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A B S T R A C T   

Agricultural N2O emission is a growing concern for climate change. Recent field evidence suggests that non- 
growing seasons (NGS) may contribute one-third to half of the annual N2O emissions, but implications on 
management adaptations remain unclear. Here we used an advanced process-based model, ecosys, to investigate 
the magnitude and drivers of NGS N2O emissions from the US Midwest. Results showed that simulated NGS N2O 
emissions accounted for 6–60% of the annual fluxes under continuous corn systems, peaking in counties with 
NGS precipitation (PNGS) around 300 mm. Divergent patterns of spatial-temporal correlations between NGS N2O 
emissions and environmental variables were shown in the southeast (PNGS > 300 mm) and the northwest (PNGS <

300 mm) of the study area by simulations. Causal analysis indicates that more intensive freezing caused by 
decreased air temperature (Ta) is the dominant driver that leads to NGS N2O emissions increasing within the 
southeast of the study area, while increased PNGS and increased Ta cooperatively result in soil moisture 
decreasing at soil thaws that enhances NGS N2O production within the northwest of the study area. Scenario 
simulations suggest that annual N2O emissions in the US Midwest are likely to reduce under climate change 
primarily due to the reduction of NGS N2O emissions. Our estimates on monetized social benefits inform the 
necessity to implement spatial-specific mitigation strategies, i.e. determining fertilizer timing and use of nitri
fication inhibitors (NI). Spring fertilizer application is more beneficial than fall fertilizer application for most 
counties, however, the latter can bring extra benefits to some counties in the west of the study area. Introducing 
NI with either spring or fall applications can greatly increase social benefits by reducing N2O emissions and N 
leaching. This study addresses possibly effective adaptations by providing seasonal- and spatial-explicit miti
gation potentials.   

1. Introduction 

Nitrous oxide (N2O) has become a growing threat to climate change 
due to its much higher global warming potential compared to CO2 and 
CH4 (IPCC6; Forster et al., 2021) and rapid increase in atmospheric 
concentrations since the 1970s (Prinn et al., 2018; Thompson et al., 
2019). As the largest anthropogenic N2O source, agricultural ecosystems 
contributed 59–66% of the global direct N2O emissions in the past four 

decades, mainly as a result of fertilizer applications (Tian et al., 2020). 
N2O emissions in agricultural soils are characterized by hot spots and 
hot moments (Krichels and Yang, 2019; Waldo et al., 2019), with peak 
N2O pulses observed following rainfall and spring thaw events (Law
rence et al., 2021; Thilakarathna et al., 2020; Wagner-Riddle et al., 
2007). However, quantification of N2O emissions during freeze-thaw 
periods is inadequate as most observations only cover growing seasons 
(GS). Limited site-scale observations reported that non-growing season 
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(NGS) N2O emissions can contribute up to 70–90% of annual total 
emissions in some years (Abalos et al., 2016; Chen et al., 2021; Liu et al., 
2019; Kariyapperuma et al., 2012; Wagner-Riddle et al., 2007). In the 
US Midwest, tall-tower N2O observations suggested that spring thaw and 
early growing season are two dominant modes in seasonal emission 
patterns of local croplands that accounted for 30% and 53% of annual 
emissions, respectively (Griffis et al., 2017). For example, ignoring NGS 
N2O emissions will lead to a 35–65% underestimate in annual emissions 
for seasonally frozen croplands in the North Hemisphere and a 17–28% 
underestimate for global croplands (Wagner-Riddle et al., 2017). These 
NGS N2O emissions are highly variable over space and time due to the 
integrated influence of climatic, soil, and field management conditions 
(Wagner-Riddle et al., 2017; Shang et al., 2020; Chen et al., 2021), but 
are poorly characterized at aggregated scales (Lawrence et al., 2021). 
The effects of fertilizer rate, type, and timing on NGS N2O emissions are 
not as well-known as those on GS N2O emissions (Thies et al., 2020), 
which hinders optimal agricultural mitigation. Although N-fertilizer 
rates (Shang et al., 2020) or the usage of nitrification inhibitors (NI) 
(Chen et al., 2021) are described as less likely to influence the magnitude 
of NGS N2O emissions, some field experiments demonstrated that NGS 
N2O emissions vary with differences in fertilizer states (i.e. liquid or 
solid; Kariyapperuma et al., 2012), fertilizer application methods (i.e. 
broadcast or injected; Adair et al., 2019), and cover crop types (i.e. 
legume or non-legume; Thomas et al., 2017). Other studies found that 
interannual weather variations (Baral et al., 2022; Wagner-Riddle et al., 
2017) and climate differences (Shang et al., 2020) are in control of NGS 
N2O emission variability. 

Freeze-thaw cycles have significant impacts on NGS N2O emissions 
through influencing soil temperature, soil moisture, and gas transfer 
(Koponen and Martikainen, 2004; Risk et al., 2013; Singurindy et al., 
2009). Previous studies inferred that greater NGS N2O emissions are 
associated with greater cumulative freezing-degree days in agricultural 
soils due to developing soil anaerobiosis under freezing (Wagner-Riddle 
et al., 2007,2017; Yanai et al., 2011) and increased mineralization of 
labile C, microbial cytoplasmic release at thaw (Brooks et al., 2005; 
Finger et al., 2016; Schimel et al., 2007). The freezing-thawing effect can 
be further complicated by snow cover, which affects soil temperature 
and hence freezing through insulation and soil moisture through 
snowmelt (Jia et al., 2021; Ma et al., 2018). Some experimental studies 
demonstrated that deeper snow cover will increase soil temperature and 
microbial biomass and consequently lead to increased N cycling rate and 
N2O emissions (Jia et al., 2021; Xu et al., 2021). Moreover, 
freezing-thawing effects can be either enhanced by deeper snow cover 
because of longer freezing and higher soil moisture at thaw (Chen et al., 
2021), or alleviated by deeper snow cover that reduces the freezing 
intensity and lowers soil mineral nitrogen pool by reducing soil aggre
gate disruption (Ruan and Robertson, 2017). Those inconsistent facts 
indicate that freeze-thaw effects are primarily associated with soil 
temperature and/or soil moisture but have spatial and temporal 
differences. 

Field management is another factor that significantly influences NGS 
N2O emissions. It was shown that the magnitude of NGS N2O emissions 
is crucially related to fertilizer type, residue management, irrigation 
regime, and fallow duration (Shang et al., 2020). However, effective 
management practices that mitigate NGS N2O emissions while not 
increasing GS N2O emissions nor damaging crop production are 
understudied. For example, more NGS N2O mitigations are expected for 
fields under fall applications of N-fertilizer, which potentially leads to 
high NGS N2O emissions but is prevalent in some regions due to practical 
and economic considerations (Bierman et al., 2012). Thus, N2O miti
gation under fall fertilizer applications probably needs to prioritize NGS 
consequences. Moreover, effective regional mitigation requires inte
grative assessment of crop production and environmental impact and 
optimize agronomic and environmental benefits (Kim et al., 2021). 
Mitigation hotspots for different practices need to be identified consid
ering the spatial heterogeneity of environmental driving factors and 

their complex interactions with management. Modeling studies that 
enable realistic considerations of management practices will be needed 
to investigate agricultural climate mitigation at a large scale. 

