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Abstract— We present a framework to automatically tune the
gains of a geometric attitude controller based on operating
conditions (distance from equilibrium). We propose a two-
thread architecture: on the one hand, a computationally simple
geometric control law provides real-time control inputs to
globally stabilize the system; on the other hand, an optimization
procedure continuously varies the gains of the control law to
improve the convergence rate guarantees when possible. In
particular, we use Control Barrier and Lyapunov functions to
find rates of change for the gains that improve bounds on the
convergence rate while guaranteeing exponential stability for all
subsequent times. The advantage of our architecture is that the
gain updates can be computed at a rate possibly much slower
than the control law; thanks to the constraints used, even if the
gain updates were to stop, exponential stability would still be
guaranteed for all future times.

The resulting controller is compared via simulations against
a static feedback controller and a version based on traditional
discontinuous gain scheduling. While we focus on attitude con-
trol, our framework could be generalized to any static feedback
controller equipped with explicit convergence conditions.

I. INTRODUCTION

Rigid-body attitude control is an important component
of many robotic systems that require particular orientations
to collect data or perform meaningful tasks. For instance,
quadrotors need to control their attitude in order to change
the thrust direction [1]. In aerospace applications, attitude
control is used to maneuver or stabilize aircrafts or satellites.

The configuration space of attitudes is non-Euclidean, and
traditional control approaches that use a single parametrization
(e.g., Euler angles or quaternions [2]) cannot guarantee global
stability due to the additional singularities or ambiguities
that they introduce. An alternative approach is to develop
controllers that take into account the geometry of the
underlying differential manifolds (SO(3) for rotations). These
geometric controllers [3]–[8] have been shown to exhibit
almost global exponential convergence.

Based on these ideas, state-of-the-art hybrid controllers
such as [9], [10] partition the state space into regions that
are locally stabilized using controllers based on different
potential functions [11], [12]. These hybrid controllers achieve
global stability by navigating through the different regions
with carefully designed switching conditions. However, these
approaches are generally more complex and more computa-
tionally demanding than simple static feedback controllers,
and the switches can produce discontinuous control updates.
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Fig. 1: Our two-thread architecture: A geometric controller
computes the feedback control input Γ based on the current
state x; a gain controller updates the gains k of the geometric
controller, while ensuring that the each gain update always
ensure exponential stability for all subsequent times.

Work in [13], [14] has shown that global stability can
be achieved using simple static feedback controllers. Both
works are based on time-varying controllers that track an
intermediate reference trajectory that, in turn, converges expo-
nentially to a desired equilibrium. The resulting controllers are
continuous in time but discontinuous in the initial conditions.

While static feedback controllers are simple to implement
and require a very small amount of computation (and thus
they can achieve higher control update rates), intuitively, a
large convergence basin requires selecting gains that are more
conservative in terms of guaranteed convergence rate. In other
words, gains that ensure the fastest convergence far from
equilibrium might be different those near the equilibrium.
The hybrid approach can partially address this problem by
partitioning the state space into finer regions at the cost of
more complex online switching conditions.

In [15], [16], the authors proposed a method to find a point-
wise controller that satisfies safety and stability constraints
from Control Barrier and Lyapunov Functions in the form
of an optimization problem that can be solved online. As a
downside, the existence of a suitable control signal needs to
be proved separately; the control is not well-defined when
the optimization problem is infeasible. The problem may
become infeasible in situations where the system violates
safety constraints due to real hardware limitations/noise, or
if there is a conflict between safety and stability constraints.

An alternative approach has been presented in [17], where a
controller is found by solving an optimization problem based
on contraction analysis. The approach ensures global stability
by finding a control contraction metric offline, but requires
solving path integrals online to find a feedback controller;
in general, this is time consuming for systems on manifolds,
making the controller unsuitable for fast attitude systems.

At the same time, on the hardware side, it is common to
find multicore processors even on an embedded system [18]
which allow the execution of multiple computational threads
in parallel. In this paper, we take advantage of this opportunity.



Paper contributions. We propose a two-thread architecture
(Fig. 1) where a geometric controller computes feedback
control inputs at a high update rate, while, in parallel, a gain
controller updates its gains at a lower rate. This architecture
has the advantage of leveraging the efficient computation and
global convergence properties of the geometric controller,
while also improving the overall performance guarantees.

For the geometric controller, we use the approach described
in [14]. For the gain controller, we propose a point-wise
optimization problem with constraints stemming from Control
Barrier and Lyapunov Functions, similar to [15]–[17], but
we use them to find instantaneous and continuous variations
of the gains instead of the control inputs. Thanks to the
constraints used in our formulation, even if a feasible solution
for the gains update cannot be found, the geometric controller
can continue to compute control updates uninterrupted
(unlike [15], [16]). Furthermore, we do not require the
computation of path integrals despite the use of a time-varying
contraction metric (as in [17]).

