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Abstract

Scientific workflow has become a common practice for scientists to effectively formalize and structure complex scientific processes,
which in turn has accelerated scientific discoveries in numerous research fields. With the recent thriving of deep learning in broad
range of scientific projects, there is a rising need for deep learning support in scientific workflow infrastructures - SWFMSs.
However, current GPU-enabled deep learning frameworks are developed separately, not suitable for direct exploitation in SWFMSs,
which forces scientists to handle deep learning outside of SWFMSs and then integrate in workflows in an ad-hoc manner. What
workflow users pressingly need today is a user-friendly and well-integrated SWFMS to facilitate GPU-enabled deep learning as
native workflows so that they can conveniently design, train, reuse, and integrate deep learning models in comprehensive workflows.
In this paper, We report our latest research progress in supporting GPU-enabled deep learning at infrastructure-level in a popular
SWEMS - DATAVIEW, which facilitates: 1) fast design, train, reuse neural networks as native workflows per Deep-Learning-as-a-
Workflow (DLaaW) or integrate pre-trained neural network models with ordinary Tasks in one comprehensive workflow via JAVA
API or WebBench GUI, 2) flexibly leverage various types of GPU resources for executing deep learning workflows. Our approach
and implementations are thoroughly evaluated through experiments that demonstrate the efficacy and efficiency as compared to

conventional Pytorch-based implementations.
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1. Introduction

Scientific workflow modeling and execution using a SWFMS
(Scientific Workflow Management System) has become a com-
mon practice for scientists to accelerate scientific discoveries
across numerous scientific domains. For example, the national
Ecological Observatory Network (NEON) [1]] relies on a sen-
sor based data-driven workflow to collect ecological data from
sensors across US for studying the ecological processes and
changes; the 1000 Genomes project [2] utilizes a bioinformatics
workflow to fetch and parse data and to analyze mutation over-
laps in humans for the statistical evaluation of potential disease-
related mutations. In addition, the Montage workflow [3] has
been used by thousands of astronomers for constructing image
mosaics of the sky. In the Bioinformatics field, the myExper-
iment repository [4] currently contains 3935 public scientific
workflows shared by 11161 members from 429 groups. The
Pegasus workflow system [5] aided the LIGO (Laser Interfer-
ometer Gravitational wave Observatory) project to successfully
detect gravitational waves — a discovery that won the Noble
prize!

Since the past decade, machine learning (ML), especially
deep learning (DL), has become increasingly popular and been
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utilized in broad scientific processes and projects across nearly
all scientific domains [6,[7]. Thanks to the continued advance in
new GPU micro-architectures, DL models can now be trained
on very large datasets in accelerated speed, and deliver extraor-

dinary prediction accuracy across broad application disciplines [§]].

Although there are many GPU-enabled DL libraries available,
such as PyTorch [9], Keras/TensorFlow [10], Theano [[11] and
Mxnet [12]], they are not readily usable in a SWFMS environ-
ment. As a consequence, tremendous work such as architectural
design, model training, and optimization has to be first carried
out outside of a SWFMS and then integrated into a workflow
in an inefficient, ad-hoc manner [13]], which is neither triv-
ial nor optimal, for the reasons that: 1) it requires expertise
with one or more DL libraries and the underlying SWFMS; 2)
transferring data between DL models and data-intensive scien-
tific workflows [[14] in SWFMS tend to be time-consuming and
less efficient; 3) the separate development of DL models and
computation-intensive scientific workflows [14] based on dif-
ferent platforms tend to be complicated and error-prone.

One simple idea would be to adopt existing DL APIs (e.g.
Pytorch/Keras Java APIs) in a SWFMS with the hope to quickly
facilitate production-ready and user-friendly development of the
DL functionalities (as components) for scientific workflows.
However, as these DL APIs are not designed for scientific work-
flow environments, the “simple embrace” approach ineluctably
bears limitations, of which we shed more light as follow. First,
it is very hard to customize any real-time output from interme-
diate nodes/layers (e.g. feature maps) of developed DL mod-
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els based on external frameworks/libraries, and pipeline them
to other workflow tasks, or integrate them as a part of a larger
workflow and stream live data through such workflow in real-
time, since the output format and data types of those DL APIs
are fixed/locked by third-party providers, which inevitably in-
troduce various type-I or type-II shimming problems [15]] (i.e.
data format and type incompatibilities) while chaining ordinary
tasks and DL tasks together in a workflow. Second, it is hard to
trace the root cause of any bugs, errors or performance issues
in a sophisticated scientific workflow with DL models involving
intermediate level DL APIs, as most of the existing DL libraries
are closed source in their intermediate level APIs. For example,
cuDNN and cuBLAS are NVIDIA’s intermediate level closed
source DL APIs, which are built upon CUDA (an open-source
low-level API) and are profoundly utilized by popular DL li-
braries/APIs such as Pytorch, TensorFlow and Keras. This may
result in a situation where errors are untraceable and resultant
performance are unpredictable to both SWFMS developers and
workflow users.

Therefore, it is very necessary to provide a SWFMS with
infrastructure-level support for GPU-enabled DL that is natively
implemented and seamlessly integrated into the SWFMS. In
our previous work [[16], we proposed the DLaaW (Deep Learn-
ing as a Workflow) approach and conducted a feasibility study
in the DATAVIEW SWFMS. To our best knowledge, this is
the first effort for implementing a deep learning neural net-
works as native workflows from insfrastructure level in an in-
tegral SWFMS. More specifically, we introduced an NNWork-
flow Engine that wraps up multiple types of NNTrainers for
executing any specified NNWorkflow training/execution plans
(e.g. regular train and test, K-fold cross validation) on any par-
ticular type of GPU Resources (e.g. Local GPU of a host PC, a
NVIDIA SoM (System-on-Module)). Accordingly, we imple-
mented a generic GPU Resource Management module to lever-
age diverse GPU resource configurations and maintain great ex-
tensibilty for incorporating any new GPU resource types in a
long run. In our preliminary work [16], we focused on design,
construction and execution of NNWorkflows in DATAVIEW via
programmatic JAVA API, supporting two types of GPU infras-
tructures, including the local NVIDIA GPU of a host PC and a
single NVIDIA SoM (Xavier or Nano), for executing NNWork-
flows in DATAVIEW, in which all of DLaaW implementations
delivered very competitive performance compared with Keras-
based (counterpart) implementations.

Based on our preliminary exploration [[16], we have made
tremendous progress, fully implemented our novel DLaaW ap-
proach that was introduced in [16] and thoroughly tested it.
Our new implementations allow workflow users/developers to
leverage a full life-cycle deep learning utility to not only de-
sign, construct and execute deep neural networks in the form of
NNWorkflows, but also reuse pre-trained NNWorkflow models
on new datasets for prediction in an ordinary workflow, or in-
tegrate these pre-trained models (executed on GPU) with ordi-
nary workflow Tasks (executed on CPU) in one comprehensive
workflow. All of above take place in one integral SWFMS envi-
ronment - DATAVIEW. Moreover, a heterogeneous GPU clus-
ter as a new type of GPU infrastructure has recently been imple-

mented and incorporated in DATAVIEW. Our newly conducted
experiments demonstrate not only the efficacy but great advan-
tages of our DLaaW approach. In particular, DLaaW (as imple-
mented in DATAVIEW) allows more adequate exploitation of
the high-degree parallelism enabled by the host SWFEMS, which
in turn significantly boosts DL performance. The DATAVIEW
project, supported by multiple NSF grants, is open-source and
available on Github. The current version - DATAVIEW Release
3.0, has been released in github.com.

Based on our preliminary work [16], our recent progress
reported in this article makes following additional main contri-
butions:

1. We introduce a new Neural Network Executor module
in the NNWorkflow Engine that supports the reuse of
any trained NNWorkflow model on new datasets, accom-
plishing a full life-cycle DL utility — from design to reuse
neural networks as native workflows in DATAVIEW.

2. We introduce the graphical WebBench GUI that facili-
tate NNWorkflow in design, construction, run and reuse
in DATAVIEW, or integrate pre-trained models with or-
dinary Tasks in one comprehensive workflow. The ap-
pealing intuitiveness of the GUI enhances the usability
of DLaaW and SWEFMS as a whole.

3. We introduce heterogeneous GPU clusters as a new type
of GPU infrastructure for accelerated training and exe-
cution of NNWorkflows, on which we evaluate how well
NNWorkflows can leverage the high-degree parallelism
offered by a SWFMS in our experiments.

