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ABSTRACT

STEM Problem solving necessitates a substantial amount of specialized
domain knowledge. An important element of problem-solving within the
domain includes how knowledge is structured and organized in memory
to facilitate efficient retrieval of relevant information and future problem
solving. In previous studies, however, problem solving and knowledge
structure have been studied in relative isolation, resulting in viewing them
as a separate two-way process. To address this gap, this study aimed to
track how individuals developed their knowledge structures before, during,
and after collaborative problem solving in the contexts of STEM (physics,
astronomy, and biology), with particular attention to understanding the
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different mechanism between success versus less successful problem-solvers.
For that, we employed a relatively new and promising network approach
to representing learners’ knowledge structures as network graphs for anal-
ysis and comparison. Results visually demonstrated that successful
problem-solvers tend to share a solution-focused knowledge and establish
their group knowledge-oriented knowledge structure, whereas the less suc-
cessful problem-solvers tend to share problem-focused knowledge and then
establish their prior knowledge-oriented knowledge structure. Implications
and discussion for the findings are provided.

Introduction

Ill-structured problem-solving is increasingly seen as an important skillset in everyday life
(Jonassen, 1997). Indeed, the recent emphasis on so-called 21st century skills require an array
of problem-solving competencies, including critical-thinking, information literacy, and collabo-
ration (Graesser etal., 2020). As theorists reflect on the skillsets needed in practice, educators
have explored various ways to facilitate problem-solving in the classroom to better support
domain-specific knowledge structure development, which is an important element of effective
problem solving (Renkl, 2011). One of the most widely used approaches includes problem-based
learning (PBL), which asks learners to solve ill-structured problems that are similar to the types
of problems that practitioners employ (Barrows, 1996). Rather than a lecture about the concepts
in a decontextualized manner, learners try to resolve the ill-structured case with their peers as
they define the problem space (Dolmans etal., 2016). Teachers in this instructional strategy
adopt a more facilitative role as they guide inquiry and provided requisite scaffolding through
the problem-solving process. Theorists (Schank, 1999; Tawfik & Kolodner, 2016) argue that this
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experiential approach to learning affords opportunities for complex reasoning and comprehensive
knowledge structures (Tawfik et al., 2020; Tawfik & Kolodner, 2016). Large scale reviews of PBL
and similar strategies show gains in deep learning (Dolmans et al., 2016), conceptual knowledge
(Car et al., 2019; Sayyah etal., 2017), performance (Lazonder & Harmsen, 2016), and long-term
retention (Yew & Goh, 2016).

An important element of PBL is how learners interact with their peers, which requires indi-
viduals to engage in collaborative meaning-making and co-construction of knowledge (Suthers,
2006). In the first stages of collaborative problem-solving, learners focus on problem represen-
tation to describe the relevant variables and causal reasoning for why the issue occurred within
the case (Delahunty etal., 2020). As an individual moves toward solution generation, learners
work with the peers to resolve the case through collective decision-making and describe the
justification for their solution (Sharan et al., 2013). The importance of collaborative problem-solving
is especially important in online contexts where the learner-learner interaction is most pronounced
(Hara, 2000; Janssen & Kirschner, 2020; Jeong & Hmelo-Silver, 2016). Indeed, a recent study by
Zhu et al. (2020) found that learners’ continuous intention was mediated through multiple inter-
actions, including those of their peers. Related research shows that peer scaffolding in online
learning is a key determinant in predicting learning outcomes as they collectively solve problems
(Shin et al., 2020).

One way to understand problem-solving is through the lens of case-based reasoning (CBR)
theory, which describes the ways in which an individual retains a case and reuses prior expe-
riences. Although research shows that learners share ideas with relative ease (Matuk & Linn,
2018), they rarely engage in discourse that challenges, build on the ideas of their peers (Lucas
etal., 2014; Saqr etal., 2020), regulate tasks (Hadwin etal., 2018), and sustain interaction
(Uttamchandani et al., 2020). This is problematic for problem solving because peers serve as an
important scaffold as learners interact with differing perspectives and divergent evidence pre-
sented by others during problem-solving. Moreover, problem-solving and knowledge construction
are highly integrative (Wang et al., 2013), so it is important to explore how understanding of
a case is refined over time and across multiple learning cycles. However, there is a lack of
studies to explore the knowledge building process involved in problem solving, especially with
an eye toward identifying successful and less successful problem-solvers. Thus, our main aim
in this study is precisely to specify the collaborative problem-solving processes leading to suc-
cessful or less successful problem-solving performances by visualizing and tracking individuals’
and groups’ knowledge structures before, during, and after collaborative problem-solving.

Literature review
Knowledge structure and problem solving

Deep learning of a domain entails more than just being able to recall information, and also
includes the ability to understand the structural characteristics of a phenomena and transfer
solutions toward a novel situation (Belland et al., 2009). Such applications are maximized when
learners arrive at a level of comprehension that reflects the underlying domain-specific knowledge
structure (Linn, 2000). Based on seminal theory articles and empirical literature, knowledge
structure here is defined as the organization of domain key concepts stored in long-term memory
(Clariana, 2010).

