 and 0.14, and RMSE
decreased by 0.23 mgN m−2 d−1, 0.15 mgN m−2 d−2 and
0.02 mgNm−2 d−3 for flux, slope and curvature predictions,
respectively, compared to non-pre-trained GRU (nos. 1–6 in
Table 3). The gap between the GRU model with pre-train
and KGML-ag1 in N2O value prediction shows the improve-
ment resulting from architecture change (r2 increases by 0.01
and RMSE decreases by 0.17 mgNm−2 d−1). Although pre-
trained GRU had higher slope and curvature prediction ac-
curacy than KGML-ag models, it still could not achieve the
current N2O value prediction accuracy of KGML-ag1. Be-
sides, the KGML-ag models had relatively shallow N2O pre-
diction modules (two-layer GRU KGML-ag-N2O module of
KGML-ag models vs. four-layer GRU) but included modules
for IMV predictions, which therefore increased the model in-
terpretability.

It is worth noting that prediction accuracy of all KGML-
ag models dropped without augmenting the training dataset
in the fine-tuning process (nos. 7–10 in Table 3). Moreover,
the maximum training epochs increased from 800 to 20 000,
which resulted in overfitting on the small dataset. This indi-
cated that the data augmentation indeed helped the models
become more generalizable and gain better accuracy.

Experiments using zero initial values presented a signifi-
cant drop in every variable’s prediction accuracy (nos. 11–14
in Table 3). This indicated that the IMV initial values input
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Figure 5. The comparisons of N2O flux prediction accuracy r2 (a) and (b) RMSE from leave-one-out cross validation, between four tree-
based ML models (DT, RF, GB and XGB), two deep-learning models (ANN and GRU) and KGML-ag models in six chambers. Validation
results for each chamber were based on out-of-sample predictions by models trained by other five chambers. The gray error bars are coming
from the maximum and minimum scores of ensemble experiments.

into the KGML-ag-IMV modules of KGML-ag models in-
fluenced not only the IMV prediction but also the N2O pre-
diction of the KGML-ag-N2O module. This shows that there
is useful information transferred from IMVs in the KGML-
ag-IMV module to the KGML-ag-N2O module.

4 Discussion

In the previous section, we showed that KGML-ag models
can outperform ML models, by invoking architectural con-
straints and PB model synthetic data initialization. Compared
to traditional PB models such as ecosys, KGML-ag models
provide computationally more accurate and efficient predic-
tions (KGML-ag few seconds vs. ecosys half hour), which
is similar to traditional ML surrogate models (Fig. S9 in the
Supplement). But KGML-ag goes beyond that by providing
more interpretable predictions than pure ML models.

4.1 Interpretability of KGML-ag

The proposed KGML-ag models incorporate causal relations
among N2O-related variables and processes as shown in
Fig. S10 in the Supplement. Managements, weather forcings
and initial values of IMVs influence soil water, soil temper-
ature and soil properties, which influence the availability of
O2 and N as well as the microbe populations in soil and fur-
ther influence the nitrification and denitrification rates. N2O
is produced during both nitrification and denitrification when
soil O2 concentration is limited. Our KGML-ag follows this

hierarchical structure by designing KGML-ag-IMV modules
representing the soil processes for IMV predictions (Fig. 1c
and d).

To better explain the time series predictions of N2O flux
(Figs. S1, 2 and 3), we separated the observations of each
year into three periods: leading period (before N2O increas-
ing), increasing period (increasing to the peak) and decreas-
ing period (peak decreasing to near zero). During the leading
period, both NH4

+ and CO2 were increasing immediately in
the following few days following urea N fertilizer applica-
tion, indicating that urea was decomposing into NH4

+ and
CO2 in soil water. With accumulating NH4

+ in soil, nitri-
fication started producing NO3

− and consuming O2. N2O
did not respond to the fertilizer immediately due to enough
O2 in soil. Then when the soil became sufficiently hypoxic,
N2O fluxes entered an increasing period with N2O being
produced by nitrification and denitrification processes. CO2
fluxes were relatively low and NH4

