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Selection component analyses (SCA) relate individual genotype to fitness
components such as viability, fecundity and mating success. SCA are
based on population genetic models and yield selection estimates directly
in terms of predicted allele frequency change. This paper explores the stat-
istical properties of gSCA: experiments that apply SCA to genome-wide
scoring of SNPs in field sampled individuals. Computer simulations indicate
that gSCA involving a few thousand genotyped samples can detect allele
frequency changes of the magnitude that has been documented in field
experiments on diverse taxa. To detect selection, imprecise genotyping
from low-level sequencing of large samples of individuals provides much
greater power than precise genotyping of smaller samples. The simulations
also demonstrate the efficacy of ‘haplotype matching’, a method to combine
information from a limited collection of whole genome sequence (the refer-
ence panel) with the much larger sample of field individuals that are
measured for fitness. Pooled sequencing is demonstrated as another way
to increase statistical power. Finally, I discuss the interpretation of selection
estimates in relation to the Beavis effect, the overestimation of selection
intensities at significant loci.

Quantitative genetics is a science of measurable variables. For this reason, it has
proven an essential tool for field evolutionary biologists because key parameters
like additive genetic variances and selection gradients can be estimated from
whole-organism measurements [1,2]. Quantitative genetic models directly predict
changes in quantities of interest such as the mean of a population that is experien-
cing inbreeding or natural selection. In this context, model inputs such as the
additive genetic variance can be treated as a ‘black box’ [3]: a complicated function
of unmeasurable elements that can be estimated only as an aggregate quantity.
However, the development of genomic techniques now affords a peek inside
this black box at how individual polymorphisms contribute to variation. Here,
I will consider selection component analyses (SCA) [4-8] as one method to
investigate the complicated relationship between individual loci and fitness.
SCA are statistical models that predict fitness components from
observations of viability, fecundity and mating success. I will distinguish two
SCA approaches: the “2-cohort’ and ‘family’ designs. The 2-cohort design
tests for differences in allele frequency between subdivisions (cohorts) of a
population with distinct individuals constituting each cohort. Viability selection
can be estimated from a contrast of individuals that survive to reproduce and
those that do not [6,9]. Sexual selection can be measured by comparing individ-
uals that acquire mates to those that do not [6,9-11]. The family design involves
a contrast between non-independent relatives, specifically genotyped parents
and their offspring [9,11]. Often only one parent can be genotyped: the one
that is ‘attached” to the progeny at sampling. This would be the female if
sampling pregnant garter snakes (e.g. [12]), the male if sampling pregnant pipe-
fish (e.g. [10]). When females are attached, the family design statistically
distinguishes the observed maternal allelic contribution to offspring and from
the inferred paternal contribution. We can then test whether the allele frequency

© 2021 The Author(s) Published by the Royal Society. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2021.1812&domain=pdf&date_stamp=2021-10-27
mailto:jkk@ku.edu
https://doi.org/10.6084/m9.figshare.c.5665552
https://doi.org/10.6084/m9.figshare.c.5665552
http://orcid.org/
http://orcid.org/0000-0001-9480-1252

Downloaded from https://royalsocietypublishing.org/ on 27 October 2021

in reproductive females (p,) differs from that in the popu-
lation of successful male gametes (pp). A significant
difference between p, and p,, indicates ‘male selection’ [9],
which integrates a number of distinct selective mechanisms
including sexual selection through differential siring and
sperm/pollen competition.

SCA were initially applied to visible marker loci (e.g. [13])
or allozyme polymorphisms (e.g. [14]), but have recently
been extended to test for selection at SNPs across the genome
in a number of natural systems [10,11,15-20]. Genome-scale
SCA, hereafter gSCA, provide a comprehensive evaluation of
selection, but also confront difficult statistical challenges. The
most basic is that per-locus effects will usually be small and
thus hard to detect except in very large experiments.
Genome-wide genotyping provides a great many opportu-
nities to detect weak associations between genotype and
fitness components, albeit with the cost that multiple testing
corrections for thousands (or millions) of SNPs will make sig-
nificance thresholds very stringent. The ‘Beavis effect’ [21] is
an inevitable consequence: we underestimate the number of
loci with fitness effects, but overestimate the effects of the
subset of SNPs that fortuitously emerge as significant. One
purpose of this paper is to examine the nature and magnitude
of this effect for different gSCA experimental designs.