Process-based models (PBMs) that incorporate mechanistic repre
sentations of biophysical and biochemical processes in agroecosystems 
are particularly useful in understanding complex interactions between 
environmental and management factors on N2O emissions, which are 
unlikely to be completely answered by controlled experiments, espe
cially when considering the spatio-temporal variations. PBMs also bring 
along advantages in assessing mitigation effectiveness under different 
management practices and climate change (Giltrap et al., 2020; Gurung 
et al., 2021), thus have been widely used in estimating and predicting 
N2O emissions (Fuchs et al., 2020; Tian et al., 2018; Yue et al., 2019). 
However, hardly any of those models have been proactively utilized to 
evaluate NGS N2O emissions and their importance at a regional scale. 

Here we used an advanced PBM, ecosys, to estimate the NGS N2O 
emissions in croplands in the US Midwest during 2001–2020. Seasonally 
explicit N2O emissions were quantified at the county level to address 
three scientific questions in this study: (i) How much do NGS N2O 
emissions contribute to annual N2O emissions in the study area? We 
quantified the magnitude and variations of NGS N2O emissions from 
corn fields in each county across the Midwest. (ii) What are the key 
environmental drivers in the spatial and temporal variabilities of GS and 
NGS N2O emissions? We used PCMCI (Peter and Clark momentary 
conditional independence), a novel data-driven causal inference method 
(Runge et al., 2019), to better understand the complex and time-lagged 
interactions among multiple variables of interest. (iii) What are the 
spatial-explicit mitigation potentials of different field strategies in the 
context of climate change? To answer this question, we simulated the 
responses of N2O emissions to fertilizer timing, with and without NI 
under different climate scenarios. County-level social benefits under 
alternative N-fertilizer practices were synthesized upon the cost-benefit 
of yield, N2O emissions, N leaching, and change in soil organic carbon 
(△SOC), to assess agronomic sustainability in the study area and 
identify regional hotspots for mitigation. With these evaluations, we aim 
to clarify the magnitude and drivers of NGS N2O emissions in this 
world-leading agricultural region and provide science-informed miti
gation recommendations on combating climate change and environ
mental pollution. 

2. Material and methods 

2.1. Ecosys and model validation 

Ecosys is a mechanistic ecosystem model that has been widely used in 
various ecosystems (Grant et al., 2009, 2011; Mekonnen et al., 2019). It 
is developed on primary biophysical and biochemical principles and 
formulated with coupled energy, water, carbon, and nutrient cycles in 
the soil-plant-atmosphere continuum (Mekonnen et al., 2019). With 
model representations of major agricultural managements, including 
fertilization, tillage, irrigation, and drainage, ecosys has been extensively 
validated via laboratory and in-situ observations regarding energy, 
water, carbon, and nutrient dynamics (Grant and Nalder, 2000; Grant 
et al., 2010, 2020a). Robust simulations of those processes are important 
to constrain N2O emissions driven by soil carbon and nitrogen trans
formations through processes of microbial respirations, which are 
influenced by soil energy and water statuses. Particularly, the ability of 
ecosys to simulate responses of agricultural N2O emissions to soil tem
perature (Grant and Pattey, 2008), N-fertilizer type (Mezbahuddin et al., 
2020) and rate (Grant et al., 2006), and the use of NI (Grant et al., 
2020b) have been demonstrated. 

Rather than using simple empirical relationships, ecosys implements 
a comprehensive and mechanistic approach to simulate soil N2O evo
lution from basic kinetics of microbial respiration that is interactively 
controlled by temperature, water, mineral nutrient, and O2 (Grant and 
Pattey, 2008). N2O is a product during both nitrification and 
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denitrification by two groups of microbial populations, including auto
trophic nitrifiers and heterotrophic denitrifiers. Nitrifier respiration 
(nitrification) in ecosys is assumed to use NH3 as the energy source and 
CO2 as substrate (Grant et al., 2016). When O2 availability fails to meet 
O2 demand, nitrifiers will use NO2

− as alternative electron acceptors to 
meet electron demand and generate N2O. The N2O evolution via deni
trifier respiration is built upon the kinetics that the demand of acceptors 
for electrons unmet by O2 will be met by NO3

−, NO2
− and N2O sequen

tially, with NO2
−, N2O as intermediate products and N2 as the final 

product (Grant and Pattey 2003; Grant et al., 2006). The produced N2O 
undergoes volatilization-dissolution between aqueous and gaseous 
forms, and is transferred by diffusion-convection-dispersion driven by 
concentration gradients in different soil layers and between the soil 
surface and the atmosphere. Diffusivity for gaseous N2O and dispersivity 
for aqueous N2O are calculated from air-filled porosity and water-filled 
porosity, respectively (Grant et al., 2016). Nitrification inhibitors are 
assumed to reduce specific rates of NH4

+ oxidation by nitrifiers. The in
hibition efficiency is initialized to 1 (i.e. complete inhibition) at the time 
of application and then degrades by each time step as a function of soil 
temperature and a degradation constant (Grant et al., 2020b). 

In the U.S. Midwest, ecosys has been calibrated and validated for 

carbon dynamics including gross primary productivity (GPP), ecosystem 
respiration (Reco), net ecosystem exchange of CO2 (NEE, NEE=Reco - 
GPP), and leaf area index (LAI) at field-scale and regional-scale (Li et al., 
2022; Qin et al., 2021; Zhou et al., 2021). Incorporating these processes, 
we further conducted site-scale model validations for soil temperature 
(Ts), soil water content (SWC), and N2O flux. Four agricultural sites 
(Ne1–3, Ro5) from the AmeriFlux network (https://ameriflux.lbl.gov/) 
were used to evaluate the model performances on simulating GPP, Reco, 
NEE, and Ts and SWC at a soil depth of 10 cm (Table S1). Validations of 
energy, water, and carbon variables ensure reliable simulations of the 
biophysical environment that is related to N2O production. Three sites 
(ARL, NWR, and BRD) with weekly/biweekly N2O observations 
covering growing seasons (static chambers were used) and one site 
(KBS) with daily N2O observations during winters (automated chambers 
were used) were used to validate the simulation of N2O fluxes 
(Table S1). Model performances in NGS on snow depth and soil tem
perature were evaluated along with N2O flux at KBS during the winters 
of 2010–2013. Moreover, we collected 38 site-year estimates of cumu
lative N2O emissions and 92 site-year corn yield observations at sites 
with or without NI (Table S2), and additional 70 site-year estimates of 
cumulative N2O emissions and corn yield observations from sites not 

