
A DNN Protection Solution for PIM accelerators
with Model Compression

Lei Zhao
University of Pittsburgh

Pittsburgh, USA
leizhao@cs.pitt.edu

Youtao Zhang
University of Pittsburgh

Pittsburgh, USA
zhangyt@cs.pitt.edu

Jun Yang
University of Pittsburgh

Pittsburgh, USA
juy9@pitt.edu

Abstract—Deep Neural Network (DNN) is a data-hungry algo-
rithm, which has a large energy cost on moving data between the
memory and the computating unit. Recent works have proposed
using ReRAM to design Process-In-Memory (PIM) accelerators
to perform the computation inside the memory. However, the
IP protection of the DNNs deployed on such accelerators is an
important topic that has been less addressed. Firstly, due to
its non-volatility, ReRAM does not need a continuous power
supply to retain data. This makes the accelerator susceptible
to new security vulnerabilities, for example, accessibility to the
stored model if a device gets stolen. Secondly, because ReRAM’s
crossbar structure can only compute on cleartext data, encrypting
the ReRAM content is no longer a feasible solution in this
scenario.

In this paper, we propose an IP protection solution on ReRAM
based DNN accelerators to store DNN weights on crossbars in
an encrypted format while still maintaining ReRAM’s in-memory
computing capability. The proposed solution stores and computes
the DNNs in Stochastic Computing (SC) format, which can easily
hide its conveyed weight values by scrambling the bit stream
segments. However, SC’s long bit streams incur a large storage
overhead. To tackle this problem, we also propose two techniques
to share bits among multiple weights, effectively compressed
DNN’s model size to reduce storage overhead.

Index Terms—ReRAM, security, DNN, compression

I. INTRODUCTION

As non-volatile PIM accelerators could provide higher
computation parallelism and avoid massive data movement
between the memory and computing unit, ReRAM is a good
fit for DNN computing. However, how to protect the DNN
IPs after their deployment on ReRAM accelerators remains a
less addressed problem. Compared to CMOS accelerators, new
challenges arise: i) ReRAM’s non-volatility retains data after
power is off, making the stored weights easier to be extracted
out from the accelerator; ii) ReRAM’s crossbar structure can
only compute on cleartext data, making encryption on weights
impossible.

To address the above problems, we utilize the new 1T4R
structure [1] together with Stochastic Computing (SC) to
protect DNN weights on ReRAM crossbars. The multiplication
is performed in the SC format, i.e., all weights and inputs
are represented in the form of bit streams. With the 1T4R
structure, the long bits stream of each weight can be truncated
into multiple segments. During run time, the segments will
be dynamically combined to reconstruct the whole bit stream
for computing. Therefore, even if the adversary extracts all the

content from the crossbars, the actual reconstructed bit streams
are still hidden without knowing the recombine pattern. Only
the recombine pattern needs to be stored as confidential
information. Using these shuffled segments for protection also
avoids the need for conventional encryption, and still maintains
the PIM capability of ReRAM.

However, representing a weight in SC format induces an
exponential storage overhead. For example, an n-bit binary
number needs a bit stream of 2n bits in SC format to keep
the same precision. To solve this problem, we propose two
ReRAM-compatible model compression schemes at different
granularity levels. Our Bit-Level Sharing (BLS) scheme reuses
the same set of segments to reconstruct multiple weight bit
streams. Our Crossbar-Level Sharing (CLS) scheme flips the
bit matrices of different crossbars to reduce their distance, as
a result, we only need to store the bit matrix of one crossbar
together with the flipping pattern of the other bit matrices.

II. BACKGROUND

A. 1T4R Crossbar Structure

BL0 BL1 BL2 BL3

WL0

WL1

WL2

WL3

GWL0

GWL1

GSL1GSL0

ReRAM Cell
Word Line (WL)
Bit Line (BL)
Word Select Line (WSL)
Global Word Line (GSL)

BL0 BL1 BL2 BL3
GWL0

GWL1

GSL0 GSL1

WL0

WL1

WL2

WL3

(a) (b) (c)

Fig. 1: 1T4R structure.