A second challenge for gSCA is that current sequencing
technologies will often yield incomplete data. Many sampled
individuals will have uncertain genotype calls at many or
even most SNPs. gSCA are likelihood models and thus can
naturally accommodate uncertain genotype calls simply by
summing over all possible genotypes at a locus, weighted
by their respective probabilities. In fact, the capacity of
gSCA to accommodate fragmentary or incomplete data
suggests a number of ways that researchers can increase the
power of field studies. I will consider a number of these
options in this paper, including low-level sequencing and
pooled sequencing, by which experiments can include a
much larger number of individuals without increased cost.
Low-level sequencing on larger field collections (high uncer-
tainty at the individual level) proves to be far more powerful
than perfect genotyping of smaller datasets. With limited
sequencing coverage, inference of selection on a particular
SNP can be improved by considering sequence information
from neighbouring SNPs. Capitalizing on localized LD is
key to imputation methods [22,23] and also for the recently
developed ‘haplotype matching’ approach for genomic
gSCA [9].

Below, I first describe the structure of gSCA models and
then use simulations to explore their statistical properties
under a range of circumstances. While most cases are general,
the examination of haplotype matching is grounded in geno-
mic data from two species, Mimulus guttatus and Drosophila
melanogaster. Haplotype matching was demonstrated in
M. guttatus, a species with intermediate levels of linkage
disequilibrium (LD); substantial within genes (inter-SNP dis-
tances of up to 1kb) but declining to background levels
between genes (approx. 20 kb) [24]. This is lower than in
some species (e.g. Arabidopsis [25]) but higher than others
(e.g. Drosophila [26]), and it is unclear how well haplotype
matching will work when LD decays rapidly with distance
between sites. The Mimulus/Drosophila contrast is also infor-
mative because while both species are amenable to gSCA,
different sampling designs may be required. Mimulus guttatus
is monoecious and thus the family design—a sample of

maternal plants and their progeny—provides a direct contrast n

of allele frequencies in the population of successful male
gametes (those contributing to progeny) with the overall
adult male population. This is because the adult male popu-
lation is the adult female population and thus maternal
genotyping estimates both. By contrast, a distinct sampling of
adult males, adult (pregnant) females and their progeny
would be required in Drosophila. This three-sample experiment
enables additional contrasts (e.g. a difference between adult
males and females suggests sex-specific viability selection
[4,20]) and basically combines the 2-cohort and family designs.

As an example of the 2-cohort test, consider a sample of 1,4
individuals that survive to adulthood and #; individuals
that do not. Each individual provides some genetic infor-
mation about a particular bi-allelic SNP with alleles R and
A. The log-transformed likelihood for the entire dataset can
be written as

A 2
LnL = ZLn{ZXA[Gy = i]P[Data,|G, = i]}

y=1 i=0

nL 2
+ ZLn{ZXL[GZ = i]P|Data,|G, = i}}, (2.1)

=1 i=0

where X[*] are the genotype frequencies among survivors
and dead. Let p = frequency of the reference base (R). With
random mating but no selection, X4[G, =il = X;[G, =]
with the values of p? 2p(1—p) and (1-p)? for i=0, 1 and
2, respectively. Here, i = 0 for the reference base homozygote
(RR), i=1 for the heterozygote (RA) and i =2 for the alterna-
tive homozygote (AA). With differences in viability,
XalGy =il and X, [Gy = i] can be written in terms of zygotic
(pre-selection) allele frequency and genotype specific viabil-
ities or selection coefficients. The nature of genomic data for
an individual determines P[Data,|G, = il, the likelihood of
data from individual y given that it has genotype G,=1.
With ‘perfect genotyping’ (no uncertainty), P[Data,|G, = il
is 1.0 for i matching the true G, and zero otherwise. In this
case, equation (2.1) simplifies to the multinomial likelihood
of the original selection component models [4].

