
Journal of Privacy and Confidentiality

Vol. 12 (2) 2022
Submitted Dec 2021

Published Nov 2022

EXACT INFERENCE WITH APPROXIMATE COMPUTATION FOR

DIFFERENTIALLY PRIVATE DATA VIA PERTURBATIONS

RUOBIN GONG

Department of Statistics, Rutgers University, New Brunswick, NJ 08854
e-mail address: rg915@stat.rutgers.edu

Abstract. This paper discusses how two classes of approximate computation algorithms
can be adapted, in a modular fashion, to achieve exact statistical inference from differentially
private data products. Considered are approximate Bayesian computation for Bayesian
inference, and Monte Carlo Expectation-Maximization for likelihood inference. Up to
Monte Carlo error, inference from these algorithms is exact with respect to the joint
speciőcation of both the analyst’s original data model, and the curator’s differential privacy
mechanism. Highlighted is a duality between approximate computation on exact data,
and exact computation on approximate data, which can be leveraged by a well-designed
computational procedure for statistical inference.

1. Introduction

Differential privacy (Dwork et al., 2006) advances statistical disclosure limitation by putting
forth a formal and practical framework. In addition to grounding the concept of privacy on
a mathematical footing, differential privacy distinguishes itself from traditional approaches
by offering transparent probabilistic mechanisms, whose speciőcations can be made public
without sabotaging the privacy guarantee. Differential privacy has been adapted by major
data curators in industry, research organizations and government. As a prime example, the
U.S. Census Bureau deploys differential privacy to protect the 2020 Decennial Census data
products (Abowd et al., 2022). The P.L. 94-171 redistricting data őles were released on
August 12, 2021 (U.S. Census Bureau, 2021).

In this work, we adopt the perspective of a data analyst operating under the dissemination
mode of data access (Hotz et al., 2022). A data curator such as the Census Bureau collects
potentially sensitive data and releases differentially private data products to the analyst.
The analyst in turn conducts statistical inference for their quantities of interest based on
the privatized data. The analyst’s goal is to draw trustworthy inference from the statistical
model they wish to őt, knowing that the data have undergone privacy protection. This may
not be a trivial task. The curator instills differential privacy in the data product via a data
processing mechanism. Naïvely treating processed data as if they are unprocessed may result
in erroneous and misleading statistical inference. With the wide adoption of differential
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privacy for disclosure limitation, social scientists and policy researchers are faced with the
challenge to revise their preferred statistical analyses to account for the privacy mechanism,
however complex they may be. To keep up with advances in privacy protection, we need
theoretically sound and computationally efficient statistical methodologies to supplant their
predecessors (Hansen, 2018).

This paper discusses the adaptation of two classes of approximate computation algorithms,
approximate Bayesian computation (ABC) and Monte Carlo Expectation-Maximization
(MCEM), to obtain exact Bayesian and likelihood statistical inferences based on differentially
private data products. The word exact means that, up to Monte Carlo error, the resulting
inference corresponds precisely to the joint statistical model that accounts for both the
analyst’s speciőcations and the differential privacy mechanism. This paper draws a concrete
connection between the novel disclosure limitation mechanisms that obey differential privacy,
and the vast reserve of computational strategies available for likelihood and Bayesian statistical
inference. The hope is that users of traditional, non-differentially private data can smoothly
transition their existing methodologies to suit novel, differentially private data products while
maintaining statistical validity. The two methods discussed in this work are applicable to a
wide range of existing models, dispensing with the need to analytically recompute the new
joint model to account for the privacy mechanism. Both classes of algorithms discussed in
this paper do not assume speciőc structures of the likelihood, prior, and privacy mechanism.
Indeed, the likelihood approach only requires that the analyst’s original model is suitable for
EM, and the Bayesian approach only requires that the original likelihood can be simulated
and that the prior is proper. Should speciőc and convenient model structures be available,
the proposed mechanisms would be amenable to adaptations that enhance computational
efficiency.