Knowledge structure is important for problem solving in multiple respects. For example,
Trumpower and Sarwar (2010) note that “knowledge structures ... play a more direct causal
role in enabling good performance” (p.427). Shin et al. (2003) reported that complex, ill-structured
problem-solving scores were most predicted by knowledge structure scores among other cog-
nitive and non-cognitive factors, suggesting that developed knowledge structures likely lead to
better solutions for ill-structured problems. These and other studies between experts and novices
have demonstrated that success in ill-structured problem solving depends on the content and
the structure of knowledge about the domain (Tawfik et al., 2020).
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In terms of applying theory to practice, theories argue that PBL best supports knowledge
structures because of the rich contextual information embedded within the case (Schank, 1999;
Tawfik & Kolodner, 2016). According to case-based reasoning (Schank, 1999; Tawfik & Kolodner,
2016), as an individual engages in problem-solving, they reference prior cases to solve the new
case. If they deem the solution as relevant, they will map that knowledge structure onto the
new problem. If not, the learner will engage in further inquiry to resolve the case. That said,
novices can often struggle to develop an appropriate knowledge structure about the phenomena
without detailed and structured guidance from a more knowledgeable peer. When learning
through cases and problem-solving, educators invite the learner to articulate their existing
knowledge structure with their peers, provide normative models/cases, distinguish between the
normative models and their preexisting knowledge structure, and reflect on what was learned
and so move toward the knowledge structure they are targeting. Thus, learners’ knowledge
structures are constantly refined as they recognize, define, and organize new situation during
collaborative problem-solving. In this view, knowledge structure is not a static, fixed property;
rather, it is a dynamic and dependent upon the individual’s prior knowledge and collective
knowledge among other learners.

Purpose of this study

Learners continually learn and update their knowledge structures through problem solving. CBR
theory argues that problem solving and knowledge construction are highly integrative and recip-
rocate each other (Wang et al,, 2013). It is thus crucial to understand how knowledge structure
can be better consolidated and so advanced in problem solving process. Gogus etal. (2009)
proposed that the progress of learning can be represented as the change of knowledge structure
in the direction toward expert-like knowledge structure. Therefore, knowledge structures serve
as a way to understand and measure one’s deep learning (e.g., problem solving). However, itis
difficult to capture the complex structure and process of knowledge structures during problem
solving since both problem solving and knowledge construction are complex cognitive processes.
Although many efforts have been made to examine the post-hoc outcomes of knowledge struc-
ture as a problem-solving performance by the characteristics of learners, tasks, and contexts,
there has been very little studies to explore both the outcomes of knowledge structure and the
processes that lead to the outcomes related to problem solving. To address this gap, this study
analyzed problem-solving processes and outcomes between successful vs. less successful
problem-solvers using a network approach as to obtain a comprehensive picture of how indi-
viduals engaged in collaborative problem-solving. Specifically, we are interested in gaining sig-
nificant insights into key research questions such as:

1. In what way and to what extent does collaboration impact successful vs. less successful
problem-solvers?

2. In what way and to what extent do the successful vs. less successful problem-solvers
differ in terms of problem representation?

3. In what way and to what extent do the successful vs. less successful problem-solvers
differ in terms of solution generation?

Method
Participants

Participants were 216 students from Grade 9 science online courses (physics, astronomy, and
biology) over the Spring semester 2020, from the Korean Open Secondary School (OSS), offered
by the Korean Educational Development Institute. All the participants are native Korean speakers
(aged from 15 to 17; men, 49%). Over the course of the investigation, all of participants were
randomly assigned to triads with 12 triads assigned to each of six ill-structured problems. That
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is, two ill-structured problems per subject for a total six problems (a triad x 12 triads x 6
problems = 216). Then we ranked each participant’s problem-solving performance and selected
top 10 students (as success problem-solvers) and bottom 10 students (as less success
problem-solvers) by each problem (detailed below). From 216 students, we used 60 success
problem-solvers and 60 less success problem-solvers for our analysis.

Materials

We employed ill-structured problems in the contexts of STEM, namely physics, astronomy, and
biology (see Appendix for an example). Specifically, students were instructed as such: define prob-
lems and goals, search and select appropriate information, organize selected information, choose
a potential solution, and develop justification of their solutions and selections. Accordingly, the
ill-structured problem-solving scores in the analysis are based on the qualities of selecting appro-
priate information, organizing the selected information, choosing a potential solution, and developing
justifications of the solution (Shin etal., 2003). The research team, consisting of one researcher,
nine content expert teachers (three teachers per subject), and two experts in test development,
developed this set of ill-structured problem items and rubrics in Korean for these students.

Procedure

Pre-collaboration

Prior to collaboration, the triad members were individually required to watch course-related
30-minute video lectures developed by three teachers for this investigation. The video lectures
were designed to include both problem-related and solution-related contents. After watching the
video, participants were asked to map the entire video lecture based on their understanding of
the contents using the web-based mapping system called, Graphical Interface of Knowledge
Structure- Map (GIKS-Map). Participants accessed the GIKS-Map embedded in the online OSS
system with their assigned individual ID and then later asked to create their Premaps. All were
provided with the same list of 20key terms from the lecture that they could use for their indi-
vidual Premaps with the statement, “Use any appropriate words in your concept map, but here
are a few important words that you could use’, i.e., open-ended concept mapping. The provided
20key terms were selected by the three teachers from each subject, including both problem-related
and solution-related key terms. The participants worked alone at their own pace to create their
Premaps, but on average they spent about 15-20 minutes to complete the Premaps. All of the
individual Premaps were then converted into network graphs for analysis by the GIKS-Map (the
procedure is detailed below).