ReRAM’s crossbar structure is a perfect fit for DNN’s
matrix-vector multiplication (MVM). However, because there
are no access transistors to isolate adjacent cells in the
crossbar, unactivated word lines or bit lines can induce leakage
current (called sneak current) during access. Recently, [1]
presented a 1T4R ReRAM crossbar structure to address the
sneak current problem. In a 1T4R crossbar, each 4 × 4 sub-
array is isolated from other cells in the crossbar by 4 dedicated
transistors, which are fabricated underneath the sub-array.
Fig. 1(a) and (b) illustrate the 2D and 3D layout, respectively.
[1] fabricated a 1T4R test chip to show that the 4 transistors

can be fully hidden underneath the area of the 4× 4 ReRAM
sub-array, thus still achieving the 4F 2 cell size. Fig. 1(c) shows
the schematic diagram of one 4 × 4 sub-array. Besides bit
lines (BLs) and word lines (WLs), there are also two global
select lines (GSLs) and two global word lines (GWLs). The
GSLs are used to select which rows in the sub-array to access.
The GWLs connect to other sub-arrays horizontally in the
crossbar.

B. Stochastic Computing

AND XNOR

P(A)=a, P(B)=b, P(Y)=y

y=a ⨉ b y=a ⨉ b

P(A)=!"#
$
, P(B)=%"#

$
, P(Y)=&"#

$

(a) (b)

Fig. 2: Stochastic Computing Implementation.

Stochastic Computing (SC) represents a number by using a
random bit steam, in which the probability of the appearance
of 1s indicates the represented value. For example, the bit
stream X = 011001001 represents 0.4 because the proba-
bility P (X = 1) = 0.4. Since values are represented by
probabilities, the representation for a value is not unique. A
multiplication between two SC numbers can be implemented
using bit-wise AND operations, as shown in Fig. 2(a). How-
ever, only values in the range [0, 1] can be encoded using the
above method (called unipolar format). The bipolar format
can represent values in the range [−1, 1] by scaling it in
[0, 1]. For example, the value s = −0.4 ∈ [−1, 1] is first
scaled to t = (s + 1)/2 = 0.3 ∈ [0, 1], then encoded into
P (T = 1) = 00101010. The multiplications for bipolar SC
numbers are implemented using XNOR gates (Fig. 2(b)).

III. SECURING DNN WEIGHTS

To protect the DNN, both weights and inputs are computed
in SC format. We use the unipolar format in SC because
the XNOR operation in bipolar format is not applicable to
crossbar implementation. Fortunately, the ReLU activation in
the DNNs filters out all negative values in each layer’s outputs
(i.e., inputs to the next layer), only weights may have negative
values. Therefore, we only store the absolute values of the
weights in the unipolar format SC bit streams while the sign
bits are stored is a separate crossbar (called the sign bit
crossbar in this paper). It is possible to expose the sign bits
to the adversary, but only knowing the sign bits without the
actual absolute weight values can not generate useful inference
results.

To hide the bit streams stored in the crossbar from adversary,
we slice the bit stream into segments. We adopt the rotated
layout of the original 1T4R structure to switch the function-
ality of the bit lines and word lines. Since the crossbar is
a symmetrical structure and the ReRAM cells are acting as

resistors during computation, the rotated layout does not need
any changes inside the crossbars, only the positions of the
word line drivers and the ADCs are exchanged. As shown in
Fig. 3, the ADCs are placed at the right of the crossbar while
the word line drivers are at the bottom. In this new layout, we
rename the original horizontal global word lines (GWLs) to
global bit lines (GBLs), and the original bit lines (BLs) are
called word lines (WLs).

GBL0

GBL1

WL0 WL1 WL2 WL3

GSL0GSL1

WL4 WL5 WL6 WL7

GSL2 GSL3

WL8 WL9 WL10 WL11

GSL4 GSL5

≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

≈
≈

ADCADC

ADCADC

0 10 1 1 01 0 1 01 0

≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

WL DriverWL Driver WL DriverWL Driver WL DriverWL Driver

Fig. 3: The rotated layout of the 1T4R structure.