The remainder of this paper is organized as follows. Section 2 lays out the mathematical
formalism and notation for differential privacy and perturbation mechanisms. Section 3
proposes a rejection ABC algorithm, and shows that with kernel and bandwidth chosen to
correspond to the perturbation mechanism underlying the privatized data, it produces exact
posterior inference in the form of independent and identically distributed samples from the
true posterior distribution. Section 4 discusses an importance sampling implementation of
Monte Carlo EM for likelihood inference. The validity of both approximate computation
methods derives from the fact that their tuning elements can be chosen in accordance with
the differentially private perturbation mechanism that is used to generate the privatized
data product. Section 5 provides two numerical demonstrations of Bayesian and likelihood
inference for privatized count data, and a differentially private adaptation of the Lalonde
dataset for inference on job training program efficacy. Section 6 concludes with a discussion
on the duality between approximate computation on exact data and exact computation on
approximate data, and the various challenges to the efficiency of these proposals.

2. Differential privacy and perturbation mechanism

Differential privacy aims to protect the conődential information of individual respondents in
a dataset x ∈ X , without undue sacriőce of accuracy in learning about aggregate features
of the underlying population as represented by x. Here, an aggregate feature is a query
s : X → R

p, a deterministic function of x, such as the sample average, variance, quantiles
and so on. Queries are the means through which analysts learn from the dataset. Counting
queries, including histograms and contingency tables which are ordered multivariate counts
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over a partition of x, constitute a most useful class of queries. It is the main query type
for the 2020 U.S. Census data products, tabulated across various geographic levels such as
states, counties, and Census blocks.

Differential privacy is realized via a probabilistic mechanism based on the intended query.
A differentially private query reŕects as truthfully as possible the status of x, while behaving
similarly should it be calculated based on any neighboring dataset of x. The notion of
differential privacy is deőned in probabilistic terms.

Deőnition 1 (differential privacy; Dwork et al., 2006). A random function sdp : X → R
p is

(ϵ, δ)-differentially private if for all neighboring datasets (x,x′) ∈ X 2 and all A ∈ B(Rp),

Pr
(

sdp

(

x
′
)

∈ A
)

≤ eϵ · Pr (sdp (x) ∈ A) + δ. (2.1)

sdp is ϵ-differentially private if it is (ϵ, 0)-differentially private.

The pair (x,x′) ∈ X 2 are neighboring datasets if they differ by precisely one entry, either
by adding or dropping one respondent, or by taking a different value (as used in the deőnition
of bounded differential privacy; Dwork et al., 2006). When operating on neighboring datasets,
the random function sdp induces pairs of probability measures, associated respectively with
sdp(x) and sdp(x

′), that are close to each other. The degree of closeness is controlled by the
privacy loss budget ϵ and δ. In the extreme case that both are zero, the two measures must
be equal on every Borel set A, which for general x can only happen if sdp does not depend
on the data at all. In other words, differential privacy requires that the distribution of sdp

to be stable within the small neighborhood around the observable dataset.
Differential privacy is a property of the random function sdp. Many widely employed

differentially private mechanisms take the form of perturbation mechanisms.

Deőnition 2. For a dataset x ∈ X and a deterministic function s : X → R
p, the random

function sdp is a perturbation mechanism based on s if

sdp (x) | s (x) ∼ ηdp ( · | s (x)) , (2.2)

for ηdp a known conditional probability distribution. In particular, sdp is an additive
perturbation mechanism based on s if

sdp (x) = s (x) + hu, (2.3)

where the noise component u is a p-dimensional random variable with known distribution η,
E(u) = 0, and h > 0 is a scale (or bandwidth) parameter.