For a family design with a sample of 1y families, each with a
maternal individual and ¢ offspring, the log-likelihood for the
dataset is

Nnr 2 1o
LnL—ZLn{ZXA[Gy—i]P[Datay|Gy—i]HP[Datayk|Gy—i]}

y=1 i=0 k=1
(2.2)

Here, P[Data,;|G, = i] is the probability of the data from off-
spring k of maternal individual y given that the maternal
genotype is i. The product in equation (2.2) is a function of
pnm, allele frequency in successful male gametes, while the
XalG, = il are a function of p, allele frequency in reproductive
females. For the simulations, I assume independent siring of
each offspring, but the model can be modified to accommodate
any mixture of half and full siblings [11].

After considering cases with perfect genotyping, I limit
the number of sequence reads that cover the focal SNP in
individuals. With a single sequence read for the focal SNF,
the individual will report either R or A, and the number of



Downloaded from https://royalsocietypublishing.org/ on 27 October 2021

possibilities for P[Data,|G, =il is limited. For i=10,1,2]
in sequence,

P[Data, |G, =i] =[1.0— ¢, 0.5, ] if the datum is R, and
PlData,|G, =il = [¢,0.5, 1.0 — &] if the datum is A.

Here, & is the probability of the unlikely event that a
homozygote reports the alternative allele owing to sequen-
cing or bioinformatic error. With a single read,
heterozygotes will always produce data that is most likely
to have come from one of the homozygotes.

Pooled sequencing of progeny sets can greatly reduce the
cost of family design experiments. For simulation of these
cases, I assume that maternal genotype is determined with-
out error: G, =0, 1 or 2. The data for a family are then
Gy, mg and my, where the latter terms refer to the number
of sequence reads from the progeny pool that are R versus
A at the focal SNP (ignoring sequencing error for these
counts as well). 1 is the number of offspring in the pool.
Given independent siring of offspring, the likelihood can be
calculated simply by conditioning on the number of A alleles
contributed by sires (0 up to 1) to the entire progeny set. If
Gy = 0, the likelihood for family y is

no
5 no\ i no—i [ MR +Ma
PAZ( ; )pM(l —pm) ( . )

i=0

1 i\"™ /1 i\™
LS By L 23
X (2+2n) (2 Zn) 23)

If G, =1, the likelihood is
no
_ MO\, i (1 _ ., yio—i[ MR+ M4
2pa(1 — pa) ,-:EO ( ; )PM(l pm) < iz )

1 i\™/3 i\™

For G, =2,

a-pa?y ( "o )Ph(l — e < mR;:RmA >

i=0

) A 25

The LnL for the entire dataset is the sum of log-transformed
family likelihoods.

Haplotype matching requires a collection of high-quality
whole-genome sequences from the natural population under
study. In our prior experiment on M. guttatus [9], this ‘refer-
ence set’ consisted of 187 genomes. The field experiment
involves sampling individuals measured for fitness, each of
which is subject to low-level or incomplete sequencing
(e.g. RADseq [27]). Instead of directly applying the gSCA
models to the fragmentary data on field individuals, we
align sequence reads (or read-pairs) to the reference set, treat-
ing the reference set as the haplotypes that segregate in the
natural population. Given that read-pairs are routinely 200-
300 bp in length, the data units from field individuals are
themselves small haplotypes. In M. guttatus, read-pairs routi-
nely overlap 5-10 SNPs. Consequently, a single read-pair can
eliminate a large fraction of the reference panel as potential
ancestors. Of course, there will be a great many more distinct
haplotypes in the natural population than in the reference set if
one considers long sequences. Thus, haplotype matching is
conducted within delimited intervals (e.g. genes). In Mimulus,

we found that field data obtained using MSG RADseq [28] [ 3 |

were almost entirely congruent with the reference set within
genes. In other words, there were few cases where field
plants had sequence data that could not be reiterated by copy-
ing the sequence from at least one pair of reference set
sequences. In the rare cases of inconsistency, field genotypes
were treated as missing data. However, the high rate of match-
ing enabled an effective probabilistic inference of SNP
genotype associations with fitness. As a contrast to Mimulus,
I here simulate comparable data from D. melanogaster using
the Drosophila Genetic Reference Panel (DGRP) as the refer-
ence panel [29]. The DGRP is a set of 205 whole-genome
sequences from a single natural population and is intended
to represent a random sample of alleles from that population.
Simulating low-level sequencing of flies from this population
tests the feasibility of haplotype matching for organisms
with lower intra-genic LD.