As a secondary contribution, we derive an extension of
Control Barrier Functions to linear matrix inequalities (LMI).

II. PRELIMINARIES AND NOTATION

A. Riemannian Geometry

The work in this paper uses core concepts from Riemannian
geometry. A brief overview is provided; for a more in-
depth discussion see, e.g., [19]. A rigid body’s attitude in
three dimensions can be uniquely represented by a rotation
matrix R ∈ SO(3), where SO(3) = {R ∈ R3×3 : RTR =
I3, det(R) = 1}. The tangent space at a point R on SO(3)
is denoted as TRSO(3) = {RV : V ∈ so(3)}, where so(3)
is the set of all 3× 3 skew-symmetric matrices. A tangent
vector W ∈ TRSO(3) can be mapped to a vector ω ∈ R3

using the hat (·)∧ and vee (·)∨ operators:

ω =

ω1

ω2

ω3

 (·)∧

�
(·)∨

W = R

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 . (1)

To simplify the notation, the hat operator at the identity
R = I3, is denoted as ·̂ (i.e., without parentheses). With
this notation, W = (ω)∧ = Rω̂ represent the same tangent
vector. The exponential and logarithm maps defined at a
rotation R locally transforms tangent vectors into points, and
vice versa. The maps are denoted as expR : TRSO(3) →
SO(3) and logR : UR → TRSO(3) where UR ⊂ SO(3) is
the neighborhood around R for which expR is diffeomorphic.
A metric g : TRSO(3)× TRSO(3)→ R is a family of inner
products defined on the tangent space. The notation g(·, ·)M
denotes a metric defined by parameters contained in a positive
definite matrix M . The covariant derivative ∇XY takes two
smooth vector fields X,Y and returns the variation of the
field Y along the flow of X .

Second-order rigid body dynamics evolve on the tangent
bundle TSO(3) = {(R,W ) : R ∈ SO(3),W ∈ TRSO(3)},
where the state variables are the rotations R and the an-
gular velocities ω = W∨ ∈ R3 [19]. The tangent space at a
point (R,W ) is denoted as TWTRSO(3) = {(U, V ) : U, V ∈

TRSO(3)}, and since the tangent space of a tangent space
can be identified with itself, tangent vectors in TWTRSO(3)
can be represented as vertically concatenated matrices using
the stack function, e.g. stack(U, V ) = [ UV ].

B. Rigid Body Dynamics
Rigid body rotations can be modeled as a simple mechan-

ical system evolving on TSO(3). The general dynamical
equations on a manifold M are [19]

∇ẋẋ = J−1(−dP (x) +
m∑
i=1

Fi(x, ẋ)ui), (2)

where x ∈ M, (x, ẋ) ∈ TM, J is the inertia matrix,
P : M→ R is a smooth function describing the potential
energy, dP represents the differential of P , Fi is a collection
of one forms representing the external forces on the system,
and ui ∈ R is the control input. In particular, the equations
of motion for rigid body attitudes are

Ṙ = Rω̂, ω̇ = Γ− J−1 (ω × Jω) , (3)
where R ∈ SO(3) is a rotation from body to inertial frame,
ω ∈ R3 is the angular velocity, J ∈ R3×3, and Γ ∈ R3 is the
moment vector (control input), all expressed in body frame.

C. Contraction Theory
Contraction theory [20], [21] is used to show stability of

a system by studying the behavior of nearby trajectories.
If infinitesimally neighboring trajectories converge, i.e., if
the virtual displacements δx (vector fields, in differential
geometry terminology) between them converge to zero, then
the system is stable, leading to the following result.

Proposition 1 (Adapted from [21]): A system ẋ = f(x)
evolving on a manifold is contracting with guaranteed
exponential convergence rate β if there exist a metric g defined
by parameters in matrix a M , and with the corresponding
Levi-Civita connection ∇, such that, for any vector field δx,

g (∇δxf, δx)M ≤ −βg (δx, δx)M . (4)
D. Geometric Control Lyapunov Functions

Control Lyapunov functions (CLF) are used to synthesize
stabilizing feedback controllers by solving point-wise opti-
mization problems. In the case of this paper, CLFs are used
to achieve desired objectives (when possible) that can be
described by potential functions.

Proposition 2 (Adapted from [16]): For a simple mechan-
ical system (2), a continuously differentiable function
V : TM→ R is a Control Lyapunov Function (CLF) if there
exist constants c1, c2 > 0 such that,

V (x, ẋ) ≥ c1(Ψ(x, xd) + g (X(ẋ, ẋd), X(ẋ, ẋd))), (5)
V (x, ẋ) ≤ c2(Ψ(x, xd) + g (X(ẋ, ẋd), X(ẋ, ẋd))), (6)

inf
u∈Rm

{〈d1V, ẋ〉−
〈
d2V, J

−1dP
〉
+

m∑
i=1

〈
d2V, J

−1Fi
〉
ui} ≤ 0,

(7)
for all (x, ẋ) ∈ TM, where Ψ(x, xd) is an error function
between x, xd ∈ M, X(ẋ, ẋd) ∈ TxM is a tangent vector
representing the velocity error from ẋ to ẋd, diV is the
differential of V with respect to the i-th argument, and
〈diV, Y 〉 is the value of the one-form diV applied to the
vector field Y .