Collaboration

During the collaboration phase (one day after the pre-collaboration), triad members worked
together online in a synchronous collaboration mode in the OSS setting that allows for video
communications (40 minutes). The group task was to determine how to resolve the given
problem. The students’ verbal communications were recorded and converted into network
graphs for analysis by GIKS-Voice embedded in the online OSS system (the procedure is
detailed below).

Post-collaboration

After the collaboration (one day after the collaboration), all participants were individually required
to write a problem-solving essay using the GIKS-Text. Participants accessed the GIKS-Text
embedded in the OSS system with their assigned individual ID then they were asked to write
and submit their problem-solving essays (30 minutes). Their essays were then converted into
network graphs by GIKS-Text for analysis (the procedure is detailed below).
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Data types

All of participants’ mapping (before collaboration), speaking (during collaboration), and writing
(after collaboration) were converted into Pathfinder Networks (PFnets), a graph-theoretic psy-
chometric network scaling measure (Tossell et al., 2010), in order to compare each PFnet to one
another (e.g., participants map to map, map to writing, speaking to writing, etc.) and also to
expert-derived problem and solution referent PFnets. The Pathfinder algorithm is a psychometric
data reduction network scaling approach which is hypothesized to capture the underlying orga-
nization or structure of the data (see for details Tossell et al., 2010). Pathfinder scaling has been
successfully applied to reveal the strongest associations in sets of associations by removing less
important or weak association data across highly diverse domains, for example, from satellite
images studies (Barb etal., 2013) to brain image studies (Li & Clariana, 2019). In this investi-
gation, the PFnets are used to represent the strongest connection between keywords from par-
ticipants’ mapping, speaking, and writing as a proxy of knowledge structure.

Referent PFnets

Following Clariana etal. (2013), three teachers from each subject (physics, astronomy, biology)
worked together to establish the (a) problem referent maps that contained the information of
the fully explicated problem space and (b) solution referent maps that contained only the
solution-relevant information. For creating the referent maps, the three teachers were provided
with a list of all the terms used by the participants in their Pre maps, Group speaking, and
Post essays (represented as Pre-PFnets, Group-PFnets, Post-PFnets), arranged in order of fre-
quency of occurrence. While considering this list and the lesson content, the teachers collaborated
face-to-face to reach a consensus on the essential terms for the problem space and for the subset
solution space for all three subjects; these terms were then used to establish the problem PFnets
and solution PFnets (see Figure 1 for example). This problem and solution PFnets were used as
the referent PFnets for comparing to the students’ Pre-, During, and Post-PFnets.

Converting maps to PFnets

The software tool GIKS-Map (Kim, 2017) was employed to convert students’ individual Pre
maps into PFnets. The GIKS-Map works by capturing the raw proximity data as the pair-wise
distance between terms in the map (Tang & Clariana, 2017) and then transformed the proximity
data into PFnets using Pathfinder network algorithm embedded in the GIKS-Map. In this study,
we claim that the PFnet from the GIKS-Map represents the most salient connections between
key concepts in the original maps, or knowledge structure of the map.

Converting essays to PFnets

The software tool GIKS-Text (Kim etal., 2019) was used to convert essays to PFnets. The
GIKS-Text system works by capturing the raw proximity data as the sequence of selected key
terms in a text, adding only “1” or “0” to indicate the sequential occurrence of the key terms
in the text. Then the pair-wise term sequence data from a text can be visually represented as
PFnets using Pathfinder algorithm embedded in the GIKS-Text as in the process for maps to
PFnets (see for details, Clariana et al., 2014; Kim et al.,, 2019; Kim & Clariana, 2017). Here we
claim that the resulting PFnet from the GIKS-Text represents the most salient linkages between
key concepts in the text, or knowledge structure of the text.

Converting speaking to PFnets

The software tool GIKS-Voice was used to convert speaking to PFnets. GIKS-Voice is an exten-
sion of GIKS-Text by adding IBM Watsons speech-to-text engine, broadly recognized as the
most reliable of its kind (Moslehi et al., 2016). Thus, the GIKS-Voice can convert people speaking
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Figure 1. An example of the Problem referent PFnet (top left) and the subset Solution referent PFnet (top right) from a physic
subject. An example of a success problem-solver’s PFnets from the student’s Pre map before collaboration (a), the student
group’s discussion during collaboration (b), and the student’s essay after collaboration (c). Note: (a) the student’s Pre-PFnet
from GIKS-Map had 62% similarity with the Problem PFnet (vs. 32% with Solution), (b) the student’ portion (red) of Group-PFnet
from GIKS-Voice had 67% similarity with the Solution PFnet (vs. 28% with Problem), and (c) the student’s Post-PFnet from
GIKS-Text had 73% similarity with the Solution PFnet (vs. 39% with Problem), suggesting that the student paid more attention
to the solution during collaboration that led to the student’s solution-like-knowledge structure after collaboration.

into a text transcript that is then transformed into PFnets as in the GIKS-Text. Here we claim
that the resulting PFnet from the GIKS-Voice represents the most salient linkages between key
concepts in individual speaking, or knowledge structure of the speaker.

Data analysis

All the PFnets derived from participants’ mapping, speaking, and writing were analyzed and
compared by two graph-theoretical measures, including network similarity of the PFnet (e.g.,
Kim & Clariana, 2019) and (3) decree centrality of the PFnets (e.g., Clariana et al., 2013) because
the different methods capture different aspects of structural similarity inherent in the mapping,
speaking, and writing data.

