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ABSTRACT

In a technical treatment, this article establishes the necessity of transparent privacy for drawing unbiased 

statistical inference for a wide range of scientific questions. Transparency is a distinct feature enjoyed by 

differential privacy: the probabilistic mechanism with which the data are privatized can be made public without 

sabotaging the privacy guarantee. Uncertainty due to transparent privacy may be conceived as a dynamic and 

controllable component from the total survey error perspective. As the 2020 U.S. Decennial Census adopts 

differential privacy, constraints imposed on the privatized data products through optimization constitute a 

threat to transparency and result in limited statistical usability. Transparent privacy presents a viable path 

toward principled inference from privatized data releases, and shows great promise toward improved 

reproducibility, accountability, and public trust in modern data curation.

Keywords: statistical inference, unbiasedness, uncertainty quantification, total survey error, privacy-utility 

trade-off, invariants

Media Summary
When conducting statistical analysis using privacy-protected data, the transparency of the privacy mechanism 

is a crucial ingredient for trustworthy inferential conclusions.  The knowledge about the privacy mechanism 

enables accurate uncertainty quantification and ensures high statistical usability of the data product. This article 

discusses the key statistical considerations behind transparent privacy, which leads to improved reproducibility, 

accountability, and public trust. It weighs a few challenges to transparency that emerge from the adoption of 

differential privacy by the 2020 U.S. Decennial Census.

1. Introduction
The Decennial Census of the United States is a comprehensive tabulation of its residents. For over two 

centuries, the census data supplied benchmark information about the states and the country, helped guide 

policy decisions, and provided crucial data in many branches of the demographic, social, and political sciences. 

The census aims to truthfully and accurately document the presence of every individual in the United States. 

The fine granularity of the database, compounded by its massive volume, portrays American life in great detail.

The U. S. Census Bureau is bound by Title 13 of the United States Code to protect the privacy of individuals 

and businesses who participate in its surveys. These surveys contain centralized and high-quality information 

about the respondents. If disseminated without care, they might pose a threat to the respondents’ privacy. The 

Bureau implements protective measures to reduce the risk of inadvertently disclosing confidential information. 

The first publicly available documentation of these methods dates back to 1970 (McKenna, 2018). Until the 
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2010 Census, statistical disclosure limitation (SDL) mechanisms deployed by the Census Bureau relied to a 

large extent on table suppression and data swapping, occasionally supplemented by imputation and partially 

synthetic data. These techniques restricted the verbatim release of confidential information through the data 

products. However, they do not offer an exposition of privacy protection as a goal in itself. What does the SDL 

mechanism aim to achieve, and how do we know whether it is actually working? The answers to these 

questions are not definitive. In particular, the extent of an SDL mechanism’s intrusiveness on data usability is 

not measured and weighed against the extent of privacy protection it affords. We now understand that many 

traditional SDL techniques are not just ambiguous in definition, but defective in effect, for they can be 

invalidated by carefully designed attacks that leverage modern computational advancements and auxiliary 

sources of open access information (see, e.g.,  Dinur & Nissim, 2003; Sweeney, 2002). With the aid of publicly 

available data, the Census Bureau attempted a ‘reidentification’ attack on its own published 2010 Census 

tabulations, and was successful in faithfully reconstructing as much as 17% of the U.S. population, or 52 

million people at the level of individuals (Abowd, 2019; Hawes, 2020). These failures are a resounding 

rejection of the continued employment of traditional SDL methods. It is clear that we need alternative, and 

more reliable, privacy tools for the 2020 Census and beyond.

In pursuit of a modern paradigm for disclosure limitation, the Census Bureau endorsed differential privacy as 

the criterion to protect the public release of the 2020 Decennial Census data products. The Bureau openly 

engaged data users and sought constructive feedback when devising the new Disclosure Avoidance System 

(DAS). They launched a series of demonstration data product and codebase releases (U.S. Census Bureau, 

2020a), and presented its design processes at numerous academic and professional society meetings, including 

the Joint Statistical Meeting, the 2020 National Academies of Sciences, Engineering, and Medicine (NASEM) 

Committee on National Statistics (CNSTAT) Workshop, and the 2019 Harvard Data Science Institute 

Conference in which I participated as a discussant. Reactions to this change from the academic data user 

communities were a passionate mix. Some cheered for the innovation, while others worried about the practical 

impact on the usability of differentially privatized releases. In keeping up with the inquiries and criticisms, the 

Census Bureau assembled and published data-quality metrics that were assessed repeatedly as the design of the 

2020 DAS iterated (U.S. Census Bureau, 2020b). Through the process, the Bureau exhibited an unprecedented 

level of transparency and openness in conveying the design and the production of the novel disclosure control 

mechanism, publicizing the description of the TopDown Algorithm (Abowd et al., 2022) and the GitHub code 

base (2020 Census DAS Development Team, 2021). This knowledge makes a world of difference for census 

data users who need to analyze the privatized data releases and assess the validity and the quality of their work.

This article argues that transparent privacy enables principled statistical inference from privatized data 

releases. If a privacy mechanism is known, it can be incorporated as an integral part of a statistical model. Any 

additional uncertainty that the mechanism injects into the data can be accounted for properly. This is the most 

reliable way to ensure the correctness of the inferential claims produced from privatized data releases, when a 
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calculated loss of statistical efficiency is present. For this reason, the publication of the probabilistic design of 

the privacy mechanism is crucial to maintaining a high usability of the privatized data product.

2. Differential Privacy Enables Transparency
Part of what contributed to the failure of the traditional disclosure limitation methods is that their justification 

appeals to intuition and obscurity, rather than explicit rules. If the released data are masked, coarsened, or 

perturbed from the confidential data, it seems natural to conclude that they are less informative, and 

consequently more ‘private.’ Traditional disclosure limitation mechanisms are obscure, in the sense that their 

design details are rarely released. For swapping-based methods, not only are the swap rates omitted, the 

attributes that have been swapped are often not disclosed (Oganian & Karr, 2006). As a consequence, an 

ordinary data user would not have the necessary information to replicate the mechanism, nor to assess their 

performance in protecting privacy. The effectiveness of obscure privacy mechanisms is difficult to quantify.

For data analysts who utilize data releases under traditional SDL to perform statistical tasks, the opaqueness of 

the privacy mechanism poses an additional threat to the validity of the resulting inference. A privacy 

mechanism, be it suppressive, perturbative, or otherwise, works by processing raw data and modifying their 

values to something that may be different from what has been observed. In doing so, the mechanism injects 

additional uncertainty in the released data, weakening the amount of statistical information contained in them. 

Uncertainty per se is not a problem; if anything, the discipline of statistics devotes itself to the study of 

uncertainty quantification. However, in order to properly attribute uncertainty where it is due, some minimal 

knowledge about its generative mechanism must be known. If the design of the privacy mechanism is kept 

opaque, our knowledge would be insufficient for producing reliable uncertainty estimates. The analyst might 

have no choice but to ignore the privacy mechanism imposed on the data, and might arrive at erroneous 

statistical conclusions.