E. Geometric Zeroing Control Barrier Functions

Zeroing Control Barrier functions (ZCBF) are similar to
CLFs, but are used to ensure that a set is forward-invariant.
A set S is called forward-invariant if, for every x0 ∈ S,
x(t, x0) ∈ S for all time t.

Proposition 3 (Adapted from [15], [16]): Given a smooth
function h : TM → R and a safety set defined by
C = {(x, ẋ) ∈ TM : h(x, ẋ) ≥ 0}; the function h is a Zero-
ing Control Barrier Function (ZCBF) if there exist an extended
class K function α such that,

inf
u∈Rm

{〈d1h, ẋ〉 −
〈
d2h, J

−1dP
〉

+
m∑
i=1

〈
d2h, J

−1Fi
〉
ui + α(h)} ≥ 0 (8)

for all (x, ẋ) ∈ C. A function α : (−b, a) → (−∞,∞) for
some a, b > 0 is said to be extended class K if it is strictly
increasing and α(0) = 0.

F. Geometric Controller with Exponential Global Conver-
gence

In this section we review the geometric controller from [14].
However, our gain controller could be applied in tandem with
other controllers whenever explicit stability conditions are
available (such as [6]). The geometric PD attitude controller
in [14] achieves global exponentially stability by introducing
a time-varying reference trajectory Rref that augments the
system dynamic equations (3) with

Ṙref = −krefRref êRref
, (9)

and the controller
Γ = J−1(ω × Jω)− kdeR − kveω, (10)

where kd, kv, kref are positive feedback gains. The dy-
namics of the augmented system lives on the product
manifold TSO(3) × SO(3). The error terms, eR, eRref

,
and eω are derived from two configuration error functions
ΨR(R,Rref ),ΨRref

(Rref , Rd) on SO(3) where Rd is the
desired attitude. Then, the error terms for the controller and
reference trajectory are (with r ∈ {R,Rref})
er∈{R,Rref} = (grad1(Ψr))

∨, eω = ω − ωd = ω, (11)
where gradi is the gradient with respect to the i-th argument,
and, without loss of generality, ωd = 0. Note that by selecting
kref = 0 and Rref = Rd (i.e. setting the reference trajectory
to the desired attitude), we recover the controller of [22] as
a particular case.

Global stability is proved by applying the contraction
condition (4) with the Riemannian metric,

g (X,Y )M =
1

2
tr
(
XT (M ⊗ I3)Y

)
(12)

for all R ∈ SO(3) where X,Y are tangent vectors on
TSO(3)× SO(3),

M =

m1 m2 m6

m2 m3 m5

m6 m5 m4

 ∈ Sn+, mi∈{1,...,6} ∈ R, (13)

Sn+ denotes the set of all positive definite matrices, and ⊗ is
the Kronecker product. Note that matrix inequalities in this
paper refers to positive (semi-)definite matrices.

The work in [14] identified bounds Dj ≤ 0 that imply the
contraction condition (4) using the metric 12, where

D1 = −m2kd min
(

dg
(
Re(ΛR)

))
+ B2,1 + B3,1

+
√

3 max

∣∣∣∣14m′2‖ω‖2
[

0
−1

]
+m1β

∣∣∣∣ , (14)

D2 = m2 −m3kv +m3β + B2,1 + B3,2, (15)

D3 = −m4kref min
(

dg
(
Re(ΛRref

)
))

+ B3,1 + B3,2

+
√

3 max
∣∣m5kddg

(
Re(ΛR)

)
+m4βI3

∣∣ , (16)

where

B2,1 =
√

3

∣∣∣∣−1

8
m′3‖ω‖2

∣∣∣∣+
√

3

∣∣∣∣−1

4
(m′2 −m′3kv) ‖ω‖

∣∣∣∣
+
√

3 max

∣∣∣∣ (m1 −m2kv + 2βm2)−m3kddg(ΛR)

2

∣∣∣∣
+
√

3

∣∣∣∣kd4 m′3θR
∣∣∣∣ ,

B3,1 =
√

3 max

∣∣∣∣kd2 (m2 −m5) dg(ΛR)