4. We conduct the performance comparison on DLaaW im-
plementations with Pytorch-based counterparts (alterna-
tive to the Keras-based in our previous work), to assure
the validation of our work not only holds for one partic-
ular DL library’s counterpart implementations.

The rest of this paper is organized as follows: Section 2 re-
views recent related work. Section 3 summarizes four research
and two engineering challenges of supporting GPU-enabled DL
capabilities at infrastructure-level in a general SWFMS frame-
work. Section 4 presents the architecture of our DLaaW ap-
proach that addresses all research challenges described in Sec-
tion 3. Section 5 elaborates on the core implementation of the
DLaaW approach, in which we address all engineering chal-
lenges described in Section 3. Section 6 reports our experimen-
tal results that demonstrate the validity and efficiency of our
DLaaW approach and its implementations in DATAVIEW. Sec-
tion 7 concludes the article and points out some future research
directions.

2. Related Work

As the technology of ML, especially DL, is fast advancing,
the need for ML/DL across all application areas increases even
faster. ML/DL has greatly contributed to scientific discover-
ies [13]] in numerous disciplines. Along the same line, the need
and desire for integrating ML/DL capabilities into SWFMSs
have risen higher than ever. In this section, we review major
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recent related works that we curated from Google Scholar and
DBLP in combination with the snowballing method as they are
relevant and compared to our work.

CPU-based ML for workflow scheduling: CPU-based ML
has been exploited by workflow researchers on deriving bet-
ter scheduling plans. For example, T.Miu and P. Missier [[17]]
used the C4.5 Decision Tree algorithm on historical input data
and makespans to train the model for estimating the makespans
of scientific workflows on new input data. A. Nascimento et
al. [18]] promoted application of Reinforcement Learning (RL)
and Q-Learning [19] on workflow scheduling, aiming at dis-
covering/learning the best scheduling plan based on the histor-
ical executions in absence of a mathematical model. Z.Tong et
al. [20] proposed a task scheduling algorithm called QL-HEFT
which combines Q-Learning with the HEFT algorithm [21] to
reduce the makespan of workflow execution. Our current work
wraps NNWorkflow execution (scheduling) plans in respective
NNTrainers/NNExecutors modules to support our DLaaW ap-
proach. Though we have yet to reach the stage of optimizing
NNWorkflow scheduling, this could be one of research direc-
tions in our future work — i.e., to leverage ML/DL and exploit
existing workflow scheduling/optimization algorithms [22]] (de-
signed for ordinary workflows) on optimizing NNWorkflows
scheduling in the SWFMS.

CPU-based ML in workflow applications: Much work
has been done to incorporate CPU-based ML applications in
SWEMSs and workflows. A comprehensive survey [23] on
CPU-based ML applications in SWFMSs has been made by E
Deelman et al. The survey covers most of the representative
works published before 2017. Below, we comment on more
recent representative works published after 2018. I Ahmed et
al. [24] implemented a semi-supervised clustering-based diag-
nosis recommendation model in DATAVIEW [25] SWEMS for
improving the diagnosing accuracy via self-training and co-
training of the model. N Radosevic et al. [26] utilized CPU-
based Decision Tree in solar radiation modeling in the KN-
IME [27] SWEMS to increase reproducibility and warrantabil-
ity of environmental models. Compare with our approach, while
all these works dwell in the realm of leveraging CPU-based im-
plementations, our effort embraces GPU-based ML approach
which bears a great advantage — the superior parallelization
backed by thousands of GPU cores.

Exascale GPU-based DL: Interesting works [28] 29} [30]
have been done to exscale distributed deep learning based on
existing DL libraries/APIs (as mentioned in [Section I). One
particularly interesting project related to workflows is the CAN-
DLE [30] project carried out at Argonne National laboratory.
This project aims to develop exascaled deep learning networks
(trained on massive datasets) for accelerating cancer research.
CANDLE is built upon Swift/T [31] which is a well-known
SWEMS centered on the Swift language, involving various HPC
schedulers to leverage DOE super computing resources for ex-
ascaling deep learning instances. Under the hood, CANDLE
distributes time-consuming deep learning tasks to HPC nodes
via Massage Passing Interface (MPI) and leverages Keras (API)
to carry out the actual DL executions. CANDLE particularly
aims at hyperparameter optimization to identify the most ef-

fective DL model implementations and scalable parallel learn-
ing where very large data are required. By directly utilizing
these Keras API and libraries, developers can immediately gain
user-friendly APIs and deployment agility. However, work-
flow users inevitably need to face the inherited limitations/is-
sues from third-party intermediate level DL APIs in SWFMSs
(as we pointed out in[Section TJ).

Unified Ecosystem for Al applications: There are works
dedicated to construction of unified frameworks/systems for de-
veloping Al applications. For example, Bazaar [32], is a such
a ML framework for developing ML models and automated
ML applications; it introduces its own ML primitives to uni-
formly leverage different ML/DL libraries (e.g. scikit-learn,
Keras, OpenCV) via a unified API and specification for data
processing, through which it allows data scientists to efficiently
construct and automate a variety of ML applications. How-
ever, as its applications may involve multiple ML libraries at
the same time, it could be even harder to trace any root cause of
low/intermediate-level API errors, which may bring more un-
certainties on any performance issue while outsourcing ML/DL
execution to various third-party providers. WOLF [33], is an
automated machine learning workflow management framework
designed to simultaneously automate the process of selecting
the best algorithm and searching for the optimum hyperparam-
eters. In contrast, our work emphasizes on something bigger —
not merely implementing ML/DL as workflows but facilitating
ML/DL workflows’ further and seamless integration into gen-
eral scientific workflows that require ML/DL capabilities. On
the other hand, Agora [34], which is a data management system,
aims to provide a unified asset ecosystem that goes beyond mar-
ketplace and cloud services and provides infrastructure-level
support for ML/DL applications. Considering the limitations of
surrendering infrastructure-level control to third-party providers,
Agora’s architectural design [35]] includes a unified data man-
agement system with infrastructure-level support for Al appli-
cations and optimization behind its descriptive syntax. Although
Agora is still under construction, the effort is encouraging.

3. Challenges of infrastructural support on GPU-enabled
DL in SWFMSs

In order to allow workflow users, i.e., scientists and en-
gineers, to be able to fully leverage the power of ML/DL, a
seamless integration of DL capabilities into existing SWFMSs
is needed, which brings several important benefits, 1) the pro-
grammatic and graphical design interfaces, which a SWFMS
such as DATAVIEW typically has, are made readily reusable
for the designs of NNWorkflows; 2) supporting neural network
represented as a native workflow in the SWFMS, executed and
reused in the same manner as an ordinary scientific workflow,
which in turn facilitates seamless integration of NNWorkflows
(as components) into comprehensive scientific workflows; 3)
the existing optimization and scheduling algorithms [22] shall
potentially be extended to NNWorkflows for expedited execu-
tion. To achieve these benefits, 4 major research challenges
(3.1}{3-4) and 2 major engineering challenges (3.5}{3.6) are iden-
tified and need to be overcome. These challenges are discussed
in the subsequent subsections:



3.1. NNWorkflows construction Challenge

To construct a neural network as a native workflow in a
SWEMS, firstly we need well-defined neural network tasks (or
NNTasks) which constitute a workflow. Typically, a scientific
workflow is constructed by connecting/pipelining constituent
Tasks through their input/output ports, and dispatched to suit-
able hardware resources for execution by workflow executors.
Traditional scientific workflows are formally defined and de-
scribed as directed acyclic graphs (DAGs) [36], in which data
always flow from the starting node(s) to the ending node(s) in
an acyclic manner and each task is visited exactly once. How-
ever in DL, a neural network can be executed in a certain num-
ber of epochs, this means that each task needs to be revisited
(during training) a certain number of times, and with each visit
the relevant weights (of the learning model) are updated and
saved until all epochs are finished. Generally, there are at least
three granularity options for the construction of NNTasks: 1) A-
Layer-as-a-Task, consisting of multiple neurons laid out in one
layer is constructed as a task in an NNWorkflow and will carry
out the forward/backward propagation of the neural network in
a data-driven manner (where the execution is triggered when-
ever the set data dependencies become ready); 2) A-Neuron-
as-a-Task, in which each single neuron is constructed as a task
in an NNWorkflow, and each neuron would independently take
care of its input and output data in a data-driven manner; and
3) A-Whole-Neural-Network-as-a-Task, in which a neural net-
work is constructed as a single task in an enclosing scientific
workflow. The decision can greatly affect the complexity of
the NNWorkflow construction, the mapping and the implemen-
tation of in-house low level DL APIs for GPU enabled deep
learning.

