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ABSTRACT
Deep Neural Network (DNN) accelerators are increasingly devel-
oped to pursue high efficiency in DNN computing. However, the
IP protection of the DNNs deployed on such accelerators is an
important topic that has been less addressed. Although there are
previous works that targeted this problem for CMOS-based de-
signs, there is still no solution for ReRAM-based accelerators which
pose new security challenges due to their crossbar structure and
non-volatility. ReRAM’s non-volatility retains data even after the
system is powered off, making the stored DNN model vulnerable
to attacks by simply reading out the ReRAM content. Because the
crossbar structure can only compute on plaintext data, encrypting
the ReRAM content is no longer a feasible solution in this scenario.

In this paper, we propose SRA – a secure ReRAM-based DNN
accelerator that stores DNN weights on crossbars in an encrypted
format while still maintaining ReRAM’s in-memory computing
capability. The proposed encryption scheme also supports sharing
bits among multiple weights, significantly reducing the storage
overhead. In addition, SRA uses a novel high-bandwidth SC con-
version scheme to protect each layer’s intermediate results, which
also contain sensitive information of the model. Our experimental
results show that SRA can effectively prevent pirating the deployed
DNN weights as well as the intermediate results with negligible
accuracy loss, and achieves 1.14× performance speedup and 9% en-
ergy reduction compared to ISAAC – a non-secure ReRAM-based
baseline.
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1 INTRODUCTION
Deep neural networks (DNNs) keep achieving superior inference ac-
curacy over other machine learning methods, leading to their perva-
sive and dominant use in many application domains. The increasing
demand for efficient DNN processing has prompted many accel-
erator designs. Besides the designs based on conventional CMOS
technology [1–3], existing works have also demonstrated the use of
emerging non-volatile technologies, such as metal-oxide resistive
random access memory (ReRAM) [4], spin-transfer torque mag-
netic RAM (STT-RAM) [5], and phase change memory (PCM) [6],
to design process-in-memory (PIM) computing engines for DNNs.
Among them, the ReRAM crossbar structure is the most widely
studied approach. By performing the computation in memory, the
massive data movement can be avoided. Also, the crossbar-based
PIM paradigm provides opportunities for much higher computation
parallelism.

However, how to protect the DNN model after its deployment
on accelerators remains a less addressed problem, especially for
ReRAM-based designs. Firstly, due to its non-volatility, ReRAMdoes

not need a continuous power supply to retain data. This makes the
accelerator susceptible to new security vulnerabilities, for example,
accessibility to the stored model if a device gets stolen. Secondly,
because ReRAM’s crossbar structure can only compute on plaintext
data, it is not feasible to store the encrypted model on the crossbars.
Recently, there are previous works [7–9] that utilize hardware char-
acteristics as fingerprints to protect DNNs. Unfortunately, they can
only protect the DNN model stored off-chip, thus only applicable
to CMOS-based accelerators. Once the model is loaded on-chip, the
weights are automatically converted into plaintext format, mak-
ing the entire model at risk if the accelerator is based on ReRAM
technology.

In this paper, we propose a secure ReRAM-based DNN accelera-
tor (SRA) that stores DNN weights in an encrypted format while
maintaining ReRAM’s PIM capability. The multiplication is per-
formed in the Stochastic Computing (SC) format, and all weights
and inputs are represented in the form of bit streams. SRA uses
the 1T4T crossbar structure [10] so that each physical bit line is
sliced into segments, which can be activated separately. An arbi-
trary set of segments from a pair of two adjacent physical bit lines
can be merged into a logical bit line, which stores the bit stream of
a weight. Therefore, the actual weight value is encrypted by keep-
ing the merging pattern confidential. We also propose to encrypt
multiple weights on the same pair of physical bit lines, reducing
the storage overhead of long bit streams.