∣∣∣∣+
√

3

∣∣∣∣m5m6kd
4m4

θR

∣∣∣∣
+
√

3

∣∣∣∣m2
6 −m5m6kv

4m4
‖ω‖

∣∣∣∣+
√

3

∣∣∣∣m6kref
4

θRref

∣∣∣∣
+
√

3 max

∣∣∣∣−m6kref
2

dg
(
ΛRref

)
+m6β

∣∣∣∣ ,
B3,2 =

√
3 max

∣∣∣∣m3kd
2

dg
(
ΛR
)

+
1

2
(m6 −m5kv)

∣∣∣∣
+ max

∣∣∣∣−m5kref
2

dg
(
ΛRref

)
+m5β

∣∣∣∣+
√

3

∣∣∣∣m2
5kd

4m4
θR

∣∣∣∣
+
√

3

∣∣∣∣m5m6 −m2
5kv

4m4
‖ω‖

∣∣∣∣+
√

3

∣∣∣∣m5kref
4

θRref

∣∣∣∣ ,
m′2 = m2 −

m5m6

m4
, m′3 = m3 −

m2
5

m4
.

The parameters ‖ω‖, θR, and θRref
are the norms of ω, eR,

and eRref
while ΛR,ΛRref

are the eigenvalue matrix of the
differentials of eR and eRref

, respectively. The operator dg(·)
extracts the diagonal elements of a matrix as a vector or the
inverse for a vector argument and Re(·) extracts the real part
of the argument.

We can expand each of the above conditions by replacing
each max function with one of its γi arguments where i
is the i-th max function for the given condition (e.g. D1

has i = {1, 2, 3, 4}) resulting in
∏
i γi bounds. The product

results from taking into account all the possible combinations
of all terms within all the max functions. Furthermore, each
absolute value term can be expanded into two bounds by
replacing them with the positive or negative argument. For
each condition with ρk ≥ 0 absolute value terms, there are
2ρk bounds. Taken together, expanding D1,D2, and D3 results
(with a slight abuse of notation) in the constraints Dj ≤ 0,
where j ∈ {1, . . . ,

∑3
1 2ρk

∏
i γi} (the expanded constraints

contain the same terms as above, but with different signs).
In [14], the authors used conservative bounds for ‖ω‖,

θR, and θRref
, and used offline optimization to find values

for the matrix M , the gains kd, kv, kref and the guaranteed
convergence rate β that satisfy all the constraints. It was



empirically noticed [22, Table III] that smaller bounds on the
states would result in better values for the convergence rate.

III. CONSTRAINTS FOR THE GAIN CONTROLLER

Following the above observation, since the guaranteed
convergence rate depends on the bounds on the angular
speed and angles, we propose to vary the gains kd, kv, kref
based on the current state, to improve the convergence rate
guarantees as the system moves toward the equilibrium.
Ideally, one could repeat the offline optimization described
in [14] for different bounds, and build a look-up table
mapping each state x to a set of gains; this approach,
however, is computationally infeasible, and could result in
discontinuous gains and thus discontinuous control signals.
Instead, we propose to apply dynamic extension (Sec. III-A)
and find updates k̇d, k̇v, k̇ref , β̇ for the gains and estimated
convergence rate that 1) still satisfy all the previous stability
conditions (Sec. III-B to III-D), 2) guaranteed bounded
control signals (Sec III-E), and 3) aim to improve a weighted
combination of control effort and guaranteed convergence rate
(Sec. III-F). All these constraints and objective function are
then combined in a gain controller (as described in Sec. IV).

A. Dynamic Extension

In order to improve the smoothness of the control signals,
and also ensure satisfaction of all the constraints on the gains
in a way that is amenable for real-time computations, we use
the concept of dynamic extension. The goal is not to directly
find new parameters, but instead control their derivatives via
point-wise updates. In practice, we make the gains, metric
parameters, and convergence rate become part of the state of
the close-loop system, and evolve them by specifying their
derivatives k̇d, k̇v, k̇ref , ṁi∈{1,...,6}, and β̇. Accordingly, the
state space becomes

x = (R,ω,Rref , kd, kv, kref ,mi, β), (17)
and the control (i.e., the eventual optimization variable) is

u = stack(k̇d, k̇v, k̇ref , ṁi, β̇). (18)
Remark 1: In traditional contraction analysis, the ma-

trix M can be defined via functions that depend on the state
(or found online by solving path integrals as in [17]), making
it time varying, and thus introducing an additional term in (4).
Then, in general, it becomes difficult to use this principle to
ensure stability. However, with the dynamic extension above,
we directly control the rate of change of the metric, and the
aforementioned issue is avoided.

