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The aquatic particle number
quandary
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Optical surveys of aquatic particles and their particle size spectra have become
important tools in studies of light propagation in water, classification of water
masses, and the dynamics of trophic interactions affecting particle aggregation
and flux. Here, we demonstrate that typical settings used in image analysis
vastly underestimate particle numbers due to the particle — gel continuum.
Applying a wide range of threshold values to change the sensitivity of our
detection system, we show that macrogels cannot be separated from more
dense particles, and that a true particle number per volume cannot be
ascertained; only relative numbers in relation to a defined threshold value
can be reported. A quandary thus presents itself between choosing a detection
threshold low enough to accurately record orders of magnitude more particles
on one hand or selecting a higher threshold to yield better image quality of
plankton on the other. By observing the dynamics of coagulation and
dissolution steps unique to cation-bridged gels abundant in aquatic systems,
we find naturally occurring gels, and microscopic particles attached to them, to
cause the ill-defined particle numbers. In contrast, the slopes in particle
number spectra remained largely unaffected by varying sensitivity settings of
the image analysis. The inclusion of fainter particles that are not typically
captured by imaging systems provides a window into the true microscale
spatial heterogeneity at scales relevant to small plankton organisms and
processes that are dependent on particle density such as surface-associated
chemical reactions as well as particle coagulation and aggregation dynamics.
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Introduction

Optical particle characterizations through imaging systems
have become indispensable for aquatic research (Jackson et al.,
1997; Sosik and Olson, 2007; Stemmann et al., 2008; Guidi et al.,
2009; Iversen et al., 2010; Picheral et al., 2010; Forest et al., 2012;
Boss et al., 2015; Omand et al., 2015; Lombard et al., 2019;
Hatton et al., 2021; Picheral et al., 2022). However, what defines
a particle in aquatic systems is not as straightforward as it seems.
A definition can be borrowed from the classification of colloids
(Gustafsson and Gschwend, 1997), which is that a particle is
physically and chemically different from the outside, or in other
words that there exists an interface. In contrast to a colloid,
however, a particle does not have an upper size limit (Hatton
et al., 2021).

Differences in physico-chemical characteristics between
particles and the surrounding medium aid in their optical
detection through light absorbance and scatter (Jonasz and
Fournier, 2007). As a consequence, image analysis algorithms
that convert image information to particle information are as
important as the opto-mechanical configurations to separate
what is considered a particle from the non-particle background
(Giering et al., 2020). This requires the important decision about
what constitutes a particle in terms of optical characteristics, yet
thus far, no absolute cut-off or threshold values have been
reported in the literature for any of the existing imaging
systems. Threshold levels of camera - image analysis pairings
are typically adjusted subjectively, often by relying on suitable
visualizations of plankton organisms which lie at the far end of
the range of signal intensity (Samson et al., 2001; Davis et al.,
2005; Sosik and Olson, 2007; Cowen and Guigand, 2008;
Picheral et al., 2010; Ohman et al., 2019; Gillard et al., 2022).
By training cameras on optically dense particles alone, however,
information on the much more numerous fainter particles
is lost.

In this study, we used an optical arrangement that is
sufficiently sensitive to capture a portion of the aquatic gels in
situ and explored their abundance relative to the denser particle
pool. While we demonstrate this problem in one optical
configuration, considerations of particle definition apply
universally to all optical and non-optical systems.

Materials and methods
In-situ imaging
The basic configuration of our system is the same as in