3.2. CPU&GPU communication Challenge

GPUs were originally designed to create images for com-
puter graphics and video games, but since the early 2010’s,
GPUs has been increasingly used to accelerate calculations in-
volving massive amounts of data. As the representation of data
in neural networks are tensors and the computation on which
basically consists of massive repeated operations, thus mod-
ern GPUs are optimized for training DL neural networks due
to their superior capability on simultaneously processing thou-
sands of cores in parallel, which can greatly boost the perfor-
mance on the training process of a neural network. However,
conducting such General-purpose GPU (GPGPU) computing is
still rather abstruse due to the substantial difference between
CPU and GPU computing in hardware architecture, comput-
ing mechanisms and programming languages [37]. Thus, com-
munication between CPU and GPU becomes a big challenge
involving the following two aspects: 1) implementing proper
interfaces to bridge the gap between native SWFMS and the
GPGPU computing, since modern SWFMSs are all built upon
the CPU infrastructure (i.e. CPU based hardware and operating
systems) [22f]; 2) lubricating the CPU&GPU collaboration in
GPGPU computing, as all GPU computing are initiated, coor-
dinated by and finally reduced to CPU. Such process involves
loads of synchronization, data copy, etc.

3.3. CPU&GPU I/O overhead Challenge

Though the interests in leveraging the infrastructure-level
support of GPUs in SWFMS are high, the data communica-
tion between GPU and CPU are expensive and can be a po-
tential bottleneck of performance. As the input&output ports
of NNWorkflow tasks are residing on the CPU side, pipelin-
ing the input&output of relevant tasks into&out from GPU in-
volves excessive I/O overhead, considering there may be hun-
dreds or thousands of neurons in a neural network. The accu-
mulated I/O cost between CPU and GPU thus can be enormous
and overwhelming, and remains as a stumbling block prevent-
ing traditional SWFMSs from incorporating the GPU comput-
ing power at the infrastructure level. For this reason, designing
an efficient data transportation mechanism for NNWorkflows
that minimizes the I/O communication between CPU and GPU
for NNWorkflow tasks is a major challenge that is needs to be
solved for adequately leveraging GPU enabled executions in a
native workflow in traditional SWFMSs.

3.4. NNWorkflow dynamic mapping Challenge

In order to execute an NNWorkflow as a native workflow on
GPU, a mapping mechanism is needed to map the NNWorkflow
from CPU-recognizable specification to GPU-recognizable spec-
ification. Since a neural network may be composed of arbitrary
types, arbitrary number and in arbitrary order of neural net-
work neurons and layers, such CPU-to-GPU mapping mech-
anism needs to be generic and dynamic so that any legitimate
native NNWorkflow can be mapped into a corresponding GPU-
recognizable specification. Given a native NNWorkflow speci-
fication as input, the mapping mechanism must be able to uni-
formly and consistently output a legitimate GPU execution spec-
ification for the NNWorkflow to be executed on correspond-
ing GPU resources. Designing such a generic and dynamic
CPU-to-GPU specification mapping mechanism is another ma-
jor challenge for incorporating GPU enabled execution in tradi-
tional SWFMSs.

3.5. GPGPU DL services implementation Challenge

Currently, there exist several popular computing platforms
and models for GPGPU computing: 1) NVIDIA’s CUDA, 2)
OpenCL, and 3) OpenACC. They are all focused on providing
a unified language and platform to bridge/bind CPU and GPU
together for GPGPU computing. Although such parallel com-
puting platforms/models provide higher-level languages than
the native hardware languages of CPU&GPU, such program-
ming languages are still considered as low-level APIs for GPU
computing. Consequently, construction and execution of neural
network on any one of these GPU computing platforms remains
a great challenge, which includes implementing various neural
network layers, constructing the architecture of neural network,
conducting forward&backward propagation across layers, etc.
These are all non-trivial issues that need to be addressed by a
SWEMS in order for DL to become readily available function-
alities for any scientific workflows.



3.6. Challenge of uniformly supporting diverse GPU resources

Recognizing the fact that different GPU resources require
different parallel computing platforms and execution mecha-
nisms, in order to uniformly execute any NNWorkflow across
various types of GPU resources in a SWFMS, all backend GPU
APIs should be developed under the same standard protocol.
Regardless of the variation of implementation of these inter-
faces (e.g. message passing interface, procedural calls, Java
native interface) that bridge CPU with a particular GPU, on re-
ceiving the same NNWorkflow specification, all GPU services
on different infrastructures should uniformly construct the same
neural network and conduct execution accordingly. Thus, im-
plementing a standardized protocol for various GPU Services
backed by various types of GPU resources is yet another major
challenge in our way.

4. Architecture

In order to bring DL as a native functionality into modern
SWEMSs and to address challenges outlined in the Section 2
based on DATAVIEW, we propose a new architecture, which
is extended from DATAVIEW’s prior architecture, with DL-
specific components added to the archetecture to give inherent
support for NNWorkflows (models) in DATAVIEW. Through
this new architectural design, we particularly address the fol-

lowing requirements pertaining to NNWorkflows in DATAVIEW:

1) supporting easy design, execution and reuse of any native
NNWorkflow in the same manner as any ordinary workflow; 2)
extending DATAVIEW s current user interfaces (including both
programmatic and graphical interfaces) so that users can conve-
niently build NNWorkflows as native scientific workflows via
user interfaces; 3) implementing a generic and extensible GPU
Resource Management mechanism that enables users to conve-
niently choose a suitable GPU infrastructure (e.g. local GPU,
GPU SoM, GPU cluster) for accelerated building, training and
reusing of target NNWorkflows and their trained models.
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Figure 1: DATAVIEW’s new architecture with inherent support for deep-
learning-as-a-workflow.

Fig. [I] shows the new architecture of DATAVIEW which
provides inherent support for DL through the DLaaW approach.
In the design and implementation of this architecture, we have

made great effort to decouple each component from others to
enable it greater extensibility not only for the good of our own
system but for broader extensibility of work to other SWFMSs.
The original architecture of DATAVIEW consists of the follow-
ing main components (shown in white rectangles in Fig. [I):
1) the Workflow Design and Configuration component, which
provides intuitive programmatic and graphical Uls for users to
design, execute and reuse workflows; 2) the Work flow Engine
component, which serves as a central component that controls
the execution of workflows; 3) the Work flow Monitoring com-
ponent, which keeps track of the status of workflow execution
(e.g. “initialized”, “executing”, “finished”, and “error”); 4) the
Data Product Management component, which stores all data
products that are used/produced by workflows; 5) the Prove-
nance Management component, which is responsible for stor-
ing, browsing, and querying workflow provenance; 6) the Task
Management component, which enables the execution of het-
erogeneous atomic tasks such as calling web services and run-
ning scripts; 7) the Cloud Resource management component,
which plays a key role in provisioning, cataloging, configuring,
and terminating the computation resources in clouds.

Built upon DATAVIEW’s original architecture, the new ar-
chitectural design adds the following new DL-specific compo-
nents (shown in light blue rectangles in Fig. [T): 1) NNWork flow
Engine component, which, if the input workflow is an NNWork-
flow, takes over the control, parses the NNWorkflow and out-
puts a corresponding GPU-recognizable specification to the down-
stream component; 2) GPUResource Management Component,
which, upon receiving the NNWorkflow specification, acts as a
unified gateway to route the specification to the target GPU ser-
vices; 3) GPU Services component, which provisions a pool of
various GPU resources that actually carry out the execution of
an NNWorkflow on an associated GPU infrastructure. As pre-
liminary implementation, we have not done any special modifi-
cations in the original provenance management component for
supporting DL-specific components at the time of this writing.
Instead, we leave it as a possible future task to leverage special
provenance data for more efficient support DL functions.

Below, we elaborate each newly introduced DL-specific com-
ponent for NNWorkflows and how they help solving the 4 major
research challenges (3.1}3.4) in our system.