In this new layout, each row in the crossbar is now divided
into segments consisting of 4 cells. The GSLs control which
segments are connected to the GBLs during computation. For
the example shown in Fig. 3, the first pair of GSLs selects
the segments on the second and fourth rows to connect to the
GBLs, the second pair of GSLs selects the segments on the
first and third rows to connect to the GBLs, etc. As a result, all
the blue cells in Fig. 3 are merged to form a logical bit line to
compute with the inputs I , and the results are accumulated on
GBL0. Similarly, all the orange cells in Fig. 3 are merged to
form another logical bit line to compute with the inputs I , and
the results are accumulated on GBL1. We restrict each pair
of GSLs can only be 01 or 10, such that either the segments
on the even rows or the segments on the odd rows will be
connected to the GBLs. Therefore, only one bit in each GSL
pair needs to be stored. We use a bit vector to record the first
bit in each GSL pair (i.e., GSL0, GSL2, ...). This bit vector
is referred to as the GSL vector in this paper. The uncolored
cells in the figure can form another two logical bit lines when
all the GSLs negate their inputs. By keeping the GSL vector
secret, the actual content of the logical bit lines is stored in
the crossbar in an encrypted form.

IV. BITLINE-LEVEL SHARING

For a 8-bit binary value, we need a 256-bit stream in
SC format to preserve the same precision. For a 256 × 256
crossbar and a GSL vector, there are 256 logical bit lines, each
consisting of 256 bits. It is straightforward to map 256 weights
onto the crossbar by storing one weight on each logical bit
line. However, this incurs a 32× storage overhead compared
to the original 8-bit binary format. In this section, we propose
a sharing scheme in the bitline level to store more than 256
weights on one crossbar to reduce the storage overhead.

S0S0 S1S1 S2S2 S63S63......
S64S64 S65S65 S66S66 S127S127......

Si∈{0,1,2,3,4}
Row 0

Row 1

V0 1 0 0 1
S0 S65 S66 S63 W0+ + + + = 256...

...
×

S64 S2 S127 W2+ + + = 256... ×

V1 0 0 1 0
S2 S127 W1+ + + = 256...

...
×

S66 S63 W3+ + + = 256... × S0 S1+
S64

S0S0 S1S1 S2S2 S63S63......
S64S64 S65S65 S66S66 S127S127......

Row 0

Row 1

GSL
Vectors

Si∈{0,1,2,3,4}

S1 +

S65 +

Fig. 4: Mapping 4 weights on two rows in the crossbar.

We use multiple GSL vectors. Each GSL vector maps
a different set of 256 weights on the crossbar. For n GSL
vectors, a crossbar can store 256n weights, with every pair of
adjacent physical bit lines constructing 2n logical bit line to
2n weights. Fig. 4 shows an example of mapping 4 weights
on the first two physical bit lines in the crossbar assuming
n = 2. Each square in the figure represents a segment. Si

indicates the number of 1s in each segment. Since a segment
has 4 cells, Si can only be 0, 1, 2, 3, or 4. V0 and V1 are
the two GSL vectors. The first weight W0 is mapped to the
logical bit line determined by V0, i.e, S0, S65, S66, ..., S63. The
second weight W1 is mapped to the logical bit line determined
by V1, i.e, S64, S65, S2, ..., S127. By using the negation of
V0 and V1, we can get another two logical bit lines using the
remaining segments to store W2 and W3. The left-hand side of
the equations in Fig. 4 represents the total number of 1s in each
logical bit line. In order to correctly represent Wi, the total
number of 1s in the logical bit lines needs to be Wi × 256,
which is the right-hand side of the equations. The mapping
process is to determine the Sis to satisfy those equations.
However, when n increases, it becomes hard to make all the
equations to be true. We formulate this problem as a mixed-
integer linear programming (MIP) model that minimizes the
difference between the left-hand sides and the right-hand sides.
In general, the MIP model for mapping 2n weights on the two
adjacent physical bit lines can be written as follows:

Minimize
 Di
2n

i=0

Subject to:
Sj
Sj 0

Sj 4

Di Wi × 256 - (Vi,j Sj + Vi,j Sj+64)
63 63

j=0 j=0

Di (Vi,j Sj + Vi,j Sj+64) – Wi × 256
6363

j=0 j=0

Di Wi × 256 - (Vi,j Sj + Vi,j Sj+64)
63 63

j=0 j=0

Di (Vi,j Sj + Vi,j Sj+64) – Wi × 256
63

j=0

63

j=0

(0 j 127)
(0 j 127)
(0 j 127)

(0 i n-1)

(0 i n-1)

(n i 2n-1)

(n i 2n-1)

Di represents the difference between the two sides of the
equations. The first three constraints restrict the number of
1s in each segment to be integers between 0 and 4. Since
linear programming can not use absolute values as constraints,
two inequalities are used to represent the absolute difference.
The next two constraints indicate the difference when mapping
weights on logical bit lines determined by Vis. The last two
constraints indicate the difference when mapping weights on
logical bit lines determined by Vis.

