Deep-Learning-as-a-Workflow (DLaaW): An Innovative Approach to Enabling Deep
Learning in Scientific Workflows

Junwen Liu*, Ziyun Xiao*, Shiyong Lu*
Department of Computer Science
Wayne State University*
Detroit, Michigan, USA

Email: {junwen, ziyun.xiao, shiyong}@wayne.edu*

Abstract—Scientific workflow has become a popular cy-
berinfrastructure paradigm to accelerate scientific discoveries
by enabling scientists to formalize and structure complex
scientific processes. With the recent success of deep learning
models in many scientific applications, there is a rising need
for infrastructure-level support for deep learning technologies
in scientific workflow cyberinfrastructures. However, current
scientific workflow cyberinfrastructures and GPU-enabled deep
learning frameworks are developed separately, neither alone
can be a satisfactory choice. In this paper, We propose
the Deep-Learning-as-a-Workflow approach in DATAVIEW,
which for the first time incorporates native infrastructure level
support for GPU-enabled deep learning in a scientific workflow
management system and enables the fast training and execution
of neural networks as workflows (NNWorkflows) leveraging
various types of GPU resource configurations. Qur experiments
demonstrate the salient usability feature of DATAVIEW in pro-
viding seamless infrastructure-level support to both scientific
and deep learning workflows in one system, while delivering
competitive (better in most cases) learning efficiency compared
to the conventional implementations based on Keras.

Keywords-DATAVIEW; Workflow Management System;
Workflow; DLaaW; Deep-Learning-as-a-Workflow; Deep
learning; Neural Network; GPGPU; CUDA; NVIDIA GPUs;

1. INTRODUCTION

Scientific workflow modeling and execution has become
a common practice for scientists to accelerate scientific
discoveries in numerous research fields. The Montage work-
flow, for example, is used by thousands of astronomers for
constructing image mosaics of the sky [1]]. In the Cyber-
Shake project, more than 230 scientific workflows were
used by seismologists to generate seismic hazards maps in
one year alone [2]. In Bioinformatics, the myExperiment
website currently contains 3935 public scientific workflows
shared by 11161 members from 429 groups [3]. The Pegasus
workflow system [4] aided the LIGO (Laser Interferometer
Gravitational wave Observatory) to successfully detect grav-
itational wave — a discovery that won the Noble prize!

Meanwhile, in the past few years, machine learning (ML),
especially deep learning (DL), has become increasingly
popular and been utilized in broad scientific processes and
projects across nearly all disciplines. Although there are
many ML/DL libraries available, such as Keras/Tensor-
Flow [5]] and PyTorch [6], they are not immediately ready

978-1-6654-3902-2/21/$31.00 ©2021 IEEE

Dunren Che'
School of Computing
Southern Illinois Um'versity‘L
Carbondale, Illinois, USA
Email: dche@cs.siu.edu'

(not designed) for scientific workflow environments. As a
consequence, many ML/DL functionalities, such as architec-
tural design, hyperparameter tuning, and optimizations have
to be conducted outside of a scientific workflow system and
then integrated into a workflow in an ad-hoc manner [7],
which is neither trivial nor optimal as it requires expertise
with the ML/DL libraries and the underlying, sophisticated
scientific workflow system. Besides, separate handling of
DL for data- and/or computation-intensive projects [8|] from
a Scientific Workflow Management System (SWFMS) tends
to be time consuming and inefficient in data transfers, which
makes the integrated, direct DL support by SWFMS a ne-
cessity. Some recent projects like CANDLE [9]] leverage the
HPC/GPU infrastructure facilitated by workflow platforms to
accelerate the model design and training of exascale neural
networks, however they simply utilize third-party ML/DL
libraries (e.g. Keras in CANDLE) in a loosely coupled
way, but not through a deeply integrated (native) approach.
Furthermore, such obtained neural networks are very hard to
be pipelined into a larger, enclosing scientific workflow. This
paper address the above limitations and makes the following
contributions:

1) We propose and implement a novel DLaaW (Deep-
Learning-as-a-Workflow) approach in DATAVIEW,
more specifically, by extending its workflow and task
classes to two new subclasses: NNWork flow and
NNTask. This approach is the first (to our best
knowledge) that attempts to implement a deep learning
neural network as a native workflow in a workflow
management system.