Differential privacy conceptualizes privacy as the probabilistic knowledge to distinguish the identity of one 

individual respondent in the data set. The privacy guarantee is stated with respect to a random mechanism that 

imposes the privacy protection. Definition 1 presents the classic and most widely endorsed notion called -

differential privacy:

Definition 1 ( -differential privacy; Dwork et al., 2006).  A mechanism  satisfies 
-differential privacy, if for every pair of databases  such that  and  differ by 

one record, and every measurable set of outputs , we have 

The positive quantity , called the privacy-loss budget (PLB), enables the tuning, evaluation, and comparison 

of different mechanisms, all according to a standardized scale. In (2.1), the probability  is taken with respect 

to the mechanism , not with respect to the data .
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As a formal approach to privacy, statistical disclosure limitation mechanisms compliant with differential 

privacy put forth two major advantages over their former counterparts. The first is provability, a mathematical 

formulation against which guarantees of privacy can be definitively verified as it is conceptualized. Definition 1

 puts forth a concrete standard about whether, and by how much, any proposed mechanism can be deemed 

differentially private, as the probabilistic property of the mechanism is entirely encapsulated by . As an 

example, we now understand that the classic randomized response mechanism (Warner, 1965), proposed 

decades before differential privacy, is in fact differentially private. Under randomized response, every 

respondent responds truthfully to a binary question with probability , and with a random answer otherwise. 

That the randomized response mechanism is -differentially private follows if  is chosen such that 

 (see, e.g. (Dwork & Roth, 2014, Theorem 3.14)). With provability, anyone can design new 

mechanisms with privacy guarantees under an explicit rule, as well as to verify whether a publicized privacy 

mechanism lives up to its guarantee.

The second major advantage of differential privacy, which this article underscores, is transparency. Differential 

privacy allows for the full, public specification of the privacy mechanism without sabotaging the privacy 

guarantee. The data curator has the freedom to disseminate the design of the mechanism, allowing the data 

users to utilize it and to critique it, without compromising the effectiveness of the privacy protection. The 

concept of transparency that concerns this article will be made precise in Section 4. As a example, below is one 

of the earliest proposed mechanisms that satisfies differential privacy:

Definition 2 (Laplace mechanism; Dwork et al., 2006).  Given a confidential database 
, a deterministic query function  and its global sensitivity , the -
differentially private Laplace mechanism is 

where ’s are real-valued i.i.d. random variables with  and probability density 
function 

The omitted proportionality constant in (2.2) is equal to , ensuring that the density  integrates to 

one. The global sensitivity  measures the maximal extent to which the deterministic query function 

changes in response to the perturbation of one record in the database. For counting queries operating on binary 

databases, such as population counts,  To note is that in Definition 2, both the deterministic query 

 and the probability distribution of the noise terms ’s are fully known. Anyone can implement the privacy 

algorithm on a database of the same form as .

We note that differentially private mechanisms compose their privacy losses nicely. At a basic level, two 

separately released differentially private data products, incurring PLBs of  and  respectively, incur no more 

than a total PLB of  when combined (Dwork & Roth, 2014, Theorem 3.14). Superior composition, 
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reflecting a more efficient use of PLBs, can be achieved with the clever design of privacy mechanisms. The 

composition property provides assurance to the data curator that when releasing multiple data products over 

time, the total privacy loss can be controlled and budgeted ahead of time.

The preliminary versions of the 2020 Census DAS utilizes the integer counterpart to the Laplace mechanism, 

called the double geometric mechanism (Fioretto et al., 2021; Ghosh et al., 2012). The mechanism possesses 

the same additive form as the Laplace mechanism, but instead of real-valued noise ’s, it uses integer-valued 

ones whose probability mass function has the same form as (2.2) with the proportionality constant equal to 

. The production implementation of the DAS, used for the P.L. 94-171 public release 

(U.S. Census Bureau, 2021a) and the 2021-06-08 vintage demonstration files (Van Riper et al., 2020), appeals 

to a variant privacy definition called the zero-concentrated differential privacy (Dwork & Rothblum, 2016).1 It 

employs additive noise with discrete Gaussian distributions according to a detailed PLB schedule (U.S. Census 

Bureau, 2021c). While all mechanisms discussed above employ additive errors, differential privacy 

mechanisms in general need not be additive. Non-additive examples commonly used in the private 

computation of complex queries include the exponential mechanism (McSherry & Talwar, 2007), objective 

perturbation (Kifer et al., 2012), and the -norm gradient mechanism (Reimherr & Awan, 2019). In what 

follows, we elaborate on the importance of transparent privacy from the statistical point of view.

3. What Can Go Wrong With Obscure Privacy
Data privatization constitutes a phase in data processing which succeeds data collection and precedes data 

release. When conducting statistical analysis on processed data, misleading answers await if the analyst ignores 

the phases of data processing and the consequences they impose.

We use an example of simple linear regression to illustrate how obscure privacy can be misleading. Regression 

models occupy a central role in many statistical analysis routines, for they can be thought of as a first-order 

approximation to any functional relationship between two or more quantities. Let  be a pair of 

quantities measured across a collection of geographic regions indexed by . Examples of  and  

may be counts of population of certain demographic characteristics within each census block of a state, 

households of certain types, economic characteristics of the region (businesses, revenue, and taxation; see, e.g., 

Barrientos et al., 2021), and so on. Suppose the familiar simple regression model is applied: 

 where the ’s are independently and identically distributed idiosyncratic errors with mean zero and variance 

, typically following the normal distribution. Usual estimation techniques for  and , such as ordinary 

least squares or maximum likelihood, produce unbiased point estimators. For the slope, 

 where , and for the intercept, 

 where , where expectations are taken with respect to variabilities in the error 

Ui
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K
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terms. Both estimators also enjoy consistency when the regressor ’s are random, that is,  and 

, indicating convergence in probability as the sample size  approaches infinity. The consistency of 

 is reasonably robust against mild heteroskedasticity of the idiosyncratic errors.

Since  and  contain information about persons and businesses that may be deemed confidential, suppose 

they are privatized before release using standard additive differential privacy mechanisms. Their privatized 

versions  are respectively 

 The ’s and ’s can be chosen according to the Laplace mechanism or the double geometric mechanism 

following Definition 2, with suitable scale parameters such that  are compliant with -differential 

privacy, and accounting for the sequential composition of the ’s and ’s. We denote the variances of  and 

 as  and , respectively.2 As the privacy budget allocated to either statistic decreases, the privacy error 

variance increases and more privacy is achieved, and vice versa.