87

88

89

90

91

0

0.05

0.1

0.15

0.2

0.25

2 4 6 8 10 12 14 16 18 20

Difference
Accuracy

(a) Cifar10

68

70

72

74

76

78

0

0.05

0.1

0.15

0.2

0.25

2 4 6 8 10 12 14 16 18 20

Difference
Accuracy

(b) ResNet50

Fig. 5: Tolerance of n for Cifar10 and ResNet50.

When n becomes larger, it is harder to minimize the target.
Fig. 5 shows the mappings of Cifar10 and ResNet50
(structure details are listed in Table II) when n increases. The
blue lines illustrate the average difference between the left-
hand sides and right-hand sides after optimization, while the
green lines show the inference accuracy. From the figure, we
can see that different DNNs have different tolerance on n. If
we set the accuracy loss budget to 1% (marked by the red
dashed line), n can be set to 14 in Cifar10 while n can not
exceed 8 for ResNet50 which is also the worst case in all our
tested DNNs. It is possible to use larger ns for different DNNs
to achieve more storage savings, however, we conservatively
set n to 8 for all DNNs for simplicity in evaluation.

V. CROSSBAR-LEVEL SHARING

Fig. 6 shows the workflow of CLS. The whole workflow is
composed of an offline phase to compress the DNN and an
online phase to use the compressed DNN for inference. Next,
each step will be described in details.

Decomposing. This step takes a pre-trained DNN after BLS,
and decomposes each layer’s weight matrix into bit matrices.
For example, if a weight matrix uses 8-bit fixed-point format to
represent its weight values, the weight matrix is decomposed
into eight bit matrices. Each bit matrix contains all the bits
that have the same significance in the weight values.

Clustering. This step is to decide which bit matrices could
share the same crossbar. We use Hamming Distance as the
metric to measure the similarity between bit matrices. We
use Kmeans to group similar bit matrices into clusters. Each
cluster has a centroid bit matrix, such that the sum of the
squared distances from all the bit matrices in the cluster to
the centroid bit matrix is at the minimum. The centroid bit
matrix is calculated by taking the average of all bit matrices
in that cluster.

Flipping. This step is to minimize the distances from all
the bit matrices in the cluster to the centroid bit matrix. We

 Clustering

 Flipping

 Reconstructing

Accuracy
satisfied?

Pre-trained
DNN
model

Training
data

 Mapping

Flipping
can help?

 Inference Online phase

Offline phase

No, increase
cluster number

Yes

No

Yes, increase
flip iterations

 Calibrating

 Decomposing

Fig. 6: The overview of crossbar-level sharing workflow.

flip the bits in the granularity of rows and columns. Each
row or column only needs one bit to record whether it has
been flipped or not. We call the bit vector that records the flip
status of each row the row flip vector (RFV), and the other bit
vector that records the flip status of each column the column
flip vector (CFV). We first calculate the difference between
these two bit matrices by XORing them to get the bit matrix
B, as shown in Fig. 7. In B, 1 means there is a mismatch
between the corresponding bits in A and C. We define a
score variable for each row and column in B, indicating the
number of mismatched bits. Finding the combination of row
and column flips on A to match C, is equivalent to finding
the combination of row and column flips on B to minimize
its total score.

We use a greedy approach to find a flip pattern that could
make the two bit matrices as close as possible. We first
calculate all the column scores by counting the number of
1s in each column of B, if any of the scores is larger than
half of the crossbar size (3 in this example), then we flip this
column and flip the bit in CFV to record this column has
been flipped. Then we calculate all the row scores and perform
the same operation on the rows and RFV as we did for the
columns. After the row check is done, it is possible some
column scores that are previously less than 3 now become
larger than 3. For example, the score of the forth column in
Fig. 7 turns from 3 to 4 after the row check. So we iteratively
perform the column check and row check until all the scores
are less than 3. Note that even though all the scores are less
than 3 after the column and row checks, the total score can still
be reduced if one column and one row are flipped at the same
time. For example, after the second column check in Fig. 7,

all the column scores and row scores are already less than 3,
and the total score is 20. If we flip the second column and
the second row simultaneously, the total score can be further
reduced to 16.