Fig. 1. Model validations of ecosys. (a) Locations of validation sites in the Midwest: flux tower sites (star) Ne1, Ne2, Ne3, and Ro5, for the validations of CO2 flux, soil 
temperature, and soil moisture; sites ARL, NWR, BRD, and KBS (circle) for the validation of N2O flux; sites not using nitrification inhibitors (NI) in 8 states (triangle) 
and sites with controlled experiments using NI in five states (cross) for the validation of cumulative N2O emission and corn yield (purple cross denotes that the site 
only has corn yield data). The upper right map shows the study area in the contiguous US. Comparison of simulated and measured (b) annual cumulative N2O 
emissions and (c) corn yield at sites with controlled experiments of with vs. without NI, and the mean + std of the simulated and measured (d) annual cumulative N2O 
emissions and (e) corn yield. Spring and Fall indicate the fertilizer timing and NI indicates the use of NI. Gray lines indicate fitted linear regression and the error bar 
indicates the standard deviation of observations or simulations. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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using NI to benchmark the model performance on quantifying annual 
N2O emissions (Fig. 1a). This dataset results in 108 site-year estimates of 
cumulative N2O emissions across eight Midwestern states. In this study, 
soil information from Gridded Soil Survey Geographic Database 
(gSSURGO, Soil Survey Staff 2021) was used to drive the model simu
lations (i.e., bulk density (BD), field capacity (FC), wilting point (WP), 
soil texture, saturated hydraulic conductivity (KSat), soil organic carbon 
(SOC), pH, and cation exchange capacity (CEC)). Five meteorological 
variables for driving the model including air temperature (Ta), precipi
tation (P), relative humidity (H), wind speed (WS), and net solar radi
ation (Rn) were derived from the NLDAS-2 dataset (Xia et al., 2012a, 
2012b), except for the four AmeriFlux sites, where local observations 
were available. 

2.2. County-level simulations 

To quantify the regional N2O variability, we conducted county-level 
simulations across 13 US Midwestern states (ND, SD, NE, KS, MN, IA, 
MO, WI, IL, IN, MI, OH, and KY). Weather information was generated 
from NLDAS-2, which has a 0.125 ◦ spatial resolution, for each county at 
its geometric centroid (air temperature and precipitation are shown in 
Fig. S1). For each county, the top five cropland soil map units with the 
largest areas in gSSURGO were used to generate five soil profiles. The 
outputs of five simulations conducted separately using the five soil 
profiles were area-weighted to represent the model simulation for a 
county. The simulation period was set as 2000–2020 following 20 years 
of spin-up (1980–1999) under rainfed continuous corn systems. Planting 
dates at the state level from USDA National Agricultural Statistics Ser
vice (NASS) were linearly interpolated to the county level and applied in 
the simulations. Corn-specific N-fertilizer inputs at the county level 
(Fig. S1) were obtained from the product developed by Xia et al. (2021), 
whose estimation was based on the Nutrient use Geographic Information 
System (NuGIS, Fixen et al., 2012). The same rate of N-fertilizer was 
assumed to be applied (injected at 10 cm depth with 0.76 m row space) 
each year on the planting day during the simulation period since 
state-level N-inputs were relatively stable after 2000. N-fertilizer type 
was set as the commonly used urea-ammonium nitrate (UAN), which 
contains 25%, 25%, and 50% of the total nitrogen coming from 
ammonium, nitrate, and urea, respectively. For statistical purposes, the 
NGS of a year was considered from November 1st of last year to April 
30th of the current year, and May 1st-October 31st was taken as the GS. 

For the baseline county-level simulation above, N-fertilizer was 
assumed to be applied in spring on the same day as planting. To further 
investigate the effect of fertilizer timing, we compared the baseline 
simulation (spring application) with three other fertilizer scenarios: fall 
application, spring application with NI, and fall application with NI. 
Eight climate-management scenarios were developed based on the 
combination of two fertilization timings (spring and fall) and four hy
pothesized climatic conditions: moderate warmer and wetter (MWW, 
annual T + 1 ◦C, annual P + std), moderate warmer and drier (MWD, 
annual T + 1 ◦C, annual P - std), intense warming and wetter (IWW, 
annual T + 2 ◦C, annual P + std), and intense warming and drier (IWD, 
annual T + 2 ◦C, annual P - std). The experiment design resulted in 12 
scenarios in total (Table S3). 

The method to calculate social benefits was adapted from Kim et al. 
(2021) with the adjustment that we added for non-fertilizer costs 
(including estimates on pesticides, seed, drying, storage, crop insurance, 
power, overhead, and land costs). Social benefit (SB) is estimated with 
the following equation: 

SB = yield × (Pyield - Cnon-fert) - Nfert × Cfert + (GHGN2O + GHG△SOC) 
× CGHG - N leaching × Cleaching where Pyield is corn price ($/t) and Cnon- 

fert is the non-fertilizer cost in corn production ($/t); Nfert is N-fertilizer 
rate and Cfert is fertilizer price ($/kg N); GHGN2O and GHG△SOC are N2O 
emissions and ΔSOC converted to CO2 equivalent (CO2e) greenhouse gas 
(GHG) emissions (t CO2e/ha/y), respectively; N leaching is nitrogen 
leaching attached to groundwater discharge and runoff (kg N/ha/y); 

CGHG and Cleaching are social costs of GHG emissions ($/t CO2e) and N 
leaching ($/kg N). Corn price and non-fertilizer costs scaled by yield 
were set to 170 $/t and 135 $/t as in 2020 (Schnitkey et al., 2021). The 
fertilizer price was set to 1.15 $/kg N (Kim et al., 2021). N2O emission 
was converted into 265 times CO2e based on its global warming po
tential for a time horizon of 100 years (IPCC5; Pachauri et al., 2014). 
The price of CO2 was set to $50/t according to the Interagency Working 
Group’s central estimate (IWG, 2016; Revesz et al., 2017). The cost for N 
leaching was estimated at 2.44 $ /kg N based on damage cost from 
groundwater N loading (Sobota et al., 2015). The density of social 
benefit was estimated as quantity per ha, and county-level social bene
fits were obtained by multiplying corn production acres from the USDA 
census data in 2017 (USDA, 2017). 

2.3. Causal analysis 

With the results of county-level simulations, we first tested linear 
correlations between NGS N2O emission and environmental variables. 
To better understand the underlying relationships in NGS, we intro
duced a novel data-driven causal inference method, PCMCI (Peter and 
Clark momentary conditional independence, Runge et al., 2019), for 
discovering and quantifying the causal interdependencies. PCMCI has 
advantages in the identification of common drivers and time-lagged 
links among variables in complex ecosystems (Runge et al., 2019). 