previous shadowgraph cameras (Arnold and Nuttall-Smith,
1974; Cowen and Guigand, 2008; Ohman et al., 2019), except
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for the direct inline configuration without mirrors and smaller
spatial scales of our system (image field: 15.36 mm x 11.52 mm,
1280 x 960 pixels, image volume: 5.3 ml). The light source was a
red LED (625 nm, Cree XLamp) collimated by a 150 mm plano-
convex lens. The light then passes in sequence, through a
25.4 mm sapphire window, 30 mm of seawater, and another
25.4 mm thick sapphire window, a 100 mm plano-convex lens,
before being collected by a 1/3” monochrome CMOS chip with a
global shutter (Imaging Source, LLC) and equipped with a
25 mm board camera lens (f/2.5, V-4325, Marshall
Electronics). In this telecentric setup, blur at the far edges of
the image path is symmetric, and the center of mass is retained,
so that the edge of the particle is rendered relatively accurately,
even if it is slightly out of focus (Watanabe and Nayar, 1997;
Lange, 2022). Images were recorded by a mini-PC on a 1 TB
micro-SD card. For the conductivity, temperature and depth
(CTD) rosette casts in the Sargasso Sea, the optical setup and the
electronics were enclosed in a stainless-steel housing rated to
6000 m. For the shallow deployments in the Gulf of Trieste,
optics and electronics were enclosed in a lighter polyvinyl
chloride (PVC) housing and still equipped with 25.4 mm
sapphire windows to retain the same optical configuration as
the deep-sea version. The lower practical particle size cut-off in
this analysis was 43 wm, which is equivalent to approximately 4
pixels linear dimension.

For images from the Sargasso Sea, the camera was mounted
on the lower ring of the CTD rosette deployed during the
Oceanic Flux program (Conte et al, 2001). Images (n =
45,512) of the surface layer (0-100 m) were taken at 1 second
intervals during 11 casts (both down- and upcasts) from April 14
to April 21 2021, at 63.0 - 64.3 N Latitude, and 31.0 - 32.5 W
Longitude. Images in the Gulf of Trieste (n = 2,125; 45° 31.56’ N
latitude, 13° 35.41 E Longitude) were recorded by a SCUBA
diver on July 18, 2021, below the first thermocline at depths
between 4 and 7 m for 36 minutes with a frame rate of 1 image
per second. A stage micrometer (I mm total, 0.01 mm
increments) and stepped neutral density filters on a
microscope slide (11 discrete density steps from OD = 0.04 to
1.0, design wavelengths 400 to 700 nm, Edmund Optics) were
recorded in pure water for calibration.

Laboratory experiments

To test whether the shadowgraph imaging system is sensitive
to a portion of aquatic gels, we designed an experiment that
provides gels in their purest form in ultrapure water. This
avoided any contamination by solids or coprecipitates that
could have influenced the results. Alginates are representative
precursors of transparent exopolymer particles (TEP)
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(Meng and Liu, 2016), and as they contain sugar acids (e.g.,
uronic acids) to which Alcian blue attaches, they are used as
analytical standards in the definition of environmentally-
occurring TEP (Alldredge et al., 1993; Passow, 2002). TEP are
an important subset of aquatic gels that span a broad size
spectrum from micro- to macrogels (Verdugo et al., 2004).
The laboratory experiments with gel particles were recorded
with the same optical configuration as the in-situ images (30 mm
optical path) except for the use of a small (40 mL) glass tank. A
magnetic stirrer kept solutions well mixed, and decreased the
time of schlieren effects due to variable physical densities
(Davidhazy, 2006). Images were recorded in 15 minute
sequences each of ultrapure water (18.2 MQ.cm resistivity),
replaced with a sodium alginate solution in ultrapure water
(02g LY, the same solution with the addition of 0.4 ml of 0.1 M
CaCl, solution (Meng and Liu, 2016), and the same
solution followed by the addition of 0.4 ml of 0.5 mM
Ethylenediaminetetraacetic acid (EDTA). Experiments were
conducted at 25° C. Stage micrometer and neutral density
filters were recorded as above. During each sequence, a 5 mL
subsample was taken for the staining of transparent exopolymer
particles (Alldredge et al., 1993). They were filtered onto 0.4 um
pore-size polycarbonate filters (Isopore, Millipore Sigma),
stained with Alcian blue, rinsed with ultrapure water, mounted
on Cyto-clear slides (Logan et al., 1994), and observed under a
compound microscope with brightfield illumination (Alldredge
et al., 1993).