+ kept decreasing dur-
ing this period. Finally, when soil NH4

+ was exhausted and
NO3

− started decreasing due to denitrification, N2O fluxes
then entered the decreasing period. CO2 flux was related to
urea decomposition during the leading period and was more
closely related to O2 demand in other periods. The KGML-
ag predictions of N2O and IMV captured the three periods
and transition points, demonstrating the connections between
those variables following the description as above (Figs. 3
and S5). Although KGML-ag1 obtained lower IMV predic-
tion accuracy compared to KGML-ag2, it captured the gen-
eral trends and was doing better for transitions, especially
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in NH4
+ predictions. KGML-ag2 overfitted on the observa-

tions and ignored the correlations between IMVs, which re-
sulted in loss in pre-train knowledge, poorer performance in
the leading period and erratic predictions in the period with
missing observations (before day 25).

4.2 Lessons for KGML-ag development

The development of KGML-ag in our study is suitable to pre-
dict not only N2O but also other variables, such as CO2, CH4
and ET, with complicated generation processes relying on
the historical states. To develop a capable KGML model, we
need to carefully address three questions.

What kind of ML model is suitable for developing
KGML? The answer could be determined by the dominant
variation type of the target variable in the data. If the dom-
inant type is temporal variance, like flux variables in high
temporal resolution (e.g., daily or hourly), we should con-
sider ML models with temporal dependency. Recurrent neu-
ral network (RNN) models, such as GRU used in this study,
and convolutional neural network (CNN) models, such as ca-
sual CNN (Oord et al., 2016), can be good starting ML mod-
els. If the dominant type is spatial variation, like variables
in coarse temporal resolution (e.g., monthly or annually) but
with high diversity due to soil property, land cover and cli-
mate, we should consider ML models with the ability to deal
with edges, hotpoints and categories, such as CNN.

What physical and/or chemical constraints can be used to
build KGML models? Although physical rules such as mass
balance or energy balance are conceptually straightforward
and were proved capable of constraining KGML in predict-
ing lake phosphorus and temperature dynamics (Hanson et
al., 2020; Read et al., 2019), they were excluded in this study
according to our preliminary analysis. The reason is that the
mass balance equation of N in the agriculture ecosystem
includes too many unknown and unobservable components
such as N2 flux, NH3 flux, N leaching, microbial N, plant N
and soil–plant exchange, which collectively introduce large
uncertainties in balance equations and make them hard to be
directly applied in the KGML-ag framework. Other related
physical (e.g., diffusion, solution) or chemical (e.g., nitrifi-
cation, denitrification) processes cannot be easily added into
the KGML-ag structure as rules due to lack of understanding
of the process. Instead, as mentioned in Sect. 2.2.4, we used
hierarchical structure to enforce an architectural constraint
and causal relations among variables and pre-training pro-
cesses to infuse knowledge from ecosys to KGML-ag mod-
els.

How can PB models be involved in the KGML develop-
ment? An advanced PB model like ecosys built upon bio-
physical and biochemical rules instead of empirical relations
will be a good basis to learn the process, guide the structure
and provide the constraints for KGML. The generated syn-
thetic data in this study helped us to obtain some knowledge
about variables such as their general trends, dynamics and

correlations. Such knowledge can be transferred to KGML
models from synthetic data in the pre-training process, which
can reduce the efforts to collect large numbers of real-world
observation data. Moreover, while KGML shows great po-
tential beyond PB models, we reckon that equally impor-
tant for improving N2O modeling is to continue improving
our understanding of the related processes and mechanisms.
Novel data collection and incorporating new understanding
into PB models (e.g., ecosys) could provide foundation to
further empower KGML (see further discussion in Sect. 4.3).