B. Stability Constraints

The dynamic extension of the system allows us to leverage
the stability results of the underlying fixed gain controller.
From Sec. II-F, if the constraints Dj ≤ 0 are satisfied for a
state then convergence is guaranteed starting at that state. We
therefore propose to use the constraints as ZCBFs

hconv,j = −Dj ≥ 0 (19)
to ensure that the controller is always stable. The resulting
stability constraints are〈

d(R,ω,Rref )hconv,j , (Ṙ, ω̇, Ṙref )
〉

+
〈
d(kd,kv,kref ,mi,β), (k̇d, k̇v, k̇ref , ṁi, β̇)

〉
+αconv,j(hconv,j) ≥ 0 (20)

where we use the notation
〈
d(a,b)h, (ȧ, ḃ)

〉
= 〈dah, ȧ〉 +〈

dbh, ḃ
〉

as a shorthand expression for sums of one-forms.
Remark 2: The constraints Dj ≤ 0 are conservative and

in fact stability is still guaranteed if the exact contraction
condition (4) is met (see [14, Remark 10]). In principle,
one could instead apply (4) directly; however, the results
would then hold only for that time instant. Instead, since
the bounds from Sec. II-F are obtained by considering an
entire convergence basin around the equilibrium, the results
from [14] can be used to guarantee contraction, and hence
exponential stability, for all subsequent times (even if the
gains were to be kept constant from that moment on).

Remark 3: Since the bounds Dj are homogeneous in mi,
the constraint m4 = 1 is added to improve numerical stability
(see also [14, Remark 11]).

C. Convergence Rate Bound Constraint

The contraction condition (4) ensures exponential conver-
gence only when the convergence rate bound is greater than
zero, i.e. β > 0. This constraint is enforced using the ZCBF

hβ = β − βmin ≥ 0 (21)
for some lower bound βmin. The resulting convergence rate
bound constraint is

β̇ + αβ(β − βmin) ≥ 0. (22)

Remark 4: In practice, βmin is set to a small number just
greater than 0 to prevent β → 0. Note that β is a lower
bound, thus the system can achieve faster convergence rates.

D. Metric Constraint

The stability constraints from Sec. III-B allows the metric
parameters mi to change in any manner. While this does
not have a physical impact on the controller or real system
behavior, the new parameters must form a positive definite
matrix to ensure that (12) is a proper Riemannian metric. This
can be achieved by extending ZCBFs from scalar functions
to linear matrix inequalities (LMI) as shown in the following
novel proposition.

Proposition 4: Let Sε be the set of positive definite
matrices such that M ≥ εI for some constant ε > 0 and the
identity matrix I . Then the condition with arbitrary cm ≥ 0,

Ṁ + cmM ≥ εI, (23)
makes the set of positive definite matrices Sε forward-invariant
for M , i.e. M(0) ∈ Sε implies M(t) ∈ Sε for all t > 0.

Proof: The condition M ≥ εI is equivalent to requiring

hm,X(M) =
1

2
tr
(
XT (M ⊗ I3)X

)
− εI ≥ 0 (24)

for all tangent vectors X 6= 0. We can interpret hm,X as a
scalar ZCBF indexed by X , i.e. we have an infinite number
of constraints associated with an infinite number of ZCBFs,
and we have that Sε = ∩X 6=0{M : hm,X(M) ≥ 0}. The
corresponding CBF constraint with a linear class K function,

1

2
tr
(
XT (Ṁ ⊗ I3)X

)
+ cm

1

2
tr
(
XT (M ⊗ I3)X

)
≥ εI,



1

2
tr
(
XT ((Ṁ + cmM)⊗ I3)X

)
− εI ≥ 0, (25)

makes the set {M : hm,X(M) ≥ 0} forward-invariant.
It follows that the intersection of all the constraints (25)
makes Sε forward-invariant. Lastly, such intersection is
equivalent to the constraint in the claim.

E. Gain Constraints

Real systems have control limitations such as minimum and
maximum torques. Typically, these limitations are represented
as a constraint on the control, i.e. τmin ≤ Γ ≤ τmax. However,
the optimization variables here correspond to the rate of
change of the control so the standard constraint cannot be
used. Instead, we indirectly ensure that the control is bounded
by bounding the gains kd, kv . Also the kref gain is bounded
in the same manner for numerical stability especially when
Rref ≈ Rd. We upper and lower bound the ` ∈ {d, v, ref}
indexed gain, k`, with k`,max, k`,min, respectively, using the
following ZCBFs

hk`,max = k`,max − k` ≥ 0, (26)
hk`,min = k` − k`,min ≥ 0. (27)

The resulting gain constraints are

−k̇` + αk`,max(k`,max − k`) ≥ 0 (28)

k̇` + αk`,min(k` − k`,min) ≥ 0. (29)

Remark 5: the constraint τmin ≤ Γ ≤ τmax may be
enforced directly as two ZCBFs. This will be explored in
future works.

