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ABSTRACT

In a technical treatment, this article establishes the necessity of transparent privacy for drawing unbiased
statistical inference for a wide range of scientific questions. Transparency is a distinct feature enjoyed by
differential privacy: the probabilistic mechanism with which the data are privatized can be made public without
sabotaging the privacy guarantee. Uncertainty due to transparent privacy may be conceived as a dynamic and
controllable component from the total survey error perspective. As the 2020 U.S. Decennial Census adopts
differential privacy, constraints imposed on the privatized data products through optimization constitute a
threat to transparency and result in limited statistical usability. Transparent privacy presents a viable path
toward principled inference from privatized data releases, and shows great promise toward improved

reproducibility, accountability, and public trust in modern data curation.

Keywords: statistical inference, unbiasedness, uncertainty quantification, total survey error, privacy-utility

trade-off, invariants

Media Summary

When conducting statistical analysis using privacy-protected data, the transparency of the privacy mechanism
is a crucial ingredient for trustworthy inferential conclusions. The knowledge about the privacy mechanism
enables accurate uncertainty quantification and ensures high statistical usability of the data product. This article
discusses the key statistical considerations behind transparent privacy, which leads to improved reproducibility,
accountability, and public trust. It weighs a few challenges to transparency that emerge from the adoption of

differential privacy by the 2020 U.S. Decennial Census.

1. Introduction

The Decennial Census of the United States is a comprehensive tabulation of its residents. For over two
centuries, the census data supplied benchmark information about the states and the country, helped guide
policy decisions, and provided crucial data in many branches of the demographic, social, and political sciences.
The census aims to truthfully and accurately document the presence of every individual in the United States.

The fine granularity of the database, compounded by its massive volume, portrays American life in great detail.

The U. S. Census Bureau is bound by Title 13 of the United States Code to protect the privacy of individuals
and businesses who participate in its surveys. These surveys contain centralized and high-quality information
about the respondents. If disseminated without care, they might pose a threat to the respondents’ privacy. The
Bureau implements protective measures to reduce the risk of inadvertently disclosing confidential information.

The first publicly available documentation of these methods dates back to 1970 (McKenna, 2018). Until the
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2010 Census, statistical disclosure limitation (SDL) mechanisms deployed by the Census Bureau relied to a
large extent on table suppression and data swapping, occasionally supplemented by imputation and partially
synthetic data. These techniques restricted the verbatim release of confidential information through the data
products. However, they do not offer an exposition of privacy protection as a goal in itself. What does the SDL
mechanism aim to achieve, and how do we know whether it is actually working? The answers to these
questions are not definitive. In particular, the extent of an SDL mechanism’s intrusiveness on data usability is
not measured and weighed against the extent of privacy protection it affords. We now understand that many
traditional SDL techniques are not just ambiguous in definition, but defective in effect, for they can be
invalidated by carefully designed attacks that leverage modern computational advancements and auxiliary

sources of open access information (see, e.g., Dinur & Nissim, 2003;_Sweeney, 2002). With the aid of publicly

available data, the Census Bureau attempted a ‘reidentification’ attack on its own published 2010 Census
tabulations, and was successful in faithfully reconstructing as much as 17% of the U.S. population, or 52

million people at the level of individuals (Abowd, 2019; Hawes, 2020). These failures are a resounding

rejection of the continued employment of traditional SDL methods. It is clear that we need alternative, and

more reliable, privacy tools for the 2020 Census and beyond.

In pursuit of a modern paradigm for disclosure limitation, the Census Bureau endorsed differential privacy as
the criterion to protect the public release of the 2020 Decennial Census data products. The Bureau openly
engaged data users and sought constructive feedback when devising the new Disclosure Avoidance System

(DAS). They launched a series of demonstration data product and codebase releases (U.S. Census Bureau,_

2020a), and presented its design processes at numerous academic and professional society meetings, including
the Joint Statistical Meeting, the 2020 National Academies of Sciences, Engineering, and Medicine (NASEM)
Committee on National Statistics (CNSTAT) Workshop, and the 2019 Harvard Data Science Institute
Conference in which I participated as a discussant. Reactions to this change from the academic data user
communities were a passionate mix. Some cheered for the innovation, while others worried about the practical
impact on the usability of differentially privatized releases. In keeping up with the inquiries and criticisms, the
Census Bureau assembled and published data-quality metrics that were assessed repeatedly as the design of the

2020 DAS iterated (U.S. Census Bureau, 2020b). Through the process, the Bureau exhibited an unprecedented

level of transparency and openness in conveying the design and the production of the novel disclosure control

mechanism, publicizing the description of the TopDown Algorithm (Abowd et al., 2022) and the GitHub code

base (2020 Census DAS Development Team, 2021). This knowledge makes a world of difference for census

data users who need to analyze the privatized data releases and assess the validity and the quality of their work.

This article argues that transparent privacy enables principled statistical inference from privatized data
releases. If a privacy mechanism is known, it can be incorporated as an integral part of a statistical model. Any
additional uncertainty that the mechanism injects into the data can be accounted for properly. This is the most

reliable way to ensure the correctness of the inferential claims produced from privatized data releases, when a
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calculated loss of statistical efficiency is present. For this reason, the publication of the probabilistic design of

the privacy mechanism is crucial to maintaining a high usability of the privatized data product.

2. Differential Privacy Enables Transparency

Part of what contributed to the failure of the traditional disclosure limitation methods is that their justification
appeals to intuition and obscurity, rather than explicit rules. If the released data are masked, coarsened, or
perturbed from the confidential data, it seems natural to conclude that they are less informative, and
consequently more ‘private.’ Traditional disclosure limitation mechanisms are obscure, in the sense that their
design details are rarely released. For swapping-based methods, not only are the swap rates omitted, the
attributes that have been swapped are often not disclosed (Oganian & Karr, 2006). As a consequence, an
ordinary data user would not have the necessary information to replicate the mechanism, nor to assess their

performance in protecting privacy. The effectiveness of obscure privacy mechanisms is difficult to quantify.

For data analysts who utilize data releases under traditional SDL to perform statistical tasks, the opaqueness of
the privacy mechanism poses an additional threat to the validity of the resulting inference. A privacy
mechanism, be it suppressive, perturbative, or otherwise, works by processing raw data and modifying their
values to something that may be different from what has been observed. In doing so, the mechanism injects
additional uncertainty in the released data, weakening the amount of statistical information contained in them.
Uncertainty per se is not a problem; if anything, the discipline of statistics devotes itself to the study of
uncertainty quantification. However, in order to properly attribute uncertainty where it is due, some minimal
knowledge about its generative mechanism must be known. If the design of the privacy mechanism is kept
opaque, our knowledge would be insufficient for producing reliable uncertainty estimates. The analyst might
have no choice but to ignore the privacy mechanism imposed on the data, and might arrive at erroneous

statistical conclusions.

Differential privacy conceptualizes privacy as the probabilistic knowledge to distinguish the identity of one
individual respondent in the data set. The privacy guarantee is stated with respect to a random mechanism that
imposes the privacy protection. Definition 1 presents the classic and most widely endorsed notion called e-

differential privacy:

Definition 1 (¢-differential privacy; Dwork et al.,2006). Amechanism § : X» —s R? satisfies
e-differential privacy, if for every pair of databases D, D' ¢ X" suchthat D and D' differ by
one record, and every measurable set of outputs A € % (R? ), we have

P (5’(1)) c A) < &P (s (D) e A) . (2.1)

The positive quantity e, called the privacy-loss budget (PLB), enables the tuning, evaluation, and comparison

of different mechanisms, all according to a standardized scale. In (2.1), the probability P is taken with respect

to the mechanism g, not with respect to the data D.
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As a formal approach to privacy, statistical disclosure limitation mechanisms compliant with differential
privacy put forth two major advantages over their former counterparts. The first is provability, a mathematical
formulation against which guarantees of privacy can be definitively verified as it is conceptualized. Definition 1
puts forth a concrete standard about whether, and by how much, any proposed mechanism can be deemed
differentially private, as the probabilistic property of the mechanism is entirely encapsulated by P. As an
example, we now understand that the classic randomized response mechanism (Warner, 1965), proposed
decades before differential privacy, is in fact differentially private. Under randomized response, every
respondent responds truthfully to a binary question with probability p, and with a random answer otherwise.
That the randomized response mechanism is e-differentially private follows if € is chosen such that

p = e/ (1 + ef) (see, e.g. (Dwork & Roth, 2014, Theorem 3.14)). With provability, anyone can design new

mechanisms with privacy guarantees under an explicit rule, as well as to verify whether a publicized privacy

mechanism lives up to its guarantee.