Besides the deployed model weights, the intermediate results
produced between layers also contain sensitive information of the
DNN model. For example, the intermediate results of fully con-
nected layers and convolutonal layers are a linear function of the
inputs, and knowing the inputs and outputs of a linear function
makes stealing the model a trivial problem. With the increasing
DNN model sizes in recent years, it is unavoidable to offload the
intermediate results to off-chip storage given limited on-chip re-
sources on accelerators. Although the intermediate results can be
protected by encrypting them in off-chip storage and decrypting
them before loading on-chip, due to the extremely high memory
bandwidth demand in DNN accelerators, this approach introduces
significant latency and energy consumption overheads. In SRA, we
propose a novel SC conversion scheme that not only generates ran-
dom bit streams with a high bandwidth but also provides protection
on the intermediate results.

In summary, we make the following contributions in this paper:
• To the best of our knowledge, SRA is the first secure ReRAM-
based accelerator design that could protect the deployed
model weights while maintaining the PIM capability.

• SRA proposes a high-bandwidth random bits generator that
could also protect the intermediate results at the same time.

• The proposed weight encryption scheme also supports shar-
ing bits among multiple bit streams, significantly reducing
SC’s storage overhead.
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Figure 1: (a) SC multiplication using an AND gate. (b) SC
addtion using a multiplexer.

• The experimental results show that in addition to effective
protection, SRA also achieves performance improvement
and energy consumption saving.

The remaining of this paper is organized as follows. Section 2
introduces the background of SC and the 1T4R ReRAM crossbar
structure. Section 3 gives an overview of the SRA workflow. The
detailed SRA design is described in Section 4. Section 5 elaborates
our proposed SRA accelerator architecture. Experimental method-
ology and results are described in Section 6. Finally, the conclusion
is made in Section 7.

2 BACKGROUND
2.1 Stochastic Computing
Stochastic Computing (SC) uses a bit stream to represent a num-
ber. The represented value is indicated by the ratio of 1s in the bit
stream. For example, the bit stream 00010101 represents the value
0.375 (3/8) because 37.5% of the bits are 1. In SC format, multipli-
cation is performed by an element-wise AND operation. Figure 1
(a) illustrates the multiplication of two bit streams 𝑆1 and 𝑆2, repre-
senting the values of 0.5 and 0.25, respectively. The ratios of 1 in 𝑆1
and 𝑆2 are denoted as 𝑝1 = 50% and 𝑝2 = 25%. Because 𝑝1 and 𝑝2
are percentages, they can also be interpreted as the probability of
observing a 1 at an arbitrary position in the bit streams. After the
AND operation, the probability of observing a 1 for each position in
the resulting bit stream is 𝑝1 × 𝑝2. So 𝑆3 represents the production
of 𝑆1 × 𝑆2. Adding 𝑆1 and 𝑆2 is implemented by a multiplexer and
another random bit stream with 50% 1s, as shown in Figure 2 (b).
This random bit stream 𝑍 controls the multiplexer to randomly
select a bit from either 𝑆1 or 𝑆2. So the resulting bit stream contains
the value of 1

2 (𝑝1 + 𝑝2), which is then multiplied by 2 to get the
correct sum. However, because the multiplexer drops half of the
information in 𝑆1 and 𝑆2, this addition usually incurs a large pre-
cision loss. So, many previous works [8, 11, 12] use more complex
circuits (e.g., Approximate Parallel Counter) to convert 𝑆1 or 𝑆2
into the binary format first, and then use conventional adders to
perform the addition. The major challenge that limits SC’s practical
applicability is its long bit length. For a 𝑛-bit binary number, SC
needs 2𝑛 bits to preserve the same precision. This means a 1-bit
increase in precision requires an exponential increase in bit stream
length.

2.2 1T4R ReRAM Crossbar Structure
A ReRAM device is a three-layer structure, consisting of a resistive
switching layer sandwiched between the top and bottom electrodes,
as shown in Figure 2(a). The cell’s resistance can be programmed by
SET and RESET operations to change the oxygen vacancy filament

connecting the two electrodes. The oxygen vacancy filament deter-
mines the resistance between the two electrodes. A single ReRAM
cell can store more than one bit by dividing the resistance range into
multiple levels to achieve higher density. However, this requires
more complex I/O circuits and poses a challenge to programming
accuracy. Therefore, many works [13, 14] use single-bit cells in PIM
designs for practical concerns.