4.3 Limitation and possible improvement

First, the KGML-ag models in this study are limited by the
available observed data. The mesocosm measurements of
N2O fluxes (16.9± 11.7 mg Nm−2 d−1 during days 45–60;
Highest value is 71 mgNm−2 d−1) and NO3

− soil concen-
trations (59.3± 20.7 g NMg−1 during days 45–60; Highest
value is 95.2 gNMg−1) are at the high end of the range that
has been observed by field studies (Fassbinder et al., 2013;
Grant et al., 1999, 2006, 2008, 2016; Hamrani et al., 2020;
Venterea et al., 2011). Some IMVs with high feature impor-
tance scores (e.g., O2 flux, N2 flux) or at different depths
(e.g., soil NO3

− at 5 cm depth, VWC at 5 cm depth), and
data out of growing seasons are not included. The direct
consequences are that some important processes cannot be
well represented by the current KGML-ag (e.g., O2 demand
and N availability for nitrification and denitrification). Fur-
ther improvement of KGML should consider three categories
of data: target variable N2O flux, IMVs and basic inputs
(Fig. 1a). For N2O flux observation, we lack sub-hourly to
sub-daily observations to capture the hot moment of emis-
sion during 0–30 d after N fertilizer applications. Besides,
the non-growing season can provide 35 %–65 % of the an-
nual direct N2O emissions from seasonally frozen croplands
and lead to a 17 %–28 % underestimate of the global agricul-
tural N2O budget if ignoring its contribution (Wagner-Riddle
et al., 2017), but we can barely find observations from non-
growing seasons. For IMVs, we found the oxygen demand
indicator (e.g., O2 concentration or flux, CO2 flux, CH4 flux),
N mass-balance-related variables (e.g., N2 flux, soil NO3

−,
soil NH4

+, N leaching) and soil water and temperature, can
be used to better constrain the processes and therefore im-
prove the KGML performance. Rohe et al. (2021) also in-
dicated the importance of O2, CO2 and N2 soil fluxes for
N2O predictions. In addition, the layer-wise soil observations
(e.g., soil NO3

−, soil VWC) at 0–30 cm depth can be used to
significantly improve the KGML model quality, according to
our feature importance analysis (Fig. S2a). Moreover, contin-
uous monitoring of these variables during the whole year is
preferred rather than only during the growing season, since
N2O flux is largely influenced by previous states. To apply
the KGML-ag to a large scale, other observational data in-
cluding basic inputs of soil and crop properties (e.g., soil bulk
density, pH, crop type), management information (e.g., fertil-
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izer, irrigation, tillage) and weather forcings along with N2O
flux observations are critical for fine-tuning and validating
the developed KGML-ag and therefore explicitly simulating
the N2O or IMVs dynamics under specific conditions. Re-
cent advances in remote sensing and machine learning have
enabled us to estimate these variables with high resolution at
a large scale (Peng et al., 2020)

Second, the physical and chemical constraints can be
more comprehensive in KGML-ag models. Although cur-
rent KGML-ag models are well initialized with ecosys syn-
thetic data and constrained by causal relations of processes
with hierarchical structure, the predicted N2O flux and IMVs
can still violate some basic physical rules like mass balance.
As we discussed in Sect. 4.2, it will be challenging to add
physical rules like mass balance equation for N in a com-
plicated agriculture ecosystem due to data limitations such
as missing observations on certain key variables. Using in-
equalities instead of equations for mass balance may be one
alternative solution. For example, we could use rectified lin-
ear units (ReLU) to add in a limitation for N mass balance
residues which are calculated from known terms not larger
than an empirical static value. Besides, better understanding
of processes in the N cycle from fieldwork and lab experi-
ments can also help us design new constraints. This limita-
tion is also partially related to the data limitation and can be
overcome by involving more complete N2O data to introduce
more powerful constraints to KGML-ag.