First, we compared PFnets by network similarity, calculated by common links divided by the
average number of links in the two PFnets, with the value of 0 (no similarity) to 1 (perfect sim-
ilarity). PFnet similarity scores have been extensively and empirically used in various studies
(Clariana et al., 2014; Coronges et al., 2007; Draper, 2013). To address the research gap, we calcu-
lated the similarity (Research Question 1) to one another in order to assess how collaboration
impacts the success vs. less success problem-solvers’ knowledge structure by comparing their PFnets
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before, during, and after collaboration and (Research Question 2 and 3) to the referent PFnets in
order to assess how the successful vs. less successful problem-solvers develop problem representation
and solution generation by comparing their PFnets to the Problem and Solution referent PFnets.

Second, additional PFnet analysis, degree centrality, was also conducted as an alternative
measure of PFnets. This degree centrality can provide both a local-level measure of a PFnet
(node degree centrality; a measure of node importance) and a global-level measure of a PFnet
(graph degree centrality; a measure of network form or structure). The node degree identifies
the relative importance of each node in a network in terms of the number of links that the
node has with all other nodes (see for details, Ifenthaler, 2010). To obtain the node degree
vectors, a node degree vector table was established to count the number of links of all key terms
in participants’ PFnets and referent’s PFnets (see Figure 2 for an example). Then, the vectors in
the table can be statistically further analyzed and compared in several ways including descriptive,
correlation, and inferential statistics (see for detail, Clariana et al., 2013; Engelmann et al., 2014;
Kim, 2017; Kim & Clariana, 2015, 2017, 2019).

In addition to this node degree centrality, we applied graph degree centrality to measure the
structure or form of a PFnet. Clariana etal. (2013) quantified four concept map layout forms
using graph centrality as a numerical measure of conceptual typology (see Figure 3), with 0-0.2
(linear), 0.2—0.4 (hierarchical), 0.4-0.6 (network), and 0.6 -1 (star). Here graph centrality was
used as a holistic visual measurement of mental representations to distinguish the qualitatively
different mental representations between successful and less successful problem-solvers. The
graph centrality values for all PFnets were calculated based on the node degree vectors (refer
to Figure 2) using the equations described in Clariana etal. (2013) study. A growing number
of studies have been using the graph degree centrality in highly diverse domains (e.g., Engelmann
et al.,, 2014; Tawfik et al., 2019).

Results

The data for analysis includes the human-rater measures of problem-solving essays and the
PFnets from individual Pre maps, Group discussion, and individual Post essays. First, the human
rater measures of post essays are presented, and then PFnet data are described and compared
in two ways including (A) Similarity of PFnets, and (B) Centrality of PFnets.

Problem-solving performance

Three subject-expert teacher raters scored each problem-solving Post essay for accuracy using
a consensus rubric (0~ 10 point scale) for each problem over the investigation period. Polychoric
correlations were computed between the three expert teachers’ scores as a measure of inter-rater
reliability (see Table 1). Then we ranked the scores in order and selected top 10 students (as
successful problem-solvers) and bottom 10 students (as less successful problem-solvers) by each
problem over the period (60 successful and 60 less successful solvers in total). An
independent-sample t-test was run to determine if there was difference between successful vs.
less successful problem-solvers on problem solving performance (as problem-solving post essays
scores). It shows that the success students had significantly higher average mean scores than
less successful students, (M=7.2 vs. M=3.5, d=1.18, p < .001).

Problem-solving process

Similarity of PFnets to one another

To consider how problem-solving collaboration impacted the successful vs. less successful
problem-solvers” knowledge structures (Research Question 1), we tracked the changes in their
knowledge structures (KS), represented as PFnets, before, during, and after collaboration. For
that, we calculated the similarity between their Pre-to-Post, Pre-to-Group, and Group-to-Post
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Figure 2. A highly simplified example student PFnet (left) and the 23-element node degree vectors for this example PFnet
and for the Problem referent PFnet (right).
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Figure 3. Graph centrality (Cgraph) calculated for four network map forms, modified from Clariana etal. (2013).

PFnets. 1t is expected that we can identify how differently successful vs. less successful solvers
have developed their KS due to collaboration by comparing their Pre-, Group-, and Post-KSs
within the same participants. The results are presented in Table 2.

This data set shows that the less successful students’ Post KS had a strong relationship with
their Pre KS (sim = 0.76) compared to the successful (d=0.68, p < .001), while the successful
students’ Post KS were more like the Group KS (sim = 0.84) compared to the less successful
group (d=0.79, p < .001). This suggests that the less successful problem-solvers paid less atten-
tion to their Group discussion, their Post essays were more dependent on their Pre maps and
their initial unique knowledge, that is, the less successful problem-solvers have the “prior
knowledge-oriented” characteristic for solving a problem. However, the successful solvers paid
more attention to their Group discussion, so their Post essays were more dependent on their
Group discussion and the group’s knowledge, that is, the successful problem-solvers have the
“group knowledge-oriented” characteristic for addressing the case.

Similarity of PFnets to the problem and the solution referents

To consider how students developed their KS leading to successful or less successful problem
solving (Research Question 2 and 3), participants’ KSs captured at different times (as Pre-PFnets,
Group-PFnets, and Post-PFnets) are separately compared to the problem referent and to the
solution referent PFnets.
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Table 1. Three teacher inter-raters polychoric correlations.