In haplotype matching, sequenced haplotypes from the
reference set are treated as the alleles segregating in nature:

P[Data,|G, = k] = Sijei " PIM, = ijIP[Datay|My = i1
vy =K = PIG = K] '

(2.6)

Here, §;jx is 1 if genic genotype [ij] has SNP genotype k at the
causal SNP and 0 otherwise. P[M,, = i,j] is the probability that
a random individual will carry genic genotype [i,j], which is
directly proportional to the frequency of these sequences in
the reference panel. P[G = k] is the Hardy-Weinberg fre-
quency of genotype k (0, 1 or 2 at the focal SNP) within the
reference panel. I denote each sequence in the set of reference
lines as a ‘genic haplotype’ and diploid combinations as
‘genic genotypes’. P[Data,|M, = i,] is the probability that
all reads or read-pairs from this field individual would be
produced by genic genotype [i,j]:

RP (B[hm'] N B[hr,,-])/

P[Data,|M, =il =[] 5 5

r=1

(2.7)

where RP is the number of read-pairs mapped within this gene
for this individual, k,,; is the number of sequence mismatches
between read-pair 7 and genic haplotype i, and ,, is the corre-
sponding value for haplotype j. B[x] is the probability that a
read-pair will exhibit x mismatches from the true sequence.
For this simulation study, I will ignore sequencing errors and
so Blx] =1 for x =0 and zero otherwise. However, applications
to real data require an explicit model for these errors. It is natu-
ral that B[x] should be proportional to &*, where ¢ is an error
rate, although the proportionality might be adjusted to account
for the number of SNPs overlapped by the read-pair.
Programs that implement equations (2.6) and (2.7) are pub-
lished elsewhere [9] with modifications here to accept
simulation data (programs in electronic supplementary
material, file S1). For viability selection, we first simulate a
sample of field individuals (survivors or dead) with data
either at single SNPs or for entire genes. The sampling is con-
tingent only on specified parameter values (e.g. p4 and p,, for
SNP-specific simulations). The difference between p, and p;,
is varied to consider differing strengths of selection. For haplo-
type matching simulations, samples are taken from the full
sequence sets of M. guttatus or D. melanogaster. The delineation
of genic haplotypes for M. guttatus was done previously [9],
and I here use a subset of that data for simulations. I chose
A00309 (the median length gene on chromosome 1) as an
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Figure 1. The predicted change in allele frequency at a SNP under male selection is given as a function of test significance level (~logy(P)) for 1000 simulation of
each of three designs: the number of families (ng) =250 (blue), 1000 (red) or 2500 (green). Each family was genotyped for the maternal individual and five

offspring. True p=0.5 and true Ap =0.02. (Online version in colour.)

‘exemplar’ for the first round of simulations and then randomly
selected 100 genes from the remainder of chromosome 1 for the
second round of simulations. For the SNP affecting fitness, I
randomly selected from SNPs in a gene with a minor allele fre-
quency greater than 0.1. The initial frequency, p, is determined
by the frequency of bases in the sequenced lines. I elevate/
reduce the frequencies of all reference lines that carry a base
to simulate samples with different p, and p;. To create a simu-
lated individual, I randomly select a pair of full sequences from
the genic haplotype set for the gene. The probability of select-
ing a particular haplotype is proportional to its frequency in
the reference panel (adjusted for selection). Given the two
alleles within an individual, I simulate read-pairs as copies
from these two sequences. For simplicity, the simulated read-
pair is a continuous 300 bp copy of one of the two alleles.
Each read-pair is initiated at a random position in the gene.

To generate data from the DGRE, I randomly sampled genes
from chromosome 2 L with FBgn0010288 as the exemplar (it is
the median length gene of 2 L: 1473 bp). I imputed missing
values for each and extracted relevant data from each gene
using the programs in electronic supplementary material, file
S2. After processing, the genomic data from Mimulus and Dro-
sophila are structurally equivalent as inputs to the same
simulation/analysis programs. These programs estimate par-
ameters, conduct likelihood ratio tests, and obtain P-values
(P in upper case to distinguish from allele frequency) by com-
paring the likelihood ratio statistic (LRT) to chi-square-1. I
calculated —log;o(P) as a measure of test significance from
each simulated experiment. The mean of —log;¢(P) across repli-
cates is a measure of the power of the design to detect selection.
The simulation programs for all cases are provided in electronic
supplementary material, file S1. The programs original to this
study were written in Python (v. 2.7). The ‘Guide to programs’
document in electronic supplementary material, file S1 pro-
vides instructions for use of these programs to generate
results for any specified design. Finally, the figures presented
below were made using Minitab v. 18.