The second major advantage of differential privacy, which this article underscores, is transparency. Differential
privacy allows for the full, public specification of the privacy mechanism without sabotaging the privacy
guarantee. The data curator has the freedom to disseminate the design of the mechanism, allowing the data
users to utilize it and to critique it, without compromising the effectiveness of the privacy protection. The
concept of transparency that concerns this article will be made precise in Section 4. As a example, below is one

of the earliest proposed mechanisms that satisfies differential privacy:

Definition 2 (Laplace mechanism; Dwork et al.,2006). Given a confidential database D € X"
, adeterministic query function S : X» — RP andits global sensitivity A (S), the e-
differentially private Laplace mechanismis

S(D)=S(D)+ (Uh,...,U,),

where U;’s are real-valuedi.i.d.random variables with E(U;) = 0 and probability density
function

f(u) o e 3. (2.2)

The omitted proportionality constant in (2.2) is equal to €/2A (S), ensuring that the density f integrates to
one. The global sensitivity A (,S) measures the maximal extent to which the deterministic query function
changes in response to the perturbation of one record in the database. For counting queries operating on binary
databases, such as population counts, A(,S) = 1. To note is that in Definition 2, both the deterministic query .S
and the probability distribution of the noise terms U; ’s are fully known. Anyone can implement the privacy

algorithm on a database of the same form as D.

We note that differentially private mechanisms compose their privacy losses nicely. At a basic level, two
separately released differentially private data products, incurring PLBs of ¢; and e respectively, incur no more

than a total PLB of (€; + €, ) when combined (Dwork & Roth, 2014, Theorem 3.14). Superior composition,
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reflecting a more efficient use of PLBs, can be achieved with the clever design of privacy mechanisms. The
composition property provides assurance to the data curator that when releasing multiple data products over

time, the total privacy loss can be controlled and budgeted ahead of time.

The preliminary versions of the 2020 Census DAS utilizes the integer counterpart to the Laplace mechanism,

called the double geometric mechanism (Fioretto et al., 2021; Ghosh et al., 2012). The mechanism possesses

the same additive form as the Laplace mechanism, but instead of real-valued noise Uj ’s, it uses integer-valued
ones whose probability mass function has the same form as (2.2) with the proportionality constant equal to

(1 —e¢)/(1 + e ¢). The production implementation of the DAS, used for the P.L. 94-171 public release
(U.S. Census Bureau, 2021a) and the 2021-06-08 vintage demonstration files (Van Riper et al., 2020), appeals

to a variant privacy definition called the zero-concentrated differential privacy (Dwork & Rothblum, 2016).L It

employs additive noise with discrete Gaussian distributions according to a detailed PLB schedule (U.S. Census

Bureau, 2021c). While all mechanisms discussed above employ additive errors, differential privacy

mechanisms in general need not be additive. Non-additive examples commonly used in the private

computation of complex queries include the exponential mechanism (McSherry & Talwar, 2007), objective

perturbation (Kifer et al., 2012), and the K -norm gradient mechanism (Reimherr & Awan, 2019). In what

follows, we elaborate on the importance of transparent privacy from the statistical point of view.

3. What Can Go Wrong With Obscure Privacy

Data privatization constitutes a phase in data processing which succeeds data collection and precedes data
release. When conducting statistical analysis on processed data, misleading answers await if the analyst ignores

the phases of data processing and the consequences they impose.

We use an example of simple linear regression to illustrate how obscure privacy can be misleading. Regression
models occupy a central role in many statistical analysis routines, for they can be thought of as a first-order
approximation to any functional relationship between two or more quantities. Let (z;, y; ) be a pair of
quantities measured across a collection of geographic regions indexed by s = 1,. .., n. Examples of z; and y;
may be counts of population of certain demographic characteristics within each census block of a state,
households of certain types, economic characteristics of the region (businesses, revenue, and taxation; see, e.g.,

Barrientos et al., 2021), and so on. Suppose the familiar simple regression model is applied:

Yi = Po + bBizi + €, (3.1)

where the ¢;’s are independently and identically distributed idiosyncratic errors with mean zero and variance
o2, typically following the normal distribution. Usual estimation techniques for Bo and Sy, such as ordinary
least squares or maximum likelihood, produce unbiased point estimators. For the slope,

Bl =30 (zi—2) (v —9)/>, (zi — %) (z; — %) where E (&) = (3, and for the intercept,

Bo =7 — Bl Z where E (Bo> = [y, where expectations are taken with respect to variabilities in the error
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terms. Both estimators also enjoy consistency when the regressor x;’s are random, that is, Bl — By and
BO — Bo» indicating convergence in probability as the sample size n approaches infinity. The consistency of

( BO, Bl) is reasonably robust against mild heteroskedasticity of the idiosyncratic errors.

Since x; and y; contain information about persons and businesses that may be deemed confidential, suppose
they are privatized before release using standard additive differential privacy mechanisms. Their privatized

versions (z;, y; ) are respectively
Z; = x; + wg, Ui = Y +v;. (3.2)

The u;’s and v;’s can be chosen according to the Laplace mechanism or the double geometric mechanism
following Definition 2, with suitable scale parameters such that (z;, g, ) are compliant with e-differential
privacy, and accounting for the sequential composition of the z,’s and ¥, ’s. We denote the variances of u; and
v; as U,LQL and 012) , respectively.2 As the privacy budget allocated to either statistic decreases, the privacy error

variance increases and more privacy is achieved, and vice versa.

Suppose the analyst is supplied the privatized statistics (z;, g, ), but is not told how they are generated based
on the confidential statistics (x;,y; ). That is, (3.2) is entirely unknown to her. In this situation, there is no
obvious way for her to proceed, other than to ignore the privacy mechanism and run the regression analysis by
treating the privatized (z,, ;) as if they’re the confidential values. If so, the analyst would effectively perform

parameter estimation for a different, naive linear model
Ui =bo+0Z; + é&. (3.3)

Unfortunately, no matter which computational procedure one uses, the point estimates obtained from fitting
(3.3) are no longer unbiased nor consistent for 3, and S; as in the original model of (3.1). Both naive
estimators, call them Bo and Bl, are complex functions that convolute the confidential data, idiosyncratic errors,
and privacy errors. When the regressor x;’s are random realizations from an underlying infinite population, the
bias inherent to the naive estimators does not diminish even if the sample size approaches infinity. More

precisely, we have that the naive slope estimator
7 \
by — ﬁﬁla (3.4)
and the naive intercept estimator
7 v
bo — Bo + (1 - —Tv(w)(_?% ) E(z) B,

where E(z) and V(z) are the population-level mean and variance of z: for which the observed sample is
representative. The ratio V (z) / (V (z) + 0-5) displays the extent of inconsistency of (}1 as a function of the
population variance and the privacy error variance of . We see that if the independent variable is not already

centralized, (30 exhibits a bias whose magnitude is influenced by both the average magnitude of z, as well as
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the amount of privacy protection for z. In addition, the residual variance from the naive linear model (3.3) is

also inflated, with
V(§| &) =0o®+ Biol + 02, (3.5)

which is strictly larger than o2, the usual residual variance from the correct linear model (3.1). If the
independent variable x;’s are treated as fixed instead, an exact finite-sample characterization of the naive
estimators BO and f)l are difficult to obtain. Appendix A presents the distribution limits for the slope estimator
as a function of the scales of the privacy errors and the regression errors, and showcases how the coverage

probabilities deteriorate as the privacy errors increase.