Suppose the analyst is supplied the privatized statistics , but is not told how they are generated based 

on the confidential statistics . That is, (3.2) is entirely unknown to her. In this situation, there is no 

obvious way for her to proceed, other than to ignore the privacy mechanism and run the regression analysis by 

treating the privatized  as if they’re the confidential values. If so, the analyst would effectively perform 

parameter estimation for a different, naïve linear model 

Unfortunately, no matter which computational procedure one uses, the point estimates obtained from fitting 

(3.3) are no longer unbiased nor consistent for  and  as in the original model of (3.1). Both naïve 

estimators, call them  and , are complex functions that convolute the confidential data, idiosyncratic errors, 

and privacy errors. When the regressor ’s are random realizations from an underlying infinite population, the 

bias inherent to the naïve estimators does not diminish even if the sample size approaches infinity. More 

precisely, we have that the naïve slope estimator 

 and the naïve intercept estimator 

 where  and  are the population-level mean and variance of  for which the observed sample is 

representative. The ratio  displays the extent of inconsistency of  as a function of the 

population variance and the privacy error variance of . We see that if the independent variable is not already 

centralized,  exhibits a bias whose magnitude is influenced by both the average magnitude of , as well as 

xi →β̂1 β1
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the amount of privacy protection for . In addition, the residual variance from the naïve linear model (3.3) is 

also inflated, with 

which is strictly larger than , the usual residual variance from the correct linear model (3.1). If the 

independent variable ’s are treated as fixed instead, an exact finite-sample characterization of the naïve 

estimators  and  are difficult to obtain. Appendix A presents the distribution limits for the slope estimator 

as a function of the scales of the privacy errors and the regression errors, and showcases how the coverage 

probabilities deteriorate as the privacy errors increase.

We use a small sample simulation study ( ) to illustrate the pitfall with obscure privacy. Assume that the 

confidential data follows the generative process of (3.1), with  i.i.d., , and the true 

parameter values . The privatized data  are subsequently generated according to 

the additive privacy mechanism of (3.2), where , with a PLB of . The three 

panels of Figure 1 depict different statistical inference—both right and wrong types—that correspond to three 

scenarios in this example. When no privacy protection is enforced, a 95% confidence ellipse for  from 

the simple linear regression should cover the true parameter values (represented by the orange square) at 

approximately the nominal coverage rate, a high probability of 95%. The left panel displays one such 

confidence ellipse in blue. When privacy protection is in place, directly fitting the linear regression model on 

 may result in misleading inference, as can be seen from the naïve 95% confidence ellipses (gray) in the 

middle panel, all derived from privatized versions of the same confidential data set, repeatedly miss their mark 

as they rarely cover the true value. We witness the biasing behavior precisely as established: the slope  is 

underestimated, displaying a systematic shrinking toward zero, whereas the true value of  is overestimated, 

with  and . In contrast, the green ellipses in the right panel, each representing an 

approximate 95% confidence region, are based on the correct analysis on privatized data accounting for the 

privacy mechanism (to be discussed in Section 4). They better recover the location of the true parameters, and 

display larger associated inferential uncertainty.

x

V ∣ =(y~ x~) σ +2 β σ +1
2

u
2 σ ,    (3.5)v
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Figure 1. 95% joint confidence regions for  from linear regression (3.1). Left: original data  simulated according to 

(3.1). Middle: naïve linear regression (3.3) on  pairs of simulated privatized data  from the Laplace mechanism (3.2) 

with PLB of . Right: the correct model following (4.2) implemented using Monte Carlo expectation maximization on the 

same sets of private data. Concentration ellipses are large-sample approximate 95% confidence regions based on estimated Fisher 

information at the maximum likelihood estimate. The orange square represents the ground truth .

The troubling consequence of ignoring the privacy mechanism is not new to statisticians. The naïve regression 

analysis of privatized data generalizes a well-known scenario in the measurement error literature, called the 

classic measurement error model. The notable biasing effect on the naïve estimator  created by the additive 

noise (3.2) in the independent variable  is termed attenuation. The bias causes a “double whammy” (Carroll 

et al., 2006, Chapter 15) on the quality of the resulting inference, because one is misled in terms of both the 

location of the true parameter, and the extent of uncertainty associated with the estimators, as seen from the 

erroneous coverage probability within its asymptotic sampling distributional limits. In linear models, additive 

measurement errors in the dependent variable  is generally considered less damaging, because if the errors are 

independent, unbiased, and present in the dependent variable only, the model fit remains unbiased (Carroll et 

al., 2006, Chapter 15), hence such errors are often ignored or treated as a component to the idiosyncratic 

regression errors. However, they would still increase the variability of the fitted model and decrease the 

statistical power in detecting an otherwise significant effect. Consequently, they may still negatively affect the 

quality of any naïve model fitting on privatized data, both by changing the effective nominal coverage rate of 

the large sample distribution limits (see Appendix A for details), and by increasing uncertainty of the fitted 

model according to (3.5).

From the additive mechanism in Definition 2, we see that the noise term  is a symmetric, zero-mean random 

variable. This means that the privacy mechanism is unbiased for its underlying query: it has the exact same 

chance to inflate or deflate it in either direction by the same magnitude. How can an unbiased privatization 

algorithm, followed by an unbiased statistical procedure (i.e., the simple linear regression), results in biased 

statistical estimates? The issue is that while the privatized data  is unbiased for the confidential data , if the 

estimator we use is a nonlinear function of , it may no longer retain unbiasedness if  were perturbed. The 

regression coefficients  and  are nonlinear estimators. Specifically,  is a ratio estimator, and  depends 

on  as a building block. In general, the validity of ratio estimators are particularly susceptible to minor 

instabilities in its denominator. Replacing confidential statistics with their unbiased privatized releases may not 

be an innocent move, if the downstream analysis calls for nonlinear estimators that cannot preserve 

unbiasedness.

In the universe of statistical analysis, nonlinear estimators are the rule, not the exception. Many descriptive and 

summary statistics involve nonlinear operations such as squaring or dividing—think variances, proportions, 

and other complex indices3—which don’t fare well with additive noise. Ratio estimators, or estimators that 

involve random quantities in their denominators, can suffer from high variability if the randomness is high. 
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Therefore, many important use cases of the census releases, as well as the assessment of the impact due to 

privacy, could benefit from additional uncertainty quantification. As an example, Asquith et al. (2022) evaluate 

a preliminary version of the 2020 Census DAS using a set of segregation metrics as the benchmark statistics 

and compare its effect when applied to the 1940 full-count census microdata. One of the evaluation metrics is 

the index of dissimilarity per county (Iceland et al., 2002): 

 where  and  are respectively the White and the African American populations of tract  of the county, and 

 and  those of the entire county. All of these quantities are subject to privacy protection, and one run of 

the DAS creates a version of , each infused with Laplace-like noise.

If we were to repeatedly create privatized demonstration data sets from the DAS, and calculate the dissimilarity 

index each time by naïvely replacing all quantities in (3.6) with their privatized counterparts, we will witness 

variability in the value . Since  is a ratio estimator, its value may exhibit a large departure from the 

confidential true value, particularly when the denominator is small, such as when a county has a small 

population, or is predominantly White or non-White. Since every DAS output is uniquely realized by a single 

draw from its probabilistic privacy mechanism, the value  calculated based on a particular run of the DAS 

will exhibit a difference from its confidential (or true) value.4 The difference will be unknown, but can be 

described by the known properties of the privacy mechanism. It is important to recognize the probabilistic 

nature of the statistics calculated from privatized data, and interpret them alongside appropriate uncertainty 

quantification, which itself is a reflection of data quality.