We used different climate and soil variables in the causal analysis, 
including four climatic variables (Ta,NGS, PNGS, snowfall (SWF), and 
snow depth (SWD)) and seven soil variables (Ts,NGS at 5 cm depth, 
SWCNGS at 5 cm depth, soil ice content at 5 cm depth (SICNGS), 
SWCNGS+SICNGS, soil aqueous O2 concentration at 5 cm depth (O2,NGS), 
soil N2O concentration at 5 cm depth (N2Osoil,NGS) and soil N2O flux 
(N2Oflux,NGS)). Ta (◦C) was calculated as the monthly mean and P (mm) 
was calculated as monthly accumulation. SWF (mm) was filtered as 
monthly cumulative precipitation when Ta < 0 ◦C. Monthly means of 
SWD (mm), Ts (◦C), SWC (m3/m3), SIC (m3/m3), O2 (g O2/m3), N2Osoil (g 
N/m3), and monthly cumulative N2Oflux (g N/m2/month) were calcu
lated from the model outputs of county-level simulations. These vari
ables were selected based on the results of correlation detections 
between N2O emission and environmental variables. 

In this study, PCMCI tests based on partial correlation were adopted 
to perform two steps of causal analysis: (1) detecting the in
terdependencies among climatic variables and three soil variables: SWC, 
SIC, and Ts; and (2) detecting the interdependencies among soil vari
ables and N2Oflux. This step division assumes that climatic variables 
directly influence soil temperature and soil moisture (SWC, SIC, and Ts), 
and these variables work as drivers of other soil attributes. Considering 
the spatial difference shown in correlations results, cumulative freezing- 
degree days (CFD) was used as an indicator to outline two regions for the 
causal analysis: the northwest region, which showed negative correla
tions between CFD and NGS N2O; and the southeast region, which 
showed positive correlations. The causal interdependencies among cli
matic drivers, soil variables, and N2O emissions were detected sepa
rately for the two regions. The magnitude of the causal effect between 
any two variables was described using link strength (-1 to 1), and the 
effect size of a pathway was calculated by multiplying all associated link 
strengths from a climatic driver to N2Oflux, with positive/negative values 
indicating positive/negative overall impacts. 

3. Results 

3.1. Site-scale model validations 

The simulated and observed daily N2O fluxes showed good consis
tency in magnitude and seasonal pattern (Fig. S2). It captured major 
peaks of N2O pulses that occurred in spring thaw periods or fertilization 
periods, for example, the thaw emissions in March and peak emissions in 
July at ARL1, 2011 (Fig. S2a). However, the variation in replicate 
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measurements suggests that there are larger uncertainties with peak 
N2O pulses. Model validations at KBS specifically demonstrated the 
performances of ecosys on simulating snow depth (SWD, RMSE = 53–67 
mm), soil temperature (Ts, RMSE = 1.2–1.8 ◦C), and NGS N2O flux 
(RMSE = 0.005–0.024 kg N/ha/d) during the winters of 2010–2013 
(Fig. S3). Only small N2O fluxes were observed and simulated at KBS and 
spring thaw periods were not covered in the observations (Fig. S3), 
which limited the model capacity to perfectly capture N2O dynamics in 
some periods due to large uncertainties existing in both observations 
and model forcing. The model-data comparisons at the four flux tower 
sites showed that ecosys can well capture the dynamics of long-term 
GPP, Reco, NEE, Ts at 10 cm depth, SWC at 10 cm depth (Fig. S4, 
Table S4). 

The measured and simulated annual cumulative N2O emissions (R2 

= 0.64, RMSE=0.89 kg N/ha/y) and corn yield (R2 = 0.83, RMSE=1.91 
Mg/ha) showed similar ranges and good consistency (Fig. 1b and c). The 
mean standard deviation in the observations (std) suggests that un
certainties associated with estimates of cumulative N2O emissions (std 
= 0.69 kg N/ha/y) and measurements of corn yield (std = 1.43 Mg/ha) 
are close to the level of model errors. These performances are compa
rable to similar studies in cropping systems of North America using 
DayCent (R2 = 0.74 for cumulative N2O; R2 = 0.66 for yield; n = 21) 
(Del Grosso et al., 2005) and DLEM (R2 = 0.52, n = 85) (Lu et al., 2022), 
and a study in north China where two PBMs showed R2 of 0.30 and 0.31 
for cumulative N2O emissions and R2 of 0.52 and 0.59 for corn yield 
(Yue et al., 2019). At the site scale, studies showed that ensemble esti
mation of several PBMs can reduce the model bias and uncertainty 
(Gaillard et al., 2018; Fuchs et al., 2020). Both measurements and 
simulations showed that using NI slightly increased mean corn yield 
while the observed effects on mean N2O emissions were inconsistent 
between spring application and fall application (Fig. 1d and e). 

3.2. Spatio-temporal pattern of N2O emissions and the drivers 

Large spatial and interannual variations in annual, GS, and NGS N2O 
emissions were modeled in the county-level simulations for 2001–2020 
across the Midwest (Fig. S5). Annual mean N2O emissions ranged from 
0.50 to 8.91 kg N/ha/y in different counties, with an average mean of 
3.18 kg N/ha/y and std of 1.02 kg N/ha/y overall (Fig. S5a, b). GS and 
NGS N2O emissions accounted for 74% (2.35 kg N/ha/y) and 26% (0.83 
kg N/ha/y) of the averaged mean, respectively (Fig. S4c and e). Both GS 
and NGS N2O emissions showed large interannual variations over all 
counties with a mean std of 0.83 kg N/ha/y in GS and 0.64 kg N/ha/y in 
NGS (Fig. S5d, f). Hotspots of NGS N2O emissions were in eastern 
Minnesota, eastern Iowa, and Wisconsin (Fig. S5e), not overlapping with 
those of GS N2O emissions located in Nebraska, Kansas, Minnesota, 
Iowa, and Missouri (Fig. S5c). The contribution of NGS N2O emissions to 
annual N2O emissions ranged from 6 to 60% in different counties 
(Fig. 2a), and a regional mean of 13% to 38% in different years (Fig. 2b). 

GS and NGS N2O emissions showed different correlations with 
environmental variables. Yearly GS N2O emissions had significant pos
itive correlations with PGS in 50% of all counties, indicating interannual 
variations of GS N2O emissions were driven by precipitation (Fig. S6). 
Spatial variations of GS N2O emissions can be well explained by N-fer
tilizer rate (Nrate) and soil inorganic nitrogen (SIN), with significant 
positive correlations (r > 0.35, p < 0.001) shown with the two variables 
(Fig. S7). However, NGS N2O emissions showed divergent patterns in the 
southeast and the northwest of the Midwest regarding both interannual 
and spatial variations. PNGS, Ta,NGS, Ts,NGS, and CFD were used to explain 
the interannual variations of NGS N2O emissions, where PNGS of 300 mm 
was found to be an approximate threshold for divergence (Fig. 2c-f). In 
the humid southeast (PNGS > 300 mm), interannual NGS N2O emissions 
had significant negative correlations with PNGS, Ta,NGS, Ts,NGS in 32%, 
14%, and 38% of 637 counties, respectively, and significant positive 
correlations with CFD in 38% of those counties (Fig. 2c-f). In the arid 

northwest (PNGS < 300 mm), interannual NGS N2O emissions showed 
significant positive correlations with PNGS and Ta,NGS in 47% and 23%, 
respectively, and negative ones with CFD in 36% of 538 counties 
(Fig. 2c-f). Overall, CFD significantly explained the interannual varia
tion of NGS N2O emissions in 38% of all counties in the study area 
(Fig. 2f), more than any other environmental variable. 