We use a small sample simulation study (r = 10) to illustrate the pitfall with obscure privacy. Assume that the
confidential data follows the generative process of (3.1), with z; ~ Pois (10) iid., ¢ = 5, and the true
parameter values (), ;) = (—5,4). The privatized data (z;, §; ) are subsequently generated according to
the additive privacy mechanism of (3.2), where u,;, v; ~ Laplace (5*1 ), with a PLB of € = 0.25. The three
panels of Figure 1 depict different statistical inference—both right and wrong types—that correspond to three
scenarios in this example. When no privacy protection is enforced, a 95% confidence ellipse for (3,, 3, ) from
the simple linear regression should cover the true parameter values (represented by the orange square) at
approximately the nominal coverage rate, a high probability of 95%. The left panel displays one such
confidence ellipse in blue. When privacy protection is in place, directly fitting the linear regression model on
(z, y) may result in misleading inference, as can be seen from the naive 95% confidence ellipses (gray) in the
middle panel, all derived from privatized versions of the same confidential data set, repeatedly miss their mark
as they rarely cover the true value. We witness the biasing behavior precisely as established: the slope /3 is
underestimated, displaying a systematic shrinking toward zero, whereas the true value of 3, is overestimated,
with 8; > 0 and E () = 10 > 0. In contrast, the green ellipses in the right panel, each representing an
approximate 95% confidence region, are based on the correct analysis on privatized data accounting for the
privacy mechanism (to be discussed in Section 4). They better recover the location of the true parameters, and

display larger associated inferential uncertainty.
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Figure 1. 95% joint confidence regions for from linear regression (3.1). Left: original data simulated according to
& °J 8 (ﬁO) ﬂl) & @1) 8 (JI, y) 8
(3.1). Middle: naive linear regression (3.3) on n=10 pairs of simulated privatized data ( F f]) from the Laplace mechanism (3.2)

- )
with PLB of e = 0.25 Right: the correct model following (4.2) implemented using Monte Carlo expectation maximization on the

same sets of private data. Concentration ellipses are large-sample approximate 95% confidence regions based on estimated Fisher

information at the maximum likelihood estimate. The orange square represents the ground truth ( ﬁo Bl ) _ (_ 5 4).
) - )

The troubling consequence of ignoring the privacy mechanism is not new to statisticians. The naive regression
analysis of privatized data generalizes a well-known scenario in the measurement error literature, called the
classic measurement error model. The notable biasing effect on the naive estimator 31 created by the additive
noise (3.2) in the independent variable gz is termed attenuation. The bias causes a “double whammy” (Carroll

et al., 2006, Chapter 15) on the quality of the resulting inference, because one is misled in terms of both the

location of the true parameter, and the extent of uncertainty associated with the estimators, as seen from the
erroneous coverage probability within its asymptotic sampling distributional limits. In linear models, additive
measurement errors in the dependent variable  is generally considered less damaging, because if the errors are

independent, unbiased, and present in the dependent variable only, the model fit remains unbiased (Carroll et

al., 2006, Chapter 15), hence such errors are often ignored or treated as a component to the idiosyncratic
regression errors. However, they would still increase the variability of the fitted model and decrease the
statistical power in detecting an otherwise significant effect. Consequently, they may still negatively affect the
quality of any naive model fitting on privatized data, both by changing the effective nominal coverage rate of
the large sample distribution limits (see Appendix A for details), and by increasing uncertainty of the fitted

model according to (3.5).

From the additive mechanism in Definition 2, we see that the noise term v; is a symmetric, zero-mean random
variable. This means that the privacy mechanism is unbiased for its underlying query: it has the exact same
chance to inflate or deflate it in either direction by the same magnitude. How can an unbiased privatization
algorithm, followed by an unbiased statistical procedure (i.e., the simple linear regression), results in biased
statistical estimates? The issue is that while the privatized data § is unbiased for the confidential data S, if the
estimator we use is a nonlinear function of S, it may no longer retain unbiasedness if S were perturbed. The
regression coefficients BO and ,31 are nonlinear estimators. Specifically, Bl is a ratio estimator, and BO depends
on Bl as a building block. In general, the validity of ratio estimators are particularly susceptible to minor
instabilities in its denominator. Replacing confidential statistics with their unbiased privatized releases may not
be an innocent move, if the downstream analysis calls for nonlinear estimators that cannot preserve

unbiasedness.

In the universe of statistical analysis, nonlinear estimators are the rule, not the exception. Many descriptive and
summary statistics involve nonlinear operations such as squaring or dividing—think variances, proportions,
and other complex indices3—which don’t fare well with additive noise. Ratio estimators, or estimators that

involve random quantities in their denominators, can suffer from high variability if the randomness is high.



Harvard Data Science Review - Special Issue 2: Differential Privacy for the 2020 U.S. Census Transparent Privacy is Principled Privacy

Therefore, many important use cases of the census releases, as well as the assessment of the impact due to
privacy, could benefit from additional uncertainty quantification. As an example, Asquith et al. (2022) evaluate
a preliminary version of the 2020 Census DAS using a set of segregation metrics as the benchmark statistics

and compare its effect when applied to the 1940 full-count census microdata. One of the evaluation metrics is

the index of dissimilarity per county (Iceland et al., 2002):

wi b
wcty bcty

d=3>", , (3.6)

where w; and b; are respectively the White and the African American populations of tract 7 of the county, and
Wety and by, those of the entire county. All of these quantities are subject to privacy protection, and one run of

the DAS creates a version of {; b, Wety Bcty}, each infused with Laplace-like noise.

If we were to repeatedly create privatized demonstration data sets from the DAS, and calculate the dissimilarity
index each time by naively replacing all quantities in (3.6) with their privatized counterparts, we will witness
variability in the value d. Since d is a ratio estimator, its value may exhibit a large departure from the
confidential true value, particularly when the denominator is small, such as when a county has a small
population, or is predominantly White or non-White. Since every DAS output is uniquely realized by a single
draw from its probabilistic privacy mechanism, the value d calculated based on a particular run of the DAS
will exhibit a difference from its confidential (or true) value.2 The difference will be unknown, but can be
described by the known properties of the privacy mechanism. It is important to recognize the probabilistic
nature of the statistics calculated from privatized data, and interpret them alongside appropriate uncertainty

quantification, which itself is a reflection of data quality.

Privacy adds an extra layer of uncertainty to the generative process of the published data, just as any data-
processing procedures such as cleaning, smoothing, or missing data imputation. We risk obtaining misguided
inference whenever blindly fitting a favorite confidential data model on privatized data without acknowledging
the privatization process, for the same reason we would be misguided by not accounting for the effect of data
processing. To better understand the inferential implication of privacy and obtain utility-oriented assessments,
privacy shall be viewed as a controllable source of total survey error, an approach that is again made feasible

by the transparency of the privatization procedure. We return to this subject in Section 5.

4. Principled Analysis With Transparent Privacy

The misleading analysis presented in Section 3 is not the fault of differential privacy, nor of linear regression or
other means of statistical modeling. Rather, obscure privacy mechanisms prevent us from performing the right
analysis. Any statistical model, however adequate in describing the probabilistic regularities in the confidential

data, will generally be inadequate when naively applied to the privatized data.

10
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4.1. Accounting for the Privacy Mechanism

To correctly account for the privacy mechanism, statistical models designed for confidential data need to be
augmented to include the additional layer of uncertainty due to privacy. In our example, the simple linear
model of (3.1) is the true generative model for the confidential statistics (z, y). Together with the privacy

mechanism in (3.2), the implied true generative model for the privatized statistics (g”; , g) can be written as
U +vi = Bo+ B (Ti +ui) + e, (4.1)

where u,;, v; are additive privacy errors and e; the idiosyncratic regression error. Thus, with the original linear
model (3.1) being the correct model for (z,y), it follows that the augmented model (4.1) is the correct model
for describing the stochastic relationship between (Z, ¢). On the other hand, unless all u;’s and v;’s are exactly
zero, that is, no privacy protection is effectively performed for both 2 and y, the naive model in (3.3) is

erroneous and incommensurable with the augmented model in (4.1).