ReRAM cells can be organized in a compact crossbar structure
to achieve the smallest 4𝐹 2 cell size. Figure 2(b) shows the multiply-
accumulate (MAC) operations taking place in a crossbar. The con-
ductance (i.e., the reciprocal of the resistance) of the ReRAM cells
are programmed according to the weight values. DNN’s inputs are
converted into voltages that are applied on the word lines. Thus,
the current flowing out from each bit line conveys the MAC result
between the inputs and weights. The single-bit-cell crossbar struc-
ture is an excellent match for SC multiplication if the columns in
the crossbar and the inputs are all bit streams. The current flowing
out from each bit line now conveys the count of 1s in the resulting
bit stream, thus the product is automatically converted to binary
format.

Because there are no access transistors to isolate adjacent cells,
unactivated word lines or bit lines can induce leakage current (re-
ferred to sneak current) during access. Recently, [10] presented a
1T4R ReRAM crossbar structure to address the sneak current prob-
lem. In a 1T4R crossbar, each 4 × 4 sub-array is isolated from other
cells in the crossbar by 4 dedicated transistors, which are fabricated
underneath the sub-array. Figure 2 (c) and (d) illustrate the 2D and
3D layout, respectively. [10] fabricated a 1T4R test chip to show
that the 4 transistors can be fully hidden underneath the area of the
4× 4 ReRAM sub-array, thus still achieving the 4𝐹 2 cell size. Figure
2 (d) shows the schematic diagram of one 4 × 4 sub-array. Besides
bit lines (BLs) and word lines (WLs), there are also two global select
lines (GSLs) and two global word lines (GWLs). The GSLs are used
to select which rows in the sub-array to access. The GWLs connect
to other sub-arrays horizontally in the crossbar.

3 OVERVIEW
Both weights and inputs are computed in SC format in SRA. How-
ever, only positive numbers can be represented by the SC format
introduced in Section 2.1 (called the unipolar format). Although
there is also a bipolar format of SC representation that could encode
both negative and positive numbers, the multiplication needs to be
performed by XNOR operations which are not applicable to cross-
bar implementation. Fortunately, the ReLU activation in the DNNs
filters out all negative values in each layer’s outputs (i.e., inputs
to the next layer), only weights may have negative values. In SRA,
we only store the absolute values of the weights in the unipolar
format SC bit streams while the sign bits are stored is a separate
crossbar (called the sign bit crossbar in this paper). It is possible to
expose the sign bits to the adversary, but only knowing the sign
bits without the actual absolute weight values can not generate
useful inference results.

Figure 3 shows the overview of SRA’s workflow, which takes
a pre-trained DNN, the training data, and a set of 𝐺𝑆𝐿 vectors as
inputs. Each 𝐺𝑆𝐿 vector determines how the segments are merged
into logical bit lines. The Bit Stream Mapping step (Section 4.2)
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Figure 2: (a) ReRAM cell structure. (b) ReRAM crossbar structure. (c) 1T4R 2D layout. (d) 1T4R 3D layout. (e)1T4R schematic
diagram.
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Figure 4: The rotated layout of the 1T4R structure.
uses a mixed-integer linear programming (MIP) model to map the
weights onto the logical bit lines. Because the mapping introduces
noises into the weights, the DNN model needs an iterative process
of fine-tuning and mapping until the accuracy exceeds a predefined
threshold. The SC conversion step (Section 4.3) converts each layer’s
inputs to SC format before computing with the weights. Note that
all the Bit Stream Mapping, SC conversion and Fine-tuning steps are
performed offline, and the ReRAM crossbars are only programmed
once in the Deployment step.

4 DESIGN DETAILS
4.1 Encrypted Crossbar Design
In order to slice the bit lines into segments, we adopt the rotated
layout of the original 1T4R structure to switch the functionality
of the bit lines and word lines. Since the crossbar is a symmetrical
structure and the ReRAM cells are acting as resistors during com-
putation, the rotated layout does not need any changes inside the
crossbars, only the positions of the word line drivers and the ADCs

are exchanged. As shown in Figure 4, the ADCs are placed at the
right of the crossbar while the word line drivers are at the bottom.
In this new layout, we rename the original horizontal global word
lines (𝐺𝑊𝐿s) to global bit lines (𝐺𝐵𝐿s), and the original bit lines
(𝐵𝐿s) are called word lines (𝑊𝐿s).