Both the promise and deceit of gSCA are illustrated by simu-
lations without genotyping uncertainty. Figure 1 contrasts

experiments of three different sizes applied to a population
where the true Ap=0.02 owing to male selection (family
design). Estimation is unbiased for each design (the average
predicted Ap is equal to the true value) and even the smallest
experiment can detect selection. Marginal significance
(p <0.05) corresponds to —log;(P) = 1.30, a threshold exceeded
by 31% of simulations with 7y =250 families, 83% with np=
1000 and 99.8% for np =2500. Critical for interpretation, how-
ever, is that there is a very strong relationship between
estimates and test significance. For the small design (1p=
250), the mean estimated Ap from significant tests (0.0356) is
inflated by 78% relative to the true value. This bias is dimin-
ished with 1000 families and disappears entirely with 2500
families. In the latter case, there is no bias because nearly all
simulations were significant at p <0.05. However, genomic
studies typically have stringent significance thresholds to cor-
rect for multiple testing. With —log;o(P) >5 as the threshold,
about 60% of tests remain significant for the large design, but
among these, Ap is exaggerated by an average of 30%. Similar
trends are obtained with the 2-cohort test (electronic sup-
plementary material, appendix A). A larger sweep of the
parameter space for both family and 2-cohort tests is reported
in electronic supplementary material, table S1.

Pooled sequencing of progeny is a potentially powerful
tool for fecund organisms. Figure 2 contrasts perfect genotyp-
ing with pooled sequencing of progeny for the ‘small” and
‘medium’ family designs (11 = 250 or 1000). With 10-100 pro-
geny per family, there is essentially no difference in power
between perfect genotyping of progeny and 10x coverage
of a DNA pool composed of all progeny. The latter option
greatly reduces effort and cost relative to individual genotyp-
ing. Lower sequencing coverage of progeny pools (from 10x
to 1x in figure 2) does reduce power, but only slightly. Note
that 1x coverage of a pool with 100 progeny is superior to
perfect genotyping of 10 offspring. With few offspring per
family, pooling is less advantageous. The 2-cohort test is
also amenable to pooled sequencing, and testing methods
for this design are well established [30,31].

An important qualification on the results of figure 2
concerns the assumption that each offspring is sired indepen-
dently. This is clearly inconsistent with monogamy, and most
mating systems will produce a mixture of half and full sibs
within maternal families. With individual genotyping of
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Figure 2. The mean significance level is reported for experiments varying in the number of families, the number of offspring per family and the sequencing
coverage of each family. For the latter, NA refers to perfect individual genotyping of each offspring, 1 is 1 coverage of a pooled DNA sample made from all
offspring, and 10 is 10 X coverage of the same. The selection regime is the same as for figure 1 (p=10.5, Ap =0.02). (Online version in colour.)

progeny, it is straightforward to diagnose the ‘internal’ struc-
ture of maternal families (which offspring share a sire) from
genome-wide SNP data [32,33]. Given this partitioning, the
gSCA likelihood statements can be modified to account for
the non-independence of full-siblings (see equation (2.4) in
[11]), but this may not be possible with pooled progeny
data. In this case, testing can fall back on the fact that each
maternal family provides an unbiased and independent esti-
mate for py,, thus providing means for inference based on the
average across families.