If a statistical model is of high quality, or more precisely self-efficient (Meng, 1994; Xie & Meng, 2017),2 its

inference based on the privatized data should typically bear more uncertainty compared to that based on the
confidential data. The increase in uncertainty is attributable to the privacy mechanism. Therefore, uncertainty
quantification is of particular importance when it comes to analyzing privatized data. But drawing statistically
valid inference from privatized data is not as simple as increasing the nominal coverage probability of
confidence or credible regions from the old analysis. As we have seen, fitting the naive linear model on
differentially privatized data creates a ‘double whammy’ due to both a biased estimator and incorrectly
quantified estimation uncertainty. The right analysis hinges on incorporating the probabilistic privacy
mechanism into the model itself. This ensures that we capture uncertainty stemming from any potential
systematic bias displayed by the estimator due to noise injection, as well as a sheer loss of precision due to

diminished informativeness of the data.

For data users who currently employ analysis protocols designed without private data in mind, this suggests
that modification needs to be made to their favorite tools. That sounds like an incredibly daunting task.
However, on a conceptual level, what needs to be done is quite simple. We present a general recipe for the vast

class of statistical methods with either a likelihood or a Bayesian justification.

Let 3 denote the estimand of interest. For randomization-based inference common to the literatures of survey
and experimental design, this estimand may be expressed as a function of the confidential database: 3 = 5(D)
. In model-based inference, 8 may be the finite- or infinite-dimensional parameter that governs the distribution
of D. Let £ be the original likelihood for 3 based on the confidential data s, representing the currently
employed, or ideal, statistical model for analyzing data that is not subject to privacy protection. Choices for 3

and £ are both made by the data analyst.

1
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Let p, (5 | s) be the conditional probability distribution of the privatized data 3 given s, as induced by the
privacy mechanism chosen by the data curator. The subscript £ encompasses all tuning parameters of the
mechanism, as well as any auxiliary information that is used during the privatization process. Note that the
mechanism p¢ need not be a differentially private mechanism: it may be a traditional SDL mechanism, or any
other mechanism that the data curator chooses to impose on the confidential data, probabilistic or otherwise. As
an example, p, may stand for the class of swapping methods, in which case £ encodes the swap rates and the
list of the variables being swapped. If p, is induced by the Laplace mechanism in Definition 2, then ¢ stands
for the class of product Laplace densities centered at s, and £ its scale parameter which, if set to A(S) /€

qualifies p; as an e-differentially private mechanism.

Definition 3 (Transparent privacy). A privacy mechanismis said to be transparent if p; (- | -)
, the conditional probability distributionit induces given the confidential data, is known to
the user of the privatized data, including both the functional form of p. and the specific

value of £ employed.

When the privacy mechanism is transparent, we can write down the observed, or marginal, likelihood function
for B based on the observed 5 (Williams & Mcsherry, 2010):

Le (B;5) = [pe (5] 5) L(B;s)ds, (4.2)

with the notation £, highlighting the fact that it is a weighted version of the original likelihood £ according to
the privacy mechanism py . The integral expression of (4.2) is reminiscent of the missing data formulation for

parameter estimation (Little & Rubin, 2014). The observed data is the privatized data g, and the missing data is

the confidential data s, with the two of them associated by the privacy mechanism p, analogous to the
missingness mechanism. All information that can be objectively learned about the parameter of interest /3 has
to be based on the observed data alone, averaging out the uncertainties in the missing data. In the regression

example, the observed likelihood is precisely the joint probability distribution of (z;, g; ) according to the

implied true model (4.1), governed by the parameters 3, and 3;, with sampling variability derived from that of
the idiosyncratic errors e; as well as privacy errors u; and v;. All modes of statistical inference congruent with
the original data likelihood £, including frequentist procedures that can be embedded into £ as well as
Bayesian models based on £, would have adequately accounted for the privacy mechanism by respecting (4.2).
Furthermore, for a Bayesian analyst who employs a prior distribution for /3, denoted as 7, her posterior

distribution now becomes
me (B]8) = cemo (B) Le (B55), (4.3)
where the proportionality constant c¢, free of the parameter /3, ensures that the posterior integrates to one.

4.2.The Necessity of Transparent Privacy

The marginal likelihood for /3 in (4.2) highlights why transparency allows data users to achieve inferential

validity for their question of interest from privatized data. To compute quantities based on this likelihood, one
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must know not only the original statistical model £ but also the privacy mechanism py, including its parameter

&. We formalize the crucial importance of transparent privacy in ensuring inferential validity.

Theorem 1 (Necessity of transparent privacy). Let 3 € R? be a continuous parameter and

h (B) abounded Borel-measureable function for which inference is sought. The observed
data sisprivatized with the mechanismp, (- | s), and the analyst supposes the mechanism
tobe g (- | s). Thenfor alllikelihood specifications £ with base measure v, observed data s
and choice of h, the analyst recovers the correct posterior expectationfor h (53), i.e.

E, (h(B)|3) = E: (h(B) | 3) (4.4)

ifonlyifp, (- | s) = g (- | s) forv-almostall s.

Proof. The ’if’ part of the theorem is trivial. For the ‘only if’ part, note that (4.4) is the same as the requirement

of weak equivalence between the true posterior 7r¢ (8 | §) in (4.3) and the analyst’s supposed posterior:

7 (B 5) = cqmo (B) [q (5] 5) L(B;5)ds,

where the proportionality constant ¢, free of B, ensures that the density m, integrates to one. This in turn

requires for any given 5 and the constant ¢ = ¢¢ /¢, > 0,

E(q(s]s)—cpe(5]s)|B)=0

forg e R? almost everywhere, where the expectation above is taken with respect to the likelihood £. Since £
is chosen by the analyst but p¢ is not, this implies that she must also choose g so that
q(5|s) —cpe (5] s) =0 forall s except on a set of measure zero relative to v. Furthermore, since

[q(a|s)da= [pe(al|s)da=1"forevery s, we musthave c = 1, thus p; (- | s) = g (- | s) as desired.

What Theorem 1 says is that, if we conceive the statistical validity of an analysis as its ability to yield the same
expected answer as that implied by the correct model (that is, by properly accounting for the privatization
mechanism) for a wide range of questions (reflected by the free choice of k), then the only way to ensure
statistical validity is to grant the analyst full knowledge of the probabilistic characteristics of the privatization

mechanism.

As discussed in Section 1, traditional SDL techniques such as suppression, deidentification, and swapping rely
fundamentally on procedural secrecy. While each of these methods admits a precise characterization p, such
information—in particular, the production settings of {&—is intentionally kept out of public view. The lack of
transparency with traditional SDL mechanisms hinders the possibility to draw principled and statistically valid

inference from data products they produce.

Scholars in the SDL literature advocate for transparent privacy for more than one good reason. With a

rearrangement of terms, the posterior in (4.3) can also be written as (details in Appendix B)

me (B138) = [m(B]s)me (s]35)ds, (4.5)



Harvard Data Science Review - Special Issue 2: Differential Privacy for the 2020 U.S. Census Transparent Privacy is Principled Privacy

where 7 (3 | s) is the posterior model for the confidential s, and 7, (s | 5) the posterior predictive
distribution of the confidential s based on the privatized 3, again with its dependence on the privacy
mechanism p, highlighted in the subscript. This representation of the posterior resembles the theory of

multiple imputation (Rubin,_1996), which lies at the theoretical foundation of the synthetic data approach to

SDL (Raghunathan et al., 2003; Rubin, 1993). What (4.5) illustrates is an alternative viewpoint on private data
analysis. The correct Bayesian analysis can be constructed as a mixture of naive analyses based on the agent’s
best knowledge of the confidential data, where this best knowledge is instructed by the privatized data, the

prior, as well as the transparent privatization procedure. Under this view, the transparency of the privacy

mechanism again becomes a crucial ingredient to the congeniality (Meng, 1994; Xie & Meng, 2017) between
the imputer’s model and the analyst’s model, ensuring the quality of inference the analyst can obtain. Karr and

Reiter (2014, p.284) call the Bayesian formulation (4.5) the “SDL of the future,” emphasizing the

insurmountable computational challenge the analyst would otherwise need to face without knowing the term

¢ (s | 5). With transparency of p at hand, the future is in sight.