Problem-solving post essay

r X2 p-value
Problem 1 0.871 62.093 <0.001
Problem 2 0.915 69.651 <0.001
Problem 3 0.888 60.266 <0.001
Problem 4 0.956 80.912 <0.001
Problem 5 0.983 101.412 <0.001
Problem 6 0.803 143.502 <0.001

Table 2. Pathfinder network similarity between Pre-to-Group, Group-to-Post, and Pre-to-Post PFnets for each condition with
Cohen’s effect d (using pooled standard deviation) and significance (p).

Success Less success d p
Pre-Group 0.39 0.67 0.69 0.01
Group-Post 0.84 0.45 0.79 0.01
Pre-Post 0.31 0.76 0.68 0.00

Similarity to the problem referent. Analysis of the participants’ similarity to the Problem referents
(Research Question 2) was analyzed by a one-between, one-within mixed ANOVA with the
between-subjects factors type of problem solver (successful and less successful) and the within-
subjects factor time (Pre, Group, Post). Means are shown in Table 3. There was no outlier
assessed by boxplot. The similarity values were normally distributed, as assessed by Shapiro-Wilk’s
test of normality (p > .05). There was homogeneity of variances (p > .05) and covariances (p
> .001), as assessed by Levene’s test of homogeneity of variances and Box’s M test, respectively.

There was a statistically significant interaction between the type of problem-solver and time
on the similarity to the Problem, F(3, 84) = 107.77, p < .001, partial n? = .837 (see the left
panel of Figure 4). Therefore, simple main effects were run. The similarity to the Problem was
not significantly different between the less successful group (M=0.47, SD=0.22) and the suc-
cessful group (M=0.49, SD=0.19) at the Pre map, F(3, 84) = 0.40, p = .539, partial n? = .04.
However, the similarity was significantly greater in the less successful group at the Group dis-
cussion (M=0.51, SD=0.29) compared to the successful group (M=0.33, SD=0.20), F(3, 84) =
7.406, p = .001, partial n? = .135, a mean difference of 0.18, 95% CI [0.04, 0.21]. The similarity
was also significantly greater in the less successful group at Post essays (M=0.58, SD=0.26),
compared to the successful group (M=0.29, SD=0.10), F(3, 84) = 12.94, p = .001, partial n? =
.199, a mean difference of 0.29, 95% CI [0.17, 0.28].

For Pre maps, both the successful and less successful groups were more like the Problem
referents. For Group speaking, the less successful students’ speaking in Group discussion were
more related to the Problem referents compared to the successful students’ speaking in Group.
For Post essays, the less successful students’ Post essays were even more related to the Problem
referents than the successful students’ Post essays. This suggests that the less successful
problem-solvers paid more attention to problem space during and after the group discussion
than the successful problem-solvers; that is, the less successful problem-solvers tend to develop
the “problem-focused” KS for solving a problem.

Similarity to the solution referent. Analysis of the participants’ similarity to the Solution referents
(Research Question 3) was analyzed by a one-between, one-within mixed ANOVA with the
between-subjects factors type of problem solver (successful and less successful) and the within-
subjects factor time (Pre, Group, Post). There was no outlier assessed by boxplot. The similarity
values were normally distributed, as assessed by Shapiro-Wilk’s test of normality (p > .05). There
was homogeneity of variances (p > .05) and covariances (p > .001), as assessed by Levene’s test
of homogeneity of variances and Box’s M test, respectively.

There was a statistically significant interaction between the type of problem-solver and time
on the similarity to the Solution, F(3, 84) = 6.406, p = .003, partial n? = .192 (see the right
panel of Figure 4). Therefore, simple main effects were run. The similarity to the Solution was
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Table 3. Pathfinder network similarity (with standard deviations show in parenthesis) to the Problem referent map and the
Solution referent map.

Success Less success
Pre Group Post Pre Group Post
Problem 0.49 0.33 0.29 0.47 0.51 0.58
(.19) (.20) (.10) (.22) (-29) (.26)
Solution 0.19 0.61 0.70 0.21 0.31 0.27
(.07) (11) (.15) (.10) (.08) (.10)
0.7
0.6 -
05 =
§ o
% 04
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2 03 s —
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b4 g/
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w
01 —— Failure —— Failure
—— Success —— Success
0.0 T T T T T T
Pre map Group map Post essay Pre map Group map Post essay
PFnet similarity to PFnet similarity to
the Problem Referent the Solution Referent

Figure 4. The two-way interaction of similarity to the Problem referent (left panel) and the Solution referent (right panel)
over time for success group (blue) and less success group (red).

not significantly different between the successful group (M=0.19, SD=0.07) and the less suc-
cessful group (M=0.21, SD=0.10) at the Pre map, F(3, 84) = 3.034, p = .056, partial n? = .101.
However, the similarity was significantly greater in the successful group at the Group discussion
(M=0.61, SD=0.11) compared to the less successful group (M=0.31, SD=0.08), F(3, 84) =
17.283, p < .001, partial n* = .390, a mean difference of 0.30, 95% CI [0.031, 0.161]. The sim-
ilarity was also significantly greater in the successful group at Post essays (M =0.70, SD=0.15),
compared to the successful group (M=0.27, SD=0.10), F(3, 84) = 62.96, p < .001, partial n? =
.708, a mean difference of 0.43, 95% CI [0.009, 0.255].