Image processing

Raw images were corrected for unevenness in illumination
using the flat field method (Wilkinson, 1994). In the laboratory,
blank images taken with ultrapure water were subtracted from the
experimental images. For analysis of in situ images, and to account
for any changes in the overall light field, or changes in the
performance of the LED or the camera chip, image pairs of
consecutive images were subtracted from each other
(Bochdansky et al., 2013). Particles are thus determined by
difference, removing any impurities on lens or optical port
surfaces, and as such represent conservative estimates of particle
numbers. The volume of each image pair used in the analysis is
therefore 10.6 mL (2 x 5.3 mL). Grayscale images were then
binarized using global thresholds (5 to 70). Particles were detected
by Canny edge detection (Ohman et al., 2019; Giering et al., 2020),
and analyzed for size and other characteristics using the Matlab
Imaging Toolbox. Particle number spectra were calculated using
logarithmic bin sizes (Jackson et al., 1997; Ghasemi et al., 2018).
Particle size is calculated as the equivalent spherical diameter of a
sphere of the same area as the shadowgram (in pixels) of the
original particle (Bochdansky et al., 2017).

For linear regression analysis of spectral slopes against
threshold levels, the residuals failed the normality assumption
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of parametric tests according to the Kolmogorov-Smirnov test
statistic. P-values were thus calculated using randomization tests
based on 10,000 randomized data pairs (Manly, 2007).

Results

Particle numbers vary over orders
of magnitude while spectral slopes
change little

We analyzed the shadow images of particles in surface waters of
two very different oceanic environments: the Sargasso Sea (0 -
100 m depth) and the Gulf of Trieste (Northern Adriatic Sea, 4 - 7
meter depth). The Sargasso Sea is an oligotrophic open ocean gyre
system, while the Gulf of Trieste is a eutrophic coastal environment
with high abundances algal aggregates and discarded
appendicularian houses that form the initial support matrices of
marine snow. In both environments, images were analyzed using a
wide variety of threshold levels. The resulting number spectra show
the typical decrease of numbers with increasing particle size
(Figure 1). However, particle numbers also greatly changed with
the applied threshold levels in both environments (Figures 1A-D).
The relative change in particle numbers with applied lower
threshold levels was greater in the Sargasso Sea (Figure 1A) than
in the Gulf of Trieste (Figure 1C) indicating that proportionately
more faint particles were detected in the Sargasso Sea.

Below a defined threshold value (7 in our analytical setup), the
particle numbers appear to decrease as a result of overlapping
particles in the 2-dimensional projection. At even lower thresholds
of 5 and below, particles began to blend into each other and appear
as fewer and larger particles, essentially creating a “whiteout”.

To calibrate the gray values in terms of absorbance, neutral
density filters printed on a microscope slide were used to transform
gray values into optical densities (Figures 1C, F). For instance, a gray
value of a threshold of 7 translated to an attenuation value of 0.066
(Figure 1C) or 0.045 (Figure 1F), depending on the camera. This
meant that for a pixel to be detected as part of a particle, at least 13%
or 10% of the light needed to be blocked (attenuated), respectively.
A threshold value of 15 in turn translated to an attenuation of 0.13
(26% attenuated, Figure 1C) or 0.091 (19% attenuated,
Figure 1F), respectively.

Despite changes in the elevation of the regression in the
number to size relationship at various threshold levels, the slopes
remained relatively unchanged once the relationship emerged
from the “whiteout” at thresholds > 5 (Figures 1A, D). The
relative independence of the spectral slope from threshold levels
indicates that faint particles are not restricted to the smallest size
classes but occur proportionally to denser particles over the
entire size range from 43 pm to 1.7 mm length. This may explain
why the particle spectral slopes of many different particle
analysis methods are similar despite the very different
techniques in use.
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Particle number spectra of particles in the size range of 43 um to 1.7 mm in the Sargasso Sea (A) and the Gulf of Trieste (D). Warmer colors (red
to yellow) represent particle numbers at thresholds typically used in imaging systems. Blue colors indicate lower thresholds at which gels with
associated microbial communities and faint detritus become visible. Applying lower detection thresholds, yielded vastly different particle
numbers. Particle numbers increased continuously without shoulder or cutoff with decreasing thresholds except for a sudden drop due to
image "whiteout” at threshold = 5 (particle size bin = 170 um only, (B, E). This analysis demonstrates that faint particles (blue shades) outnumber
particles that are typically detected (warm colors) by orders of magnitude. Using neutral density filters, threshold values can be translated into
absolute attenuation values regardless of the instrument in use (C, F). Black lines in C and F correspond to thresholds 7 and 15.