Privacy adds an extra layer of uncertainty to the generative process of the published data, just as any data-

processing procedures such as cleaning, smoothing, or missing data imputation. We risk obtaining misguided 

inference whenever blindly fitting a favorite confidential data model on privatized data without acknowledging 

the privatization process, for the same reason we would be misguided by not accounting for the effect of data 

processing. To better understand the inferential implication of privacy and obtain utility-oriented assessments, 

privacy shall be viewed as a controllable source of total survey error, an approach that is again made feasible 

by the transparency of the privatization procedure. We return to this subject in Section 5.

4. Principled Analysis With Transparent Privacy
The misleading analysis presented in Section 3 is not the fault of differential privacy, nor of linear regression or 

other means of statistical modeling. Rather, obscure privacy mechanisms prevent us from performing the right 

analysis. Any statistical model, however adequate in describing the probabilistic regularities in the confidential 

data, will generally be inadequate when naïvely applied to the privatized data.

d = − , (3.6)2
1 ∑

i=1
n

∣
∣
wcty

wi

bcty

bi

∣
∣

wi bi i

wcty bcty

{ , , , }w~i b
~
i w
~
cty b
~
cty

d d

d



Harvard Data Science Review • Special Issue 2: Di�erential Privacy for the 2020 U.S. Census Transparent Privacy is Principled Privacy

11

4.1. Accounting for the Privacy Mechanism

To correctly account for the privacy mechanism, statistical models designed for confidential data need to be 

augmented to include the additional layer of uncertainty due to privacy. In our example, the simple linear 

model of (3.1) is the true generative model for the confidential statistics . Together with the privacy 

mechanism in (3.2), the implied true generative model for the privatized statistics  can be written as 

 where  are additive privacy errors and  the idiosyncratic regression error. Thus, with the original linear 

model (3.1) being the correct model for , it follows that the augmented model (4.1) is the correct model 

for describing the stochastic relationship between . On the other hand, unless all ’s and ’s are exactly 

zero, that is, no privacy protection is effectively performed for both  and , the naïve model in (3.3) is 

erroneous and incommensurable with the augmented model in (4.1).

If a statistical model is of high quality, or more precisely self-efficient (Meng, 1994; Xie & Meng, 2017),5 its 

inference based on the privatized data should typically bear more uncertainty compared to that based on the 

confidential data. The increase in uncertainty is attributable to the privacy mechanism. Therefore, uncertainty 

quantification is of particular importance when it comes to analyzing privatized data. But drawing statistically 

valid inference from privatized data is not as simple as increasing the nominal coverage probability of 

confidence or credible regions from the old analysis. As we have seen, fitting the naïve linear model on 

differentially privatized data creates a ‘double whammy’ due to both a biased estimator and incorrectly 

quantified estimation uncertainty. The right analysis hinges on incorporating the probabilistic privacy 

mechanism into the model itself. This ensures that we capture uncertainty stemming from any potential 

systematic bias displayed by the estimator due to noise injection, as well as a sheer loss of precision due to 

diminished informativeness of the data.

For data users who currently employ analysis protocols designed without private data in mind, this suggests 

that modification needs to be made to their favorite tools. That sounds like an incredibly daunting task. 

However, on a conceptual level, what needs to be done is quite simple. We present a general recipe for the vast 

class of statistical methods with either a likelihood or a Bayesian justification.

Let  denote the estimand of interest. For randomization-based inference common to the literatures of survey 

and experimental design, this estimand may be expressed as a function of the confidential database: 

. In model-based inference,  may be the finite- or infinite-dimensional parameter that governs the distribution 

of . Let  be the original likelihood for  based on the confidential data , representing the currently 

employed, or ideal, statistical model for analyzing data that is not subject to privacy protection. Choices for  

and  are both made by the data analyst.
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Let  be the conditional probability distribution of the privatized data  given , as induced by the 

privacy mechanism chosen by the data curator. The subscript  encompasses all tuning parameters of the 

mechanism, as well as any auxiliary information that is used during the privatization process. Note that the 

mechanism  need not be a differentially private mechanism: it may be a traditional SDL mechanism, or any 

other mechanism that the data curator chooses to impose on the confidential data, probabilistic or otherwise. As 

an example,  may stand for the class of swapping methods, in which case  encodes the swap rates and the 

list of the variables being swapped. If  is induced by the Laplace mechanism in Definition 2, then  stands 

for the class of product Laplace densities centered at , and  its scale parameter which, if set to , 

qualifies  as an -differentially private mechanism.

Definition 3 (Transparent privacy).  A privacy mechanism is said to be transparent if 
, the conditional probability distribution it induces given the confidential data, is known to 
the user of the privatized data, including both the functional form of  and the specific 
value of  employed.

When the privacy mechanism is transparent, we can write down the observed, or marginal, likelihood function 

for  based on the observed  (Williams & Mcsherry, 2010): 

 with the notation  highlighting the fact that it is a weighted version of the original likelihood  according to 

the privacy mechanism . The integral expression of (4.2) is reminiscent of the missing data formulation for 

parameter estimation (Little & Rubin, 2014). The observed data is the privatized data , and the missing data is 

the confidential data , with the two of them associated by the privacy mechanism  analogous to the 

missingness mechanism. All information that can be objectively learned about the parameter of interest  has 

to be based on the observed data alone, averaging out the uncertainties in the missing data. In the regression 

example, the observed likelihood is precisely the joint probability distribution of  according to the 

implied true model (4.1), governed by the parameters  and , with sampling variability derived from that of 

the idiosyncratic errors  as well as privacy errors  and . All modes of statistical inference congruent with 

the original data likelihood , including frequentist procedures that can be embedded into  as well as 

Bayesian models based on , would have adequately accounted for the privacy mechanism by respecting (4.2). 

Furthermore, for a Bayesian analyst who employs a prior distribution for , denoted as , her posterior 

distribution now becomes 

 where the proportionality constant , free of the parameter , ensures that the posterior integrates to one.

4.2. The Necessity of Transparent Privacy

The marginal likelihood for  in (4.2) highlights why transparency allows data users to achieve inferential 

validity for their question of interest from privatized data. To compute quantities based on this likelihood, one 
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must know not only the original statistical model  but also the privacy mechanism , including its parameter 

. We formalize the crucial importance of transparent privacy in ensuring inferential validity.

Theorem 1 (Necessity of transparent privacy).  Let  be a continuous parameter and 
 a bounded Borel-measureable function for which inference is sought. The observed 

data  is privatized with the mechanism , and the analyst supposes the mechanism 
to be . Then for all likelihood specifications  with base measure , observed data  
and choice of , the analyst recovers the correct posterior expectation for , i.e. 

 if only if  for -almost all .