In this new layout, each row in the crossbar is now divided into
segments consisting of 4 cells. The 𝐺𝑆𝐿s control which segments
are connected to the 𝐺𝐵𝐿s during computation. For the example
shown in Figure 4, the first pair of𝐺𝑆𝐿s selects the segments on the
second and fourth rows to connect to the 𝐺𝐵𝐿s, the second pair of
𝐺𝑆𝐿s selects the segments on the first and third rows to connect to
the𝐺𝐵𝐿s, etc. As a result, all the blue cells in Figure 4 are merged to
form a logical bit line to compute with the inputs 𝐼 , and the results
are accumulated on 𝐺𝐵𝐿0. Similarly, all the orange cells in Figure
4 are merged to form another logical bit line to compute with the
inputs 𝐼 , and the results are accumulated on𝐺𝐵𝐿1. We restrict each
pair of𝐺𝑆𝐿s can only be 01 or 10, such that either the segments on
the even rows or the segments on the odd rows will be connected
to the 𝐺𝐵𝐿s. Therefore, only one bit in each 𝐺𝑆𝐿 pair needs to be
stored. In SRA, we use a bit vector to record the first bit in each
𝐺𝑆𝐿 pair (i.e., 𝐺𝑆𝐿0, 𝐺𝑆𝐿2, ...). This bit vector is referred to as the
GSL vector in this paper. The uncolored cells in the figure can form
another two logical bit lines when all the 𝐺𝑆𝐿s negate their inputs.
By keeping the 𝐺𝑆𝐿 vector secret, the actual content of the logical
bit lines is stored in the crossbar in an encrypted form.

4.2 Bit Stream Mapping
It has been shown in previous studies that DNNs can be quantized to
8 bits without losing accuracy. Thus, SRA uses 256-bit streams in SC
format for weights and inputs to preserve the same precision of 8-bit
binary format. For a 256 × 256 crossbar and a𝐺𝑆𝐿 vector, there are
256 logical bit lines, each consisting of 256 bits. It is straightforward
to map 256 weights onto the crossbar by storing one weight on
each logical bit line. However, this incurs a 32× storage overhead
compared to the original 8-bit binary format. In this section, we
propose a novel bit stream mapping strategy to store more than
256 weights on one crossbar to reduce the storage overhead.

We use multiple 𝐺𝑆𝐿 vectors. Each 𝐺𝑆𝐿 vector maps a different
set of 256 weights on the crossbar. For 𝑛 𝐺𝑆𝐿 vectors, a crossbar can
store 256𝑛 weights, with every pair of adjacent physical bit lines
constructing 2𝑛 logical bit line to 2𝑛 weights. Figure 5 shows an
example of mapping 4 weights on the first two physical bit lines in
the crossbar assuming 𝑛 = 2. Each square in the figure represents
a segment. 𝑆𝑖 indicates the number of 1s in each segment. Since
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Figure 5: Mapping 4 weights on two rows in the crossbar.
a segment has 4 cells, 𝑆𝑖 can only be 0, 1, 2, 3, or 4. 𝑉0 and 𝑉1
are the two 𝐺𝑆𝐿 vectors. The first weight𝑊0 is mapped to the
logical bit line determined by𝑉0, i.e, 𝑆0, 𝑆65, 𝑆66, ..., 𝑆63. The second
weight𝑊1 is mapped to the logical bit line determined by 𝑉1, i.e,
𝑆64, 𝑆65, 𝑆2, ..., 𝑆127. By using the negation of 𝑉0 and 𝑉1, we can
get another two logical bit lines using the remaining segments to
store𝑊2 and𝑊3. The left-hand side of the equations in Figure 5
represents the total number of 1s in each logical bit line. In order
to correctly represent𝑊𝑖 , the total number of 1s in the logical bit
lines needs to be 𝑊𝑖 × 256, which is the right-hand side of the
equations. The mapping process is to determine the 𝑆𝑖s to satisfy
those equations. However, when 𝑛 increases, it becomes hard to
make all the equations to be true. We formulate this problem as a
mixed-integer linear programming (MIP) model that minimizes the
difference between the left-hand sides and the right-hand sides. In
general, the MIP model for mapping 2𝑛 weights on the two adjacent
physical bit lines can be written as follows:

Minimize
  Di 
2n

i=0

Subject to:
Sj   
Sj   0 

Sj   4 

Di   Wi × 256 - (  Vi,j   Sj +   Vi,j   Sj+64)
63 63

j=0 j=0

Di   (  Vi,j   Sj +   Vi,j   Sj+64) – Wi × 256
6363

j=0 j=0

Di   Wi × 256 - (  Vi,j   Sj +   Vi,j   Sj+64)
63 63

j=0 j=0

Di   (  Vi,j   Sj +   Vi,j   Sj+64) – Wi × 256
63

j=0

63

j=0

(0    j   127)   
(0    j   127)   
(0    j   127)   

(0   i   n-1)   

(0   i   n-1)   

(n   i   2n-1)   

(n   i   2n-1)   

𝐷𝑖 represents the difference between the two sides of the equa-
tions. The first three constraints restrict the number of 1s in each
segment to be integers between 0 and 4. Since linear programming
can not use absolute values as constraints, two inequalities are
used to represent the absolute difference. The next two constraints
indicate the difference when mapping weights on logical bit lines
determined by 𝑉𝑖s. The last two constraints indicate the difference
when mapping weights on logical bit lines determined by 𝑉𝑖s.

When 𝑛 becomes larger, it is harder to minimize the target. Fig-
ure 6 shows the mappings of Cifar10 and ResNet50 (model details
are listed in Table 2) when 𝑛 increases. The blue lines illustrate
the average difference between the left-hand sides and right-hand
sides after optimization, while the green lines show the inference
accuracy. From the figure, we can see that different models have
different tolerance on 𝑛. If we set the accuracy loss budget to 1%
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(marked by the red dashed line), 𝑛 can be set to 14 in Cifar10 while
𝑛 can not exceed 8 for ResNet which is also the worst case in all
our tested DNN models. It is possible to use larger 𝑛s for different
DNNs to achieve more storage savings, however, we conservatively
set 𝑛 to 8 for all DNN models for simplicity in evaluation.

4.3 SC Conversion
Conventional SC conversion uses linear feedback shift registers
(LFSRs) to generate random bit streams with a specific percentage
of 1s. However, LFSR-based SC conversion can only generate 1 bit
at a time, introducing a long latency for each conversion. For faster
SC conversion, We propose to reuse the sign bits of the weights as
the source to generate random bit streams.

For each computation between the inputs and the weights, the
weights’ sign bits also need to be read out from the sign bit crossbar.
Since the distribution of 1s in the sign bits of the weights is known
beforehand, we can inject 0s or 1s into the sign bits to adjust the
ratio of 1s according to the target input value. Figure 7 shows an
example of converting the input 0.85 to SC format, assuming the
ratio of 1s in the sign bits are 40% (represent a value of 0.4). In the
example, 115 1s are injected into the sign bits consecutively starting
from the first bit position. There may be other inject patterns by
changing the start bit position of the consecutive 1s.

In order to protect the intermediate results, we use a hash table
to select a different inject pattern for different inputs. Because 1s
are not evenly distributed along the sign bits, using different inject
patterns will introduce some random noises into the converted
SC values. The hash table is kept confidential in an SRAM buffer
on-chip and stored encrypted off-chip. Therefore, the adversary can
only observe the binary format intermediate results stored off-chip
while the SC format values participated in the computation are
dynamically generated on-chip.