The spatial-divergent pattern between above and below PNGS of 300 
mm was also found in the ratio of NGS to annual N2O emissions (Fig. 3). 
For arid counties with PNGS < 300 mm, NGS/annual N2O ratio had a 
significant positive correlation with PNGS (r = 0.57, p < 0.001; Fig. 3a), 
and a negative one with CFD (r = -0.37, p < 0.001; Fig. 3f); while for 
humid counties with PNGS > 300 mm, a significant negative correlation 
with PNGS (r = -0.69, p < 0.001; Fig. 3a) and a significant positive one 
with CFD (r = 0.67, p < 0.001; Fig. 3f) were found. Unlike in the GS, 
Nrate and SIN didn’t show strong correlations (|r| < 0.3) with NGS N2O 
emissions (Fig. 3j, k). Mean snow depth (SWD) and snow cover duration 
(SCD) both showed (Fig. 3g, h) significant positive correlations with 
NGS N2O emissions, indicating the important role of snow cover in 
influencing NGS N2O production via the regulation of soil moisture and 
soil temperature. 

3.3. Causal relationships between key drivers and NGS N2O emissions 

We used the causal inference method, PCMCI, to further clarify the 
spatial-divergent pattern of environmental drivers to NGS N2O emis
sions in the southeast and the northwest regions. Three climatic drivers, 
Ta,NGS, PNGS, and SWF were detected for the causal effects on NGS N2O 
flux through other climatic and soil variables including SWD, Ts,NGS, 
SWCNGS, SICNGS, O2,NGS, and N2Osoil,NGS. In the northwest, Ta,NGS (effect 
size = 0.005) and PNGS (0.005) showed comparable positive effects on 
N2Oflux,NGS that are stronger than the effect of SWF (0.001), indicating 
their cooperative influence on NGS N2O emissions (Fig. 4a-c). In the 
southeast, Ta,NGS showed a dominating negative effect on N2Oflux,NGS 
(effect size = -0.088) compared with the other two drivers, PNGS (-0.011) 
and SWF (0.012) (Fig. 4d-f). The effect significance should not be 
compared across the northwest and the southeast since the causal ana
lyses for the two regions were conducted separately. 

In the northwest region, the causal relationship of PNGS and N2Oflux, 

NGS showed a single positive pathway via sequential interdependencies 
with SWCNGS, O2,NGS, and N2Osoil,NGS (Fig. 4a). Higher PNGS can be a 
decisive factor that results in higher NGS N2O emissions via increasing 
SWC before soil freezing and at soil thaw. The causal effects of Ta,NGS on 
N2Oflux,NGS consisted of three positive pathways and two negative 
pathways (Fig. 4b), with the dominant pathways being positive via in
fluences on SWC NGS, O2,NGS and N2Osoil,NGS similarly. Higher Ta,NGS 
probably drives earlier and faster snowmelt which leads to increased 
SWC and N2O production. The lagged causal relationship (e.g. between 
N2Osoil,NGS and N2Oflux,NGS) indicates that the effect requires a longer 
time to be detected. It suggests that the thawing effect dominates in this 
region, with higher PNGS and higher Ta,NGS leading to increased N2Osoil, 

NGS via increasing SWC. 
In the southeast region, Ta,NGS showed dominating casual effects on 

N2Oflux through two negative pathways (Fig. 4e), one via controls of Ts, 

NGS and then SWCNGS+SICNGS (effect size = -0.059) and the other 
directly over SWCNGS+SICNGS (effect size = -0.029). It indicates that the 
freezing effect, i.e. lower air temperature and consequently lower soil 
temperature during the freezing period, is the most critical reason that 
leads to high NGS N2O emissions. With relatively slighter freezing in
tensity compared to the northwest region, SWC and SIC both influence 
soil O2 condition and then N2O production in this region. 

3.4. Mitigation strategies and potentials 

N-Fertilizer timing (spring or fall application) and use of NI showed 
significant influences on N2O emissions from ecosys simulations (Fig. 5). 
Under the historical climate, the fall application scenario (Fall) resulted 
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Fig. 2. Spatio-temporal variations of the non- 
growing season (NGS) N2O emissions and their 
correlations with key environmental variables 
under continuous corn systems in the US Mid
west as simulated by ecosys. (a) Mean NGS/ 
annual N2O ratio of each county over 
2001–2020. (b) Mean, 25th percentile, and 75th 
percentile of NGS/annual N2O ratio in each year 
over all counties. Interannual correlations of 
NGS N2O emissions with (c) mean NGS air 
temperature (Ta,NGS), (d) cumulative NGS pre
cipitation (PNGS), (e) mean NGS soil tempera
ture (Ts,NGS), and (f) cumulative freezing-degree 
days (CFD). The thick gray line in (c-f) indicates 
the contour of PNGS = 300 mm, which divides 
the region into the northwest and the southeast. 
Linear correlation was detected for each county 
using 20 years (2001–2020) of data, in which 
Ta,NGS and PNGS are inputs of the model ecosys 
and N2O emissions, and Ts and CFD are outputs 
from model simulations.   
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Fig. 3. Spatial correlations between the ratio of the non-growing season (NGS) N2O emissions to annual N2O emissions and environmental variables including (a) 
NGS cumulative precipitation (PNGS, mm), (b) NGS mean soil water content at 5 cm depth (SWCNGS, m3/m3), (c) NGS mean soil ice content at 5 cm depth (SICNGS, 
m3/m3), (d) NGS mean air temperature (Ta,NGS, ◦C), (e) NGS mean soil temperature at 5 cm depth (Ts,NGS, ◦C), (f) cumulative freezing-degree day at 5 cm depth (CFD, 
◦C⋅day), (g) mean snow depth (SWD, mm), (h) snow cover duration (SCD, day), (i) NGS mean soil aqueous O2 concentration at 5 cm depth (O2,NGS, g O/m3), (j) N- 
fertilizer rate (Nrate, g N/m2), (k) NGS mean soil inorganic nitrogen content (NH4