4.1. NNWorkflow Engine Component

In contrast to the traditional workflow engine of DATAVIEW,
which consists of two layers accommodating alternative work-
flow planners and alternative executors for planing and execut-
ing workflow schedules, the new NNWorkflow Engine com-
ponent consists of two DL-specific modules: Neural Network
Trainers and NeuralNetworkE xecutors. The former is respon-
sible for training (and testing) a newly constructed NNWork-
flow, the latter reuses the trained NNWorkflow models and ap-
plies to new datasets for prediction.

In DATAVIEW, we adopt the so-called a-Layer-as-a-Task
construction strategy so that neural network layers are imple-
mented as NNTasks and the connections between the layers
naturally make up the data flow. Pragmatically, by considering



the trade-off between the granular control over the GPU man-
agement and the ease of network specification from the user
perspective, we believe our choice is the best compromise be-
tween the two extremes: a neuron as a task and a whole neural
network as a task. In this way, our system would provide work-
flow users a similar level of abstraction to Keras or Pytorch,
and meanwhile preserve great flexibility of customization for
SWEMS developers. Up to now, our system has no support
for existing Keras/Pytorch code to be wrapped and reused di-
rectly in scientific workflows, we are planning to provide multi-
ple cross-platform parsers in future releases to support mapping
users’ existing DL code (e.g. Keras, Pytorch) automatically to
NNWorkflows, which may give users the greatest convenience
to adapt their existing work to our system.

The NeuralNetworkT rainers module consists of two layers
- NNWorkflow Mapper and NNWorkflow NNTrainers, which
are dedicated to map (from newly constructed NNWorkflows)
and encode GPU execution specification. The NNWorkflow
Mapper maps native NNWorkflows to GPU recognizable spec-
ification in a specific textual data format. At a lower layer, a
corresponding NNworkflow NNTrainer will take the NNWork-
flow specification generated by the upper layer and encode the
trainer-specific GPU infrastructure information (e.g. type of
GPU resources, number of GPU nodes to be used, etc.), and

then forward them to the downstream G PUResource Management

component (detailed in the following subsection).

On the other hand, the Neural Network Executors module
also consists of two layers - NNworkflow Specification Parser
and NNWorkflow NNExecutors. The former parses the pre-
trained NNWorkflow model (saved as a text file) and gener-
ates a GPU-recognizable specification in a textual data format.
At the lower layer, a corresponding NNworkflow NNExecu-
tor will take the NNWorkflow specification (including the new
dataset to be used) generated by the upper layer and encode
the executor-specific GPU infrastructure information into the
specification, and then forward them to the downstream GPU
Resource Management component (Detailed in the following
subsection).

By constructing neural networks in the granularity of a-
Layer-as-a-Task in native NNWorkflows and mapping NNWork-
flows to GPU-recognizable specifications, we can satisfactorily
address and[3.4]as discussed earlier Section 3.

4.2. GPU Resource Management Component

Upon receiving the aggregated NNWorkflow specification
from the NNWork flow Engine component, the GPU Resource
Management component will parse the NNWorkflow per its
specification, call a corresponding in-house GPU service and
route the NNWorkflow specification to that target GPU service
through a unified gateway. Each GPU service stands behind
the gateway require a unified specification (including acces-
sible input datasets) to kick off an end-to-end neural network
GPU computation. All real-time GPU execution logs (e.g. the
GPU execution status, printouts, errors) will be automatically
forwarded back to the NNWork flow Engine component in real-
time. Once the GPU execution is done, the target GPU service

returns the output (e.g. the saved model and testing accuracy)
to the NNWork flow Engine component.

In this way, NNTasks (layers) with their input/output ports
would be mapped from the CPU side to the GPU side, thus, the
I/O communication between CPU and GPU is not required at
the inter-task/layer level. This arrangement in our implementa-
tion significantly reduces the overall I/O cost between CPU and
GPU, which in turn helps boost the overall system performance.

as mentioned in Section 3 thus is satisfactorily

solved.

4.3. GPU Services Component

The GPU S ervices component maintains a pool of diverse
GPU resources. After a NNWorkflow specification “fanned
out” from the GPU Resource Management component to a spe-
cific GPU resource in the GPU S ervices component, the target
GPU service will 1) setup the execution environment, which in-
cludes loading and preprocessing of the input datasets, allocat-
ing memories on both CPU and GPU sides (Memory synchro-
nization is needed between GPU and CPU in GPGPU comput-
ing); 2) construct the neural network (according to the received
specification) in GPU’s global memory and finally ignite the
neural network’ execution on the target GPU device.

In our approach, GPU Resource Management is introduced
as a gateway (an intermediate interface) between NN Work flow
Engine and GPU S ervices components to gain implementation
independence for salient future extensibility. The higher layer is
built on an abstraction, i.e., a standard interfacing protocol, and
all concrete implementations in the lower layer are accordingly
aligned to that interface. As long as the abstraction does not
change, any change or adding GPU services in the future will

not affect the higher level components. As a result,
[3.4) and [Challenge 3.5 (discussed in Section 2) are solved.

5. Implementation

In DATAVIEW, native deep learning capability is imple-
mented according to our DLaaW approach (i.e., a deep learning
network as a workflow) and the design choice of a-layer-as-a-
task. A number of new architectural components (as shown in
Fig. 1) are accordingly introduced to support the implementa-
tion of our approach. The implementation of these components
involves Java, C++, CUDA C++, Java Native Interface (JNI)
and Message Passing Interface (MPI). Our system manifests the
following important features: 1) NNTasks takes user-definable
hyperparameters as input and allows users to either pragmati-
cally or graphically construct NN'Workflows based on their pro-
vided hyperparameters; 2) the NNWorkflow Engine compo-
nent encapsulates execution plans (including training, testing,
k-fold cross validation, etc.) and infrastructure configuration/set-
tings (e.g. types and number of GPU resources) in NNWork-
flow specification; 3) any NNWorkflow (whether a yet to be
trained or already trained model) can be uniformly fed into any
chosen GPU resource (wrapped in the form of a GPU service)
and result in the same execution (training, validation, or pre-
diction) result. Our proposed approach and implementations
of deep learning not only supports scientists to conveniently
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Figure 2: Procedures to construct, execute and reuse a deep-learning-as-a-workflow in DATAVIEW.

build and orchestrate any NNWorkflow at any scale, but also
aid them to configure suitable execution plans on available GPU
resources for particular DLaaWs.

Fig. [2] shows the procedural layout of our current imple-
mentation of the DLaaW in DATAVIEW, which lays out the
details of the three new components illustrated in Fig. 1. In this
section we discuss the implementation details of the DLaaW
approach and explain how the 2 major engineering challenges (
[3.3} 3.6)] are addressed in the implementation.

5.1. User Interfaces: GUI and JAVA API for Workflow/NNWork-
flow design, construct, run and reuse

In DATAVIEW, all workflows, including NNWorkflows, can
be conveniently designed, constructed, run and reused through
a uniform JAVA API or an intuitive GUIL

Regarding an NNWorkflow, it is constructed layer-by-layer
and saved in an NNTask array that specifies the type and or-
der of each neural network layer in the NNWorkflow. The
NNTask array is then fed into the Sequential() function along
with other training parameters such as how many batches the
input data is to be split and how many epochs to be used to

train the model. Listing [I| shows a sample Java code of the
SampleNNWorkflow class (a subclass of NNWorkflow) to con-
struct a simple NNWorkflow that models on the input dataset
Breast_cancer_data.csv and output the modeling results to the
output.txt. This NNWorkflow contains 4 neural network layers:
layers[0] is a Linear layer with 5 input neurons and 3 output
neurons; layers[1] is a ReLU layer; layers[2] is a Linear layer
with 3 input neurons and 1 output neurons; layers[3] is a Sig-
moid layer. The input dataset will be split into 5 batches and
the model will be trained in 1000 epochs (as specified in the
Sequential() call). Fig. [3| shows the visualization of this sam-
ple NNWorkflow produced by the Presentation&Visualization
component in DATAVIEW.