2) We introduce an NNWorkflow Engine that wraps multi-
type of NNTrainers, which are responsible for exe-
cuting NNWorkflows according to specific execution
plans (e.g. regular train and test, K-fold cross valida-
tion) using various types of underlying GPU resources.

3) We implement a generic GPU Resource Management
module, to leverage various GPU resource configura-
tions. Currently we provide three options: the local
NVIDIA GPU of a host PC, a single NVIDIA Xavier
SoM (System-on-Module), and a single NVIDIA Nano
SoM, for executing DL workflows in DATAVIEW.

2. CHALLENGES OF INTEGRATING NEURAL NETWORKS
INTO SWFMSs

Seamless integration of DL capability into SWFMSs
brings numerous benefits: 1) the coherent usability of
SWEMSs gets extended to DL applications, e.g., the conve-
nient programmatic and graphical design interfaces enjoyed
by the scientific workflow community can be made readily
available to the design, training, and execution of NNWork-
flows; 2) neural network can leverage the same support as
offered to ordinary scientific workflows in a typical SWFMS,
i.e., supporting neural networks to be constructed, executed
and reused in the same manner as ordinary workflows; 3)
the rich optimization strategies and scheduling algorithms
[10] designed for workflows can be utilized to boost the
neural network execution performance. To achieve the above
benefits, several major challenges need to be addressed.

A. NNWorkflows construction Challenge

To construct a neural network as a native workflow
in a SWEMS, firstly we need corresponding, well-defined
neural network tasks (NNTasks). A scientific workflow is
constructed by pipelining various workflow tasks through
their input/output ports and executed on available hardware
resources by a workflow executor in a SWFMS. Tradi-
tionally, scientific workflows are formulated as directed
acyclic graphs (DAGs) [11]], in which data always flow from
entry nodes to exit nodes and each task will be visited
(and executed) exactly once. However, a neural network is
typically trained through a certain number of epochs, which
means each task is revisited multiple times and the weights
trained from prior epochs must be retained and updated by
subsequent epochs throughout the whole training process.
The construction challenge affects how an NNWorkflow is
going to be structured and executed. Generally, there are at
least two granularity levels for structuring a neural network
as a workflow: 1) A-Layer-as-a-Task, and 2) A-Neuron-as-
a-Task. The decision can greatly affect the complexity of
NNWorkflow construction and implementation.

B. CPU/GPU communication Challenge

GPUs were originally designed to accelerate graphics
rendering, but since the early 2010’s, GPUs has been increas-
ingly used to parallelly accelerate computation involving
massive amounts of data. As the representation of data in
neural networks are tensors and the computation on tensors
basically consists of massive repetitive operations on tensor
elements, thus modern GPUs are optimized for training
DL neural networks to leverage their superior capability
in simultaneously running thousands of cores. However,
conducting General-Purpose GPU (GPGPU) computation
is still rather abstruse due to the substantial difference
between CPU and GPU computing in hardware architecture,
computing mechanisms, and programming languages [12].
Efficient communication between CPU and GPU becomes
a big challenge, which involves 1) bridging a SWFMS

with GPU computing since modern SWFMSs are all built
upon the CPU infrastructure (i.e. CPU based hardware and
operating systems) [10], 2) smoothing the collaboration
between CPU and GPU since GPU computing is initiated
and coordinated by and finally reduced to CPU.
C. Challenge of neural network implementation in GPU
Currently, there exist several popular computing platforms
and models for GPGPU computing: 1) NVIDIA’s CUDA, 2)
OpenCL, or 3) OpenACC. They are all focused on providing
a unified language and platform to bridge&bind CPU and
GPU together for GPGPU computing. Although such par-
allel computing platforms/models provide higher-level lan-
guages than the native hardware languages of CPU&GPU,
such programming languages are still considered as low-
level APIs for GPU computing. Consequently, the con-
struction and execution of neural networks on any one of
above GPU computing platforms remains a great challenge,
which includes implementing various neural network layers,
constructing the architecture of a neural network, conducting
forward&backward propagations across layers, etc. These
are all non-trivial issues that need to be carefully addressed
in a SWEMS in order to make DL as a readily available
functionality for scientific workflows.