5 ARCHITECTURE
Figure 8 shows the architecture of the proposed SRA accelerator,
which is attached to the system through the PCIe bus and works
as a slave to process DNN tasks received from the CPU. The SRA
accelerator is a tiled structure that uses a concentrated mesh to
provide communications between the tiles. The details of one tile
are shown on the right of Figure 8. Each tile has an eDRAM buffer
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Figure 8: SRA accelerator architecture.
to store the binary format inputs of the DNN layer that is currently
doing multiplications with the weights in the Processing Engines
(PEs). An Output Register (OR) collects the PEs’ multiplication
results, which are then summed up in the adder tree. Each tile also
has a Pooling unit for pooling layers and an Activation unit that
implements the ReLU activation function. Each PE has a set of
ReRAM crossbars. One of the crossbars stores the sign bits of the
weights. The remaining crossbars are used for storing the SC format
weights and performing multiplications with the inputs. Each PE
also has an SRAM buffer to hold the 𝐺𝑆𝐿 vectors. SRA uses 8 𝐺𝑆𝐿
vectors, each 𝐺𝑆𝐿 vector has 64 bits. So, the size of the 𝐺𝑆𝐿 vector
buffer of each PE is 64B.

6 EXPERIMENTS
6.1 Methodology
We compare SRA with ISAAC[15] as it is the most widely used base-
line in other ReRAM-based DNN accelerator designs. Comparing
with ISAAC makes it easy to scale SRA’s performance and energy
consumption numbers to compare with other works. Table 1 lists
the detailed parameters of an SRA chip. Most of the configurations
are kept the same with ISAAC, except that we use 8-bit quantized
pre-trained weights, 256 × 256 crossbars, and single-bit ReRAM
cells in SRA. To get a fair comparison, we make the same changes
to ISAAC as the baseline during evaluation. We follow the equation
in [18] to scale the ADC power consumption for a different ADC
resolution. The power parameters of SRAM registers and eDRAM
buffers are obtained by simulation using CACTI[16] at 32nm pro-
cess assumed in ISAAC. We use NVSim[17] to get parameters of
ReRAM crossbars. We evaluate SRA’s performance and energy con-
sumption by using a custom cycle-accurate simulator to simulate
DNN’s layer-by-layer execution on SRA. The simulated accelerator
runs at 1.2GHz.

We test SRA on four datasets: MNIST[19], SVHN[20], Cifar10[21]
and ImageNet[22]. For SVHN and Cifar10, we construct custom
neural network structures, whose details are listed in Table 2. We
use LeNet-5[23] for MNIST. We test ImageNet on four networks –
ResNet50[24], ResNeXt50[25], GoogLeNet[26] and DenseNet[27].
All these four networks are popular ones in the machine learning
community. We use PyTorch for fine-tuning and accuracy evalua-
tion. we use the PuLP library to solve the MIP optimizations.

Table 1: SRA accelerator parameters.

Unit Spec Power

PE
ADC num: 8; resolution: 8bits 16mW
DAC num: 8×256; resolution: 1bit 8mW
S+H num: 8×256 20uW

Xbar array num: 8; size: 256×256; cell bits: 1 2.7mW
IR size: 2KB 1.24mW
OR size: 256B 0.23mW

GSL buffer size: 64B 0.112mW
Shifters size: 256 10uW
SCC num: 1 0.02mW

PE Total num: 1 28.4mW
Tile

PE num: 12 339.9mW
eDRAM size: 64KB; banks: 2; width: 256 20.7mW
Bus wires: 384 7mW

Router flit size: 32; ports: 8 42mW
Activation num: 2 0.52mW

Add num: 1 0.05mW
Maxpool num: 1 0.4mW

OR size: 3KB 1.68mW
Tile Total num: 1 412.3mW

Chip

Tile num: 168 69.2W
Hyper Tr links: 4; freq: 1.6GHz 10.4W
Chip Total num: 1 79.7W

Table 2: Benchmarks.

Dataset Network

MNIST LeNet-5
SVHN conv3x32-conv3x32-pool-conv3x64-conv3x64-pool-

conv3x128-conv3x128-pool-1024-512-10
Cifar10 conv3x128-conv3x128-conv3x128-pool-conv3x256-