Reconstructing. This step uses the metadata (CFV s and
RFV s) produced in the previous step to reconstruct each bit
matrix in the cluster from the centroid bit matrix. Fig. 8 shows
how to reconstruct A from C. The reconstructed bit matrix is
denoted as A′. The cells with dark background indicate the
flipped cells. Because the Flipping step does not guarantee
a flip pattern to make A and C identical, the reconstructed
bit matrix A′ is only an approximation of A. The mismatched
cells between A and A′ are marked with red numbers. In the
same way, we could reconstruct an approximation of every
original bit matrix in the cluster from the centroid bit matrix.
As a result, we could get a new modified DNN consists of all
the reconstructed bit matrices.

Calibrating. Because the modified DNN produced in the
previous step introduces noises to the weights which impacts
the DNN’s accuracy. As shown in the third column of Ta-
ble I, there is an accuracy drop from 76.13% to 71.628%
for ResNet50 if we directly use the modified DNN in
the inference phase. We tackle this problem by updating
the distribution statistics in batch normalization layers. One
thing to note here is that we only update the distribution
statistics of batch normalization layers, instead of the trainable
parameters (i.e. the gamma weights and beta weights) of the
batch normalization layers. Because distribution statistics are
collected during the forward propagation, we only need to re-
run the forward propagation phase on the training data without
the need for backward propagation and weight update. The last
column in Table I shows the accuracy after updating the batch
normalization statistics.

TABLE I: Batch normalization’s impact on accuracy.

Network baseline no BN update after BN update
ResNet50 76.13% 71.628% 74.508%
VGG16 71.592% 58.214% -

VGG16-BN 73.360% 68.966% 70.732%

Mapping. All the bit matrices in the same cluster can be
constructed from the centroid bit matrix and the metadata. So
they can share the same crossbar, and we only need to store the
centroid bit matrix and the metadata. Fig. 9 shows an example
of mapping the centroid bit matrix C and the metadta of A
in Fig. 7 to a crossbar. If there are other bit matrices that also
share this crossbar, each bit matrix needs two more rows to
store its CFV and RFV and two more columns to store its
RFV and RFV .

Inference. In Fig. 9, because the crossbar only stores the
centroid bit matrix, the output from the crossbar (i.e. O0, O1,
..., O5) is the MVM product between input I and centroid
bit matrix C. In order to get the MVM product between I
and A′, additional steps are required to adjust the Ois. The
dark cells in Fig. 9 indicates the different cells between C
and A′. If we denote the bits in A′ as Bi, the dark cells stores

A

C

B

0 0 0 0 0 0
1 0 1 1 0 0
1 0 1 0 0 1
1 1 0 0 1 0
0 0 1 0 1 1
1 0 0 1 1 0
1 1 0 1 0 0

0
0
0
0
0
0

5 2 3 3 3 2

3
3
3
3
3
3

1 0 0 0 0 0
0 0 1 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 1 0 1 1
0 0 0 1 1 0
0 1 0 1 0 0

0
0
0
0
0
0

1 2 3 3 3 2

2
2
2
4
2
2

1 0 0 0 0 0
0 0 1 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 0 1 0 0
0 0 0 1 1 0
0 1 0 1 0 0

0
0
0
1
0
0

0 3 2 4 2 1

2
2
2
2
2
2

1 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 1
0 1 0 1 1 0
0 1 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0

0
0
0
1
0
0

0 3 2 2 2 1

1
3
3
1
1
1

1 1 1 0 1 0
1 0 0 1 0 1
0 1 0 1 0 1
0 1 1 0 1 0
1 0 1 1 1 0
0 1 0 0 0 1

0 1 0 1 1 0
0 0 1 1 0 0
1 0 0 1 1 1
0 1 0 0 0 1
0 0 1 0 0 0
1 0 0 1 0 1

+

CFV

R
FV

row
score

column
score

After column check After row check After column check

1 1 0 1 0 0
0 1 1 0 0 0
1 0 0 0 1 0
0 0 0 1 1 0
0 0 0 0 0 0
0 1 0 0 1 0
0 0 0 0 0 0

0
1
0
1
0
0

0 2 2 2 2 1

1
2
2
0
2
0

Total score = 16

After column & row check

Total score = 20Total score = 24Total score = 28Total score = 36

Fig. 7: Flip rows and columns to minimize the distance of two matrices. A is a bit matrix in the cluster. C is the centroid bit
matrix of the cluster. B is calculated by XORing A and C.