F. Objective Function

A benefit of point-wise optimization is that an objective
function can be specified for the current state. A desirable
objective is to reduce the overall energy consumption, i.e.
min

∫
‖Γ‖2. However, as in Sec. III-E, the control effort

cannot be directly constrained. Instead we propose the CLF

VΓ = ‖Γ‖2 (30)

with a slack variable δ resulting in constraint〈
d(kd,kv,kref ,mi,β)VΓ, (k̇d, k̇v, k̇ref , ṁi, β̇)

〉
+
〈
d(R,ω,Rref )VΓ, (Ṙ, ω̇, Ṙref )

〉
≤ δ. (31)

The slack variable δ ensures that constraint (31) can always
be satisfied. In other words, reducing the control effort is not
a primary objective and should only be achieved when all
other more important constraints are satisfied.

By transforming the above objective into a constraint, a
more general quadratic cost function can be utilized

min
u=stack(k̇d,k̇v,k̇ref ,ṁi,β̇,δ)

uTQu+ PTu. (32)

for some weighting matrices Q ≥ 0, P ∈ R11.

IV. ATTITUDE CONTROLLERS

Our proposed varying-gains attitude controller is presented
in this section along with two other similar controllers (all
based on (10)) for comparison.

A. Static Controller (Time-Varying, [14])

The baseline attitude controller is the static controller (SC)
from [14] using static gains, metric parameters, and conver-
gence rate. In particular, the cost functions ΨR,ΨRref

are
chosen to be (with r ∈ {R,Rref}),

Ψr∈{R,Rref}(R1, R2) =
1

2
‖(logR1

R2)∨‖2 (33)

with gradient [23, Prop. 2.2.1],
grad1(Ψr) = − logR1

R2. (34)
Note that θr = ‖(logR1

R2)∨‖.
The best static gains, metric parameters, and convergence

rate are determined via the algorithm found in [14, Algo-
rithm 1]. The algorithm requires user-selected maximum
initial parameters θR,max, θRref ,max, and ‖ω‖max which
define a contraction region on the state space defined by
the initial distance between R and Rref , Rref and Rd, and
the initial speed, respectively. The sum θR,max + θRref,max

represents the maximum initial distance that R can be away
from Rd such that convergence holds by contraction theory.
For the cost function (33), the maximum θr(r,Rd) is π [23];
therefore the sum must be chosen to be greater than or equal
to π to ensure global stability. Lastly, the algorithm requires
a list of initial desired gains. From [22], we have an idea
of the optimal kd, kv gains, therefore we only need to do a
search over the kref gain. The chosen values and resulting
best gains and convergence rate are shown in Table I. The
corresponding metric parameters are

M =

0.0347 0.0003 0.0140
0.0003 0.0001 0.0003
0.0140 0.0003 1.000

 . (35)

TABLE I: Static Controller Parameters

Parameter Value Description
J dg(stack(5, 2, 1)) Inertia matrix
kd 100 Initial rotation error gains
kv 80 Initial velocity error gains
kref [1, 5, 10, ..., 100] Initial reference trajectory gains
‖ω‖max 1 Max initial angular speed
θR,max π/4 Max init. dist. error R to Rref

θRref ,max 3π/4 Max init. dist. error Rref to Rd
β∗ 0.4022 Best guaranteed convergence rate
k∗d 106.6667 Best rotation error gain
k∗v 74.6667 Best angular velocity error gain
k∗ref 0.9833 Best reference trajectory gain

B. Varying-Gains Controller (This Paper)

The varying-gains controller (VGC) utilizes a semi-definite
program (SDP) to update the gains along the trajectory. The
optimization problem select gains such that the contraction
conditions hold at every time instant with bounds given by the
current state (R,ω,Rref ). Intuitively, the aim is to change
the gains toward the optimal ones that we would obtain by
repeatedly applying the previous approach [14] while setting
θR,max = θR(R,Rref ), θRref ,max = θRref

(Rref , Rd), and
‖ω‖max = ‖ω‖.

Theorem 1: Given initial states and parameters
(R0, ω0, Rref,0, kd,0, kv,0, kref,0,mi,0, β0) that satisfies (4)



for system (9) with controller (10), the close-loop system
is (globally) stable with dynamic gains, metric parameters,
and convergence rate when they are updated according to
the solution of the point-wise SDP below. If the problem is
infeasible, then set u = stack(0, 0, 0, 0, 0, 0) and stability is
still maintained. The SDP is

min
u=stack(k̇d,k̇v,k̇ref ,ṁi,β̇,δ)

uTQu+ PTu

s.t. (20) (Stability CBF)
(22) (β L.B. CBF)
(23) (Metric CBF)

(31) (‖Γ‖2 CLF)
(28) (Gain U.B. CBF)
(29) (Gain L.B. CBF)

ck`,L.B.
≤ k̇` ≤ ck`,U.B

(36)

where ck`,L.B.
, ck`,U.B

∈ R are constants.
Proof: If the SDP (36) is feasible, then the gains, metric

parameters, and convergence rate can instantaneously update
according to the solution u = stack(k̇d, k̇v, k̇ref , ṁi, β̇).
Furthermore, (20) is a ZCBF guaranteeing that the contrac-
tion bounds (14)–(16) will remain negative, thus proving
stability by contraction theory. If the SDP is infeasible, then
setting u = 0 means that the gains, metric parameters, and
convergence rate are unchanged. Then, by the last feasible
solution and state (or initial condition), the states still converge
exponentially [14, Theorem 1].