Listing 1: Construct a sample NNWorkflow with 4 layers:

wins [0] = ”"Breast_cancer_data.csv”;
wouts [0] = "output.txt”;

public void design ()
{

NNTask[] layers = mew NNTask[4];

layers [0] = new Linear(5,3);



layers[1] new ReLU() ;
layers[2] new Linear(3,1);
layers[3] = new Sigmoid();

Sequential (layers , 5,

}

1000) ;

Listing 2: Construct a sample Workflow that reuse the NNWorkflow trained
model:

wins [0] = new DATAVIEW_BigFile (”model@749702”) ;
wins[1] = new DATAVIEW BigFile(” New_dataset.csv”);
wouts [0] = new DATAVIEW_BigFile(” output.txt”);

public void design ()
{

Task stagel = addTask(”NNExecutor”);

addEdge (0, stagel, 0);
addEdge (1, stagel, 1);
addEdge (stagel , 0, 0);

B \Nworkiow2

Lifiear In)

b=
B

Lipear Input1. | | Ligear Outpl:t0 Lipear Input0,
Li F ’2681?\11 J
inkar@7 ‘ ‘,) : //
Vi
\I\
Lifiear Inpuk> | |Lifear Outpl.t1 Lifiear Input1  Ligéar Outphto
ReLU@6Ge 156711 A y
i /
M
[
Fa@se 2 Lifiear Input3/| [Ligear Outp\t2 Lifiear Input2
gl @ ‘ C
swqmmumcneaFe Li@“

Figure 3: NNWorkflow Visualization by DATAVIEW: i) The sample NNWork-
flow and ii) its Neuron-level architecture.

Alternatively, the same SampleNNWorkflow can be designed,
constructed and run using DATAVIEW’s webBench GUI in a
drag-and-drop manner, as showed in Fig.[d The input datasets
and Workflow Tasks are pulled from user’s dropbox account via
dropbox API v2, and they can be dragged into the webBench
and can be chained by drawing edges from prior tasks’ output
ports to subsequent tasks’ input ports.

In addition, a deep-learning enabled workflow (for reusing
NNWorkflow trained models) can be constructed in the usual
way, except that trained NNWorkflow models are incorporated
through the predefined generic NN Executor task, concatenated
with other tasks in the workflow by Edges between the in-
put/output ports of the tasks. Listing[2]shows sample Java Code
of the design() method in the NNExecutorWorkflow class, a
subclass of Workflow in the DATAVIEW system to quickly wrap
up trained NNWorkflow model as an ordinary native workflow
(or sub-workflow, from the perspective of a larger, enclosing
workflow). The sample code takes the input trained NNWor-
flow model, model@749702 (saved as a text file), and per-
forms intended prediction on New_dataset.csv and saves the re-
sult (in JSON format) in the output.txt file as specified. Alterna-
tively, this workflow can be designed, constructed and run us-
ing DATAVIEW’s graphical webBench Ul as showed in Fig.[3]
As pre-trained NNWorkflow models are designed, constructed

and run as an ordinary workflow, they can leverage all exist-
ing ordinary workflow executors (for ordinary workflows) in
DATAVIEW, including WorkflowExecutor_Beta [38]], Workflow-
Executor_Local [39], etc.

Furthermore, NNTasks can be integrated as a part of one
comprehensive workflow, which consists of both NNTasks (ex-
ecuted in GPU) and ordinary Tasks (executed in CPU). We also
provides two options (programmtically&graphically) for work-
flow users to construct comprehensive workflows. For example,
a simple use case of Ensemble Learning on neural networks in-
cludes 3 weak NNWorkflow classifiers (pre-trained NNWork-
flow models) and one voting task. By leveraging these weak
classifiers to independently output their predictions on any par-
ticular data entry, the final prediction of that data entry can be
derived by a voting process by majority votes of 3 classifiers.

Listing [3] shows sample Java Code of above comprehen-
sive neural network ensemble learning workflow, which con-
sists of 1) 4 inputs, including three pre-trained NNWorkflow
models (model @749702, @749540, @749503) and one dataset
- Breast_cancer_data.csv; 2) 4 Tasks, including three NNExecu-
tor Tasks that are going to be executed in the GPU environment,
and one ordinary Ensemble_Vote Task which is executed in the
CPU environment; 3) and one output file (output.txt).

Listing 3: Construct a comprehensive ensemble learning neural network work-
flow:

wins [0] = new DATAVIEW_BigFile(”model@749702”) ;

wins[1] = new DATAVIEW_BigFile(”model@749540”) ;

wins[2] = new DATAVIEW _BigFile(”model@749503”);

wins[3] = new DATAVIEW_BigFile(” Breast_cancer_data.
csv”);

wouts [0] = new DATAVIEW_BigFile(” output.txt”);

public void design ()
{

Task stagel = addTask(”NNExecutor”);
Task stage2 = addTask(”NNExecutor”);
Task stage3 = addTask(”NNExecutor”);
Task stage4 = addTask(”Ensemble_vote”);
addEdge (0, stagel, 0);

addEdge (3, stagel, 1);

addEdge (1, stage2, 0);

addEdge (3, stage2, 1);

addEdge (2, stage3, 0);

addEdge (3, stage3, 1);

addEdge (stagel , 0, stage4, 0);
addEdge (stage2, 0, stage4, 1);
addEdge (stage3 , 0, staged, 2);
addEdge(stage4, 0, 0);

Fig.[f]shows how this comprehensive workflow can be con-
structed through a dragging and dropping manner, user can drag
and drop either NNTasks or ordinary Tasks to the working panel
and connect their input/output ports via edges. The constructed
Neural Network Ensemble Learning workflow will be executed
as a regular workflow, such that all regular workflow executors
(WorkflowExecutor_local, WorkflowExecutor_Beta) can be uti-
lized. After clicking the Run button, the prediction will be car-
ried on in GPU and the results will be showed in a separated
pop-up window, in which each value represents the voted out-
come (based on the 3 weak classifiers’ independent predictions)
for a particular row/record in the input dataset.



e e s
s adbpd il e B2 Documentation Dropbox Cloud ResetVM  Download Logout
A1 ElEIE) DIEA 130 ow Reposion
DATAVIEW -

Aigorttnms
coursett e eeee Algorithm2
course_require.txt Evaluation
course_taken.txt Extraction
seoutpuroe RACartesianProduct
ominputa it RAConditonatioin
number1.txt RADIvision
mbera b RaFulOutersoin
onginatinput ¢ @ | | | | \ Ralntersection
parameter.txt value 2 3X1) RALeftloin
prof.txt T_‘ T_l T_l T_l T RANaturalJoin
profCopy.txt Breast_cancer_data.cs\_inear RelU Linear Sigmoid outputDPO RAProject
projectByName.txt RARename
RAresult.txt RARightioln
rename.txt RiSelect
selectByName. txt RASetDifference
taught.txt RAUnion
selectByCondition1. m
projectBy2.txt Linearsx3
rename2.txt Linear3x1
rename3. txt Sigmoid

RelU
.-
Figure 4: Design and construct an NNWorkflow in DATAVIEW webBench.
e i
SRRV Documentation Dropbox Cloud ResetVM  Download  Logout
P’ orkiow Reposion Y
NNExecutor - Algorithm2 -
Workflows Evaluation
DATAVIEW-INPUT bl Extraction
course.txt RACartesianProduct
course_require.txt RAConditionalJoin
course_taken txt —
DGoutput0.txt RAFullOuterJoin
JoinInput3.txt Dropbox RAIntersection
numbert. txt value RALafIoIn
number2.txt o—a-—0 RANaturalloin
originallnput.txt 02 IS . RAProfect
parameterixt el —_—
ot
:mmwm NNExecutor outpulDPO RARIgholn
Dropbox RASelect
projectByName.txt ] RASetDiference
Raresutixt —
rename.txt New_dataset.csv T
slectayName.txt i
taught.oxt Linear3x1
slecteyConditont. oo
profectay2.x -
renamez.txt e
rename3.tt NNExecutor
reast concer dota e

Figure 5: Reuse a trained NNWorkflow model on new dataset for prediction in DATAVIEW webBench.

The above three samples show that the established usability
of DATAVIEW [25] (either programmatically or graphically)
via JAVA API or webBench GUI are naturally preserved and ex-
tended to NNWorkflows and any workflows subsuming trained
NNWorkflow models as components.

5.2. NNWorkflow Engine: from native NNWorkflow to GPU
recognizable specification

5.2.1. Neural Network Trainers

The NNWorkflow JSON Mapper module (Written in Java)
maps all constructs and primitives of the NNWorkflow to their
neural network counterparts that are recognizable by the back-
end GPU services. A sample GPU recognizable specification
mapped from the native NNWorkflow is included in Appendix
A. At the time of this writing, the NNWorkflow Mapper con-
tains one specific mapper - NNWorkflow JSON mapper, alter-
native mappers will be investigated in the future.