Transparent privacy mechanisms merit another important quality, namely parameter distinctiveness, or a priori
parameter independence, from both the generative model of the true confidential data as well as any descriptive
model the analyst wishes to impose on it. Parameter distinctiveness always holds since the entire privacy
mechanism, all within control of the curator, is fully announced hence has no hidden dependence on the
unknown inferential parameter 3 through means beyond the confidential data s. In the missing data literature,
parameter distinctiveness is a prerequisite of the missing data mechanism to give way for simplifying
assumptions, such as missing completely at random (MCAR) and missing at random (MAR; Rubin, 1976),
allowing for the missingness model to sever any dependence on the unobserved data.® In the privacy context,
parameter distinctiveness ensures that the privacy mechanism does not interact with any modeling decision
imposed on the confidential data. It is the reason why the true observed likelihood L¢ in (4.2) involves merely
two terms, p¢ and £, whose product constitutes the implied joint model for the complete data (s, §) for every
choice of £. This may result in potentially vast simplification in many cases of downstream analysis. The
practical benefit of parameter distinctiveness of the privacy mechanism is predicated on its transparency, for

unless a mechanism is known (Abowd & Schmutte, 2016), none of its properties can be verified nor put into

action with confidence.

While conceptually simple, carrying through the correct calculation can be computationally demanding. The
integral in (4.2) may easily become intractable if the statistical model is complex, if the confidential data is
high-dimensional (as is the case with the census tabulations), or if a combination of both holds true. The
challenge is amplified by the fact that the two components of the integral are generally not in conjugate forms.
While the privacy mechanism p; is determined by the data curator, the statistical model £ is chosen by the
data analyst, and the two parties typically do not consult each other in making their respective choices. Even
for the simplest models, such as the running linear regression example, we cannot expect (4.2) to possess an

analytical expression.
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To answer to the demand for statistically valid inference procedures based on privatized data, Gong (2019)
discusses two sets of computational frameworks to handle independently and arbitrarily specified privacy
mechanisms and statistical models. For exact likelihood inference, the integration in (4.2) can be performed
using Monte Carlo expectation maximization (MCEM), designed for the presence of latent variables or
partially missing data and equipped with a general-purpose importance sampling strategy at its core. Exact
Bayesian inference according to (4.3) can be achieved with, somewhat surprisingly, an approximate Bayesian
computation (ABC) algorithm. The tuning parameters of the ABC algorithm usually control the level of
approximation in exchange for Monte Carlo efficiency, or computational feasibility in complex models. In the
case of privacy, the tuning parameters are set to reflect the privacy mechanism, in such a way that the
algorithm outputs exact draws from the desired Bayesian posterior for any proper prior specification. I have
explained this phenomenon with a catchy phrase: approximate computation on exact data is exact computation
on approximate data. Private data is approximate data, and its inexact nature can be leveraged to our benefit, if
the privatization procedure becomes correctly aligned with the necessary approximation that brings

computational feasibility.

To continue the illustration with our running example, the MCEM algorithm is implemented to draw maximum
likelihood inference for the ’s using privatized data. The right panel of Figure 1 depicts 95% approximate
confidence regions (green) for the regression coefficients based on simulated privatized data sets (z, ) of size
n = 10. The confidence ellipses are derived using a normal approximation to the likelihood at the maximum
likelihood estimate, with covariance equal to the inverse observed Fisher information. Details of the algorithm
can be found in Appendix C. We see that the actual inferential uncertainty for both 5, and 3; are inflated
compared to inference on confidential data as in the left panel, but in contrast to the naive analysis in the
middle panel, most of these green ellipses cover the ground truth despite a loss of precision. The inference they

represent adequately reflects the amount of uncertainty present in the privatized data.

5. Privacy as a Transparent Source of Total Survey Error

In introductory probability and survey sampling classrooms, the concept of a census is frequently invoked as a
pedagogical reference, often with the U.S. Decennial Census as a prototype. The teacher would contrast
statistical inference from a probabilistic sampling scheme with directly observing a quantity from the census,
regarding the latter as the gold standard, if not the ground truth. This narrative may have left many quantitative
researchers with the impression that the census is always comprehensive and accurate. The reality, however,
invariably departs from this ideal. The census is a survey, and is subject to many kinds of errors and
uncertainties, as are all surveys. As do coverage bias, nonresponse, erroneous and edited inputs, statistical

disclosure limitation introduces a source of uncertainty into the survey, albeit unique in nature.

To assess the quality of the end data product, and to improve it to the extent possible, we construe privacy as
one of the several interrelated contributors to total survey error (TSE; Groves, 2005). Errors due to privacy

make up a source of nonsampling survey error (Biemer, 2010). Additive mechanisms create privacy errors that
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bear a structural resemblance with measurement errors (Reiter, 2019). What makes privacy errors easier to deal
with than other sources of survey error, at least theoretically, is that their generative process is verifiable and
manipulable. Under central models of differential privacy, the process is within the control of the curator, and
under local models (i.e., the responses are privatized as they leave the respondent) it is defined by explicit
protocols. Transparency brings several notable advantages to the game. Privacy errors are known to enjoy
desirable properties such as simple and tractable probability distributions, statistical independence among the
error terms, as well as between the errors and the underlying confidential data (i.e., parameter distinctiveness).
These properties may be assumptions for measurement errors, but they are known to hold true for privacy
errors. In the classic measurement error setting, the error variance needs to be estimated. In contrast, the
theoretical variance of all the additive privacy mechanisms are known and public. The structural similarity
between privacy errors and measurement errors allows for the straightforward adaptation of existing tools for
measurement error modeling, including regression calibration and simulation extrapolation, which perform
well for a wide class of generalized linear models. Other approaches that aim to remedy the effect of both

missing data and measurement errors can be modified to include privacy errors (Blackwell et al., 2017a;_

Blackwell et al., 2017b; Kim et al., 2014; Kim et al., 2015). Most recently, steps are being taken to develop

methods for direct bias correction in the regression context (Evans & King, n.d.).
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Figure 2. 95% joint confidence regions for ( ﬁo 61 ) derived from the same set of linear regression analyses on privatized data as
)
depicted in Figure 1, but with e— 12 four-fold privacy-loss budget increase. While the correct, Monte Carlo expectation

maximization—based analysis (right) remains valid, the accuracy of the naive analysis (left) is greatly improved (compared to the
middle panel of Figure 1), at the expense of a weaker privacy

guarantee from the data.
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We emphasize that the transparency of the privacy mechanism is crucial to the understanding, quantification,
and control of its impact on the quality of the resulting data product from a total survey of error approach. As
noted in Karr (2017), traditional disclosure limitation methods often passively interact with other data-
processing and error-reduction procedures commonly applied to surveys, and the effect of such interactions is
often subtle. Due to the artificial nature of all privacy mechanisms, any interaction between the privacy errors
can be explicitly investigated and quantified, either theoretically or via simulation, strengthening the quality of
the end data product by taking out the guesswork. It is particularly convenient that the mathematical
formulation of differential privacy employs the concept of a privacy loss budget, which acts as a fine-grained
tuning parameter for the performance of the procedure. The framework is suited for integration with the total
budget concept and the error decomposition approach to understanding the effect of individual error
constituents. The price we pay for privacy can be regarded as a trade-off with the total utility, defined through
concrete quality metrics on the resulting data product—for example, the minimal mean squared error

achievable by an optimal survey design, or the accuracy on the output of certain routine data analysis protocols.

An increase in the PLB will in general improve the quality of the data product. But the impact on data quality
exerted by a particular choice of PLB should be understood within the specific context of application. When
the important use cases and accuracy targets are identified, transparency allows for the setting of privacy
parameters to meet these targets via theoretical or simulated explorations, as early as during the design phase of
the survey. As an illustration, Figure 2 repeats the same regression analysis as in Figure 1, but withe = 1, a
PLB that is four times larger. While the correct, MCEM-based analysis remains valid, the naive analysis has
greatly improved its performance, as seen from the confidence ellipses in the left panel with comparable
coverage compared to the right panel (correct analysis with € = 1), which is better than the middle panel of
Figure 1 (naive analysis with e = (0.25). Through six iterations of the 2010 Demonstration Data Files, the
Census Bureau increased the PLB from ¢ = 6, with 4 for persons and 2 for housing units (U.S. Census
Bureau, 2019), to an equivalent of (¢,4) = (19.71, 10—10) for the production setting of the P.L.. 94-171 files
(U.S. Census Bureau, 2021c).Z Since the PLB is a probabilistic bound on the log scale, a more than three-fold

increase substantially weakened the privacy guarantee, but it allowed the bureau to improve and meet the

various accuracy targets identified by the data user communities (U.S. Census Bureau, 2021b).