D. CPU&GPU 1/0 overhead Challenge

In GPU-enabled implementation of NNWorkflows, the
input&output ports of NNWorkflow tasks reside on the CPU
side, and the input&output of each task (in either neuron or
layer granularity) are pipelined into/from the GPU, which
inevitably aggregate excessive I/O overhead that is multi-
plied by the massive number of neurons/layers of a large
neural network. The accumulated I/O cost between CPU and
GPU can be enormous and overwhelming, which remains
as a big stumbling block preventing traditional SWFMSs
from leveraging the computing power of GPUs at the in-
frastructure level. Designing an efficient data transportation
mechanism restraining the I[/O communication cost to its
minimum is another major challenge for implementing GPU-
enabled support for NNWorkflows in traditional SWFMSs.

E. NNWorkflow dynamic mapping Challenge

In order to execute an NNWorkflow as a native work-
flow on GPU, a mapping mechanism is needed to map
the NNWorkflow from CPU-recognizable specification to
GPU-recognizable specification. Since a neural network can
be composed of arbitrary types, arbitrary numbers and in
arbitrary order of neural network neurons and layers, such a
mapping mechanism needs to be generic and dynamic so that
any native NN'Workflow can be mapped into a corresponding
GPU-recognizable specification. Given a native NNWork-
flow specification as input, the mapping mechanism must
be able to uniformly and consistently output a legitimate
GPU execution specification for the NNWorkflow to be
executed on corresponding GPU resources. Designing such
a generic and dynamic CPU-to-GPU mapping mechanism is

yet another major challenge for incorporating GPU enabled
DL in traditional SWFMSs.
F. Challenge of uniformly supporting diverse GPU types

Recognizing the fact that different GPU resources require
different computing platforms and execution mechanisms, in
order to uniformly execute any NNWorkflow across various
types of GPU resources in a SWFMS, all backend GPU APIs
should be developed under the same standard protocol. Re-
gardless of the variation of interfaces (e.g. message passing,
procedural calls) that bridge CPU with a particular GPU,
on receiving the same NNWorkflow specification from an
upstream component in SWFMS, all GPU resources should
uniformly construct the same neural network and conduct
the same execution. Implementing a standardized protocol
for various heterogeneous in-house GPU Services is one
additional challenge in our way.

3. OUR APPROACH AND IMPLEMENTATION

In order to implement DL as a native functionality in
SWEMSs and to address the challenges outlined in Section
2, based on our prior work on DATAVIEW — an estab-
lished SWFMS — we extend DATAVIEW s prior architecture
with novel dedicated components. Based on this extended
and new architectural design, we particularly emphasize
the following characteristics of inherent implementation of
NNWorkflows in DATAVIEW: 1) make the design, execution
and reuse of any native NNWorkflow as easy and in the
same manner as any ordinary workflow in DATAVIEW; 2)
retain the convenience of the current user interfaces (both
programmatic and graphical) of DATAVIEW and extend
them to facilitate efficient incorporation of NNWorkflows
into more complex scientific workflows in DATAVIEW; 3)
provide a generic and extensible GPU Resource Manage-
ment mechanism that allows users to conveniently choose
suitable GPU infrastructures (e.g. local GPU, GPU SoMs,
GPU cluster, cloud GPU) for their NNWorkflows.

Figure 1: DATAVIEW’s new architecture with inherent sup-
port for Deep-Learning-as-a-Workflow.

Fig. [T] shows the new architecture of DATAVIEW which
provides inherent support for DL through the DLaaW ap-
proach, which we believe is extendable to other SWFMSs.
The original architecture of DATAVIEW consists of the
following main components: 1) the Workflow Design and
Configuration component, which provides intuitive program-
matic and graphical Uls for users to design, execute and
reuse workflows; 2) the Workflow Engine component,
which serves as a central component that controls the
execution of workflows; 3) the Workflow Monitoring
component, which keeps track of the status of workflow

execution (e.g. “initialized”, “executing”, “finished”, and
“error”); 4) the Data Product Management component,
which stores all data products that are used/produced by
workflows; S) the Provenance Management component,
which is responsible for storing, browsing, and querying
workflow provenance; 6) the Task Management component,
which enables the execution of heterogeneous atomic tasks
such as calling web services and running scripts; 7) the
Cloud Resource management component, which plays a key
role in provisioning, cataloging, configuring, and terminating
the computation resources in clouds.