+ + NO3
−, SINNGS, g N/m2), and (l) NGS mean soil organic carbon concentration at 5 

cm depth (SOCNGS, g C/m3). Each scatter represents a county using a 20-year mean of simulations under continuous corn systems during 2001–2020. 
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Fig. 4. Casual relationships detected in non-growing seasons (Nov. - Apr.) among N2O flux (N2Oflux), climatic drivers (precipitation (P), air temperature (Ta), and 
snowfall (SWF)), and other environmental variables (snow depth (SWD), soil temperature (Ts), soil water content (SWC), soil ice content (SIC), Soil O2 concentration 
(O2), soil N2O concentration (N2Osoil)) in the northwest (a, b, c) and the southeast (d, e, f) of the U.S. Mideast. The map on the left shows the counties included in the 
causal analysis (dark gray) and the area of the Midwest (light gray). Numbers on the links indicate lag effects (1 denotes a lag effect of one month). The link with error 
at two ends indicates no orientation between the two variables. The number in the parenthesis indicates the pathway strength by multiplying all the link strengths. 
Data used in the analysis are from 20-year model simulations (2001–2020) under continuous corn systems (see methods). 
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in significantly higher annual and NGS N2O emissions but lower GS N2O 
emissions than the spring application scenario (Spring) at the regional 
scale. The mean annual N2O emissions (5.50 kg N/ha/y) under Fall 
scenario were 73% higher than that (3.18 kg N/ha/y) under Spring 
scenario (Fig. 5a). This difference was largely attributed to greater NGS 
N2O emissions with fall applications, which on average contributed 81% 
to annual emissions over all counties (Fig. 5c). Compared to baseline 
spring application, spring application with NI (Spring + NI) reduced GS 
and NGS N2O emissions by 34% and 51%, respectively, resulting in a 
38% reduction in annual N2O emissions. Fall application with NI (Fall +
NI) significantly reduced annual N2O emissions by 51% compared to 
that without NI, with NGS N2O emissions reduced by 63% and GS N2O 
emissions increased by 3%. Introducing NI to fertilizer application 
greatly reduced the N2O emission difference from 2.3 to 0.8 kg N/ha/y 
when switching from spring applications to fall applications (Fig. 5). 

According to the scenario simulations, N2O emissions are likely to be 
reduced with warming conditions irrespective of increased or decreased 
precipitation in the study area. Under the four climate change scenarios: 
moderate warming and wetter (MWW), moderate warming and drier 
(MWD), intense warming and wetter (IWW) and intense warming and 
drier (IWD), mean annual N2O emissions were all reduced compared 
with those under historical climate scenarios, which can be primarily 
attributed to reductions in NGS (Fig. 5). Changing historical climate to 
the four hypothesized conditions with spring application reduced NGS 

N2O emissions up to 32% by the Spring + MWW scenario, and with fall 
application up to 14% by the Fall + IWD scenario (Fig. 5c). However, 
those reductions induced by climate change were not as remarkable as 
those by applying NI with fertilizer. Hypothesized climate scenarios 
reduced GS and NGS N2O emissions under spring application and NGS 
N2O emissions under fall application consistently compared with his
torical climate scenarios, while they enhanced GS N2O emissions under 
fall application (Fig. 5b, c). In terms of N2O emission factors (EFs), 
which is the proportion of nitrogen in N2O emissions to N-fertilizer rate, 
the mean EFs of Spring scenario (1.58%), Spring + NI scenario (1.00%), 
and the four spring scenarios under climate change (1.10–1.37%) are 
comparable to the IPCC Tier 1 disaggregated EF for synthetic fertilizers, 
1.6% (1.3–1.9%) (Fig. 5d). The mean EFs of scenarios under fall appli
cation ranged from 2.44% (Fall + IWD) to 2.85% (Fall) in addition to the 
lowest for Fall + NI (1.42%), indicating that Tier 1 estimates may un
derestimate N2O emissions due to ignoring the higher emissions under 
fall fertilizer applications. 

Despite the lack of validations for N leaching and SOC, we calculated 
the monetized social benefits as the sum of costs (negative) and benefits 
(positive) of simulated corn yield, N2O emissions, N leaching, and ΔSOC 
to hypothetically assess crop production and the associated environ
mental impact. We first calculated the baseline scenario of spring 
application, and then compared it to scenarios of spring application with 
NI, fall application, and fall application with NI to estimate changes in 

Fig. 5. Estimated N2O emissions under different fertilizer management and climate scenarios. County-level model simulations of N2O emissions under continuous 
corn systems during 2001–2020 were used. (a) Annual N2O emissions, (b) growing season (GS) N2O emissions, and (c) non-growing season (NGS) N2O emissions. (d) 
The emission factor (annual N2O emission / N-fertilizer rate) under different fertilizer timing, use of nitrification inhibitors, and climate change. Spring or Fall means 
the N2O emissions under scenarios of different fertilization timings (spring and fall applications); NI means the scenarios with nitrification inhibitors; MWW means 
the scenarios with moderate warming and wetter climate change; MWD means the scenarios with moderate warming and dryer climate change; IWW means the 
scenarios with intense warming and wetter climate change; and IWD means the scenarios with intense warming and dryer climate change. The black line and square 
denote median and mean, respectively. The northwestern Midwest and the southeastern Midwest are divided by the PNGS = 300 mm line under historical climate as 
shown in Fig. 2c. Numbers indicate the mean of each scenario, and different superscript letters indicate significant differences (P < 0.05) among scenarios in the 
groups of fertilizer timing (Spring and Fall), the use of nitrification inhibitors (Spring+NI and Fall+NI), climate change under spring application (Spring, Spring +
MWW, Spring + MWD, Spring + IWW, and Spring + IWD), and climate change under fall application (Fall, Fall + MWW, Fall + MWD, Fall + IWW, and Fall + IWD). 
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social benefits under alternative management strategies (Fig. 6). Results 
showed that per ha social benefits ranged from -294 $ to 183 $ (Fig. 6a), 
with counties in Ohio, Illinois, and South Dakota having the highest per 
ha social benefits, and counties in Missouri, Kansas, and Michigan 
having the lowest values (Table S5). Northern Illinois showed the 
highest county-level social benefits due to high per ha social benefits and 
large corn planting area (Fig. 6b). By introducing NI to spring applica
tion, per ha social benefits increased in the majority of counties (Fig. 6c) 
thanks to reductions in N2O emissions and N leaching according to 
model simulations (Fig. S8). The use of NI with fall application increased 
regional overall corn yields but not that with spring application 

(Fig. S8d). However, the effects of using NI on corn yield varied across 
counties. This inconsistency across space was also observed in site-scale 
observations that the use of NI does not necessarily increase corn yield 
and the performance varies with different locations and N rates (Bur
zaco et al., 2013; Sistani et al., 2011; Venterea et al., 2011, R.T. 2016). 
The greatest increases in social benefits were found in Iowa (271.6 
million $), Minnesota (237.5 million $), and Illinois (235.7 million $), 
accounting for 63% of the total increase (1173.9 million $) across the 13 
states (Table S5). Switching spring application to fall application 
reduced per ha social benefits in most counties except that some counties 
in the area connecting Iowa, Minnesota, Nebraska, and South Dakota 