When privatization is a transparent procedure, it does not merely add to the total error of an otherwise
confidential survey. We have reasons to hope that it may help reduce the error via means of human psychology.
A primary cause of inaccuracy in the census is nonresponse and imperfect coverage, in part having to do with

insufficient public trust, both in the privacy protection of disseminated data products and in the Census

Bureau’s ability to maintain confidentiality of sensitive information (boyd & Sarathy, 2022;_Singer et al., 1993;_

Sullivan, 2020). Individual data contributors value their privacy. Through their data sharing (or rather, un-

sharing) decisions, they exhibit a clear preference for privacy, which has both been theoretically studied

conscious data contributor, transparent privacy offers the certainty of knowing that our information is protected
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in an explicit and provable way that is vetted by communities of interested data users. In addition, transparent
privacy enables a quantitative description of how the information from each data contributor supports fair and
accurate policy decisions, which directly affect the welfare of individual respondents. Even a small progress
toward instilling confidence and encouraging participation can reduce the potentially immense cost due to

systematic nonresponse bias, and enhance the quality of the survey (Meng, 2018).

The algorithmic construction of differential privacy and the theoretical explorations of total survey error
creates a promising intersection. We hope to see synergistic methodological developments to serve the dual
purpose of efficient privacy protection and survey quality optimization. I will briefly discuss one such
direction. Discussing TSE-aware SDL, Karr (2017) advocates that when additive privacy mechanisms are
employed, the optimal choice of privacy error covariance should accord to the measurement error covariance.
The resulting data release demonstrates superior utility in terms of closeness to the confidential data
distribution in the sense of minimal Kullbeck-Leibler divergence. This proposal, when accepted into the
differential privacy framework, requires generalizing the vanilla algorithms to produce correlated noise while
preserving the privacy guarantee. Differential privacy researchers have looked in this direction and offered

tools adaptable to this purpose. For example, Nikolov et al. (2013) propose a correlated Gaussian mechanism

for linear queries, and demonstrate that it is an optimal mechanism among (e, §)-differentially private
mechanisms in terms of minimizing the mean squared error of the data product. A privacy mechanism
structurally designed to express the theory of survey error minimization paves the way for optimized usability

of the end data product.

6. The Quest for Full Transparency: Are We There Yet?

The collection of economic and social data is a widely practiced tradition in many civilizations, which traces
back hundreds if not thousands of years. It was not until the latter part of the 20th century, however, that the
need to defend individuals’ confidentiality became recognized as a worthy scholarly pursuit (Oberski &
Kreuter, 2020). Despite privacy being a youthful subject, we have come a long way in a mere couple of
decades to advance the art and the science of privacy protection. The progress was driven by a series of
embarrassments (some mentioned in Section 1), an awareness shared by major data curators including official
statistics agencies, corporations, and research institutions, and most importantly the hard work of computer
scientists and statisticians who keep inventing new techniques to replace the old. Transparent privacy is a
significant milestone in this progress, a gift bestowed upon us by the continued advancement in privacy
research. However, a perpetually curious researcher still must ask the ungrateful question: is this transparency

all we can ask for?

Just as some gifts are more practical than others, some versions of transparent privacy are more usable than
others. An example of transparent privacy that can be difficult to work with occurs when constraints—
including invariants, nonnegativity, integer characteristics, and structural consistencies— must be

simultaneously imposed on the differentially private queries.



Harvard Data Science Review - Special Issue 2: Differential Privacy for the 2020 U.S. Census Transparent Privacy is Principled Privacy

Invariants are a set of exact statistics calculated based on the confidential microdata (Abowd et al., 2022;_
Ashmead et al., 2019). Some invariants are mandated, in the sense that all versions of the privatized data that
the curator can release must accord to these values. Invariants represent use cases for which a precise
enumeration is crucial. For example, the total population of each state, which serves as the basis for the

allocation of House seats, must be reported exactly as enumerated as required by the U.S. Constitution.

What information is deemed invariant, and what characteristics of the confidential data should form constraints
on the privatized data are ultimately a policy decision. However, constraints don’t mingle with classical
differential privacy in a straightforward manner. Indeed, if a query has unbiased random noise added to it, there
is no guarantee that it still possesses the same characteristics as does the noiseless version. The task of ensuring
privatized census data releases to be constraint-complaint is performed by the TopDown Algorithm (Abowd et
al., 2022). The algorithm consists of two phases. During the measurement phase, differentially private noisy
measurements, which are counts infused with unbiased discrete Gaussian noises, are generated for each
geographic level. During the estimation phase, the algorithm employs nonnegative L, optimization followed
by L; controlled rounding, to ensure that the output consists of only nonnegative integers while satisfying all
desired constraints. It has been recognized that optimization-based postprocessing can create unexpected
anomalies in the released tabulations, namely systematic positive biases for smaller counts and negative biases
for larger counts, at a magnitude that tends to overwhelm the amount of inaccuracy due to privacy alone
(Devine et al., 2020;_Zhu et al., 2021).

Due to the sheer size of the optimization problem, the statistical properties of its output do not succumb easily
to theoretical explorations. However, the observed adverse effects of such processing should not strike us as
unanticipated. Projective optimizations, be they L, or L, are essentially regression adjustments on a
collection of data points. The departures that the resulting values exhibit in the direction opposite to the
Furthermore, whenever an unbiased and unbounded estimator is a posteriori confined to a subdomain (the

nonnegative integers), the unbiasedness property it once enjoys may no longer hold (Berger, 1990).

Note that an optimization algorithm that imposes invariants can still be procedurally transparent. The design of

the TopDown Algorithm is documented in the Census Bureau’s publication (Abowd et al., 2022), accompanied

by a suite of demonstration products and the GitHub codebase (2020 Census DAS Development Team, 2021).

However, mere procedural transparency may not be good enough. In summary of the NASEM CNSTAT
workshop dedicated to the assessment of the 2020 Census DAS, Hotz and Salvo (2022) note that

postprocessing of privatized data can be particularly difficult to model statistically. This is because the
optimization imposes an extremely complex, indeed data-dependent, function to the confidential data (Gong &
Meng, 2020). As a result, the distributional description of the overall algorithm (including postprocessing),
denoted as p, in this article, is difficult to characterize. One might still be able to draw limited inferential

conclusions by invoking certain approximate or robustness arguments (see e.g. Avella-Medina, 2021;_
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Dimitrakakis et al., 2014; Dwork & Lei, 2009). However, if the statistical properties of the end data release
cannot be simply described or replicated on an ordinary personal computer, it sets back the transparency
brought forth by the differentially private noise-infusion mechanism, and hinders a typical end user’s ability to

carry out the principled analysis according to (4.2), (4.3), or (4.5), as Section 4 outlines.

Nevertheless, procedural transparency is a promising step toward the full transparency that is needed to support
principled statistical inference. Through the design phase of the 2020 DAS for the P.L. 94-171 data products,
the Census Bureau released a total of six rounds of demonstration data files in the form of privacy-protect
microdata files (PPMFs). The PPMFs enabled community assessments on the DAS performance, including its
accuracy targets, and to provide feedback to the Census Bureau for future improvement. These demonstration
data are a crucial source of information for the data-user communities, and have supported research on the

impact of differential privacy as well as postprocessing in topics such as small area population (Swanson et al.,_

and voting rights measures (Cohen et al., 2022; Kenny et al., 2021).