Built upon the original architecture of DATAVIEW, the
new architectural design adds the following new DL-specific
components: 1) the NNWorkflow Engine component,
which, if the input workflow is an NNWorkflow, takes over
the control, parses the NNWorkflow and outputs a pack
of GPU recognizable specification to the downstream com-
ponent; 2) the GPU Resource Management Component,
which, upon receiving the NNWorkflow specification, acts as
a unified interface to route the specification to the target GPU
services; 3) The GPU Services component, which provisions
the local GPU of a host PC or GPU SoM resources for
actually carrying out the execution of an NNWorkflow.

Initially, an NNWorkflow is designed and constructed
through programmatic (Java) or graphical Ul as a native
workflow in DATAVIEW. More specifically, an NNWork-
flow is constructed as an NNTask array that specifies the
type and order of each neural network layer in the NN Work-
flow. Then, the NNTask array is fed into the Sequential()
function. Listing [I] shows a sample of Java code of the
design() method in the SampleNNWorkflow class (a subclass
of NNWorkflow) to construct a simple NNWorkflow that
contains 4 neural network layers: layers[0] is a Linear layer
with 5 input neurons and 3 output neurons; layers[1] is a
ReLU layer; layers[2] is a Linear layer with 3 input neurons
and 1 output neurons; layers[3] is a Sigmoid layer. This
sample NNWorkflow shows that the established usability of

SurveyOfModernSWF/Image/ nn%élé¥%‘(¥ [ALSLIH é)r%ﬁei%/ed and extended to NNWork-

flows, i.e., NNWorkflows are constructed and managed in
the same way as traditional workflows.

The constructed NNWorkflow is then fed into an
NNWorkflow JSON Mapper module (Written in Java)
that maps all constructs and primitives of the NNWork-
flow to their neural network counterparts that are rec-
ognizable by the backend GPU services. Upon receiv-
ing the NNWorkflow specification from the NNWorkflow
JSON Mapper module, a specific NNTrainer (written in
Java) which is selected by the user (programmatically or
graphically), encodes the target GPU resource infrastruc-
ture information to the NNWorkflow specification. The
aggregated NNWorkflow specification is then fed as in-
put to the GPU Resource Management component by
calling the train() method of the NNTrainer. Listing
is the sample code showing a sample NNWorkflow, w,

being fed into two NNTrainers which respectively trig-
ger their train() methods. The NNTrainer_LocalGPU and
NNTrainer_crossValOnSingleNano are the two NNTrainers
that respectively wrap up two different execution plans and
target at two GPU services. For an input NNWorkflow, w,
NNTrainer_LocalGPU generates a regular train&test plan
for execution on the local GPU of a host PC; on the other
hand, NNTrainer_crossValOnSingleNano generates a k-fold
cross validation plan for execution on a single NVIDIA
Nano SoM. The input dataset is split into 6 batches and the
model will be trained through 1000 epochs (see Listing 2).
Our implementation satisfactorily addresses
and enables GPU computing for DL in the SWFMS.
Listing 1: Construct a sample NNWorkflow with 4 neural
network layers:

public void design ()

{
NNTask[] layers = new NNTask[4];
layers [0] = new Linear(5,3);
layers[1] = new ReLU() ;
layers [2] = new Linear(3,1);
layers[3] = new Sigmoid();

Sequential (layers);
}
Listing 2: Select and run NNTrainers for the NNWorkflow:
NNTrainer_Local GPU trainerl = new
NNTrainer_LocalGPU(w, 6, 1000);

NNTrainer_crossValOnSingleNano trainer2 =
new NNTrainer_crossValOnSingleNano (w,

6, 1000);
String resultl = trainerl.train();
String result2 = trainer2.train();

Next, the GPU Resource M anagement component, which
acts as a universal interface/gateway at the back door on Java
side, to route those unified and aggregated specification to
the CUDA side. The routing is implemented via necessary
interface calls (e.g. JNI, MPI) on GPU API services which
are compiled together with our in-house core CUDA im-
plementation to be executed on a targeted GPU resource.
All the backend GPU services are designed to accept the
uniform execution specification (conforming to an internal
standard protocol).

Lastly, the neural network execution plan is initiated
on the target GPU resource, and the corresponding neural
network object (comprising NNLayer subobjects) is auto-
matically constructed in the GPU’s global memory. Our in-
house developed CUDA kernels (written in CUDA C++),
which are functions executed by GPU, are then triggered
in turn (matching the procedural arrangement and order of
layers) to finally carry out preprocessing, training and testing
of the neural network according to its execution plan.