At lower thresholds, shadowgraph

images reveal a portion of the

gel fraction

In laboratory experiments, we created a sequence of

chemical additions that selectively changed the abundance of
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cation-bridged gel particles. Using alginates pre-hydrated in

ultrapure water, we added in sequence 1) Ca>" ions to promote

gel formation by cation cross-linking, and 2) EDTA to chelate

calcium ions and to redissolve gels (Figure 2). The response of

particle abundance to calcium ions and EDTA, the coagulation

and dissolution, respectively, is specific to gel particles
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FIGURE 2

Laboratory experiments with alginates as models of aquatic gels. UPW = ultra-pure water (18.2 MQ.cm), + Alg = solution of sodium alginates in
UPW. Images are stacked up vertically in the time series. (A) Coagulation and dissolution dynamics of the gels due to the addition of calcium
ions (+ *2Ca) and EDTA (+ EDTA), respectively, were only visible at a lower threshold (Th = 7, blue) and not at higher threshold (Th = 15, black).
The short-lived decreases in particle numbers immediately after the chemical additions were due to temporary obfuscation of particles by
schlieren effects caused by the different osmolarities of the liquids (Davidhazy, 2006) (B) Binarized example images during the course of the
experiment (Th = 7 only). (C) During this sequence, Alcian blue staining of subsamples of water during the experiment shows the buildup of a
thick gel layer on the filter due to cation bridges (due to the calcium addition), and dissolution after the addition of EDTA

(Passow, 2002; Meng and Liu, 2016), and does not occur with
other more solid particles. Using the same image analysis
techniques as in the field, we observed clear changes in
particle numbers at a low threshold (Th = 7), while most of
these particles remained undetectable at a higher threshold (Th
= 15) (Figures 2A, B). Alcian Blue staining (Alldredge et al.,
1993) of water from the experiments as they were conducted
confirmed the coagulation and dissolution sequence of gels
during the experiment (Figure 2C). The calcium addition
caused a thick layer of gels on the filter (Figure 2C), while
before the calcium, and after the EDTA addition, the gel
particle numbers were much lower. There was a difference in
total mass of gels detected in the binarized camera images
(Figure 2B) and the Alcian blue staining (Figure 2C). However,
this difference was simply the result of a higher retention of gel
particles on the polycarbonate filters (pore size = 0.4 pm) in
contrast to the size detection limit of particles in our optical
setup (pixel resolution = 12.4 um).

Frontiers in Marine Science

Lower thresholds reveal some but not all
structural gels in nature

To confirm that particles as faint as gels can be detected with
the same settings in situ, we performed the analysis on three
types of natural particles known to contain gel-like matrices:
hydromedusae, appendicularian houses, and algal exudates-
based marine snow. In all three particle types, lowering
thresholds increased the detail of the gel structures until the
limit of the dynamic range of the camera was reached (Figure 3).
The food collection tube and parts of the tail chamber appeared
in the appendicularian house (Flood et al., 1990) (Figure 3A).
Portions of the non-cellular mesoglea (Tiemann et al., 2002)
appeared between the manubrium and the umbrella in the
hydromedusa (Figure 3B). In marine snow, the matrix that
connected larger pieces of the particle began to appear at
lower thresholds (Figure 3C). However, even at the lowest
thresholds, structures that we know to exist remained invisible
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(e.g., a missing portion of a tentacle, the large cushion chambers
of the appendicularian house (Flood et al., 1990), or thin mucus
threads that hold the marine snow particle together in the upper
portion of this example).

An incomplete rendering of objects due to an invisible gel
matrix is a major problem for accurately measuring the sizes and
shapes of marine snow particles. After binarization even at a
relatively low threshold of Th=15, the aggregate in this example
registers as many smaller ones (Figure 4). In this or similar cases,
a potential - albeit computationally expensive - solution is the
application of algorithms such as density-based clustering (e.g.,
the dbscan function using the Euclidean distance metric in
Matlab) and then adding bounding regions around these
clusters (e.g., the boundary function in Matlab, Figure 4B).