On August 12, 2021, a group of privacy researchers signed a letter addressed to Dr. Ron Jarmin, Acting
Director of the United States Census Bureau, to request the release of the noisy measurement files that

accompanied the P.L. 94-171 redistricting data products (Dwork et al., 2021). The letter made the compelling

case that the noisy measurement files present the most straightforward solution to the issues that arise due to
postprocessing. Since the noisy measurements are already formally private, releasing these files does not pose
an additional threat to the privacy guarantee that the Bureau already offers. On the other hand, they will allow
researchers to quantify the biases induced by postprocessing and to conduct correct uncertainty quantification.
In the report Consistency of Data Products and Formal Privacy Methods for the 2020 Census, JASON (2022,
p.8) makes the recommendation that the Bureau “should not reduce the information value of their data products
solely because of fears that some stakeholders will be confused by or misuse the released data.” It makes an
explicit call for the release of all noisy measurements used to produce the released data products that do not
unduly increase disclosure risk, and the quantification of uncertainty associated with the publicized data
products. On April 28-29, 2022, a workshop dedicated to articulating a technical research agenda for statistical
inference on the differentially private census noisy measurement files took place at Rutgers University,
gathering experts from domains of social sciences, demography, public policy, statistics, and computer science.
These efforts reflect the shared recognition among the research and policy communities that access to the
census noisy measurement files, and its associated transparency benefits, are both crucial and feasible within

the current disclosure avoidance framework that the Census Bureau employs.

The evolution of privacy science over the years reflects the growing dynamic among several branches of data
science, as they collectively benefit from vastly improved computational and data storage abilities. What we’re
witnessing today is a paradigm shift in the science of curating official, social, and personal statistics. A change

of this scale is bound to exert seismic impact on the ways that quantitative evidence is used and interpreted,
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raising novel questions and opportunities in all disciplines that rely on these data sources. The protection of
privacy is not just a legal or policy mandate, but an ethical treatment of all individuals who contribute to the
collective betterment of science and society with their information. As privacy research continues to evolve, an
open and cross-disciplinary conversation is the catalyst to a fitting solution. Partaking in this conversation is
our opportunity to defend democracy in its modern form: underpinned by numbers, yet elevated by our respect

for one another as more than just numbers.
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Appendices

Appendix A: Analytical Form of the Biasing Effect in Large Finite Samples

Here we state a central limit theorem for the naive slope estimator 131 , applicable when the independent

variable z;’s are treated as fixed and when the sample size is large.

Theorem 2. Letv? = LS (2, — &)’ andk* = L Y7 | (z; — &)" respectively denote
the (unadjusted) sample variance and kurtosis of the confidential data {z;}! ,.Assume
lim,_,» ki = k > 0iswell-defined.Privatized data (%, , ;) follows the generative model
in(3.1) and privacy mechanismin (3.2). The naive slope estimator for the simple linear

regressionof §; against &; isb, = " | (& — &) (§i — §)/ 21, (#; — &)*.Then,asn — oo,

Jn (%) 4 N(0,1), (A1)

where v, = v2/ (v2 + 02) isthe biasing coefficient, and

~ ﬂf['ny(kﬁ+60§vﬁ+6zfﬁ)—2%(k£+3crﬁv§)+k§+crﬁvfb]+(Jf+02)(vﬁ+cri)
In = (o)

the approximate standard error.

The biasing coefficient -y, is the finite-population counterpart to the ratio (;(;) / (V (;I;) + 05) discussed in
Section 3. As a special case when no privacy protection is performed on either x; or y;, that is, 0'3 = 0'12) =0,
then the biasing coefficient Y =1, and the associated variance 5,, = o2 / vE regardless of sample size 7.
This recovers the usual sampling result for the classic regression estimate Bl‘ Otherwise when UZ > 0, the
biasing coefficient -y, is a positive fractional quantity, tending towards () as €, decreases, and ] if it increases.
Therefore, the naive estimator 131 underestimates the strength of association between z and g, more severely so

as the privacy protection for 2z becomes more stringent.

When n, is large, the large sample sampling distribution of f,l has (1 — a))% of its mass within the lower and

upper distribution limits (fynﬂl —®(1—a/2)y/én/n, b1 + (1 —a/2)+/6n /n> , which are
functions of the true 3, the confidential data {x; } ,, as well as the idiosyncratic variance (0?) and the
privacy error variances (UZ and 03 ). The left panel of Figure A.1 depicts these large sample 95% distribution
limits under various privacy-loss budget settings for z and g, and the right panel depicts their actual coverage

probability for the true parameter 3; .
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Figure A.1. Biasing Effect of privacy noise in linear regression. Left: large sample 95% distribution limits of the naive slope

estimator 7 as a function of and (privacy error variances of ,, and , , respectively). The panel labeled “ . __ ” shows
by o, Moy, T o,=0

Y

distribution limits (shaded gray) around the point-wise limit of the naive estimator (black solid line), if ,, is not privacy protected but

Y

s protected at increasing levels of stringency (as much as Oy = \@ / €, =2 or o, = 0.707). The panel labeled o, =2

0.5 (black dashed line).

shows distribution limits if y is also protected at that scale (equivalent to € = 0.707). True ﬁl

Right: coverage probabilities of the large sample 95% distribution limits for the naive slope estimator 8 , as a function of o, and 5
1 U v

. With no privacy protection for either ), the 95% distribution limit coincides with that of B from the

or
r-y (O'u =0, =0 1
classic regression

setting, and meets its nominal coverage for all n Adding privacy protection to,, only (i.e. increases) inflates a correctly centered

o

Yy
asymptotic distribution, exhibiting conservative coverage. However for fixed o> as privacy protection for o increases (i.e., o
[ u
increases), the bias in lA) dominates and drives coverage probability down to zero. Illustration uses a data set of n = 500° with
1 =

sample variance of confidential T about 1.023, and idiosyncratic error variance 0.2 -1

We now supply the proof of Theorem 2, which gives a large sample approximation to the distribution of the

naiive regression slope estimator for privatized data, which takes the form of

B — Yo (& —2) (5 —7)

i1 (i — %) + (ui — @) (B (2 — %) + (vi — 0) + (ei — €))
i (@ — @) + (u — @)

Writing ¢; = v; + e; and q; = x; — &, we have that

i) — > (@itui—w)(Braitci—¢) _ =30 (aitw)(Brai+e;—¢) . Ay
1 S (aitu—u)? L5 (atu)?—a2 B,

n

Using independence between ¢; and u;, denoting the sample variance and kurtosis of z as
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r .1 n 2 A | n 4
U = n Zi:1 a;, ky, = ;Zizl a;,

T — k > ( exists and is well-defined. We have that by law of large numbers,

assuming that lim,, _, ., k*

A, — Bt B0, B, — (v* +a2) 50,
thus

i)l £> Tn ﬁl

where ~,, = —2— is the biasing coefficient for the naive slope estimator §, . To establish the Central Limit
Tn V2 +02 1

Theorem result, let us first consider

A, = : D (@i + w) (Brai + ¢i) = Ay — e,
i3

1 n
B = = a; +u;)> = B, +@°.
n ”;—1( )

We have that

\/ﬁ(An - ’Ynﬂan) = \/ﬁ(A;z - VnIBIB;z) + \/ﬁéﬁ - \/ﬁ7n61ﬁ27

where | /néa 2y 0 and | /nry, B, @2 2, 0.The following central limit theorem holds:

vn (A"%gle") - \/%E:n ZZ_;(ai +u;) (Brai + ¢i) — Wb ;(ai + ;)
4 N(0,1)
where
n = %ZE <(ai +u;) (Brai +¢i) — B (ai + ui)2)2

i=1
1 1 1 1
= fyflﬁ% <EZaf +6U12‘7_7, Zaf + 603) — 2fynﬂf (EZG? + 30352(1?) +
1 1 1
B (2t + a2t Sat) ¢ (02 o) (2t 4o
= p [72 (k,,”i + 6031}2 + 6aﬁ) — 27, (k:,’,f + 3020,”;') + Kk, + aﬁv,ﬂ + (03 + 02) (vf;; + 03) ,

noting that for each ¢,
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2
E ((ai +ui) (Brai +¢i) — i (ai + Uz)2)
= E((a; +w)(Biai + ) + 2B E (a; +w)' — 2B E (Brai + ) (ai +wi)’,
= E(fai+ca) Ea+w) +20E (@ +w)' —2ymblaE (a4 +w)’
= 2B (ag1 + 6a20? + 603) — 27,32 (a;1 + 3afa§) + ( 2a2 + o2 +02) (af +a§) ,
where for u; a centralized Laplace variable,
E(a; + ui)2 = a? + 02; E(a; + ui)?’ = a,f’ + 3aio’3; E(a; + ui)4 = a? + 6a§ai + 603.