Listing 4: Sample code of selecting runing NNTrainers for a NNWorkflow:

{

NNTrainer-Local GPU
(w);

NNTrainer_crossValOnGPUCluster trainer?2
NNTrainer_crossValOnGPUCluster (w) ;

trainerl = new NNTrainer_LocalGPU

new

String resultl = trainerl.train();
String result2 = trainer2.train();
}

One of the NNWorkflow NNWTrainers (written in Java),
which is selected by user (programmatically or graphically),
will encode the target GPU resource information into the speci-
fication. The aggregated NNWorkflow specification is then sent
to the GPU Resource Management component by calling the
train() method in the NNTrainer. Listing []is the sample code
showing a sample NNWorkflow w, being fed into two NNTrain-
ers to respectively trigger their train() methods. DATAVIEW
currently supports 7 different NNTrainers for choice. The NN-
Trainer_Local GPU and NNTrainer_crossValOnGPUCluster are
the two NNTrainers that respectively wrap up two different exe-
cution plans targeted on two GPU services based on two corre-
sponding GPU resources (configurations). For NNWorkflow w,
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Figure 6: Construct and run neural network ensemble learning workflow in DATAVIEW webBench.

NNTrainer_Local GPU construct a regular train&test plan run-
ning on the local GPU of a host PC, while NNTrainer_crossVal-
OnGPUCluster creates a k-fold cross training&validation plan
running on a GPU Cluster. Our implementation satisfactorily

solves letting the SWFMS, DATAVIEW, inher-

ently leveraging GPU computing.

5.2.2. Neural Network Executors

The File JSON Parser module (Written in Java) reads and
parses primitives of pre-trained NNWorkflow models into the
counterparts that are recognizable by the backend GPU ser-
vices. The GPU recognizable specification mapped from the
trained model from model @749702 in[subsection 3.Tlis included
in Appendix B. At present, our system supports one specific
parser - File JSON Parser. we plan to support more alternative
parsers in future releases.

Currently, DATAVIEW supports one NNExecutor - NNEx-
ecutor_LocalGPU, which is capable to apply any pre-trained
NNWorkflow model to a new dataset to make predictions on
local GPU of the host PC. Alternative options (such as single
NVIDIA SoM, NVIDIA GPU cluster) will be investigated and
integrated in the future. By now, we have provided a complete
life-cycle DL use case (from design to reuse on new datasets)
in DATAVIEW via both JAVA API and WebBench GUI.

5.3. GPU Resource Management: Universal gateway to route
specification to target GPU services

The GPU Resource Management component acts as a uni-
versal gateway at the back door on the Java side to route con-
solidated neural network specification to the CUDA side. Such
routing is implemented via necessary API calls (e.g. JNI calls,
Jsch MPI calls) for target GPU services (e.g. Local GPU Ser-
vice, GPU Cluster Service). Each API call is compiled together
with our in-house core CUDA implementation as a whole (e.g.
.dll, .a) to be executed on a targeted GPU resource. All the
backend GPU services are designed to accept a uniform execu-
tion specification (per an internal standard protocol).
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5.4. GPU Services: Execute neural networks

Finally, an neural network execution plan is initiated on the
target GPU resource where a the corresponding neural network
object (comprising NNLayer subobjects) is automatically con-
structed in the GPU’s global memory for execution. Our in-
house developed CUDA kernals (written in cuda C++), which
are functions executed by GPU, are then triggered in turn (match-
ing the procedural actions and order of layers) to carry out
the preprocessing, training and testing of the neural network
according to the execution plan. Currently, we support three
types of GPU infrastructure for the execution of NNWorkflows
in DATAVIEW as follow:

5.4.1. Alocal NVIDIA GPU of a host PC

NNWorkflow specification (in JSON) can be routed to a lo-
cal NVIDIA GPU of a PC via direct .dll service call. More
specifically, first, a CUDA C++ parser needs to parse the in-
put JSON specification into a C++ key-value pair specification,
which is then used by NNConstructor to construct the neural
network in the CUDA Environment; second, proper memories
need to be allocated on both CPU (host) and GPU (device)
according to the size of input dataset and architectural design
of the neural network (e.g., number of layers and each layer’s
weights and bias). In addition, a universal data preprocessing
scheme is automatically applied to each input dataset that does
the following: 1) eliminates rows with empty values; 2) nor-
malizes the data across all batches based on the column-wise
normalizor as:

Xnew = (X - Xmin)/(Xmax - Xmm) (1)

Finally, the actual training is kicked off for a user-specified
number of epochs through forward and backward propagations,
during which respective CUDA kernels are called within their
layer objects to carry out parallel computation on thousands of
GPU cores. Once the training process completes, the trained
model and the prediction scores are copied from GPU (device)
memory to CPU (host) memory, and all the results, including
the training cost for every 100 epochs (for the sake of catching



potential overfitting or underfitting), are returned as a JSON ob-
ject to the NNTrainer_localGPU via JNIL

On the other hand, to reuse a pre-trained NNWorkflow model
on a given new dataset, the trained model (i.e. model architec-
ture, saved weights and bias in each layer) gets reloaded in the
target GPU resource. The execution of neural network is car-
ried out just like an ordinary workflow but leveraging the GPU
environment. Once the execution is done, following informa-
tion will be return to the NNExecutor: 1) device info (e.g. the
GPU’s available memory, registers); 2) the prediction accuracy.

5.4.2. A single NVIDIA SoM

An NNWorkflow specification can also be routed to a sin-
gle NVIDIA SoM via Jsch MPI call to .a service. The neural
network construction and execution would be in a very similar
manner as in a local NVIDIA GPU (as described in[5.4.1). In
contrast to the scenario of using a local GPU, message passing
between DATAVIEW Java-end and the single NVIDIA SoM
leverages MPI instead of JNI. Finally, the single SoM will re-

turn the execution results back to the caller (NNTrainer or NNEx-

ecuter) on Java side.

5.4.3. A heterogeneous GPU cluster

As the third option, an NNWorkflow specification can be
routed to the master node of a heterogeneous GPU cluster via
Jsch MPI calls on another static link (.a) API service. The GPU
cluster consists of multiple NVIDIA Jetson SoMs. According
to the specific execution plan (e.g. distributed k-fold cross vali-
dation), the master GPU node accordingly maps and distributes
the execution tasks to other (working) nodes via MPI calls. Af-
terwards, each working node independently handles the rest of
the execution of its allocated task in a very similar manner as
with a local NVIDIA GPU (as described in [5.4.1). The mes-
sage passing between cluster nodes also utilize MPI. The mas-
ter node must wait until all working nodes complete their work
and reduce their results via a CUDA MPI Reducer. Finally,
the total result will be passed back to the caller (NNTrainer or
NNE-xecutor) on the Java side.

Through careful design and implementation of CUDA-based
GPGPU computing, and integration of diverse message pass-
ing mechanisms (through a uniform GPU service interface), the

two engineering challenges and [3.6] are satisfac-

torily addressed.

6. Experiments

In order to validate our proposed approach, we conducted
three groups of experiments, including: 1) two groups of ex-
periments to compare the performance of DLaaW implemen-
tation and the counterpart python implementation on Pytorch
in the same GPU environment. All Pytorch-based implementa-
tions adopt the same structure of python code with variations on
neural network architectural designs and input datasets, and all
DLaaW implementations are based on the same CUDA C++
code except for the variations of native interfaces in different
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GPU infrastructures; and 2) one group of experiments to ana-
lyze different values of hyperparameters for each network un-
der the same DLaaW infrastructural setting, in order to com-
pare different configurations of the neural network for the same
problem and pick up the best for the problem. These three
groups of experiments are as follows:

i We adopt 4 infrastructures, to train and test 5 neural net-
works respectively designed for 5 popular binary classifi-
cation datasets with hyperparameter set 1 (characterized in
table[I)). These infrastructures include i) one Pytorch-based
python implementation on a local GPU of a host PC, and ii)
three DLaaW implementations under three different infras-
tructural settings: a local GPU of a host PC, single Xavier
GPU SoM, and single Nano GPU SoM, of which the first
setting utilizes JNI and the last two leverage MPI calls to
pass information between CPU and GPU.

ii We adopt 5 infrastructures to conduct 5-fold cross valida-
tion on the same neural networks, using the same datasets
with hyperparameter set 1 as showed in table [I| These 5
infrastructures are: i) one Pytorch-based python implemen-
tation on a local GPU of a host PC and ii) four DLaaW
implementations on four different infrastructural settings: a
local GPU of a host PC, a heterogeneous GPU cluster, sin-
gle Xavier GPU SoM, and single Nano GPU SoM, of which
the infrastructure of GPU cluster utilizes 5 GPU nodes (2
Xavier SoMs and 3 Nano SoMs).

iii We adopt 4 different hyperparameter sets - hyperparameter
set 1 to 4 as showed in table [l Under the same DLaaW
infrastructural setting, we conduct 5-fold cross validation
on these sets of hyperparameters for each neural network
on the local GPU of a host PC of our system.