Proposition 5: The control signal Γ produced by the gain
controller above is Lipschitz continuous.

Proof: The varying-gains controller is composed of
continuous functions, and the gains are Lipschitz continuous
by ck`,L.B.

≤ k̇` ≤ ck`,U.B
. Hence, the control signal Γ is

also Lipschitz continuous [15, Fact 2].
Remark 6: Although there are many constraints, they are

all linear and only a few are active at any time which means
that they can be solved quickly. In particular, the optimization
problem (36) with parameters from Table II averages 0.2428s
to solve with CVX [24] using the SDPT3 solver [25] in
MATLAB. Faster results could be obtained with specialized
implementations on real systems.

Remark 7: Our approach allows the gains to remain
constant at any point and the system would still converge.
This has the advantage that if the optimization (36) becomes
infeasible, we can keep the same gains between updates. As
a result, the actual control law (10) for Γ can be computed
at a much higher rate (see Fig. 1).

To be consistent with the static controller (SC), the initial
gains, metric parameters, and convergence rate are set to the
same values. The constraints in (36) require class K functions.
For simplicity, we choose a linear class K function for all.
Lastly, a particular cost function is defined for the simulations.
We choose a linear combination of improving convergence
rate (increasing β̇) and reducing control effort (decreasing δ).
The experimentally chosen parameters for the varying-gains
controller is given in Table II.

TABLE II: Varying-Gains Controller Parameters

Parameter Value Description
kd,0 106.6667 Init. rotation error gain
kv,0 74.6667 Init. velocity error gain
kref,0 0.9833 Init. ref. trajectory gain
cconv 1 Convergence CBF factor
βmin 1−6 Min convergence rate
cm 1 Metric CBF factor

k`,max 110 Max gain
k`,min 0 Min gain
Q 0 Quadratic cost matrix
P stack(0, 0, 0, 0i,−cβ , cδ) Linear cost matrix
cβ 10 Convergence weight
cδ 1 Minimize control weight

TABLE III: Gain Schedule Constants

Parameter Value Description
kd [0.1, 10, 20, ..., 110] Initial rotation error gains
kv [0.1, 10, 20, ..., 110] Initial velocity error gains
kref [0.1, 5, 10] Initial reference trajectory gains
‖ω‖max 1 Max initial angular speed

C. Gain Schedule Controller (Baseline)

A straightforward approach to improve a static controller
is to gain schedule for different convergence regions. The
gain schedule controller (GSC) uses the same controller as
the SC, but the gains are changed to some optimal ones when
the system is within specified convergence regions. The gains
for each region are computed offline using [14] for different
values of θR,max, θRref ,max, and ‖ω‖max.

For comparison, the state space is split into four regions
by distance to the desired attitude. The constant parameters
and gains search space for each region is given in Table III.
The regions and resulting best gains are given in Table IV.

During run-time, the control gains are updated when the
distance between the current R and desired Rd attitudes first
reach an initial distance as defined by θR,max + θRref ,max

and the contraction condition (4) is satisfied with the new
convergence region parameters and current state (see Re-
mark 2). If the current state (R,ω,Rref ) does not satisfy the
contraction condition then the reference trajectory is updated
to Rref = expR(θR,max

ω
‖ω‖ ) (an attitude that is θR,max

distance away from R in the direction of ω) or Rref = Rd
(local controller [22]). If the modified state still does not
satisfy the contraction condition, no gain update is made (to
maintain stability) and the process is repeated.

Remark 8: The reference trajectory Rref can be arbitrary
chosen because it is fictitious. The updated reference attitude
is chosen such that the bounds (14)–(16) are satisfied by the
θR and θRref

parameters. However, the contraction metric can
still be violated due to the angular velocity ω. In our case, we
switch to the local controller after leaving the global region.