For Pre maps, both the successful and less successful groups were not like the solution ref-
erents (as reported above, both groups Pre maps look like the Problem referents). For Group
speaking, the successful students’ speaking in Group were more related to the Solution referents
compared to the less successful students. For Post essays, the successful students’ Post essays
were more related to the Solution referents than the less successful Post essays. This suggests
that the successful problem-solvers paid more attention to solution space during and after the
group discussion than the less successful problem-solvers, that is, the successful problem-solvers
tend to develop the “solution-focused” KS for solving a problem.

Centrality of PFnets

Graph centrality

Graph centrality is a numerical holistic measure of graphs form, or structure, that ranges from
0-0.2 (linear), 0.2-0.4 (hierarchical), 0.4-0.6 (network), and 0.6-1 (star). The results are presented
in Table 4. For Pre maps, both successful and less successful students’ Pre maps had a Problem
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Table 4. Graph centrality (C of participants average PFnets at different time points.

graph)

Success Less success
Pre Group Post Pre Group Post
0.49 0.33 0.29 0.47 0.55 0.58
(network) (hierarchical) (hierarchical) (network) (network) (network)

Note. Problem referent C,,,,, = 0.51 (network), Solution referent C

grapl » = 0.35 (hierarchical).

grap!
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Figure 5. The Proxscal 2-dimensional representation of the averaged Pre-Group- Post PFnet node degree data. Note. Pre =Pre
map, Group=Group map, Post=Post map, Fail =less success students, success=success students.

referent-like-network structure (C,;, = 0.47-0.58; note: Problem referent C,,,;, = 0.51). For Group
speaking, the less successful students’ speaking in Group had a Problem referent-like-network
structure (C,,, = 0.45-0.55) while the successful students’ speaking in Group had a Solution
referent-like-hierarchical structure (C,,,, = 0.27-0.37; note: Solution referent C,, = 0.35). For
Post essays, the less successful Post essays had their own Pre map (problem)-like-network structure,
while the successful Post essays had their Group speaking (solution)-like-hierarchical structure.

These average graph centrality results corroborate those from the similarity of PFnets to one
another (see Table 2) and the similarity of PFnet to the referents (see Table 3), confirming that
the successful and less successful problem-solvers were differently impacted by collaboration
(prior knowledge-oriented vs. group knowledge-oriented) and so established different knowledge
structures leading to different performance (problem-focused vs. solution-focused).

Node centrality
Node centrality is a numerical measure of the relative importance of each node in a graph, as
described above. Following Clariana et al. (2013) study, we used Proxscal multidimensional scaling
(SPSS 20.0) to visually represent the average group PFnet as a point in a 2-dimensional space.
In the multidimensional scaling (MDS) representation (Figure 5), the problem referent map fell
toward the left of the figure while the solution referent map fell toward the right. This MDS rep-
resentation shows a different transformation of Pre-Group-Post PFnets by the type of problem-solver.
As for the less successful group, all of their Pre-Group-Post maps were near the Problem space.
As for the successful group, their Pre maps were moving from the problem space toward the solu-
tion space at the Group and still stayed near the solution space at the Post. This MDS analysis
visually depicts the similarity of PFnet to one another (see Table 2) and similarity of PFnet to
referents (see Table 3), supporting the less successful problem-solvers’ problem-focused information
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sharing during collaboration that resulted in their prior knowledge-oriented knowledge structure after
collaboration vs. the successful problem-solvers’ solution-focused information sharing during collab-
oration that led to their group knowledge-oriented knowledge structure after collaboration.

Discussion

Learning strategies employed in STEM often pose ill-structured problems to learners, which
requires them to apply specialized domain knowledge. According to CBR, it is important to
specify not only the knowledge content, but also how this knowledge is organized and structured
to facilitate efficient retrieval of relevant information and future problem solving (Reif & Heller,
1982). Wang et al. (2013) assert that ‘many existing studies in the field have tackled problem-solving
and knowledge construction separately, failing to see them as an integrated two-way process”
(p. 294). Whereas many studies convey post-hoc measures of learning to understand the CBR
benefits of PBL in classroom contexts (Tawfik, 2017), this study provides multiple measures
before, during, and after the problem-solving process, which explores the temporal aspect of
knowledge structure development. The results of this study thus advance the field’s understanding
of knowledge structures in two ways. First, it provides empirical evidence regarding the problem
solving and development of knowledge structures at multiple instances (before, during, after)
and under different conditions (individual, group), which has been previously documented as a
known gap (Supanc etal.,, 2017). The second contribution specifically underscores the role of
collaboration in knowledge structure development across different groups of learners, namely
successful and learners that struggled.

An important finding specifically details the role of groups toward knowledge structure devel-
opment at different instances of problem-solving. Those that struggled (the less successful group)
had a strong relationship with their pre-task knowledge score, which is a finding documented in
the literature (Asterhan & Dotan, 2018). That is, little conceptual change and knowledge struc-
tured growth was found when compared with their initial understanding of the concepts. This
suggests that learners were more focused on sharing elements of the problem rather than being
able to move toward areas where their ideas diverged or needed refinement. Because of this, the
data suggests that learners were not able to build on their ideas, so their discourse continued to
be focused on the core problem rather than solutions. Alternatively, the networks of those in the
successful condition included additional concepts from their initial networks, and especially
adopted concepts that were similar to those of their peers. Although studies have been done to
understand individual CBR knowledge structure development, this study further underscores the
role of collaboration in learning (Chen etal.,, 2018; Sharan et al., 2013) and contextualizes it in
outcomes that measure complex and interrelated knowledge structures.