6.1. Hardware

In our preliminary implementation of DLaaW in DATAVIEW,
the hardware we adopted include: 1) A x64-based Windows
Desktop with AMD Ryzen 5 3600 6-core CPU, 16GB DDR4
RAM, 500GB SSD, NVIDIA GeForce RTX 2080 Super GPU
with 3072 CUDA cores and 8GB GDDRR6 memory; 2) A het-
erogeneous GPU cluster, which consists of i) 2 NVIDIA Jetson
Xavier Module and Developer Kits , each contains a GPU with
384 CUDA cores and 48 Tensor cores (Tensor cores are more
recent release and more suitable for matrix computation com-
pared to CUDA cores), a 6-core NVIDIA Carmel ARM CPU
and 8GB LPDDR4 share memory for GPU and CPU; and ii)
4 NVIDIA Jetson Nano Developer Kits , each contains a GPU
with 128 CUDA cores, a Quad-core ARM CPU, 4GB LPDDR4
share memory for both CPU and GPU.

6.2. Datasets

We adopted 5 representative datasets to validate our pro-
posed approach and implementations, including: 1) Breast Can-
cer Predicton Dataset, which is obtained from the University of
Wisconsin Hospitals, Madison, aimed to correlate the abnormal
lump (radius, texture, smoothness, etc.) with actual cancerous



Table 1: Specifications of neural networks and their target datasets.

Neural network 1

| Neural network 2

| Neural network 3

Neural network 4

| Neural network 5

Model Arch Design || 4 layers: Linear(5,3), | 6 layers: Linear(8,5), | 4 layers: Linear(4,2), | 8 layers: Linear(13,8), | 8 layers: Linear(16,8),
ReLU, Linear(3,1), Sig- | ReLU, Linear(5,3), | ReLU, Linear(2,1), Sig- | ReLU, Linear(8,5), | ReLU, Linear(8,5),
moid RelLU, Linear(3,1), | moid ReLU, Linear(5,3), | ReLU, Linear(5,3),

Sigmoid RelU, Linear(3,1), | ReLU, Linear(3,1), Sig-
Sigmoid moid

Target Dataset Breast Cancer Dataset | Pima Indians Diabetes | Data Banknote Authen- | Electrical Grid Stability | Bank Marketing Dataset
with 5 features and 569 | Dataset with 8 features | tication Dataset with 4 | Dataset with 13 features | with 16 features and
instances and 768 instances features and 1372 in- | and 10000 instances 45211 instances

stances

Initialization Xavier weight init, shuf- | Xavier ~weight init, | Xavier weight init, shuf- | Xavier ~weight init, | Xavier weight init, shuf-
fled input data shuffled input data fled input data shuffled input data fled input data

Hyperparameter learningRate=0.1, mo- | learningRate=0.1, mo- | learningRate=0.1, mo- | learningRate=0.1, mo- | learningRate=0.1,  mo-

set 1 mentumSGD =0.9 mentumSGD =0.9 mentumSGD =0.9 mentumSGD =0.9 mentumSGD =0.9

Hyperparameter learningRate=0.01, mo- | learningRate=0.01, mo- | learningRate=0.01, mo- | learningRate=0.01, mo- | learningRate=0.01, mo-

set 2 mentumSGD =0.9 mentumSGD =0.9 mentumSGD =0.9 mentumSGD =0.9 mentumSGD =0.9

Hyperparameter learningRate=0.01, mo- | learningRate=0.01, mo- | learningRate=0.01, mo- | learningRate=0.01, mo- | learningRate=0.01, mo-

set 3 mentumSGD =0.1 mentumSGD =0.1 mentumSGD =0.1 mentumSGD =0.1 mentumSGD =0.1

Hyperparameter learningRate=0.1, mo- | learningRate=0.1, mo- | learningRate=0.1, mo- | learningRate=0.1, mo- | learningRate=0.1,  mo-

set 4 mentumSGD =0.1 mentumSGD =0.1 mentumSGD =0.1 mentumSGD =0.1 mentumSGD =0.1

# of batches 6 6 6 6 6

# of Epochs 1000 1000 1000 1000 1000

diagnosis; 2) Pima Indians Diabetes Database, originated from
the National Institute of Diabetes and Digestive and Kidney
Diseases for diagnostically predicting whether a patient has dia-
betes based on certain diagnostic measurements; 3) a banknote
authentication data set, in which data are extracted from im-
ages via Wavelet Transform tool to evaluate an authentication
procedure for banknotes; 4) Electrical Grid Stability Simulated
Data Set, which focus on the stability analysis (i.e. stable/un-
stable) of the 4-node star system (electricity producer is in the
center) for implementing Decentral Smart Grid Control con-
cept; 5) Bank Marketing Data Set, in which the data is related
with direct marketing campaigns (phone calls) of a Portuguese
banking institution and the classification goal is to predict if the
client will subscribe a term deposit.

We selected and adopted the 5 datasets by considering their
1) popularity, all the datasets are with high popularity among
Machine Learning users and scientific researches, e.g. the Pima
Indians Diabetes Database dataset has more than 1 million views
and 0.2 million downloads on Kaggle, the banknote authentica-
tion Data gained more than 0.32 million web hits on UCI ma-
chine learning repository, which is one of the most popular ma-
chine learning repositories with more than 3400 citations [40];
and 2) diversity, the collection of datasets shows good diver-
sity in i) application domains (e.g. bank, medical, electrical),
which is important to alleviate the potential bias towards any
specific application domain; ii) data size, which is important
to test scalablity. In the collection of our selected datasets, the
Breast Cancer dataset, the Pima Indians Diabetes dataset and
the Banknote Authentication dataset are small datasets with less
than 1500 instances, while the other two datatsets are relatively
larger, containing more than 10000 instances.

6.3. Experiment Results
6.3.1. Experiment Group |

The purpose of this group of experiments is to evaluate our
DLaaW approach and make direct performance comparison of
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the various implementations of DLaaW with the conventional
implementations of neural networks on Pytorch.

The results of this group of experiments are showed in Fig.
The bar charts on the top figure shows the testing accura-
cies on each trained model in DATAVIEW and Pytorch, which
demonstrate the superb prediction accuracies of the 5 neural
networks (as described in table[I)) implemented through DLaaW
as NNWorkflows. Compared to Pytorch-based implementa-
tions, NNWorkflows consistently outperform in 4/5 datasets.
Within the exception of one dataset, Data Banknote Authentica-
tion, Pytorch-based implementation delivers higher accuracies.
Since Pytorch’s intermediate level APIs (e.g cuDNN, cuBLAS)
are closed source, and we implemented our in-house GPU ser-
vices from scratch based on the pure CUDA, there can be many
potential reasons that lead to the different testing accuracies by
two approaches on the same neuron network modeling, here
we list out 3 most inclined reasons: 1) our in-house CUDA
services wrapped its own universal data preprocessing scheme
(as described in [5.4.T)), which can potentially improve the in-
put data quality and deliver better trained models; 2) though
both DATAVIEW and Pytorch adopts Xavier weights initializa-
tion [41], the random initialization can result in the same neu-
ral network being trained to different local optimals (in a non-
convex optimization problem). On the other hand, Pytorch-
based implementation outpaces DLaaW on accuracy in the third
dataset, for the reason that we are not able to look into the
close source intermediate level APIs in Pytorch, there can be
many reasons that lead this exception, for example, different
data shuffle, different weight initialization, etc. Thus, we won’t
be able to precisely locate the root of cause of this exception.
The results in terms of the accuracy convincingly support the
validity of our DLaaW approach through its competitive predic-
tion accuracies in comparison to conventional implementation
of neural networks, which serve as a cornerstone for our ongo-
ing research that tries to leverage GPU enabled deep learning
and provide the functionality to broad scientific workflows in
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Figure 7: Regular train and test: i) Testing accuracies and ii) Timespans (in
seconds)

DATAVIEW.