Proof. The ’if’ part of the theorem is trivial. For the ‘only if’ part, note that (4.4) is the same as the requirement 

of weak equivalence between the true posterior  in (4.3) and the analyst’s supposed posterior: 

where the proportionality constant , free of , ensures that the density  integrates to one. This in turn 

requires for any given  and the constant , 

 for  almost everywhere, where the expectation above is taken with respect to the likelihood . Since  

is chosen by the analyst but  is not, this implies that she must also choose  so that 

 for all  except on a set of measure zero relative to . Furthermore, since 

 for every , we must have , thus  as desired.

What Theorem 1 says is that, if we conceive the statistical validity of an analysis as its ability to yield the same 

expected answer as that implied by the correct model (that is, by properly accounting for the privatization 

mechanism) for a wide range of questions (reflected by the free choice of ), then the only way to ensure 

statistical validity is to grant the analyst full knowledge of the probabilistic characteristics of the privatization 

mechanism.

As discussed in Section 1, traditional SDL techniques such as suppression, deidentification, and swapping rely 

fundamentally on procedural secrecy. While each of these methods admits a precise characterization , such 

information—in particular, the production settings of —is intentionally kept out of public view. The lack of 

transparency with traditional SDL mechanisms hinders the possibility to draw principled and statistically valid 

inference from data products they produce.

Scholars in the SDL literature advocate for transparent privacy for more than one good reason. With a 

rearrangement of terms, the posterior in (4.3) can also be written as (details in Appendix B) 
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where  is the posterior model for the confidential , and  the posterior predictive 

distribution of the confidential  based on the privatized , again with its dependence on the privacy 

mechanism  highlighted in the subscript. This representation of the posterior resembles the theory of 

multiple imputation (Rubin, 1996), which lies at the theoretical foundation of the synthetic data approach to 

SDL (Raghunathan et al., 2003; Rubin, 1993). What (4.5) illustrates is an alternative viewpoint on private data 

analysis. The correct Bayesian analysis can be constructed as a mixture of naïve analyses based on the agent’s 

best knowledge of the confidential data, where this best knowledge is instructed by the privatized data, the 

prior, as well as the transparent privatization procedure. Under this view, the transparency of the privacy 

mechanism again becomes a crucial ingredient to the congeniality (Meng, 1994; Xie & Meng, 2017) between 

the imputer’s model and the analyst’s model, ensuring the quality of inference the analyst can obtain. Karr and 

Reiter (2014, p.284) call the Bayesian formulation (4.5) the “SDL of the future,” emphasizing the 

insurmountable computational challenge the analyst would otherwise need to face without knowing the term 

. With transparency of  at hand, the future is in sight.

Transparent privacy mechanisms merit another important quality, namely parameter distinctiveness, or a priori 

parameter independence, from both the generative model of the true confidential data as well as any descriptive 

model the analyst wishes to impose on it. Parameter distinctiveness always holds since the entire privacy 

mechanism, all within control of the curator, is fully announced hence has no hidden dependence on the 

unknown inferential parameter  through means beyond the confidential data . In the missing data literature, 

parameter distinctiveness is a prerequisite of the missing data mechanism to give way for simplifying 

assumptions, such as missing completely at random (MCAR) and missing at random (MAR; Rubin, 1976), 

allowing for the missingness model to sever any dependence on the unobserved data.6 In the privacy context, 

parameter distinctiveness ensures that the privacy mechanism does not interact with any modeling decision 

imposed on the confidential data. It is the reason why the true observed likelihood  in (4.2) involves merely 

two terms,  and , whose product constitutes the implied joint model for the complete data  for every 

choice of . This may result in potentially vast simplification in many cases of downstream analysis. The 

practical benefit of parameter distinctiveness of the privacy mechanism is predicated on its transparency, for 

unless a mechanism is known (Abowd & Schmutte, 2016), none of its properties can be verified nor put into 

action with confidence.

While conceptually simple, carrying through the correct calculation can be computationally demanding. The 

integral in (4.2) may easily become intractable if the statistical model is complex, if the confidential data is 

high-dimensional (as is the case with the census tabulations), or if a combination of both holds true. The 

challenge is amplified by the fact that the two components of the integral are generally not in conjugate forms. 

While the privacy mechanism  is determined by the data curator, the statistical model  is chosen by the 

data analyst, and the two parties typically do not consult each other in making their respective choices. Even 

for the simplest models, such as the running linear regression example, we cannot expect (4.2) to possess an 

analytical expression.
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To answer to the demand for statistically valid inference procedures based on privatized data, Gong (2019) 

discusses two sets of computational frameworks to handle independently and arbitrarily specified privacy 

mechanisms and statistical models. For exact likelihood inference, the integration in (4.2) can be performed 

using Monte Carlo expectation maximization (MCEM), designed for the presence of latent variables or 

partially missing data and equipped with a general-purpose importance sampling strategy at its core. Exact 

Bayesian inference according to (4.3) can be achieved with, somewhat surprisingly, an approximate Bayesian 

computation (ABC) algorithm. The tuning parameters of the ABC algorithm usually control the level of 

approximation in exchange for Monte Carlo efficiency, or computational feasibility in complex models. In the 

case of privacy, the tuning parameters are set to reflect the privacy mechanism, in such a way that the 

algorithm outputs exact draws from the desired Bayesian posterior for any proper prior specification. I have 

explained this phenomenon with a catchy phrase: approximate computation on exact data is exact computation 

on approximate data. Private data is approximate data, and its inexact nature can be leveraged to our benefit, if 

the privatization procedure becomes correctly aligned with the necessary approximation that brings 

computational feasibility.

To continue the illustration with our running example, the MCEM algorithm is implemented to draw maximum 

likelihood inference for the ’s using privatized data. The right panel of Figure 1 depicts 95% approximate 

confidence regions (green) for the regression coefficients based on simulated privatized data sets  of size 

. The confidence ellipses are derived using a normal approximation to the likelihood at the maximum 

likelihood estimate, with covariance equal to the inverse observed Fisher information. Details of the algorithm 

can be found in Appendix C. We see that the actual inferential uncertainty for both  and  are inflated 

compared to inference on confidential data as in the left panel, but in contrast to the naïve analysis in the 

middle panel, most of these green ellipses cover the ground truth despite a loss of precision. The inference they 

represent adequately reflects the amount of uncertainty present in the privatized data.

5. Privacy as a Transparent Source of Total Survey Error
In introductory probability and survey sampling classrooms, the concept of a census is frequently invoked as a 

pedagogical reference, often with the U.S. Decennial Census as a prototype. The teacher would contrast 

statistical inference from a probabilistic sampling scheme with directly observing a quantity from the census, 

regarding the latter as the gold standard, if not the ground truth. This narrative may have left many quantitative 

researchers with the impression that the census is always comprehensive and accurate. The reality, however, 

invariably departs from this ideal. The census is a survey, and is subject to many kinds of errors and 

uncertainties, as are all surveys. As do coverage bias, nonresponse, erroneous and edited inputs, statistical 

disclosure limitation introduces a source of uncertainty into the survey, albeit unique in nature.