To evaluate low-level individual sequencing and haplo-
type matching, I focus on viability selection, although these
techniques are fully compatible with the family design [9].
For these simulations considering SNPs across the genome
of Mimulus or Drosophila, differing outcomes are generated
by differences in initial allele frequency and differing patterns
of local LD. To evaluate haplotype matching relative to single
SNP genotyping, I simulated data based on the ‘median’ gene
of Mimulus chromosome 1 (A00309, figure 3a). With the true
Ap =0.01 and SNP-specific data, power is much greater if one
replaces perfect genotyping of 1000 individuals with low-
coverage sequencing of 10000 individuals (test 1 versus test
2 in figure 3a). If we consider tests at SNP 1566059, only
16% of test 1 cases are marginally significant (p < 0.05) in con-
trast to 51% for test 2. Across SNPs in figure 3a, 24% of test 1
are significant as opposed to 76% for test 2. For A00309,
power is much higher with low-level sequencing (1x cover-
age) of the entire gene (haplotype matching) than with data
specific to the selected site. Tests 2 and 3 each have an average
of 1x coverage of the selected SNF, but the latter is much
more likely to reveal selection (figure 3a). This is noteworthy
given that over a third of test 3 cases have no coverage of the
selected site. Leveraging haplotype structure greatly increases
power to infer the genotype at the selected site. In fact, 1x
coverage of A00309 is essentially indistinguishable from per-
fect genotyping in terms of power (case 3 versus case 4). For
each of the 1x simulated datasets, I created a replicate dataset
with the actual genotype output for model fit with no uncer-
tainty. The correlation of LRT values between 1x and perfect
genotyping is nearly 1 with the mean of the former value
greater than 99% of latter.

Figure 3b considers the same strength of selection (true
Ap=0.01) for FBgn0010288, the median Drosophila gene.

Simulations estimate power for gene-level data with 1 x
coverage, 5 x coverage and perfect genotyping of 10 000 indi-
viduals. Comparing equivalent cases in figure 3a,b, the power
of haplotype matching is lower with Drosophila. 1 x coverage
is consistently and substantially weaker than perfect geno-
typing in the four tested SNPs. This is expected given lower
LD in Drosophila relative to Mimulus. However, we find that
5x coverage is nearly as good as perfect genotyping in
three of four SNPs. The different outcome for the first SNP
(2212741) illustrates that the effectiveness of haplotype
matching depends on localized LD patterns, which can
vary among SNPs. This variability is considered in greater
detail below, but simulations across many genes demonstrate
that figure 3 is representative.

I next performed simulations on 100 randomly selected
genes from each species. We dropped one gene from each
set owing to lack of variation. Within each remaining gene,
we performed five replicate simulations each using a ran-
domly selected SNP to determine fitness (minimum minor
allele frequency of 0.1). The Mimulus results from A00309
(figure 3a) are largely reiterated by the broader scan
(figure 4a). The power with 1x coverage is only slightly
lower than perfect genotyping of 10000 individuals (case 3
versus case 4 in figure 4a). The 100 gene scan for Drosophila
is also quite similar to the exemplar case (compare figure 3b
to figure 4b), with 5x coverage nearly indistinguishable
from perfect genotyping.

To this point, simulations have sampled genic haplotypes
from the set of referenced lines (187 in Mimulus, 205 in
Drosophila). In real applications, it is likely that the reference
sequence set will be incomplete. In other words, field individ-
uals will have haplotypes that are not present in the reference
set. To evaluate the consequences of this partial sampling, I
conducted simulations using the entire reference sequences
sets to generate field data, but fit the gSCA using only a
random subset of 100 sequences as the ‘experimental level’
reference set. As consequence, simulated read-pairs may fail
to map to any genic haplotype under consideration. Such
individuals will have very low likelihoods for all the possible
genotypes at a SNP and are treated as missing data in model
fitting. I first applied the partial sampling pipeline to simu-
lations where there is no selection and established that
incompleteness of the reference panel does not inflate the
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Figure 3. The mean significance level of tests for viability selection in simulations with the true Ap = 0.01. (a) Four SNPs within gene A00309 of Mimulus. Tests:
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with haplotype matching, b =5 X genic with haplotype matching, ¢ = perfect genotyping. (Online version in colour.)

probability of false positives. Considering cases with selec-
tion, incomplete reference panels can reduce power, but the
effect is surprisingly weak (figure 4c,d). For the 99 gene set
in Mimulus, 1xsequencing is only slightly different when
mapping reads to the incomplete reference set as opposed to
the full set (figure 4c). In Drosophila, we performed contrasts
with both 1xand 5 xcoverage. In both cases, mapping to
the partial set reduced power, but only slightly (figure 4d).