As is apparent in Figure 3, large numbers of particles
surrounding the main objects also became visible at lower
thresholds (Figures 3A4, B4, C3). To distinguish whether these
features represent actual particles or noise-generated patterns, we
randomly selected ten binarized images each at threshold 7 from
the Sargasso Sea and the Gulf of Trieste and resampled a 900 x 900
pixel region from each image at five window sizes (3x3, 9x9,
15x15, 30x30, 300x300 pixels) to calculate the Morisita Index of

10.3389/fmars.2022.994515

Dispersion (I) (Morisita, 1962; Hurlbert, 1990). The I, is used
widely in ecology to determine the degree of clustering in the
spatial distribution of species (Krebs, 1999). A random
distribution of objects results in an I, of 1. If the I, is less than
1, the population is underdispersed (i.e., more evenly distributed
than random), and if the Iy is significantly larger than I, the
population is overdispersed (i.e., clustered or patchy). We used
this principle to determine if image pixels after binarization are
clustered (i.e,, part of aggregates). We resampled the images at the
five different scales because the Iy; can be sensitive to the size and
number of the counting quadrats (Amaral et al., 2015; Hayes and
Castillo, 2017). The Iy ranged from an average of 3.77 (SD =
0.677) for 3x3 pixel windows to 1.29 (SD = 0.551) for 300x300
pixel windows for the Sargasso Sea, and from 2.24 (SD = 0.277) for
3x3 windows to 1.10 (SD = 0.018) for 300x300 windows for the
Gulf of Trieste. In all cases, the index of dispersion was
significantly different from a random distribution (i.e., Iy = 1)
using the chi-square test statistic (p<0.0001) (Hurlbert, 1990).
Electronic noise that contributes to the signal at lower thresholds
generally produces a random pixel signal. Having a significantly
higher Iy, than expected from a random signal distribution
demonstrates that aggregation of particles was observed through

FIGURE 3

Images of plankton and particles in the Gulf of Trieste using shadowgraphy (note that images are inverted for better contrast of smaller objects).

(A) Appendicularian (Oikopleura sp.) actively filtering in its house, (B) a hydromedusa, (C) a marine snow particle. The original gray scale images

(A1, B1, C1) were binarized at various threshold levels (Th) (A2, 3, 4, B2, 3, 4, C2, 3). A high threshold level (Th = 70) isolates plankton and denser
particles from the background while a low threshold makes faint particles and gel structures appear. Even at the lowest practical threshold level shown
here (A4, B4, C3), particles are not exhaustively detected. Red arrows: food tube of the appendicularian house. Green arrow: missing tentacle in the

binarization. Blue arrow: mu

cus strands connect lower and upper portions of the marine snow particle. By optimizing image algorithms to perfectly

render the shapes of zooplankton for taxonomic identification, the vast abundance of faint particles (A4, B4, C3) remains unaccounted
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FIGURE 4

(A) Binarization of a shadowgraph of the amorphous marine aggregate (Figure 3) at threshold
clustering (Ester et al., 1996) assigns the same index value to components of the particle (black) so

at this threshold. (B) Density-based spatial

15. Parts of the mucous matrix are not detected

that a boundary function (red line) can envelope the entire marine snow particle. In such fashion, a more accurate size and shape determination
can be performed on fragmented structures. Colors other than black represent more loosely defined particle associations

the noise. These aggregates or clusters are also clearly visible in the
image portions surrounding the main objects in Figure 3.

Discussion

Decreasing the threshold of detection results in higher
particle abundances, but even when the limits of the dynamic
range of the optical setup is reached, the true particle number is
under-estimated. This problem of threshold settings on particle
detection is well-recognized, and is especially important in the
context of rendering accurate size distributions for the smallest
size range detected by the instrument and for the calculation of
equivalent spherical diameters of non-spherical particles
(Costello et al., 1994). Given different instrument’s operational
differences in particle detection as well as image analysis
algorithms (Giering et al., 2020; Markussen et al., 2020), it is
thus not surprising that reported particle numbers vary widely in
the literature even in the same environment. Standardization
among platforms will make results more comparable (Picheral
et al,, 2010; Lombard et al., 2019; Giering et al., 2020; Neeley
et al,, 2021), but the problem goes beyond that of mere
standardization and intercalibration of various optical systems.
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It is the high abundance of interconnected three-dimensional
exopolymer fibers in aqueous systems that make them inherently
difficult, if not - as our analysis suggests - impossible to
enumerate accurately (Leppard et al, 1996; Verdugo et al,
2004; Wurl et al., 2011; Zamanillo et al., 2019). Transparent
exopolymer particles, exopolymer substances, gels, larger
organic aggregates and flocs are not restricted to oceanic
environments but are also abundant in freshwater systems
(Grossart et al., 1997; Bar-Zeev et al., 2015; Shi et al., 2021;
Walch et al,, 2022). We thus expect the conundrum of particle
detection thresholds in imaging systems to fully apply in
freshwater as well. In contrast, particle numbers may not be as
ambiguous when accounting for aerosols, a suspension of
particles in a gaseous medium (Li et al., 2016).