To assess the quality of the end data product, and to improve it to the extent possible, we construe privacy as 

one of the several interrelated contributors to total survey error (TSE; Groves, 2005). Errors due to privacy 

make up a source of nonsampling survey error (Biemer, 2010). Additive mechanisms create privacy errors that 

β

,(x~ y~)
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bear a structural resemblance with measurement errors (Reiter, 2019). What makes privacy errors easier to deal 

with than other sources of survey error, at least theoretically, is that their generative process is verifiable and 

manipulable. Under central models of differential privacy, the process is within the control of the curator, and 

under local models (i.e., the responses are privatized as they leave the respondent) it is defined by explicit 

protocols. Transparency brings several notable advantages to the game. Privacy errors are known to enjoy 

desirable properties such as simple and tractable probability distributions, statistical independence among the 

error terms, as well as between the errors and the underlying confidential data (i.e., parameter distinctiveness). 

These properties may be assumptions for measurement errors, but they are known to hold true for privacy 

errors. In the classic measurement error setting, the error variance needs to be estimated. In contrast, the 

theoretical variance of all the additive privacy mechanisms are known and public. The structural similarity 

between privacy errors and measurement errors allows for the straightforward adaptation of existing tools for 

measurement error modeling, including regression calibration and simulation extrapolation, which perform 

well for a wide class of generalized linear models. Other approaches that aim to remedy the effect of both 

missing data and measurement errors can be modified to include privacy errors (Blackwell et al., 2017a; 

Blackwell et al., 2017b; Kim et al., 2014; Kim et al., 2015). Most recently, steps are being taken to develop 

methods for direct bias correction in the regression context (Evans & King, n.d.).

Figure 2. 95% joint confidence regions for  derived from the same set of linear regression analyses on privatized data as 

depicted in Figure 1, but with , a four-fold privacy-loss budget increase. While the correct, Monte Carlo expectation 

maximization–based analysis (right) remains valid, the accuracy of the naïve analysis (left) is greatly improved (compared to the 

middle panel of Figure 1), at the expense of a weaker privacy

guarantee from the data.
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We emphasize that the transparency of the privacy mechanism is crucial to the understanding, quantification, 

and control of its impact on the quality of the resulting data product from a total survey of error approach. As 

noted in Karr (2017), traditional disclosure limitation methods often passively interact with other data-

processing and error-reduction procedures commonly applied to surveys, and the effect of such interactions is 

often subtle. Due to the artificial nature of all privacy mechanisms, any interaction between the privacy errors 

can be explicitly investigated and quantified, either theoretically or via simulation, strengthening the quality of 

the end data product by taking out the guesswork. It is particularly convenient that the mathematical 

formulation of differential privacy employs the concept of a privacy loss budget, which acts as a fine-grained 

tuning parameter for the performance of the procedure. The framework is suited for integration with the total 

budget concept and the error decomposition approach to understanding the effect of individual error 

constituents. The price we pay for privacy can be regarded as a trade-off with the total utility, defined through 

concrete quality metrics on the resulting data product—for example, the minimal mean squared error 

achievable by an optimal survey design, or the accuracy on the output of certain routine data analysis protocols.

An increase in the PLB will in general improve the quality of the data product. But the impact on data quality 

exerted by a particular choice of PLB should be understood within the specific context of application. When 

the important use cases and accuracy targets are identified, transparency allows for the setting of privacy 

parameters to meet these targets via theoretical or simulated explorations, as early as during the design phase of 

the survey. As an illustration, Figure 2 repeats the same regression analysis as in Figure 1, but with , a 

PLB that is four times larger. While the correct, MCEM-based analysis remains valid, the naïve analysis has 

greatly improved its performance, as seen from the confidence ellipses in the left panel with comparable 

coverage compared to the right panel (correct analysis with ), which is better than the middle panel of 

Figure 1 (naïve analysis with ). Through six iterations of the 2010 Demonstration Data Files, the 

Census Bureau increased the PLB from , with  for persons and  for housing units (U.S. Census 

Bureau, 2019), to an equivalent of  for the production setting of the P.L. 94-171 files 

(U.S. Census Bureau, 2021c).7 Since the PLB is a probabilistic bound on the log scale, a more than three-fold 

increase substantially weakened the privacy guarantee, but it allowed the bureau to improve and meet the 

various accuracy targets identified by the data user communities (U.S. Census Bureau, 2021b).

When privatization is a transparent procedure, it does not merely add to the total error of an otherwise 

confidential survey. We have reasons to hope that it may help reduce the error via means of human psychology. 

A primary cause of inaccuracy in the census is nonresponse and imperfect coverage, in part having to do with 

insufficient public trust, both in the privacy protection of disseminated data products and in the Census 

Bureau’s ability to maintain confidentiality of sensitive information (boyd & Sarathy, 2022; Singer et al., 1993; 

Sullivan, 2020). Individual data contributors value their privacy. Through their data sharing (or rather, un-

sharing) decisions, they exhibit a clear preference for privacy, which has both been theoretically studied 

(Ghosh & Roth, 2015;  Nissim et al., 2012)and empirically measured (Acquisti et al., 2013). To the privacy-

conscious data contributor, transparent privacy offers the certainty of knowing that our information is protected 
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in an explicit and provable way that is vetted by communities of interested data users. In addition, transparent 

privacy enables a quantitative description of how the information from each data contributor supports fair and 

accurate policy decisions, which directly affect the welfare of individual respondents. Even a small progress 

toward instilling confidence and encouraging participation can reduce the potentially immense cost due to 

systematic nonresponse bias, and enhance the quality of the survey (Meng, 2018).

The algorithmic construction of differential privacy and the theoretical explorations of total survey error 

creates a promising intersection. We hope to see synergistic methodological developments to serve the dual 

purpose of efficient privacy protection and survey quality optimization. I will briefly discuss one such 

direction. Discussing TSE-aware SDL, Karr (2017) advocates that when additive privacy mechanisms are 

employed, the optimal choice of privacy error covariance should accord to the measurement error covariance. 

The resulting data release demonstrates superior utility in terms of closeness to the confidential data 

distribution in the sense of minimal Kullbeck-Leibler divergence. This proposal, when accepted into the 

differential privacy framework, requires generalizing the vanilla algorithms to produce correlated noise while 

preserving the privacy guarantee. Differential privacy researchers have looked in this direction and offered 

tools adaptable to this purpose. For example, Nikolov et al. (2013) propose a correlated Gaussian mechanism 

for linear queries, and demonstrate that it is an optimal mechanism among -differentially private 

mechanisms in terms of minimizing the mean squared error of the data product. A privacy mechanism 

structurally designed to express the theory of survey error minimization paves the way for optimized usability 

of the end data product.