In our implementation, NNWorkflow specification (in
JSON) are routed to a local GPU of a host PC or a GPU SoM

via dynamic .dll or static .a API services. A CUDA C++
parser is called to parse the input JSON specification into
C++ key-value pair specification, and the API service (by
its NNConstructor) will correspondingly construct the neural
network in the CUDA environment. Proper memories is then
allocated on both CPU (host) and GPU (device) through
Memory Allocator according to the size of input dataset and
the architectural design of the neural network (e.g., number
of layers, weights and bias dimensionalities). In addition, a
universal data preprocessing scheme is automatically applied
to each input dataset that does the following: 1) eliminates
rows with empty values; 2) normalizes the data across all
batches per column-wise normalization defined as follows:
Xnew = (X - szn)/(Xmam - szn) (1)
The actual training process is finally kicked off, going
through a number of epochs (defined by user) performing
forward and backward propagations, during which respective
CUDA kernels are called for each layer (object) to carry out
tensor computations on thousands of cores available in the
GPU. Once the training process completes, the trained model
and the prediction scores are copied from GPU memory
to CPU memory, and finally all the results are returned
as a JSON object to the NNTrainer (caller) via interface
calls (e.g. JNI, MPI). Through the above processing scheme
and [C] are successfully addressed.

4. EXPERIMENTS

In order to evaluate our proposed approach and imple-
mentation, we conducted experiments to validate its correct-
ness and compare its performance with counterpart python
implementations based on Keras in the GPU environment.
All Keras-based implementations in our experiments adopt
the same structure of python code with variations on neural
network architectural designs and input datasets, and all
DLaaW implementations are based on the same CUDA code.

We adopted 4 different settings of CUDA infrastructure,
of which some use JNI and some use MPI instead, to
train and test 5 neural networks respectively designed for
5 popular binary classification datasets (characterized in
Table [l). These infrastructure settings include i) one Keras-
based python implementation on a local GPU of a host PC,
and ii) three DLaaW implementations under three different
infrastructural settings: local GPU on a host PC, single
Xavier GPU SoM, and single Nano GPU SoM, of which
the first setting utilizes JNI calls and the last two utilize
MPI calls to pass information between JAVA and CUDA.
A. Hardware and Datasets

In our preliminary implementation of DLaaW, we adopted
the following hardware: 1) An x64-based Windows Desktop
with AMD Ryzen 5 3600 6-core CPU, 16GB DDR4 RAM,
500GB SSD, one NVIDIA GeForce RTX 2080 Super GPU
with 3072 CUDA cores and 8GB GDDRR6 memory; 2) an
NVIDIA Jetson Xavier SoM , which contains a GPU with
384 CUDA cores and 48 Tensor cores (Tensor cores are

Table I: Specifications of neural networks and their target datasets.

[Neural network 1

| Neural network 2

| Neural network 3

| Neural network 4

| Neural network 5

Model Arch | 4 layers: Linear(5,3), | 6 layers: Linear(8,5), | 4 layers: Linear(4,2), | 8 layers: Linear(13,8), | 8 layers: Linear(16,8),
Design ReLU, Linear(3,1), Sig- | ReLU, Linear(5,3), | ReLU, Linear(2,1), Sig- | ReLU, Linear(8,5), | ReLU, Linear(8,5),
moid RelLU, Linear(3,1), | moid RelLU, Linear(5,3), | ReLU, Linear(5,3),
Sigmoid RelU, Linear(3,1), | ReLU, Linear(3,1),
Sigmoid Sigmoid
Target Breast Cancer Dataset | Pima Indians Diabetes | Data Banknote Authen- | Electrical Grid Stabil- | Bank Marketing Dataset
Dataset with 569 instances Dataset with 768 in- | tication Dataset with | ity Dataset with 10000 | with 45211 instances
stances 1372 instances instances
Initialization | Xavier weight init [14], | Xavier weight init, | Xavier —weight init, | Xavier weight init, | Xavier weight init, shuf-
shuffled input data shuffled input data shuffled input data shuffled input data fled input data
Training learningRate=0.1, mo- | learningRate=0.1, mo- | learningRate=0.1, mo- | learningRate=0.1, mo- | learningRate=0.1,
Hyperpa- mentumSGD =0.9 mentumSGD =0.9 mentumSGD =0.9 mentumSGD =0.9 momentumSGD =0.9
rameters
of batches || 6 6 6 6 6
of Epochs || 1000 1000 1000 1000 1000