1 1 0 1 0 0
1 1 1 0 1 0
1 0 0 1 0 1
0 1 0 1 0 1
0 1 1 0 1 0
1 0 1 1 1 0
0 1 0 0 0 1

0
1
0
1
0
0

0 0 1 1 1 0
1 0 1 1 1 0
1 0 0 0 0 1
0 1 0 0 0 1
0 1 1 0 1 0
1 0 0 1 0 1

C

CFV

R
FV

A

Fig. 8: Reconstruct A’ from C.

0 1

1 0

0 1

1 0

0 1

0 1

0 1 0 1 0 0

I0

-I1

I2

-I3

I4

I5

O0 O1 O3O2 O4 O5 O6 O7

O7-O0

CFV
RFV
RFV

1 1 1 0 1 0

1 0 0 1 0 1

0 1 0 1 0 1

0 1 1 0 1 0

1 0 1 1 1 0

0 1 0 0 0 1

O7-O1 O7-O3

O2-O6 O4-O6 O5-O6

C

O0 = - (Ii Bi,0)+I0+I2+I4+I5

O2 = (Ii Bi,2)-I1-I3

O6 = -I1-I3

O7 = I0+I2+I4+I5

O1 = - (Ii Bi,1)+I0+I2+I4+I5

O4 = (Ii Bi,4)-I1-I3

O3 = - (Ii Bi,3)+I0+I2+I4+I5

O5 = (Ii Bi,5)-I1-I3

Stores the same bit in A , i.e. Bi

Stores the opposite bit in A , i.e. 1-Bi

O 0 O 1 O 3O 2 O 4 O 5

MVM product of I and C

MVM product of I and A

1 1 0 1 0 0

Fig. 9: Map centroid bit matrix and meta data to crossbar.

1 − Bi. If the corresponding bit in RFV is 1, we apply the
opposite value of the input to on the wordline. As a result, for
O0, O2, O4, and O5, whose bit in CFV is 1, the output is
−
∑

(IB) + I0 + I2 + I4 + I5. We can adjust these outputs
by subtracting them from the output of O7. And for O1 and
O3, whose bit in CFV is 0, the output is

∑
(IB)− I1 − I3.

We can adjust these outputs by adding the output of O6. The
adjusted outputs (i.e. O′

0, O′
1, ..., O′

5) are the MVM product

between I and A′.

VI. SC CONVERSION

After each MVM operation in the crossbar, the results are
back in binary format. So, there is a need to convert the results
to SC format before the next MVM operation. Conventional
SC conversion uses linear feedback shift registers (LFSRs) to
generate random bit streams with a specific percentage of 1s.
However, LFSR-based SC conversion can only generate 1 bit
at a time, introducing a long latency for each conversion. For
faster SC conversion, We propose to reuse the sign bits of the
weights as the source to generate random bit streams.

For each computation between the inputs and the weights,
the weights’ sign bits also need to be read out from the sign
bit crossbar. Since the distribution of 1s in the sign bits of
the weights is known beforehand, we can inject 0s or 1s into
the sign bits to adjust the ratio of 1s according to the target
input value. Fig. 10 shows an example of converting the input
0.85 to SC format, assuming the ratio of 1s in the sign bits
are 40% (represent a value of 0.4). In the example, 115 1s are
injected into the sign bits consecutively starting from the first
bit position. There may be other inject patterns by changing
the start bit position of the consecutive 1s.

0.85

11001100 10011001 01100110 00100010 ...

11111111 11 1111 11 11101110 00000000 ...2560.4- × 115=

Converted input 11111111 11111111 11111111 11101110 00100010

Sign bits
Binary input

=

Bit-wise OR

...

)(...

115 1s

... P ≈ 0.4

P= 0.449

P ≈ 0.85

Fig. 10: An example of converting 0.85 from binary format to
SC format.

In order to protect the intermediate results, we use a hash
table to select a different inject pattern for different inputs.
Because 1s are not evenly distributed along the sign bits, using
different inject patterns will introduce some random noises
into the converted SC values. The hash table is kept confiden-
tial in an SRAM buffer on-chip and stored encrypted off-chip.
Therefore, the adversary can only observe the binary format
intermediate results stored off-chip while the SC format values

participated in the computation are dynamically generated on-
chip.

VII. EXPERIMENTAL RESULTS

TABLE II: Benchmarks.