Thus with 81 = A, /B, we have that the Central Limit Theorem for the naive slope estimator is

o /_ ! = —2
\/ﬁ(bl:/’;%ﬁl) — \/E(An ’YnﬂlBgz%ﬁcu VY fra £> N(O,l)

on = ('Ufl + 0'3)72 P
B [v2 (ki + 602ve + 60y) — 27y, (k& + 3020f) + ki + oovi | + (02 + 0?) (v + 0})

(02 + 02)?

As a special case when no privacy protection is performed on either ¢ or y, i.e. o, = o, = 0, then~y,, =1

forall n and 5, = o2 /vZ gives the usual sampling distribution result for 3, .

Appendix B: Equivalence Between (4.3) and (4.5)

The true posterior distribution in (4.3) is fully spelled out as

fﬂ(ﬁ,s,’é) ds
[[ ™ (B,s,3)dsdp
™o (B) [ pe (3] 8) L(B; ) ds
Jmo (B) [ pe (51 5)L(B;s)dsdp
™o (B) Le (B; 3)
Jmo (B) L (B;5)dB

e (B 58) =

Noting that

_ m(B)L(Bs)
m(B18) = TnBc@aas

and
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Jmo (B)pe (5]5)L(B55)dB
JImo (B)pe (3]s) L (, s) dpds
ng\sfﬂo(ﬁ (B; s) dB
[ pe (31]8) [0 (B)L(B;s)dBds’

e (5] 3) =

we have that the right hand side of (4.5)

N 7To(ﬁ) (B8;3) Pf(g\sfﬂo(ﬁ)ﬁ ')dﬁ
J 719w s 19as [0 (B)L(G:5)dB T we (513) [ 70 (B) L (Bis)dpds

J pe S|S)7To (B)L(B;s)ds

Jpe (31s) [0 (B)L(B;s)dBds
0 (B) [pe (5]5)L(B;s)ds

S 7o (B) [pe (5] s)L(B;
mo (B) Le (85 8)

[ 7o (B) Le (B;5) dB

s)dsdp
= T (ﬂ ‘ 5)7

establishing the equivalence between (4.3) and (4.5).

Appendix C: Details of the MCEM Algorithm

The Monte Carlo expectation maximization (MCEM) via importance sampling algorithm works as follows for

the linear regression example. The data generative mechanism is
z; ~ Pois (10) ii.d., yi = —5+4z; + e, e, ~ N (0,02 =5%),
followed by additive privatization
T = T + U, Ui = % + vi, wi,v; ~ Lap (€7') .

The goal is to estimate the parameter values, here set at 5y = —5, f; = 4, with maximum likelihood

estimation.

At the E-step, approximate the conditional expectation of the complete data likelihood with respect to the

observed data and the parameter estimate at the current iteration
Q(B;BY) =E(log L (B;s,5) | 5,89) =E(logL£(B;s) | 5,8Y) + const.

where the log likelihood of the missing data is

log L(B;8) = — 507 > (i — o — Bizi)?,

with score

S(B;s) = % log £ (B;5) = ( > Q:Zz:;zyl__lgfg%z;lﬁl_%;;éz z )
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and negative second derivative

i(ﬂ;s):_a%zflogﬁ(ﬂ;s):EIT( Z?wz %:i% >

The approximation to the @) function is constructed with k = 1, ..., K weighted samples of the confidential
data likelihood:

Y R- 30 . o)
Q(:Baﬂ())_ E:wk ZkaIOgE(,B,Sk )’
where s(t) ~ L ®). s\ consists of x() ~ Pois (10) and e() where
k BY; ik (10) ?J ﬂo +51 zk "+

eg}? ~ N (0, o? = 52) forg = 1,...,10. The weights are calculated as
wp =1, f (ﬂcﬁ) — i'i;f‘l) f (y§,2> - @71';6‘1) :
where f (.; b) is the Laplace density with scale parameter b.

The M-step, maximizing Q( B; ﬂ( ), occurs at ﬂ (t+1) which is the solution to the approximating score

function being zero,

Zk wg S (ﬂa 31(:))
Zk W

1 _t —nfy — 517”355)
= —_—_ —( - 0,
o2 >, wk Ek:wk ( (:z:y)k — ﬁonwk — Bin(z?) )

0 Aip. a)y
552(8:8") =

where y n 1y, yl k (zy) S) =n1Y ;1352) ygc), and so on. Writing the w-weighted averages as
_(t 0 ©)  ——(t) ) —(t 55 ()
i = R, el = Rk, (), = S, @), = S

we have that

Tan® _z) #() - 7
A e A (C1)

which may be calculated at iteration ¢ to supply the parameter values for the next iteration ¢ + 1. Furthermore,

the observed Fisher information can be approximated as

md) el () | (2plel)) (2] g

Dok Wk Dok Wk >k Wk >k Wk

where the first term is equal to
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Saifgg) 4 (1 &
w, - oz )
m & @)

the second equal to (“..” denotes mirrored hence omitted entry in a symmetric matrix)

—®

2 Dk Wi (??/(f) —Bo — 51551(ct))2 Dok W (@;(f) —bBo — ﬂla‘:,(f)) ((l’y)k ~ Bz — ﬁl@z@)
T o wy, - N 2
e o (@) - szl - 5

and the third simply the outer product of the observed score from before.

The right panels of Figures 1 and 2 both follow the recipe outlined above to draw maximum likelihood
inference for the regression demostration, using ¢ = (.25 and ¢ = 1 respectively as the privacy loss budget.
The 95% confidence ellipses (green) are derived using a large-sample normal approximation to the likelihood
at the maximum likelihood estimate (MLE), with covariance equal to the inverse observed Fisher information
centered at the MLE, obtained respectively according to (C.1) and (C.2) with the values of the parameters at

the algorithm’s convergence.

©2022 Ruobin Gong. This article is licensed under a Creative Commons Attribution (CC BY 4.0) International

license, except where otherwise indicated with respect to particular material included in the article.

Footnotes

1. Zero-concentrated differential privacy controls not the ratio, but the maximal divergence, between the
probability distributions of the random query on neighboring databases. It delivers a more efficient PLB
composition property compared to the basic one stated in the previous paragraph. <

2. The analysis presented in this section uses the basic composition property introduced in Section 2. The
noise scales correspond to a privacy loss budget of €, = /2 /o, and €y = V2 /o, per coordinate. The
statistical properties discussed here hinge on the choice of the noise family and the scale parameters ou2 and
0,2 only. Superior composition (hence lower total PLB) may be achieved with better privacy mechanism
design, although that is inconsequential to the analysis presented here. =

3. For example the Herfindahl-Hirschman index, which is often used as a measure of population diversity or
market competitiveness. <

4. Note that the DAS also performs postprocessing in addition to noise infusion. The postprocessing step
may introduce additional sources of error to the assessed value of d. Unfortunately, the effect of

postprocessing may be difficult to describe analytically. Section 6 returns to postprocessing and its impact. <
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5. A statistical estimation procedure is said to be self-efficient with respect to a selection mechanism (i.e.,
the privacy mechanism), if it cannot achieve a smaller mean squared error via application to the selected
(i.e., privatized) data, instead of or in addition to the complete (i.e., confidential) data. See Definition 5 of
Meng (1994). <

6. In particular, under MCAR the missingness model may only depend on observed covariates. Under MAR

it may also depend on observed outcome variables. <

7. When conducting privacy loss accounting under zCDP, the budget parameter p translates into a range of

(€, 6) values. The production setting of the P.L. 94-171 files uses p = 2.56 and 0.07 for persons and housing

unit tables respectively, reported as the equivalent of (17.14, 10719) and (2.47, 10719) in (€, &) terms. See
U.S. Census Bureau, 2021c; Section 2 of Abowd et al., 2022; and Bun & Steinke, 2016, for more details. <
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