Fig. 6. Estimates of annual social benefits for 
corn cropping at the county level in the US Mid
west. (a) Marginal social benefits (US dollars per 
hectare) and (b) county-level social benefits under 
the baseline scenario, spring fertilizer application. 
Changes in per ha social benefit of (c) spring fer
tilizer application with nitrification inhibitors 
(NI), (e) fall fertilizer application, and (g) fall 
fertilizer application with NI compared with the 
baseline scenario. Changes in county-level social 
benefit of (d) spring fertilizer application with NI, 
(f) fall fertilizer application, and (h) fall fertilizer 
application with NI compared with the baseline 
scenario.   
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(Fig. 6e). Hotspots of reduced county-level social benefits were 
concentrated in Illinois, Indiana, Iowa, and Wisconsin (Fig. 6f), with a 
total of 2703.3 million $ loss compared with the baseline (Table S5). 
Compared with fall application, adding NI greatly reduced the negative 
impact on social benefits to 777.4 million $ (Table S5) and brought a 
positive impact to more counties (Fig. 6g and h), mainly due to 
decreased N2O emissions and N leaching (Fig. S8). Compared with the 
baseline, fall fertilizer application with NI reduced state-level social 
benefits majorly in Illinois (-329.3 million $) and Indiana (-282.4 million 
$), but brought extra benefits to Nebraska (174.8 million $), Minnesota 
(59.8 million $), South Dakota (54.3 million $), and Kansas (45.8 million 
$) (Table S5). However, those estimates are only based on model sim
ulations as stated above. Further validations on those unvalidated 
components would bring more certainty to the social benefit evaluation. 

4. Discussion 

In this study, we validated a process-based model and then applied it 
to simulate county-level N2O emissions during 2001–2020 in the US 
Midwest. Two seasonal components, GS N2O emissions and NGS N2O 
emissions were evaluated separately to identify their key drivers and 
specific driving processes. While reducing N inputs is probably the most 
direct measure to mitigate GS N2O emissions, the effectiveness may be 
limited in NGS (Mosier et al., 2006). Our study identified interannual 
and spatial climatic differences as key factors that explain the 
spatio-temporal variations of NGS N2O emissions, bringing regional 
understanding with explicit causal interdependencies to previous evi
dence (Shang et al., 2020; Wang et al., 2019). Our results suggest that Ta, 

NGS and PNGS dominantly drive the magnitude and variation of unig
norable NGS N2O emissions. More importantly, the driving effects 
spatially differed in the southeast and northwest of the Midwest, which 
may also be anticipated in other primary crop production regions. Thus, 
mitigation efforts towards N2O emissions need to be seasonal- and 
spatial-specific. Although we validated the model at multiple sites and 
under various management situations to represent one of the most 
comprehensive N2O studies for the Midwest, there are uncertainties in 
our regional estimates of N2O emissions that come with model limita
tions, estimation of observations, and lack of validations on NGS N2O 
emissions in the northwest counties, N leaching, and SOC. It was shown 
that improvements of a specific PBM may not bring extra simulation 
accuracy globally for N2O emissions because performances of different 
models vary greatly with climate and soil conditions (Zhang and Yu, 
2021). Thus, adding ecosys in an PBM ensemble that incorporates ad
vantages of different models can be a good way to improve global 
simulation accuracy for N2O emissions in the future. Here we focus on 
the interpretations of the spatial and temporal patterns and differences 
manifested by the model simulations where we assume that the un
certainties arising from inputs and the model are at the same level over 
space and time in the study area. 

In the relatively warm and humid region of the study area i.e. the 
southeastern Midwest, soil temperature has the dominant power in 
influencing NGS N2O emissions among climatic factors. In this region, 
the negative interdependencies of NGS N2O emissions with Ta,NGS and 
soil temperature and the positive correlation of NGS N2O emissions with 
CFD indicate that the freezing effect is the decisive factor that influences 
soil N2O production (Fig. 4b). It is in line with field or lab observations 
that higher NGS N2O releases are associated with increasing freezing 
intensity, shown as larger CFD (Koponen and Martikainen, 2004; Wag
ner-Riddle et al., 2007), longer freezing duration (Singurindy et al., 
2009) and higher freeze-thaw frequency (Gao et al., 2018). Besides soil 
O2 consumption by microbes and gas transfer blocked by soil freezing, it 
is possible that there is soil O2 removal in the process of soil water-ice 
phase transition, i.e. soil O2 is degassed by ice expansion. This type of 
O2 depletion was stated in previous studies but has not been well evi
denced (Gao et al., 2018; Grant et al., 2020a). The causal analysis in
dicates that PNGS and SWF show more power on N2O emissions via 

influencing soil moisture over soil temperature as the overall insulation 
of snowpack is limited in this region (Fig. 4d and f). However, the 
insulation effect seems to be greater in counties with thick snowpacks 
(SWD > 200 mm) and long snow cover duration (SCD > 125 days), 
which leads to lower N2O emissions (Fig. 3g and h). 

In the relatively cold and arid region of the study area, i.e. the 
northwestern Midwest, NGS N2O emissions are under the control of the 
positive impacts of Ta,NGS and PNGS, indicating that the thawing effect 
probably drives the soil N2O production. Colder weather and deeper 
snow cover in this region result in a long and stable freezing period 
(Fig. S9b). Ts,NGS will not drop dramatically as Ta,NGS does due to snow 
cover insulation. NGS N2O emissions increase as PNGS, SWD, and SCD 
increase, suggesting that N2O production during freeze-thaw cycles is 
enhanced by higher PNGS and heavier snowmelt that increase soil 
moisture (Wagner-Riddle et al., 2007; Risk et al., 2013). 

This study clarifies an important knowledge gap that NGS N2O 
production during a freezing-thawing cycle can either be dominantly 
driven by the freezing effect or the thawing effect. While many studies 
have found that intense freezing and snowmelt enhance NGS N2O 
emissions (Koponen and Martikainen, 2004; Wagner-Riddle et al., 2007; 
Yanai et al., 2011), there is also evidence that NGS N2O pulses may not 
increase with enhanced soil thaw and snowmelt (Libby et al., 2020) and 
that deeper snow cover has inconsistent effects on NGS N2O fluxes at 
different sites (Chen et al., 2021; Ruan and Robertson, 2017; Yanai et al., 
2011). Our results suggest that the dominant place of the freezing effect 
in controlling NGS N2O emissions seems to decrease with an increased 
thawing effect towards a decreasing PNGS and Ta,NGS gradient. This 
change in control could be used to explain that deeper snow cover leads 
to higher NGS N2O emissions due to an enhanced thawing effect in 
northeast China with a cold climate similar to the northwestern Midwest 
(Chen et al., 2021), while it also leads to lower NGS N2O emissions due 
to reduced freezing effect in relatively warmer places in Michigan (Ruan 
and Robertson, 2017) and Japan (Yanai et al., 2011). Thus, mitigation 
strategies in NGS need to be spatially adaptive. Attention can be paid to 
those field practices that can influence soil moisture and soil tempera
ture in NGS. For example, delaying the harvest of the main crop may 
reduce soil moisture in a way that does not lead to yield damage (Darby 
and Lauer, 2002); cover cropping is possibly an ideal practice that re
duces soil moisture and increases soil temperature during NGS 
(Kahimba et al., 2008). With regard to the choice of cover crops in the 
northwest, broadleaf species that grow fast may be most effective to 
reduce soil moisture, and less effective to influence Ts,NGS as they are 
mostly frost-sensitive. Winter hardy cover crops, e.g. rye, barley, and 
clover, have been proved to increase Ts,NGS during the freeze-thaw cycles 
(Kahimba et al., 2008; Yang et al., 2021). However, the real influences of 
cover cropping and other NGS field management practices on NGS N2O 
emissions need to be demonstrated. The ability of ecosys to simulate 
cover cropping systems has been demonstrated in a recent study (Qin 
et al., 2021). Due to the lack of established model parameters and field 
observations for some cover crops, and spatial-explicit information on 
cover cropping systems, we did not conduct cover crop simulations in 
this study. 