Sample size is the fundamental challenge in the direct study
of natural selection. Experiments that relate the genotype of
individual organisms to observed survival and reproduction
provide an immediate view of natural selection. Unfortu-
nately, precision is a limiting factor for field experiments.
Small fitness differences (less than or equal to 1%) may be
sufficient for natural selection to overwhelm other forces,
but measurements on thousands of individuals are required
to accurately estimate such effects [34]. As an alternative to
direct study, many evolutionary biologists search for natural
selection through statistical analyses of sequence poly-
morphism and divergence patterns [35-37]. This molecular
approach has the advantage of integrating small allele fre-
quency changes that accrue over many generations and
these procedures have identified selected loci across a range
of species [38-40]. Regrettably, sequence variation patterns
provide limited information about the fitness differences
between genotypes. Different selective mechanisms can
produce indistinguishable patterns in sequence data [41]
and variable selection (an inconstant genotype-to-fitness
mapping) can generate patterns that mimic neutrality. Incon-
stancy can result from temporal fluctuations in selection
[42,43], or frequency dependent fitnesses [44], or even
simple quantitative inheritance where the phenotype (and
not the genotype) is the immediate effector of fitness [45].
Given these difficulties, the direct estimation of natural
selection within wild populations remains essential.
Genomic selection component analyses (gSCA) assess
SNP-fitness associations across the genome. The simulations
illustrated by figures 1-4 show that gSCA involving a few

thousand genotyped samples can detect selection if changes
in allele frequency (Ap) are 1% or greater. This is noteworthy
given that field surveys suggest per generation Ap can be
greater than 1% at hundreds of SNPs in plants [9,11,17],
insects [1543,46] and even vertebrates [10,19]. Regarding
experimental design, the primary message from this simu-
lation study is that researchers should endeavour to include
as many genomes as possible in an experiment. Greater bio-
logical replication is strongly favoured at the expense of
precision in individual genotyping. Low-level sequencing is
effective, particularly if aided by haplotype matching
(figures 3 and 4). Pooled sequencing can be nearly as power-
ful as individual sequencing (figure 2) allowing researchers to
sequence thousands of individuals without having to make
thousands of sequencing libraries. The pooled-progeny
option is particularly attractive for highly fecund organisms,
such as plants and many invertebrates, where hundreds or
even thousands of progeny can be sampled from a single
maternal individual.

Haplotype matching with low-level sequencing proved
more effective in Mimulus than Drosophila (figures 3 and 4),
a result with at least two causes. First, nucleotide diversity
is substantially higher in the Iron Mountain population of
M. guttatus (source of the Mimulus lines) than in the DGRP
of Drosophila [24,47]. Mimulus read-pairs will thus overlap
more SNPs and more incisively identify ancestral haplotypes.
Second, haplotype structure (localized LD) is higher in Mimu-
Ius than Drosophila. This facilitates the ‘process of elimination’
aspect of haplotype matching simply because fewer genoty-
pic combinations are present (or abundant) in ancestors.
While 1x haplotype matching is not as good in Drosophila
as Mimulus, the procedure works surprisingly well for a
species where LD is often considered negligible. Indeed,
averages for pairwise measures of LD, such as r?, decline
rapidly with distance in the DGRP [47]. However, r? is an
imperfect predictor of the number of distinct sequences that
exist for a gene. For the 99 genes sampled from chromosome
2 L (figure 4), the median number of distinct sequences (per
gene) was only 82. This is far fewer than would be expected
among 205 sequences if SNP alleles were sampled indepen-
dently along each gene (given the number of SNPs and
allele frequencies).
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Figure 4. Mean significance level is reported for viability selection across 99 randomly selected genes of Mimulus (a,c) or Drosophila (b,d). For (a) and (b), the
selection regime and tests match their corresponding IDs in figure 3a,b. For (c) and (d), true Ap = 0.03 with 1000 individuals were measured for all cases. For (c),
1.1 x = incomplete reference set with 1 sequencing coverage (genic), C.1 X = complete reference set with 1 X coverage and p = perfect genotyping. For (d), //C
is incomplete versus complete reference set and 1x/5 X is coverage. (Online version in colour.)