Because particle number is a function of threshold levels
without a defined cutoff, particle number can only be determined
in relative, not in absolute terms. Oceanic particles — even in the
oligotrophic Sargasso Sea — overlap in the image before the
absolute number of particles is reached (Figures 1B, C). This
occurs even at the relatively modest optical path of 3 cm which is
small by comparison to other in-situ instruments (Cowen and
Guigand, 2008; Ohman et al., 2019). Decreasing the thickness of
the optical slice does not eliminate the problem; it only shifts the
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peak particle abundance to lower thresholds. In this study, the
relative change in particle numbers with the decreasing
threshold levels was greater in the Sargasso Sea than in the
Gulf of Trieste. Whether this skewed distribution towards fainter
particles in the Sargasso Sea was a result of decreased
background turbidity at which fainter particles were able to
stand out more, or of a proportionally larger pool of faint
particles cannot be ascertained from our data.

The faint gel-like particles observed with our instrument are
only the tip of the iceberg of a much larger undetected pool of
particles forming a continuum from the particulate to the
dissolved phase (Verdugo et al,, 2004). That only a fraction of
the gels could be captured by our camera was reflected in the
results of the laboratory experiments where alginates created a
thick layer on the 0.4 um pore-size filter but only added a
modicum of larger particles to the images (Figure 2). Macrogels
and some microgels are collected by 0.2 and 0.4 um pore-size
polycarbonate filters and even by GF/F glass fiber filters with
effective pore sizes ranging from 0.2 um to 0.7 um depending on
the temperature of combustion (Nayar and Chou, 2003; Verdugo
etal,, 2004; Chaves et al., 2021). As combusted glass fiber filters are
used in the very definition of particulate organic carbon and
nitrogen, gels should not be excluded from optical analysis,
otherwise too much carbon will be erroneously associated with
optically denser particles. The inclusion of fainter particles in the
optical analysis as we suggest here (ie., the use of lower
thresholds) will thus reduce one important source error in any
attempt to translate particle images into carbon values.

While imaging systems other than shadowgraphy may not
have the same dynamic range or sensitivity (e.g., Markussen
et al, 2020), the problem of an arbitrary threshold setting
remains the same. In all cases, it is the sensitivity of the
camera that ultimately sets the threshold, not the image
analysis algorithm. In back- or side-scatter configurations
(Davis et al., 2005; Picheral et al., 2010) the relevant metric in
particle detection is scatter, and gels also have poorer backscatter
characteristics than, for instance, pigmented particles or ones
that contain calcite (Collister et al., 2020). The small-angle
forward scattering properties are sensitive to the reflectance
and transparency of particles, as well as on their geometry
(Boss et al., 2009). Consequently, particle analyses based on
laser scattering (e.g., laser in-situ scattering and transmissometry
(LISST), Boss et al., 2018) suffer similar problems of poor
detection of particles with a high content of exopolymers and
refractive indices close to water. Thus, instrument calibrations
based upon highly scattering reference materials such as latex or
PVC spheres may not accurately reflect the numbers of less
optically dense and non-spherical plankton and gels. Non-
optical systems such as impedance measurements are also
affected by threshold settings. For instance, Coulter Counters
do not detect gels and are best suited to counting phytoplankton
cells, especially those with hard frustules such as diatoms or
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coccolithophorids, which make LISST and Coulter Counter data
agree well (Reynolds et al,, 2010).