There may be multiple interpretations to the findings. One interpretation is that less successful
learners exhibited a ‘my-side bias’ that was especially rooted in their own seminal understanding
and overreliance on their own prior knowledge structures, which may describe why their solu-
tions were more focused on the initial set of their own concepts (i.e., prior knowledge-oriented;
see Table 2) and those described in the problem referent map (i.e., problem-focused; see Table
3). Indeed, the literature has described how learners often tend to heavily rely on their prior
knowledge and limited internal case library (Delahunty et al., 2020; Oh & Jonassen, 2007); hence,
they struggle to align new information as they engage in ill-structure problem-solving (Ge et al,,
2016; Tawfik et al., 2019). Another interpretation is that learners shared ideas, but were unable
(rather than unwilling) to recognize the merit among their peers or identify common ground,
which impacted their ability to engage in meaning-making and a shared understanding of the
topic. This could be due to how the ideas were presented among peers in terms of language or
other forms of knowledge representation, which impacted their collaborative knowledge structure
development. An implication thus relates to how learners are scaffolded in collaborative contexts.
Whereas other scaffolding strategies may focus on retainment of information, it may be more
apt to focus on equally address learners” prior assumptions and target ways to induce conceptual
change, especially as they collaborate with their peers around divergent ideas.
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Another central finding was that those in the successful group were more aligned with the
solution referent map (see Table 3). As noted by Ge et al. (2016), problem-solving can be gen-
erally conceived as the problem representation and solution generation stage. Whereas those in
the successful group were able to work together toward a solution, the data showed stark con-
trasts for those that were in the other condition. This is noteworthy in light of the differences
that emerged in the problem representation phase of CBR. A precursor toward a collective
successful solution is being able to identify a common understanding of the problem. Other
related literature details how learners often struggle to progress beyond sharing ideas with their
peers in collaborative settings. This study extends prior research by exploring how learners
migrated their initial understanding toward a solution. Specifically, learners in the less successful
condition in the current study were not able to come to a consensus and failed to progress in
their knowledge structures beyond their initial conceptualization. Given that this study explored
the temporal aspect of problem-solving, the results indicate that if learners are not able to
develop a consensus in the early stages, the data suggests that it unlikely they will recover as
they move toward other problem-solving competencies. One implication may be to consider the
role of intermittent reflection during problem-solving. In studies, supporting problem-solving
has often been through distinct cognitive phases (i.e. sharing ideas, hypothesis generation), with
reflection serving as a form of culminating activity. Because the initial consensus building was
key to the subsequent interaction, it stands that educators and learners may take additional time
to solidify their shared perspectives and address outlining issues.

Limitations and future studies

While the study adds to the empirical literature about collaborative problem-solving, there are
future studies that could build on this research. To begin, the current study was conducted with
certain population (Grade 9 high school students). As a result, some caution is called for in
generalizing these findings to other populations, especially those possess advanced domain
knowledge and higher-order thinking skills. Along similar lines it should also be noted that all
these findings were observed on one type of problem-solving task (i.e., ill-structured problems).
As evidenced by our earlier study (Kim et al, in press), there are distinctive cognitive differences
required to solve ill-structured and well-structured problems; for example, a focused convergence
needed for well-structured problem and extending divergence needed for ill-structured problem.
Thus, the findings from the current study with ill-structured problems might not be applied to
well-structured problems solving. Other studies could thus explore the degree to which these
findings from the current study are maintained across various domain areas, since it is possible
that the results are a byproduct of the problem situated within a context.
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Appendix

A sample ill-structured problem from astronomy and its rubric
[Problem] Dr. Smith, an astronomer, recently announced that a major emergency will be occurring soon. He

believes that there is a good chance that a very large asteroid will hit Earth soon. You have been hired by
an international agency to organize and direct the efforts of a research team that will investigate Dr. Smith’s
claims and report your conclusions. If you believe that Dr. Smith’s claim might be true, you should investigate
the matter further. Among the factors that you must consider are where the asteroid might hit, how large the
force of the explosion will be, what effects the impact might have on the global and local population, and
possible ways to defend against impact. Based on your advice, the agency will decide whether to fund either
an early warning plan or some type of defensive technology, and how much money to allocate from a very
limited budget. As director of this effort, you will have sole responsibility for preparing for this potential
crisis. What types of experts will be needed to assist you in your research? Write an explanation of your
choice of team members that is clear enough for others to understand. Specify all aspects of the situation

that helped you to reach your conclusions.

State importance of the information.

4 3 2 1 0

Scientific questions: 1) whether the asteroid might hit? 2) where the asteroid might hit? 3) how large the force of the

explosion will be

4 points

— Give logical explanations to answer the scientific
questions;

— Describe clear relationships between principles and an
astronomical situation;

— Use appropriate astronomical concepts, and principles

3 points

— Give some logical explanations to answer the scientific
questions, but may miss some scientific principles;

— Describes general relationships between principles and
astronomical situation;

— Uses nearly correct astronomical concepts, and principles

2 points

— Gives unclear, ambiguous, or incomplete explanations to
answer the scientific questions;

— May not describe relationships between principles and
astronomical situation;

— Uses some astronomical concepts and principles but may
miss important ones

1 point

— Does not give explanations to answer the scientific
questions; merely shows a consideration of the
questions;

— Uses limited astronomical concepts, principles in
selecting processes

0 point

— Does not mention the questions, or may contain serious
misconception

Select a solution

4 points

— proposes at least two specific scientists to cover all
scientific perspectives;

— gives clear job descriptions and relationship to the
situation;

— uses appropriate astronomical concepts and terminology

3 points

— proposes at least one specific scientist to cover at least
one scientific perspective;

— gives clear job descriptions or relationship to the
situation;

— uses appropriate astronomical concepts and terminology,

Example: Physics can determine the mass of the asteroid
and the speed at which it is approaching in the earth’s
surface. With this information we would be able to
determine the force that the asteroid would have the
earth when the two collided. Knowing what the force
would be would give a good idea of the impact that it
would have on the earth’s surfaces.