[ShiBeeyesodtiete s Wma@a%%%%@%&% PR s-based implementations. These

Figure 2: Regular train and test: i) trained models testing
accuracies and ii) DLaaW Timespans (in seconds).

more recent release and more capable on matrix computation
compared to CUDA cores), a 6-core NVIDIA Carmel ARM
CPU and 8GB LPDDR4 share memory for GPU and CPU;
3) an NVIDIA Jetson Nano SoM , which contains a GPU
with 128 CUDA cores, a Quad-core ARM CPU, 4GB
LPDDR4 share memory for both CPU and GPU.

We selected and adopted 5 datasets (as showed in Ta-
ble) by considering 1) their popularity, all the datasets
are with high popularity among Machine Learning users
and scientific researchers, e.g. the Pima Indians Diabetes
Database dataset has more than 1 million views and 0.2
million downloads on Kaggle , the banknote authentication
Dataset gained more than 0.32 million web hits on UCI
machine learning repository, which is one of the most
popular machine learning repositories with more than 3400
citations [15]]; and 2) their diversity, the selected datasets also
show good diversity in i) application domains (e.g. bank,
medical, electrical), which is important to alleviate potential
bias towards any specific application domain; ii) data size,
which is important to test scalablity. In the collection of our
selected datasets, the Breast Cancer dataset, the Pima Indians
Diabetes dataset and the Banknote Authentication dataset
are small datasets with less than 1500 instances, while the
other two datatsets are relatively bigger, containing more
than 10000 instances.

B. Experiment Results

The results of experiments are showed in Fig. 2] The bar
charts on top in this figure shows the testing accuracy on
each trained model based on Keras and our DLaaW (with
various GPU settings). The charts clearly demonstrate the
superb prediction accuracy of the 5 neural networks (de-
scribed in table [) implemented (as NNWorkflows) through

NNWorkflows consistently outperform their Keras-based
counterparts for 4 of the 5 datasets. The sole exception
is with the Data Banknote Authentication that Keras-based
implementation delivers higher accuracy. One explanation
for this exception could be the use of different data shuffle
and partition mechanisms in DATAVIEW and Keras, leading
to high data occasional bias [16]] on small datasets that may
in turn affect the model training. Overall, the accuracy result
of the experiment convincingly support the validity of our
DLaaW approach and its competitiveness in comparison to
the conventional implementations of neural networks. We
are excited about this result as it will function as a corner-
stone for our ongoing research that tries to leverage GPU-
enabled deep learning to benefit broad scientific workflows
in DATAVIEW.

The bar charts in the bottom of Fig. [2| demonstrated the
timespans of training and testing on each neural network.
The Keras-based implementation on local GPU delivers very
swift execution on the first three relatively small datasets.
However, with the much bigger 4th and 5th datasets, the
execution timespans increase dramatically. This result sug-
gests that Keras-based implementation of neural networks
may severely suffer from bad scalability as reported by other
developer The scalability issue of Keras may be due to
the inefficient handling of data loading and synchronization
between GPU and CPU in its low level CUDA implementa-
tion, which aggregate I/O overhead exponentially as the data
size increases. In contrast, the NNWorkflows implemented
per our DLaaW approach enjoys great scalability. All the
NNWorkflows implemented based on our DLaaW show
minimum increase in their execution timepsans — almost
unnoticeable — across the datasets of varied (increasing)
sizes. This is exciting since scability is one of the greatest
changes brought up by bigdata to the research community.

Ifit_generator slows down when dealing with large dataset.https:/github.
com/keras-team/keras/issues/5390

https://github.com/keras-team/keras/issues/5390
https://github.com/keras-team/keras/issues/5390

Thanks to the Jetson zero-copy mechanism adopted in
NVIDIA Jetson SoMs, where CPU and GPU physically
share the same system memory so that synchronization
overhead can be greatly alleviated, which is adequately
exploited in our implementation of the DLaaW approach.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the DLaaW approach which
creates, executes and reuses any neural networks as native
workflows in a general scientific workflow management
system — DATAVIEW. Our work makes DATAVIEW the
first scientific workflow management system that supports
GPU-enabled deep learning on various GPU resources at the
infrastructure level. Through carefully designed comparative
experiments with the Keras-based counterpart implemen-
tations, we validated our proposed DLaaW approach and
the correctness of our various implementations on different
GPU resource settings, and demonstrated the effectiveness
of our proposed approach and implementation in terms of
prediction accuracy and training scalability. As future work,
we plan to investigate and incorporate more GPU services,
enrich CUDA APIs implementations, and provide DLaaW
as an open service for use beyond our own SWEMS -
DATAVIEW.