6. The Quest for Full Transparency: Are We There Yet?
The collection of economic and social data is a widely practiced tradition in many civilizations, which traces 

back hundreds if not thousands of years. It was not until the latter part of the 20th century, however, that the 

need to defend individuals’ confidentiality became recognized as a worthy scholarly pursuit (Oberski & 

Kreuter, 2020). Despite privacy being a youthful subject, we have come a long way in a mere couple of 

decades to advance the art and the science of privacy protection. The progress was driven by a series of 

embarrassments (some mentioned in Section 1), an awareness shared by major data curators including official 

statistics agencies, corporations, and research institutions, and most importantly the hard work of computer 

scientists and statisticians who keep inventing new techniques to replace the old. Transparent privacy is a 

significant milestone in this progress, a gift bestowed upon us by the continued advancement in privacy 

research. However, a perpetually curious researcher still must ask the ungrateful question: is this transparency 

all we can ask for?

Just as some gifts are more practical than others, some versions of transparent privacy are more usable than 

others. An example of transparent privacy that can be difficult to work with occurs when constraints—

including invariants, nonnegativity, integer characteristics, and structural consistencies— must be 

simultaneously imposed on the differentially private queries.

ϵ, δ( )
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Invariants are a set of exact statistics calculated based on the confidential microdata (Abowd et al., 2022; 

Ashmead et al., 2019). Some invariants are mandated, in the sense that all versions of the privatized data that 

the curator can release must accord to these values. Invariants represent use cases for which a precise 

enumeration is crucial. For example, the total population of each state, which serves as the basis for the 

allocation of House seats, must be reported exactly as enumerated as required by the U.S. Constitution.

What information is deemed invariant, and what characteristics of the confidential data should form constraints 

on the privatized data are ultimately a policy decision. However, constraints don’t mingle with classical 

differential privacy in a straightforward manner. Indeed, if a query has unbiased random noise added to it, there 

is no guarantee that it still possesses the same characteristics as does the noiseless version. The task of ensuring 

privatized census data releases to be constraint-complaint is performed by the TopDown Algorithm (Abowd et 

al., 2022). The algorithm consists of two phases. During the measurement phase, differentially private noisy 

measurements, which are counts infused with unbiased discrete Gaussian noises, are generated for each 

geographic level. During the estimation phase, the algorithm employs nonnegative  optimization followed 

by  controlled rounding, to ensure that the output consists of only nonnegative integers while satisfying all 

desired constraints. It has been recognized that optimization-based postprocessing can create unexpected 

anomalies in the released tabulations, namely systematic positive biases for smaller counts and negative biases 

for larger counts, at a magnitude that tends to overwhelm the amount of inaccuracy due to privacy alone 

(Devine et al., 2020; Zhu et al., 2021).

Due to the sheer size of the optimization problem, the statistical properties of its output do not succumb easily 

to theoretical explorations. However, the observed adverse effects of such processing should not strike us as 

unanticipated. Projective optimizations, be they  or , are essentially regression adjustments on a 

collection of data points. The departures that the resulting values exhibit in the direction opposite to the 

original values is a manifestation of the Galtonian phenomenon of regression toward the mean  (Stigler, 2016). 

Furthermore, whenever an unbiased and unbounded estimator is a posteriori confined to a subdomain (the 

nonnegative integers), the unbiasedness property it once enjoys may no longer hold (Berger, 1990).

Note that an optimization algorithm that imposes invariants can still be procedurally transparent. The design of 

the TopDown Algorithm is documented in the Census Bureau’s publication (Abowd et al., 2022), accompanied 

by a suite of demonstration products and the GitHub codebase (2020 Census DAS Development Team, 2021). 

However, mere procedural transparency may not be good enough. In summary of the NASEM CNSTAT 

workshop dedicated to the assessment of the 2020 Census DAS, Hotz and Salvo (2022) note that 

postprocessing of privatized data can be particularly difficult to model statistically. This is because the 

optimization imposes an extremely complex, indeed data-dependent, function to the confidential data (Gong & 

Meng, 2020). As a result, the distributional description of the overall algorithm (including postprocessing), 

denoted as  in this article, is difficult to characterize. One might still be able to draw limited inferential 

conclusions by invoking certain approximate or robustness arguments (see e.g. Avella-Medina, 2021; 
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Dimitrakakis et al., 2014; Dwork & Lei, 2009). However, if the statistical properties of the end data release 

cannot be simply described or replicated on an ordinary personal computer, it sets back the transparency 

brought forth by the differentially private noise-infusion mechanism, and hinders a typical end user’s ability to 

carry out the principled analysis according to (4.2), (4.3), or (4.5), as Section 4 outlines.

Nevertheless, procedural transparency is a promising step toward the full transparency that is needed to support 

principled statistical inference. Through the design phase of the 2020 DAS for the P.L. 94-171 data products, 

the Census Bureau released a total of six rounds of demonstration data files in the form of privacy-protect 

microdata files (PPMFs). The PPMFs enabled community assessments on the DAS performance, including its 

accuracy targets, and to provide feedback to the Census Bureau for future improvement. These demonstration 

data are a crucial source of information for the data-user communities, and have supported research on the 

impact of differential privacy as well as postprocessing in topics such as small area population (Swanson et al., 

2021; Swanson & Cossman, 2021), tribal nations (National Congress of American Indians, 2021), redistricting 

and voting rights measures (Cohen et al., 2022; Kenny et al., 2021).

On August 12, 2021, a group of privacy researchers signed a letter addressed to Dr. Ron Jarmin, Acting 

Director of the United States Census Bureau, to request the release of the noisy measurement files that 

accompanied the P.L. 94-171 redistricting data products (Dwork et al., 2021). The letter made the compelling 

case that the noisy measurement files present the most straightforward solution to the issues that arise due to 

postprocessing. Since the noisy measurements are already formally private, releasing these files does not pose 

an additional threat to the privacy guarantee that the Bureau already offers. On the other hand, they will allow 

researchers to quantify the biases induced by postprocessing and to conduct correct uncertainty quantification. 

In the report Consistency of Data Products and Formal Privacy Methods for the 2020 Census, JASON (2022, 

p.8) makes the recommendation that the Bureau “should not reduce the information value of their data products 

solely because of fears that some stakeholders will be confused by or misuse the released data.” It makes an 

explicit call for the release of all noisy measurements used to produce the released data products that do not 

unduly increase disclosure risk, and the quantification of uncertainty associated with the publicized data 

products. On April 28–29, 2022, a workshop dedicated to articulating a technical research agenda for statistical 

inference on the differentially private census noisy measurement files took place at Rutgers University, 

gathering experts from domains of social sciences, demography, public policy, statistics, and computer science. 

These efforts reflect the shared recognition among the research and policy communities that access to the 

census noisy measurement files, and its associated transparency benefits, are both crucial and feasible within 

the current disclosure avoidance framework that the Census Bureau employs.