Dataset Network
MNIST LeNet-5
SVHN conv3x32-conv3x32-pool-conv3x64-conv3x64-

pool-conv3x128-conv3x128-pool-1024-512-10
Cifar10 conv3x128-conv3x128-conv3x128-pool-

conv3x256-conv3x256-conv3x256-pool-
conv3x512-conv3x512-conv3x512-pool-1024-10

ImageNet ResNet50, ResNeXt50, GoogLeNet,
DenseNet

We test our design on four datasets: MNIST [2], SVHN
[3], Cifar10 [4] and ImageNet [5]. Table II shows the
network structure details. We use PyTorch for fine-tuning and
accuracy evaluation. we use the PuLP library to solve the MIP
optimizations. For performamce and energy measurements,
we compare with ISAAC [6] as it is the most widely used
baseline in other ReRAM based DNN accelerator designs.
Comparing with ISAAC makes it easy to scale our design’s
performance and energy consumption numbers to compare
with other works.

A. IP Protection Effectiveness
Table III shows the effectiveness of our design’s protection

on DNN IP. The second column shows the inference accuracy
on ISAAC baseline. The third column shows the accuracy on
the target device in our design after applying the SC-based
protection scheme and our two sharing schemes. The accuracy
is very close to the baseline (less than 1% accuracy loss) The
fourth column shows the pirate device’s accuracy of using
the same ReRAM crossbar content from the target device.
However, the pirate device does not know the GSLs in the
target device. There is a significant accuracy loss in the pirate
device.

TABLE III: Inference Accuracy

Baseline Target Device Pirate Device
MNIST 99.35% 99.36% 14.98%
SVHN 95.94% 95.23% 67.75%

Cifar10 90.13% 90.11% 39.47%
ResNet50 76.13% 75.43% 14.82%
ResNeXt50 77.61% 77.01% 13.9%
GoogLeNet 69.77% 67.82% 10.44%
DenseNet 74.434% 73.86% 20.44%

B. Performance
Fig. 11 shows the performance of our design compared to

ISAAC. Since the GSLs only activate half of the crossbar
at a time, the read speed is much faster than activating the
entire crossbar [6]. Also, because every segment of 4 cells is
completely isolated from other cells in the crossbar, the sneak
current problem is effectively suppressed, reducing the sensing
delay of the ADCs. As a result, the overall latency is better
than the baseline. On average, there is a 1.14× speedup.

0.8

0.9

1

1.1

1.2

1.3

1.4

MNIST SVHN Cifar10 ResNet50 ResNeXt50 GoogLeNet DenseNet GeoMean

Sp
ee

du
p

ISAAC Design

Fig. 11: Speedup normalized to ISAAC.

C. Energy

0.7

0.8

0.9

1

1.1

MNIST SVHN Cifar10 ResNet50 ResNeXt50 GoogLeNet DenseNet GeoMean

E
ne

rg
y

C
on

su
m

pt
io

n ISAAC Design

Fig. 12: Energy consumption normalized to ISAAC.

Fig. 12 shows the energy consumption of running the tested
benchmarks normalized to ISAAC. Although each computa-
tion needs two ReRAM accesses — one for reading the sign
bits and the other for MAC operations, the overall energy
consumption is still almost the same or slightly better than
the baseline. This is because the SC conversion only reads one
row out from the crossbar, its energy is much smaller than a
full crossbar read. For MAC operation, our design consumes
less energy because only half of the cells are activated during
computation, and the other half is completely shut off by the
transistors of each segment. On average, there is a 9% less
energy consumption compared to ISAAC on average.

VIII. CONCLUSION

This paper proposes a complete solution for DNN IP pro-
tection on ReRAM-based accelerators by using SC computing.
To tackle the larger storage overhead brought by SC, we
proposes two compression schemes at different granularity.
Our proposed solution not only provides effective protection
on DNN IP, but also achieves performance and energy benefits.

REFERENCES

[1] C. Yeh et al., “Compact one-transistor-N-RRAM array architecture for
advanced CMOS technology,” in IEEE Journal of Solid-State Circuits,
2015

[2] Y. LeCun et al., “The mnist database of handwritten digits,” http://yann.
lecun.com/exdb/mnist/, 2011.

[3] Y. Netzer et al., “Reading digits in natural images with unsupervised fea-
ture learning,” in NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

[4] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” technical report, 2009.

[5] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in CVPR, 2009.

[6] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in ISCA, 2016