Third, the KGML-ag models are currently suffering from
dealing with physical and chemical boundary transitions.
Boundary transitions are common in the real world, such as
phase change, volume solubility and soil porosity etc. A de-
tailed PB model generally coded plenty of “if/else/switch”
statements inside to deal with the boundaries. But KGML-ag
models based on the GRU are better at capturing continuous
changes, rather than discrete changes. One solution is to in-
clude data with boundary information. In this study, involv-
ing IMVs like O2, CO2 and N2, which already have boundary
information like water freezing point, N pool volumes and
other complicated boundaries related to soil and crop prop-
erties, can significantly improve the model performance. The
data with boundary information could be continuous obser-
vation or estimated value from existing data. By using initial
values to predict IMVs, KGML-ag in this study can partially
solve the boundary transition problem when observation data
are limited. Another solution is designing new structures of
KGML-ag, such as combining the ReLU function, including
CNN models which are robust for discrete situations to the
RNN models or designing new constraints to limit the model
working within the thresholds.

Finally, at the current stage, we can not claim to have com-
pletely opened the black box of KGML-ag, but this frame-
work is a significant step towards this goal. For example,
some ideas implemented in our study, such as using pre-
training to transfer knowledge from a PB model to a ML
model, incorporating causal relations by hierarchical struc-

ture, predicting IMVs for tracking middle changes and using
initial values as input to reduce data demand, would shed
light on the future KGML-ag framework improvement. Be-
sides, we acknowledge the importance of further testing the
KGML-ag over completely independent datasets, but results
presented in this paper are sufficient to justify the power of
KGML as a framework. The mesocosm experiment data we
used in this study have provided a comprehensive set of in-
puts and intermediate variables in addition to the output of
N2O fluxes, thus serving as a unique test bed. We expect to
further validate and refine our KGML-ag model once more
gold-standard data of N2O fluxes along with other relevant
inputs and intermediate variables become publicly available.
Moreover, incorporating more and more domain knowledge
into KGML-ag will be possible for further improvement, but
we do not think KGML-ag will become inefficient as it be-
comes more like the PB model. In fact, to efficiently emulate
components of PB models has been proposed as a research
frontier in hybrid modeling for Earth system science (Reich-
stein et al., 2019; Irrgang et al., 2021), with latest advances
occurring in weather forecasts (Bauer et al., 2021). By using
a hybrid model, computationally inefficient components of
PB can be identified one by one and be replaced with more
efficient ML-based surrogates to eventually obtain the most
efficient model. Further KGML-ag model development will
also need to balance efficiency, accuracy and interpretability.

5 Conclusions

In this study, two KGML-ag models have been developed,
validated and tested for agricultural soil N2O flux predic-
tion using synthetic data generated by the PB model ecosys
and observational data from a mesocosm facility. The re-
sults show that KGML-ag models can outperform PB and
pure ML models in N2O prediction in not only magnitude
(KGML-ag1 r2

= 0.81 vs. best ML model GRU r2
= 0.78)

but also dynamics (KGML-ag1 accuracy minus GRU accu-
racy, slope 1r2

= 0.06 and curvature 1r2
= 0.08). KGML-

ag can also defeat the PB model ecosys in efficiency by com-
pleting ecosys’s half-hour job within a few seconds. Com-
pared to ML models, KGML-ag models can better represent
complex dynamics and high peaks of N2O flux. Moreover,
with IMV predictions and hierarchical structures, KGML-
ag models can provide biogeophysical and chemical infor-
mation about key processes controlling N2O fluxes, which
will be useful for interpretable forecasting and developing
mitigation strategies. Data demand for the KGML-ag mod-
els is significantly reduced due to involving IMV initial val-
ues and pre-train processes with synthetic data. This study
demonstrated that the potential of KGML-ag application in
the complex agriculture ecosystem is high and illustrates pos-
sible pathways of KGML-ag development for similar tasks.
Further improvement of our KGML-ag models can involve
general principles to further constrain the predictions through
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loss functions or architectures, but call for more detailed,
high-temporal-resolution N2O observation data from field
measurements.
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