Example: Astrophysicists would be able to calculate the
exact speed of the asteroid so that we may find out
when it would collide with earth

Example: astronomers could be able to find the mass of the
asteroid and its’ relation to the Earth

Example: astronomers may give the answer about where the
asteroid might hit

4 3 2 1 0

Example: The astronomer would be chosen to confirm the
findings of Dr. Smith. He will do extensive research on
the asteroid’s path. The physicist would be responsible
for how large the explosion may be and the effects of
the collision on the Earth’s structure.

Example:

1) Mathematician. We need a very skilled mathematician
with a firm background in trigonometry, physics and
other elements to determine speed, location, etc.

(Continued)
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— proposes at least two specific scientists to cover all
scientific perspectives;

— gives general job description and may not describe the
relationships to the situations;

— uses nearly appropriate astronomical concepts and
terminology.

2 points

— lists at least two team names; may cover only one
scientific perspective;

— does not give any explanations: - uses some
astronomical concepts and terminology,

or

— describes general role of at least one team member may
not list specific scientists or may not correctly match the
job descriptions and scientists;

— uses some astronomical concepts and principles.

1 point

— shows consideration of the perspectives;

— uses limited astronomical terminology

0 point

— no consideration of the perspectives;

— fails to use astronomical terminology.

States selection procedures

4 points

— Shows logical procedures for selecting members,
including at least three of the following elements;

— 1) Confirm the prediction, 2) if yes, where, how large, 3)
what impact on global population, 4) possible defense
methods and ways to protect populationGives complete
and clear responses of the selecting procedures with
logically sound and systematic explanations;

— Explanations focus on scientific perspectives

3 points

—> Presents some logical procedures for selecting members
including at least two elements

— May give general responses with logically sound
selecting procedures;

— Explanations focus on scientific perspectives

2 points

— Shows some logical procedures for selecting members
including at least two elements or only scientific
perspectives;

— May not give any responses of the selecting procedures;

— Explanations may focus on defense methods or ways to
protect population; or focus on only scientific
perspectives

1 point

— Shows logically unsound procedures for selecting
members; or no scientific ideas;

— May give incomplete, ambiguous response with logically
unsound explanations of the selecting procedures;

— Procedures are difficult to follow

0 point
— Does not show any procedures; or simply provides a list
of team members; no explanation

2) Astronomers to help with all their telescope as far as
how big it is, how fast it's coming. Geologists, what areas
could take the impact.

Example:
1) Astronomer, Physicist, Geologist

2) Scientists will help where the asteroid would hit, how
large it is, and the speed of the asteroid to determine
the force of the explosions.

Example:
Astronomers that are strictly the best

Example:
The affects of the asteroid will be very strong
4 3 2 1 0

Example: the first step would be to confirm the claims of
the asteroid, and if confirmed, it would need to be
further studied to learn about where it might hit, how
large the explosion would be, and its after-effects on
local and global population. Finally, | will evacuate
people and find the possibility to destroy the asteroid

Example: Astronomers tell how big it is, how fast. Geologist
could take the impact. Oceanographers will be needed if
the asteroid goes in the ocean...... Depending on where
the asteroid hits, the ozone, or pollution, or something
else may bum up. 1 will also have law enforcement
officials to control any large crowds and get people
evacuated if necessary

Example: | will need a mathematics to pin point the exact
spot where the asteroid will hit. | will need an expert
army guy to fine a missile on the trajectory of the course
of the asteroid. | will also need pilots to fly the people
to out. 1 will also need someone to find out how big
the asteroid to decide how big of the missile to use.

Example: If 1 was putting together a team to see if Dr.
Smith was right about the asteroid. 1 would pick people
that had been part of something like this before. | would
need someone that new a lot about asteroids. Some one
that was into weather and etc. Someone that was into
astronomy.

Example: Geologist, Physicists, Astronomers, etc.




	Different approaches to collaborative problem solving between successful versus less successful problem solvers: Tracking changes of knowledge structure
	ABSTRACT
	Introduction
	Literature review
	Knowledge structure and problem solving
	Purpose of this study

	Method
	Participants
	Materials
	Procedure
	﻿﻿Pre-collaboration﻿

	Collaboration
	Post-collaboration

	Data types
	Referent PFnets
	Converting maps to PFnets
	Converting essays to PFnets
	Converting speaking to PFnets

	Data analysis

	Results
	Problem-solving performance
	Problem-solving process
	﻿﻿Similarity of PFnets to one another﻿

	Similarity of PFnets to the problem and the solution referents

	Centrality of PFnets
	﻿﻿Graph centrality﻿

	Node centrality


	Discussion
	Limitations and future studies
	Statements on open data and ethics
	Disclosure statement
	Notes on contributors
	References