The bar charts in the bottom of Fig. [7] demonstrated the
timespans of training and testing on each neural networks. The
Pytorch-based implementation on local GPU delivers very swift
execution on the first three relatively small datasets. However,
with the larger 4th and Sth datasets, the execution timespans
increase dramatically. This phenomenon suggests that Pytorch-
based implementation of neural networks may suffer from bad
scalability (in terms of data size), which is also caught by other
Keras developers in [16] and Pytorch developerﬂﬂ Having
this same issue in both Keras and Pytorch may suggest that
the root cause of this scalability issue potentially be persisted
in their commonly used closed-source intermediate level APIs
(e.g. cuDNN, cuBLAS). The scalability issue of Pytorch may
be due to the inefficient handling of data loading and synchro-
nization between GPU and CPU in its low level CUDA imple-
mentation, which aggregate I/O overhead in exponential rate
as the data size grows larger. In contrast, NNWorkflows imple-
mented per our DLaaW approach enjoy great scalability. Across
the different datasets of varied sizes, the DLaaW implementa-
tions on local GPU shows pretty consistent but slighly larger
timespans than other DLaaW implementations, such observa-

Pytorch.org discussion #95247https://discuss.pytorch.org/t/
training-fast-with-small-dataset-slow-with-large-dataset/
95247

ZPytorch issue #2829 on Github.comhttps://github.com/pytorch/
fairseq/issues/2829
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tion likely suggests that the communication through JNI is less
efficient than communication through MPI based on our best
understanding. On the other hand, the timespans obtained from
DLaaW implementations on single Xavier and single Nano GPU
SoMs are the shortest, with only very moderate increase as the
data size increases and leads to much better scalability com-
pared with DLaaW implementation on local GPU and Pytorch-
based implementation. Apart from the more efficient MPI-based
communication, our DLaaW implementation on a single SoM
gained extra improvement on timespan as compared to the lo-
cal implementation owing to the Jetson zero-copy mechanism
adopted by NVIDIA Jetson SoMs, where CPU and GPU physi-
cally share the same system memory so that the synchronization
overhead between CPU and GPU can be greatly alleviated.

6.3.2. Experiment Group Il

The purpose of this group of experiments is to evaluate how
well NNWorkflows can leverage the high-degree parallelism of-
fered by a SWFMS and boost the execution performance of
neural networks compared to the serialized implementations.
We thus conducted 5-fold cross validation through various im-
plementations on five neural networks. These implementations
can be further put into two categories: 1) serialized, which in-
cludes Pytorch-based implementation on local GPU, and three
DLaaW implementations respectively on the local GPU, single
Xavier GPU SoM and single Nano GPU SoM. These four im-
plementations are sequentially conducting the 5-fold cross val-
idation; 2) parallelized, which includes the DLaaW implemen-
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tation on the GPU cluster. With this implementation, the five
folds of validation are distributed to five working GPU nodes,
and the final results are aggregated at the the master node.

The results of this group of experiments are showed in Fig.
[8] The top chart shows the mean and variance of validation
accuracies on each neural network across 5-fold cross valida-
tion. All DLaaW implementations in DATAVIEW consistently
deliver competitive or higher average accuracies in comparison
to the Pytorch-based Python implementation, which echos the
conclusion from the first group of experiments from the accu-
racy perspective. On the other hand, all DLaaW implementa-
tions preserves moderate or low variance of accuracy across dif-
ferent folds of validation, which demonstrate our approach de-
livers relatively more robust models in contrast to the Pytorch-
based implementation (which outputs noticeable large variance
across different folds’ accuracies in the 4th dataset). Besides,
we observe a larger variance of 5 folds’ accuracies in small
datasets (1st and 2st) than larger datasets (4th and 5th) across
all infrastructural settings, which is likely to suggest the data
bias [42] exerts higher impact on smaller datasets while con-
ducting train and test on different portion of data.

The bottom chart in Fig. |8 shows the timespans of 5-fold
cross validation on all these neural networks. The experiment
results concur on the conclusions in the first group of exper-
iments: 1) poor scalability (regarding data size) in Pytorch-
based implementation, which runs very fast in the first 3 datasets
but slows down dramatically on the 4th and 5Sth larger datasets;
2) eminent JNI overhead in the DLaaW implementation on lo-
cal GPU compare with other implementations through MPI; 3)
high efficiency and superb scalability in DLaaW implementa-
tions on single SoM, even though the 5-fold validation are car-
ried out sequentially. Lastly, coming to the key purpose of this
group of experiments, the timespans obtained from the DLaaW
implementation on a GPU cluster are remarkably smaller than
all the sequential implementations. This result clearly demon-
strates that our DLaaW approach, besides all the virtues men-
tioned above, can gracefully leverage the high-degree paral-
lelism offered by a traditional SWFMS without any extra effort,
which sets a solid foundation and an attractive incentive on fur-
ther exploiting more advanced features of deep learning in the
SWEMS as future work.
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6.3.3. Experiment Group 11l

This group of experiments analyzes different values of hy-
perparameters for each neural network, and this capability of
our system helps users evaluate different configurations of neu-
ral networks and pick up the best suitable.

The results of this group of experiment are showed in Fig.[9]
where the mean and variance of 5-fold cross validation accura-
cies on each hyperparameter set of the neural networks are pre-
sented. We can see hyperparameter sets 1 and 4 (with learning
rate = 0.1) derive higher mean and lower variance of accuracies
than hyperparameter sets 2 and 3 (with learning rate = 0.01) in
the first two datasets. For the third and fourth datasets, hyper-
parameter sets 1 and 4 still preserve higher accuracy, but we
observe that hyperparameter sets 2 and 3 are getting lower vari-
ance as the size of dataset grows larger (compared with the first
two datasets). Hyperparameter sets 2 and 3 finally reach com-
parable accuracies and lower variance compared with hyperpa-
rameter sets 1 and 4 in the fifth dataset, which indicates hyper-
parameter set 2 and 3 would produce comparable (in terms of
accuracy) but more stable models in the last dataset. One expla-
nation to such scenario is that the learning rate in hyperparame-
ter sets 2 and 3 is much smaller than that in hyperparameter sets
1 and 4, which causes the resulted models from hyperparameter
sets 2 and 3 likely to be underfitted in small datasets — in other
words, they are not fully trained because of small learning steps
and small amount of training data. However, such case could
be ameliorated when data size grows larger, and ultimately hy-
perparameter set 2 and 3 could reach very comparable accuracy
to sets 1 and 4. Moreover, smaller learning rate is likely to
help with a smaller variance as the learning steps are more fine-
grained, which can be helpful to avoid overshooting the local
optimal during the stochastic gradient descent.

7. Conclusions and future work

In this paper, we presented DLaaW, a novel approach to
implementation of deep learning as native workflows in a scien-
tific workflow environment for seamless integration with broad
scientific workflows. We demonstrated its efficacy through sys-
tem architectural design, implementation, and extensive empir-
ical evaluation. Our goal is to enable workflow users to con-
veniently structure, execute and reuse any GPU-enabled neu-
ral networks as native standalone workflows or integrate into
more comprehensive scientific workflows via either Java API
or a graphical webBench interface in a general scientific work-
flow management system — DATAVIEW. This work resulted in
DATAVIEW as the first scientific workflow management sys-
tem that supports GPU-enabled deep learning at the infrastruc-
ture level. Currently, we support 4 types of GPU resources for
DLaaW, including the local NVIDIA GPU on a PC, a single
NVIDIA Xavier SoM, a single NVIDIA Nano SoM, and a het-
erogeneous GPU cluster consisting of multiple NVIDIA SoMs.
Through carefully designed experiments, we validated our pro-
posed DLaaW approach and the correctness of its implementa-
tions on different GPU infrastructures, and demonstrated the ef-
fectiveness and efficiency ( in terms of prediction accuracy and
execution timespan) by comparing with the counterpart Python
implementations on the cutting-edge DL library - Pytorch. We



show that DLaaW can gracefully leverage the superior paral-
lelism offered by SWFMSs on boosting the DL performance.
We conducted additional experiments demonstrating the usage
of our proposed system on analyzing different values of hyper-
parameters through 5-fold cross validation on various neural
networks and datasets.

As future work, we plan to investigate and incorporate more

GPU services, enrich CUDA APIs implementations, and pro-
vide DLaaW as an open service for extended usability beyond
our own SWFMS — DATAVIEW - and our own community.
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