We investigated the responses of N2O emissions to fertilizer timing, 
the use of NI, and hypothesized climate scenarios. Although our results 
indicate that annual and NGS N2O emissions in the Midwest reduce in 
general by shifting fall fertilizer application to spring fertilizer appli
cation and applying fertilizer with NI, the responses vary in different 
counties. This spatial heterogeneity is supported by existing observa
tional evidence in previous studies. Spring fertilizer application was 
widely observed to lead to lower GS N2O emissions than fall application 
(Akiyama et al., 2010; Ruser and Schulz, 2015; Gilsanz et al., 2016; Gao 
and Bian 2017; Hao et al., 2001), but not at other sites due to greater 
emissions in early growing seasons (Tenuta et al., 2016; Thilakarathna 
et al., 2020). Using NI is an effective way to reduce N2O emissions 
regardless of fertilizer timing, but the effectiveness is not shown at some 
sites in certain years (Chen et al., 2021; Parkin and Hatfield, 2010; 
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Gurung et al., 2021). Our study suggests that dividing N2O emissions 
into seasonal-explicit components, i.e. GS and NGS parts may help better 
understand the mitigation effects of different fertilizer management 
practices. For example, applying NI in the fall is likely to only reduce 
NGS N2O emissions (Fig. 6). Further, climate mitigation cannot be made 
on N2O emissions alone. Using integrative metrics such as the monetized 
social benefits that reflect agronomic and environmental impacts can 
provide more direct and attractive practice recommendations to 
stakeholders. 

In the long run, field practices are also required to be adaptive to the 
integrated effects of climate change, expansion of global croplands, 
growth of fertilizer use, and change in nitrogen use efficiency (Kanter 
et al., 2016; Reay et al., 2012). In this context, modeling studies using 
integrative process-based models keep playing main roles in evaluating 
mitigation effectiveness and making future projections. Our results 
suggest that N2O emissions from corn fields, especially the NGS com
ponents, are likely to decrease if the current level of N-fertilizer use is 
kept, due to decreased soil moisture and reduced freezing intensity in 
freeze-thaw cycles. Although precipitation is predicted to increase in the 
Midwest, soil moisture may not increase due to higher evapotranspira
tion (IPCC6; Forster et al., 2021). Negative effects of elevated Ta on N2O 
emissions were found in the majority of field enrichment experiments 
(Wang et al., 2021). Existing projections of future N2O emissions in the 
Midwest using PBM found that agricultural direct N2O emissions are 
likely to decrease (Kanter et al., 2016) or slightly increase (Griffis et al., 
2017). Major uncertainty in those estimates comes from the model 
configuration of management practices and limited representation in 
soil inputs. Our simulations assume the scenarios of rainfed, continuous 
corn systems with no tillage, which may underestimate the regional N2O 
emissions. Overall, N2O emissions are expected to be higher in irrigated 
systems than rainfed systems (Mei et al., 2018), be lower in no-till 
(Decock, 2014; Feng et al., 2018), and be similar in continuous corn 
systems and corn-soybean rotation systems (Decock, 2014). Although 
only 3.8% of cornfields are irrigated in the Corn Belt (Perlman et al., 
2014), irrigation has significant impacts in relatively arid areas, such as 
western Nebraska, and may expand as an adaptation to future climate 
change. We generated soil profiles in croplands using SSURGO dataset 
but didn’t differentiate soils in continuous corn systems from other 
systems due to the lack of accurate spatial information. Further research 
specifically on mapping different cropping rotations and their outputs 
can lend such types of studies more resources and accuracy in the future. 
Mapping from high-resolution satellite imagery and improved 
ground-based databases that provide spatially explicit information on 
management practices (e.g. irrigation, tillage, and crops) can lend 
strength to advance this study (Peng, 2020; Kim et al., 2021). 

5. Conclusions 

In this study, we validated the performances of a process-based 
model, ecosys, on N2O emissions and related energy, water, and car
bon variables. Then we applied this model to county-level simulations to 
investigate the magnitude, spatio-temporal patterns, and drivers of NGS 
N2O emissions in the US Midwest. Results showed that simulated NGS 
N2O emissions on average accounted for 26% of the annual fluxes in 
2001–2020 under continuous corn systems, ranging from 6 to 60% in 
different counties. NGS precipitation of 300 mm was found to be a 
threshold that divides the southeast and the northwest of the Midwest, 
where precipitation and soil temperature showed differing correlations 
with NGS N2O emissions. To help explain the spatial division, we used a 
data-driven causal inference method, PCMCI, to further understand the 
complex relationships between N2O emissions and key environmental 
drivers. It indicates that more intensive freezing caused by lower air 
temperature is the dominant driver that leads to higher NGS N2O 
emissions in the southeast, while higher precipitation and higher air 
temperature cooperatively result in higher soil moisture at soil thaws 
that enhances NGS N2O production in the northwest. Further, we 

explored the responses of annual, GS, and NGS N2O emissions to 
different fertilizer timing, with or without NI, and climate change. Re
sults suggest that shifting fall application to spring application and 
applying NI can greatly reduce annual N2O emissions at the regional 
scale. Simulations of the four hypothesized climate scenarios suggest 
that annual N2O emissions in the study area are likely to reduce under 
climate change primarily due to the reduction of NGS N2O emissions. 
Based on the scenario simulations, we estimated social benefits 
regarding corn yield, N2O emissions, N leaching, and △SOC. Spring vs. 
fall application and applying with vs. without NI are more beneficial for 
most counties. However, the social benefits can be the opposite for some 
areas, which calls for spatial-specific mitigation practices. This study 
deepened the knowledge of year-round agricultural N2O emissions, and 
provided spatial-explicit effective mitigation directions in a world pri
mary agricultural region. 
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