conv3x256-conv3x256-pool-conv3x512-conv3x512-
conv3x512-pool-1024-10

ImageNet ResNet50, ResNeXt50, GoogLeNet, DenseNet

6.2 Results
6.2.1 Protection. Because the𝐺𝑆𝐿 vectors are not accessible to the
attacker, even if the entire ReRAM content is known, the exact bit
streams used in the computation are still hidden from the attacker.
Each 𝐺𝑆𝐿 vector has 64bits, the attacker needs to try 264 different
combinations to ensure the right one is included. In addition, there
are 𝑛 = 8 𝐺𝑆𝐿 vectors, so the total compute complexity is 267. Fig-
ure 9 shows the accuracy when the attacker guesses a 𝐺𝑆𝐿 vector
that is very close to the real𝐺𝑆𝐿 vector. The first bar is the baseline
accuracy when the real 𝐺𝑆𝐿 vector is used. The second bar shows
the accuracy if there is only a 1-bit difference between the attacker
guessed𝐺𝑆𝐿 vector and the real𝐺𝑆𝐿 vector. All of the benchmarks
suffer a large accuracy loss. Note that MNIST is a very small dataset,
it could be very easily trained to 99.9% accuracy. So a 5% accuracy
loss shown in Figure 9 for MNIST already renders significant ac-
curacy degradation. When more bits are guessed incorrectly, the
accuracy degradation becomes even larger.

Table 3 shows the effectiveness of SRA’s protection on interme-
diate results. Assuming the target device uses inject pattern A for
SC conversion. As can be seen from the table, the accuracy is very
close to the baseline (less than 1% accuracy loss). If the model is
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Figure 9: Accuracy with increasing number of GSL vectors.
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Figure 10: Speedup of SRA over ISAAC.

stolen and applied to a pirate device, the attacker can only use a
different inject pattern (assuming inject pattern B). As shown by
the fourth column in Table 3, the inference on the pirate device
suffers a huge accuracy degradation. The last column shows that
the stolen model is also unusable if the attacker uses the binary
format weights directly for inference.

Table 3: Inference Accuracy

Baseline Inject Pattern A Inject Pattern B Binary Weights
MNIST 99.35% 99.36% 14.98% 77.83
SVHN 95.94% 95.23% 67.75% 62.03

Cifar10 90.13% 90.11% 39.47% 52.29
ResNet50 76.13% 75.43% 14.82% 20.8
ResNeXt50 77.61% 77.01% 13.9% 17.84
GoogLeNet 69.77% 67.82% 10.44% 11.81
DenseNet 74.434% 73.86% 20.44% 32.55

6.2.2 Performance. Figure 10 shows the performance of SRA com-
pared to ISAAC. Even if SRA uses multiple 𝐺𝑆𝐿 vectors to reduce
the storage overhead caused by the long bit streams in SC format,
the total weight storage is still 4× larger than the binary format
in the baseline. So more cells need to be activated to perform com-
putation. However, since SRA only activates half of the crossbar
at a time, the read speed is much faster than activating the entire
crossbar[28]. Also, because every segment of 4 cells is completely
isolated from other cells in the crossbar, the sneak current problem
is effectively suppressed, reducing the sensing delay of the ADCs.
As a result, the overall latency is slightly better than the baseline.
On average, there is a 1.14× speedup.

6.2.3 Energy. Figure 11 shows the energy consumption of running
the tested benchmarks on SRA normalized to ISAAC. Although
each computation needs two ReRAM accesses – one for reading
the sign bits and the other for MAC operations, the overall energy
consumption is still almost the same or slightly better than the
baseline. This is because the SC conversion only reads one row out
from the crossbar, its energy is much smaller than a full crossbar
read. For MAC operation, SRA consumes less energy because only
half of the cells are activated during computation, and the other
half is completely shut off by the transistors of each segment. On
average, SRA has 9% less energy consumption compared to ISAAC
on average.

0.7

0.8

0.9

1

1.1

1.2

MNIST SVHN Cifar10 ResNet50 ResNeXt50 GoogLeNet DesnseNet GeoMean

E
ne

rg
y 

C
on

su
m

pt
io

n SRA ISAAC

Figure 11: Energy consumption of SRA over ISAAC.
7 CONCLUSION
This paper proposes the first protection approach in the literature
for non-volatile crossbar DNN accelerators. In addition to full pro-
tection on both weights and intermediate results while they are
on-chip, SRA also achieves performance and energy consumption
benefits over a conventional non-secure ReRAM based baseline.
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