V. RESULTS AND SIMULATION

In this section, we compare the attitude controllers of the
previous section. The initial condition for all the simulations
are chosen to be the same and far away from the identity so
that a global controller is required. All three controllers start
with initial gains and parameters from Table I. The desired
state is (Rd = I3, ωd = 0) ∈ TSO(3). The initial states are



TABLE IV: Gain Schedule Regions

Parameter Value Description
Global Region

θR,max π/4 Max init. dist. error R to Rref
θRref ,max 3π/4 Max init. dist. error Rref to Rd

β∗ 0.4022 Best convergence bound
k∗d 106.6667 Best rotation error gain
k∗v 74.6667 Best velocity error gain
k∗ref 0.9833 Best reference trajectory gain

3π/4 Region
θR,max 3π/4 Max init. dist. error R to Rref

θRref ,max 0 Max init. dist. error Rref to Rd
β∗ 1.4296 Best convergence bound
k∗d 110 Best rotation error gain
k∗v 30.1000 Best velocity error gain
k∗ref 0 Best reference trajectory gain

π/2 Region
θR,max π/2 Max init. dist. error R to Rref

θRref ,max 0 Max init. dist. error Rref to Rd
β∗ 3.3329 Best convergence bound
k∗d 110 Best rotation error gain
k∗v 22.1100 Best velocity error gain
k∗ref 0 Best reference trajectory gain

π/4 Region
θR,max π/4 Max init. dist. error R to Rref

θRref ,max 0 Max init. dist. error Rref to Rd
β∗ 5.4195 Best convergence bound
k∗d 110 Best velocity error gain
k∗v 20.1000 Best velocity error gain
k∗ref 0 Best reference trajectory gain

chosen such that R0 is the maximum distance π away from
the identity, Rref,0 is randomly chosen to be θRref ,max =
3π/4 away from the identity and θR,max = π/4 from R0,

and ω0 =
(logR0

Rref,0)
∨

‖(logR0
Rref,0)

∨‖
(moving towards Rref,0 at unit

speed).
Figure 2 depicts the distance and speed error of the

controllers. The SC and VGC have similar smooth behavior
as they converge. The VGC seems to converge faster both in
distance and speed. The GSC experiences an abrupt change
during the first gain switching phase at 0.57s, then continues
to converge rapidly with high speeds.

To prove convergence, the maximum eigenvalue of the
contraction matrix (derived from the contraction condition (4)
as shown in [14], [22]) is shown in Figure 3. As expected,
all controllers maintain a negative maximum eigenvalue
ensuring exponential stability by satisfying the contraction
condition (4). The system is considered to have converged
if both the distance and speed error are less than 0.01. The
convergence times are shown in Table V.

TABLE V: Convergence Time

Controller Convergence Time (s)
SC 6.630

VGC 4.152
GSC 3.417

While stability is the most important property of a con-
troller, it is useful to have a controller that can perform well
in other aspects. As discussed above, a controller that uses
minimal effort is desirable in many applications. In Figure 4,
the cumulative control effort required to steer the system to

SC

VGC

GSC

(a) Rotation distance error

SC

VGC

GSC

(b) Angular speed error

Fig. 2: The distance and speed error of all three controllers.
The static (SC) and varying-gains controller (VGC) have
similar behavior while the gain schedule controller (GSC)
experiences a sudden change during the first switching phase.

SC

VGC

GSC

Fig. 3: The maximum eigenvalue of the contraction matrix
derived from the contraction condition (4). All controllers
maintained a maximum negative eigenvalue, thus all are
exponentially stable and satisfy the contraction condition.

some distance from the identity is shown. The SC and GSC
are not able to locally optimize as they are tuned for a region.

Remark 9: The results shows that the GSC convergences
48.46% faster than the SC but requires tremendously
(485.06%) more control effort. While the VGC convergences
37.38% faster than the SC, but only uses 10.48% more control
effort.

SC

VGC

GSC

Fig. 4: The cumulative control effort is plotted against the
distance error to the identity. The GSC uses comparably more
effort to converge than the SC or VGC.

Another desirable controller property is smooth control
signals. On real hardware, a discontinuous control may
result in unexpected system behavior like motor stalling or



unintended motions that may cause harm. The control signal
from the three controllers are shown in Figure 5. The SC and
VGC both produce smooth control signals, while the GSC
has discontinuities when switching gains.

(a) SC Control

(b) VGC Control

(c) GSC Control

Fig. 5: Control signals from each controller. The SC and VGC
produce continuous signals while the GSC has discontinuities.
Smoother VGC signals can be obtained by limiting the gain
derivative rates in (36).

VI. CONCLUSION

In this work, a framework was introduced to transform a
static gain, feedback, attitude controller to a varying-gains
controller via point-wise optimization. An advantage of this
formulation is that the new controller leverages the stability
results of the static controller to ensure its convergence.
The new controller updates the gains online by solving an
optimization problem with constraints from Control Barrier
and Lyapunov Functions to guarantee stability with optimized,
continuous controls. In simulations, the new varying-gains
controller converges faster than the static controller using
similar control efforts. In addition, the varying-gains controller
is smooth with similar convergence times to a discontinuous
gain scheduling controller, but requires less control effort.

In future work, we plan to investigate the usage of the
point-wise close-form contraction condition (as opposed to
the bounds) to increase performance. The challenge is that
stability is only guaranteed for a particular state, and the
controller is not well-defined when the optimization problem
is infeasible.
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