At lower thresholds of detection, shadowgraphy is very
sensitive to schlieren effects caused by inhomogeneities of the
refractive index due to density changes (Davidhazy, 2006). This
problem was identified previously in transmissometry and LISST
data resulting in “particle peaks” associated with pycnoclines as a
result of increased light scattering (Bogucki et al., 1998;
Mikkelsen and Pejrup, 2001; Styles, 2006; Karageorgis et al.,
2015). In our analysis of field data, we avoided depths with
schlieren patterns, which were only detectable in strong
pycnoclines. In the laboratory, schlieren formation occurred
briefly after gels or ions were added (in this case the effect was
obfuscation of the more numerous smaller particles by the larger
schlieren effects, Figure 2) but dispersed quickly due to
continuous use of the magnetic stirrer. If analysis is performed
using lower thresholds to detect fainter gel particles, care must be
taken to either exclude images that contain schlieren from image
analysis or develop deep-learning algorithms that identify and
exclude schlieren artifacts within individual images.

Most settings of the camera-image analysis pairings are
adjusted so that sufficient detail can be recovered in plankton
organisms for taxonomic identification (Davis et al., 2005;
Cowen and Guigand, 2008; Picheral et al., 2010; Lombard
et al.,, 2019; Ohman et al., 2019; Gillard et al., 2022; Picheral
et al,, 2022), however, these organisms are at the high end in the
range of optical densities and scattering values. By adjusting
threshold levels to optimize visualization of plankton, the optical
system becomes blind to the much more numerous fainter
particles. A quandary exists because while exceedingly low
thresholds detect more faint particles, there is a loss of image
detail that contains important information for taxonomic
identification (Figure 3). To solve this dichotomy, at least two
passes are required for each image: one that captures plankton to
produce high quality segments at a higher threshold, and a
second one at the lowest practical threshold that more accurately
enumerates faint particles.

The co-occurrence of gels with more solid particles would be
no impediment to accurate particle enumeration if the
separation between the two could be made clearly. However,
as our study shows, there is no clear cutoff or shoulder in the
relationship between particle numbers and thresholds, or any
other reliable indicator of a clear division between gels and
denser particles. Importantly, pure gels simply do not exist in
aquatic environments; gels are heavily colonized by
microorganisms (e.g., Busch et al, 2017), and particles more
optically dense than gels (from clays and phytoplankton to fecal
pellets) stick to the gel polymers. This invariably changes the
overall optical characteristics in a continuum, making the
definition of an objective cutoff intractable. An asymptote may
exist towards the higher threshold ranges (Figures 1B, E) but we
strongly discourage the use of such a non-inclusive metric as its
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application only enumerates rare particles with the highest
light attenuation.

Marine snow (large amorphous aggregates >500 m)
dominate particle mass in many ocean provinces such as
upwelling systems and regional seas (Alldredge and Silver,
1988; Rinaldi et al., 1995; Jackson et al., 1997; Trudnowska
et al,, 2021), and may be more abundant than plankton
organisms of the same size (Parsons and Strickland, 1962;
Bochdansky et al,, 2016). Pumps, filters, plankton nets and
large pore size screens destroy fragile marine snow aggregates,
which means that marine snow is greatly under sampled with
most physical collection methods (Trent et al., 1978; Alldredge
and Silver, 1988; Bochdansky and Herndl, 1992; Gonzalez-
Quiros and Checkley, 2006). As we show here, marine snow is
also “optically fragile” as fragmentation during segmentation
during image analysis occurs (Thuy et al., 2017). This problem is
exacerbated at high threshold settings. In both physical and
optical methods, large marine snow particles are thus
misclassified as many smaller particles (Figure 4A). Image
analysis algorithms that fill in the object after edge detection
(Giering et al., 2020) typically fail in rendering these amorphous
aggregates because, unlike plankton, they do not have well-
defined outlines. If fragmentation occurs evenly across the
particle size spectrum, and fragments of larger particles are
sequestered into the bins of the much more numerous smaller
particles, the overall slope in the particle number spectrum will
hardly be affected. However, there are many examples of specific
“bumps” in the spectrum with disproportionally higher numbers
in some size fractions due to strong blooms of specific plankton
organisms, and especially due to the occurrence of marine snow
aggregates both at the surface and in the deep ocean (Rodriguez
et al., 2002; Iversen et al., 2010; Bochdansky et al., 2016; Runyan
et al.,, 2020). These particles peaks may become less pronounced
with automated image analysis if optical fragmentation is
allowed to occur. A solution to recapturing the shapes and
sizes of these larger particles may lie in statistical approaches
that use clustering algorithms to detect and better describe
marine snow particles. Density-based spatial clustering (Ester
et al, 1996), demonstrated on the marine snow example in
Figure 4B, indicates that once clustered, bounding polygons can
better delineate the spatial extent of a particle that is inherently
fractal in nature (Kilps et al., 1994).