All simulated cases display a difficulty with gSCA, the ten-
dency to overestimate the strength of selection at SNPs that
emerge as significant (figure 1). For any given scenario (selec-
tion strength and experimental design), the most significant
tests are those with the most fortuitous estimation error (i.e.
those that most exaggerate Ap). Across different scenarios, we
find that as the power of a test declines, the bias increases
among significant estimates. The biases among ascertained
estimates from gSCA are merely the most recent reiteration of
the ‘Beavis effect’ [21]. Described originally for QTL mapping
experiments, this tendency to overestimate effects emerges rou-
tinely in big data analyses [48] where investigators perform
large numbers of tests, rank them by significance and claim
the most extreme outcomes as positive results.

(a) gSCA versus GWAS

Genome-wide association studies estimate SNP-specific effects
on quantitative traits and can be applied to fitness components.
In some cases, gSCA and genome-wide association (GWAS)
models can be applied to the same experiment. Consider the
2-cohort design with a genotyped population sorted into survi-
vors and deceased. The gSCA on these data tests for allele or
genotype frequency divergence between cohorts. The relevant
GWAS s a generalized linear model with genotype as the factor
and survival as a binary response variable [49]. gSCA works in
the currency of allele frequency change (Ap) while GWAS in
terms of genotypic effects, but with equivalent assumptions,
parameters should be inter-convertible. However, the differing
objectives of gSCA and GWAS are important.

GWAS models typically include a random effect for gen-
etic background to absorb the diffuse associations between
the focal SNP and loci across the genome. Such associations
can be caused by unrecognized population structure or
admixture. With gSCA, the focus is prediction of Ap owing
either to selection acting directly on the SNP or via hitch-
hiking [50]. Indeed, the effectiveness of haplotype matching
depends on local LD, but such associations make it very dif-
ficult to distinguish causal SNPs from hitch-hikers. Second,
GWAS but not gSCA routinely include environmental factors
as covariates to statistically remove their effects [51]. gSCA
models can be written to include covariates, but with a
focus on natural populations, one may not wish to factor
out environmental effects. Consider a locus that affects habi-
tat choice. The action of this locus will generate a genotype by
environment correlation. If habitat subsequently affects fit-
ness, allele frequency change will result. gSCA will detect
this Ap despite the absence of a genotype/fitness association
within habitats. Of course, there are situations where gSCA
and GWAS models can be applied jointly. Consider a
sampling of maternal plants and their seedset. gSCA can
detect male selection through the contrast of allele frequen-
cies between mothers and progeny. GWAS models can
estimate female fecundity selection by predicting seed
number from the individual genotype of maternal plants.

Estimates from gSCA and GWAS are equally susceptible
to the Beavis effect. One antidote is to repeat the association
study in a distinct and independent panel. In GWAS of medi-
cally relevant traits of humans, replication across large panels
is taken as evidence of genuine effect [52]. Two things make
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this option less feasible for gSCA or GWAS of fitness
components in wild populations. First, cost is a serious diffi-
culty given the more limited resources available for natural
population studies. Second, it may simply be impossible
to find replicate panels for fitness. For most species, the map-
ping from genotype to fitness will vary from one population
to the next, and from one generation to the next within a
population [53]. In this situation, averaging across ‘replicates’
cancels signal as well as noise.

Given spatial and temporal variation in selection, corro-
boration for gSCA estimates must come in another form.
Our focal species, D. melanogaster and M. guttatus, provide
a few examples. In D. melanogaster, large amplitude fluctu-
ations in allele frequency occur seasonally and Ap can be
predicted from weather conditions [54]. Ap generated by esti-
mation error or population genetic drift will not correlate
with environmental variables. In M. guttatus, SNPs under
viability selection within one population exhibit elevated
allele frequency divergence from other populations relative

to ‘neutral’ SNPs, and the direction of selection (the sign of n

Ap) predicts the direction of divergence [11]. In both Mimulus
and Drosophila, SNPs currently under selection in field popu-
lations exhibit molecular population genetic signatures of
long-term selection [9,46], which is a distinct sort of corro-
boration. These are useful examples, but perhaps the most
incisive contrasts have yet to be developed as field biologists
increasingly apply genomic methods to the study of natural
selection in wild populations.
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