The evolution of privacy science over the years reflects the growing dynamic among several branches of data 

science, as they collectively benefit from vastly improved computational and data storage abilities. What we’re 

witnessing today is a paradigm shift in the science of curating official, social, and personal statistics. A change 

of this scale is bound to exert seismic impact on the ways that quantitative evidence is used and interpreted, 
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raising novel questions and opportunities in all disciplines that rely on these data sources. The protection of 

privacy is not just a legal or policy mandate, but an ethical treatment of all individuals who contribute to the 

collective betterment of science and society with their information. As privacy research continues to evolve, an 

open and cross-disciplinary conversation is the catalyst to a fitting solution. Partaking in this conversation is 

our opportunity to defend democracy in its modern form: underpinned by numbers, yet elevated by our respect 

for one another as more than just numbers.
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Appendices

Appendix A: Analytical Form of the Biasing Effect in Large Finite Samples

Here we state a central limit theorem for the naïve slope estimator , applicable when the independent 

variable ’s are treated as fixed and when the sample size is large.

Theorem 2.  Let  and  respectively denote 
the (unadjusted) sample variance and kurtosis of the confidential data . Assume 

 is well-defined. Privatized data  follows the generative model 
in (3.1) and privacy mechanism in (3.2). The naïve slope estimator for the simple linear 
regression of  against  is . Then, as , 

where  is the biasing coefficient, and 

the approximate standard error.

The biasing coefficient  is the finite-population counterpart to the ratio  discussed in 

Section 3. As a special case when no privacy protection is performed on either  or , that is, , 

then the biasing coefficient , and the associated variance  regardless of sample size . 

This recovers the usual sampling result for the classic regression estimate . Otherwise when , the 

biasing coefficient  is a positive fractional quantity, tending towards  as  decreases, and  if it increases. 

Therefore, the naïve estimator  underestimates the strength of association between  and , more severely so 

as the privacy protection for  becomes more stringent.

When  is large, the large sample sampling distribution of  has  of its mass within the lower and 

upper distribution limits , which are 

functions of the true , the confidential data , as well as the idiosyncratic variance ( ) and the 

privacy error variances (  and ). The left panel of Figure A.1 depicts these large sample  distribution 

limits under various privacy-loss budget settings for  and , and the right panel depicts their actual coverage 

probability for the true parameter .
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Figure A.1. Biasing Effect of privacy noise in linear regression. Left: large sample 95% distribution limits of the naïve slope 

estimator  as a function of  and  (privacy error variances of  and , respectively). The panel labeled “ ” shows 

distribution limits (shaded gray) around the point-wise limit of the naïve estimator (black solid line), if  is not privacy protected but 

 is protected at increasing levels of stringency (as much as  or ). The panel labeled “  

” shows distribution limits if  is also protected at that scale (equivalent to ). True  (black dashed line). 

Right: coverage probabilities of the large sample 95% distribution limits for the naïve slope estimator , as a function of  and 

. With no privacy protection for either  or  , the 95% distribution limit coincides with that of  from the 

classic regression

setting, and meets its nominal coverage for all . Adding privacy protection to  only (i.e.,  increases) inflates a correctly centered 

asymptotic distribution, exhibiting conservative coverage. However for fixed , as privacy protection for  increases (i.e.,  

increases), the bias in  dominates and drives coverage probability down to zero. Illustration uses a data set of , with 

sample variance of confidential  about 1.023, and idiosyncratic error variance .

We now supply the proof of Theorem 2, which gives a large sample approximation to the distribution of the 

naiïve regression slope estimator for privatized data, which takes the form of

 Writing  and , we have that 
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 assuming that  exists and is well-defined. We have that by law of large numbers, 

 thus 

 where  is the biasing coefficient for the naive slope estimator . To establish the Central Limit 

Theorem result, let us first consider 

 We have that 

 where  and .The following central limit theorem holds: 
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 where for  a centralized Laplace variable, 

 Thus with , we have that the Central Limit Theorem for the naive slope estimator is 

where 

 As a special case when no privacy protection is performed on either  or , i.e. , then  

for all  and  gives the usual sampling distribution result for .

Appendix B: Equivalence Between (4.3) and (4.5)

The true posterior distribution in (4.3) is fully spelled out as 
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 we have that the right hand side of (4.5)

 establishing the equivalence between (4.3) and (4.5).

Appendix C: Details of the MCEM Algorithm

The Monte Carlo expectation maximization (MCEM) via importance sampling algorithm works as follows for 

the linear regression example. The data generative mechanism is 

 followed by additive privatization 

 The goal is to estimate the parameter values, here set at , with maximum likelihood 

estimation.

At the E-step, approximate the conditional expectation of the complete data likelihood with respect to the 

observed data and the parameter estimate at the current iteration 

 where the log likelihood of the missing data is 
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 and negative second derivative 

 The approximation to the  function is constructed with  weighted samples of the confidential 

data likelihood: 

 where  consists of  and , where 

 for . The weights are calculated as 

 where  is the Laplace density with scale parameter .

The M-step, maximizing , occurs at  which is the solution to the approximating score 

function being zero, 

 where , , and so on. Writing the -weighted averages as 

 we have that

 which may be calculated at iteration  to supply the parameter values for the next iteration . Furthermore, 

the observed Fisher information can be approximated as 
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 the second equal to (“..” denotes mirrored hence omitted entry in a symmetric matrix) 

 and the third simply the outer product of the observed score from before.

The right panels of Figures 1 and 2 both follow the recipe outlined above to draw maximum likelihood 

inference for the regression demostration, using  and  respectively as the privacy loss budget. 

The 95% confidence ellipses (green) are derived using a large-sample normal approximation to the likelihood 

at the maximum likelihood estimate (MLE), with covariance equal to the inverse observed Fisher information 

centered at the MLE, obtained respectively according to (C.1) and (C.2) with the values of the parameters at 

the algorithm’s convergence.

©2022 Ruobin Gong. This article is licensed under a Creative Commons Attribution (CC BY 4.0) International 

license, except where otherwise indicated with respect to particular material included in the article.
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ϵ = 0.25 ϵ = 1

1.  Zero-concentrated differential privacy controls not the ratio, but the maximal divergence, between the 

probability distributions of the random query on neighboring databases. It delivers a more efficient PLB 

composition property compared to the basic one stated in the previous paragraph. ↩

2.  The analysis presented in this section uses the basic composition property introduced in Section 2. The 

noise scales correspond to a privacy loss budget of  and  per coordinate. The 

statistical properties discussed here hinge on the choice of the noise family and the scale parameters σu
2 and 

σv
2 only. Superior composition (hence lower total PLB) may be achieved with better privacy mechanism 

design, although that is inconsequential to the analysis presented here. ↩

ϵ =x /σ2 u ϵ =y /σ2 v

3.  For example the Herfindahl-Hirschman index, which is often used as a measure of population diversity or 

market competitiveness. ↩

4.  Note that the DAS also performs postprocessing in addition to noise infusion. The postprocessing step 

may introduce additional sources of error to the assessed value of d. Unfortunately, the effect of 

postprocessing may be difficult to describe analytically. Section 6 returns to postprocessing and its impact. ↩

https://creativecommons.org/licenses/by/4.0/legalcode
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