The concept of fractal dimension is relevant in two aspects:
First, fractal geometry changes with porosity and density of the
particle (Logan and Wilkinson, 1990; Azetsu-Scott and Johnson,
1992; Khelifa and Hill, 2006) and has been observed to change as
the floc size increases, leading to a lower effective density of flocs
(Khelifa and Hill, 2006). Second, fractals are also relevant in
analogy to the problem of scale. As in the well-known coastline
paradox, where the coastline does not have a well-defined length
(i.e., the length of the coastline is directly related to the length of
the “measuring stick”, Mandelbrot, 1967), we find ourselves
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confronted with a similar problem here: particle numbers per
volume are a direct function of the threshold settings of the
camera (i.e., the scale in this case), and the dependence between
particle number and threshold levels spans orders of
magnitude (Figure 1).

Tll-defined particle numbers have consequences for a variety
of predictions of coagulation theory (Jackson and Burd, 1998;
Burd, 2013). Coagulation is highly dependent on the number of
particles per volume, which greatly influences overall particle
mass and collision rate through nearest-neighbor distances.
Transparent exopolymer particles (a subgroup of extracellular
polymeric substances) are key to aggregation phenomena (Mari
etal., 2017) but are typically not accounted for with conventional
optical systems unless they are stained with specific dyes [e.g.,
Alcian blue (Alldredge et al., 1993), Coomassie brilliant blue
(Long and Azam, 1996)]. It is exactly those particles, however,
that form the glue that binds larger particles together. This has
important consequences for the vertical carbon flux because
aggregation is an important factor in creating particles of larger
sizes that according to Stokes’ law, and all else being equal, sink
faster than smaller particles.

Although absolute particle numbers in a volume of water
remain elusive, the slope of the number spectrum is relatively
conserved across many different thresholds. There was a very
slight but significant shallowing of the negative slopes with
increasing threshold levels (from 7 to 29) for the Sargasso Sea
(linear regressions, n= 12, F = 8.10, p=0.0157) but not in the Gulf
of Trieste (linear regression, n= 12, F = 1.26, p=0.344). Particle
number slopes typically range from -2 to -5, with most eutrophic
and coastal regions converging on slopes of -3 to -3.5, and
oligotrophic open ocean systems on slopes closer to -4.5 (Guidi
et al,, 2009). Consistent with this concept, our Sargasso Sea data
had an average slope of -4.12 (SD = 0.206, n =12), characteristic
of these open ocean systems. The Gulf of Trieste data, in
contrast, displayed a lower average slope of -3.87 (SD = 0.258
n = 12). The independence of the particle number slope on the
sensitivity level of the analysis is reassuring and validates the use
of these slopes as an intrinsic water mass characteristic
(Stemmann et al. 2008; Guidi et al., 2009; Runyan et al., 2020;
Chaikalis et al., 2021).

Our study demonstrates that all literature reports of particle
numbers per unit volume in aqueous systems need to be treated
with great skepticism, as they do not represent “true” particle
numbers regardless of the methods employed. For data on
particle numbers per volume to be useful, they must be
accompanied by information on a precise threshold defined by
a specific optical property such as optical density, scatter or
reflectance of representative calibration objects. While most
laboratories optimize their analyses towards the detection and
classification of plankton (warm colors in Figure 1), analysis at
lower thresholds (blue shades in Figure 1) is better suited for
understanding the oceanic particle landscape and its

frontiersin.org


https://doi.org/10.3389/fmars.2022.994515
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Bochdansky et al.

heterogeneity at spatial scales that are most relevant to
organisms that navigate them (Azam and Long, 2001; Stocker,
2012; Seymour et al., 2017).
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