ACKNOWLEDGEMENT

This work is partially supported by National Science
Foundation under grant OAC-1738929.

REFERENCES

[1] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The
cost of doing science on the cloud: the Montage example,” in SC’08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
Ieee, 2008, pp. 1-12.

[2] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Algorithms for
cost- and deadline-constrained provisioning for scientific workflow
ensembles in laaS clouds,” Future Generation Computer Systems,
vol. 48, pp. 1-18, 2015.

[3] C. A. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank,
D. Michaelides, D. Newman, M. Borkum, S. Bechhofer, M. Roos,
P. Li et al., “myExperiment: a repository and social network for the
sharing of bioinformatics workflows,” Nucleic acids research, vol. 38,
no. suppl_2, pp. W677-W682, 2010.

[4] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil,
M.-H. Su, K. Vahi, and M. Livny, “Pegasus: Mapping scientific
workflows onto the grid,” in European Across Grids Conference.
Springer, 2004, pp. 11-20.

[5] A. Gulli and S. Pal, Deep learning with Keras.
Ltd, 2017.

[6] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, pp. 8026-8037,
2019.

[71 Z. Akkus, J. Cai, A. Boonrod, A. Zeinoddini, A. D. Weston, K. A.
Philbrick, and B. J. Erickson, “A survey of deep-learning applications
in ultrasound: Artificial intelligence—powered ultrasound for improv-
ing clinical workflow,” Journal of the American College of Radiology,
vol. 16, no. 9, pp. 1318-1328, 2019.

[8] R. E da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou, and
E. Deelman, “A characterization of workflow management systems
for extreme-scale applications,” Future Generation Computer Sys-
tems, vol. 75, pp. 228-238, 2017.

Packt Publishing

[9]

[10]

[11]

[12]

[13]
[14]

[15]
[16]

J. M. Wozniak, R. Jain, P. Balaprakash, J. Ozik, N. T. Collier,
J. Bauer, F. Xia, T. Brettin, R. Stevens, J. Mohd-Yusof et al.,
“Candle/supervisor: A workflow framework for machine learning
applied to cancer research,” BMC bioinformatics, vol. 19, no. 18,
pp. 59-69, 2018.

J. Liu, S. Lu, and D. Che, “A survey of modern scientific workflow
scheduling algorithms and systems in the era of big data,” in 2020
IEEE International Conference on Services Computing (SCC). 1EEE,
2020, pp. 132-141.

J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, “A survey of
data-intensive scientific workflow management,” Journal of Grid
Computing, vol. 13, no. 4, pp. 457-493, 2015.

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kriiger, A. E.
Lefohn, and T. J. Purcell, “A survey of general-purpose computation
on graphics hardware,” in Computer graphics forum, vol. 26, no. 1.
Wiley Online Library, 2007, pp. 80-113.

A. Kashlev et al., “Big data workflows: A reference architecture and
the DATAVIEW system,” STBD, vol. 4, no. 1, pp. 1-19, 2017.

S. K. Kumar, “On weight initialization in deep neural networks,”
arXiv preprint arXiv:1704.08863, 2017.

D. Dua, C. Graff et al., “Uci machine learning repository,” 2017.
C. DeBrusk, “The risk of machine-learning bias (and how to prevent
it),” MIT Sloan Management Review, 2018.

	Introduction
	Challenges of integrating neural networks into SWFMSs
	NNWorkflows construction Challenge
	CPU/GPU communication Challenge
	Challenge of neural network implementation in GPU
	CPU&GPU I/O overhead Challenge
	NNWorkflow dynamic mapping Challenge
	Challenge of uniformly supporting diverse GPU types

	Our Approach and Implementation
	Experiments
	Hardware and Datasets
	Experiment Results

	Conclusions and future work
	References