The differentially private query sdp is a noisy version of its deterministic counterpart s.
The protection of privacy is achieved through randomly perturbing what would otherwise
be a deterministic query calculated based on x. The subscript łdpž in sdp emphasizes that
it instantiates the privacy mechanism ηdp, rather than the data generation mechanism of
x, as the analyst might posit. The perturbation mechanism embodied by sdp is said to
be unbiased if it satisőes E (sdp (x) | s (x)) = s (x). Additive perturbation mechanisms, by
construction of (2.3), are unbiased. Furthermore, if the scale parameter h does not depend
on the conődential dataset x, the mechanism may be called a data-independent mechanism
(Li et al., 2015). Note that the additive perturbation mechanism resembles the classical
measurement error model (Carroll et al., 2006), where the noise hu has a known distribution,
and the noisy measurement sdp is observed precisely once. Appendix A gives three examples
of widely used differentially private mechanisms, with additive perturbation using Gaussian
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and Laplace noises. Their deőnitions invoke three notions of functional sensitivity, (A.1)-
(A.3), which we generally denote as ∆(s), to capture the idea that certain s is more revealing
of individual information in x than others. It is crucial that the scale parameter of the
additive perturbation mechanism is chosen as a function of both the sensitivity of s and
the privacy budget, i.e. h = h(ϵ, δ,∆(s)). Additional examples of additive differentially
private mechanisms include the generalized Cauchy (Nissim et al., 2007), double Geometric
(Schein et al., 2019), correlated multivariate Gaussian (Nikolov et al., 2013) and the k-norm
(Hardt and Talwar, 2010; Bhaskara et al., 2012) mechanisms. Examples of non-additive
perturbation mechanisms include the randomized response mechanism (Warner, 1965),
exponential mechanism (McSherry and Talwar, 2007), objective perturbation (Chaudhuri
et al., 2011; Kifer et al., 2012), among others.

A primary strength of differential privacy over traditional disclosure limitation frameworks
is its transparency, which means that the speciőcation of the perturbation mechanism ηdp

may be fully revealed to the data analyst (and indeed the public) while keeping the privacy
guarantee intact. For additive mechanisms, this speciőcation consists of u’s distribution
η, scale parameter h, and the privacy loss budget ϵ and δ. Perturbation mechanisms can
be correctly accounted for in the probabilistic modeling of privatized data. Despite the
necessary sacriőce of statistical efficiency, likelihood and Bayesian models utilizing privatized
data can still retain validity, in the sense that any inference drawn based on s can still be
drawn based on sdp correctly while accounting for its generative process. As Section 3 will
discuss, for Bayesian analysis, an ABC rejection algorithm guarantees the exactness of draws
from the true posterior distribution, when properly tuned according to the parameters of the
perturbation mechanism. The nature of the privatized query makes ABC an appealing choice
for posterior computation, even when the model is not as complex as to necessitate its use.

3. Exact Bayesian inference with differentially private data

In the absence of privacy protection, suppose a Bayesian model was posited based on the
conődential query s as a function of x. Let s (x) | θ ∼ π(s | θ) be the conődential data
likelihood, and θ ∼ π0(θ) the prior distribution for θ. The posterior distribution of θ given s

is
π (θ | s) ∝ π0 (θ)π (s | θ) . (3.1)

If the query s isn’t privacy-protected, quantities calculated based on (3.1), either analytically
or via simulation, would conclude the Bayesian analysis. With the privacy protection
mechanism in place, however, we no longer observe the conődential query s, but rather the
privatized (perturbed) query sdp as a single realization of the privacy mechanism (2.2). The
joint distribution of θ and sdp is

π (θ, sdp) =

∫

π (θ, s) ηdp (sdp | s) ds,

marginalized over the latent s. This identity holds because the conditional distribution
of sdp given s and θ is free of θ, as it is precisely the known perturbation mechanism:
π (sdp | s, θ) = ηdp (sdp | s). The posterior distribution of θ given sdp is

π (θ | sdp) =

∫

π (s, sdp, θ)

π (sdp)
ds =

π0 (θ)
∫

ηdp (sdp | s)π (s | θ) ds
∫

π0 (θ)
∫

ηdp (sdp | s)π (s | θ) dsdθ
. (3.2)
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Algorithm 1: Rejection ABC algorithm with differentially private queries

Data: Privatized query sdp, perturbation mechanism ηdp;

Result: A set of parameter values {θi}
N
i=1;

for each i = 1, . . . , N do

1. Simulate θi ∼ π0(θ);

2. Simulate si ∼ π(s | θi);

3. Accept θi with probability cηdp (sdp | si) where c−1 = max ηdp, otherwise go
to step 1;

end

As (3.2) is the true posterior distribution for θ given the observable information, analytical or
simulated computation based on (3.2) would conclude the exact Bayesian analysis. However,
computation of (3.2) may not be trivial, as part of it involves the observed likelihood
∫

ηdp (sdp | s)π (s | θ) ds, which is an integral of the product between the conődential data
likelihood and the privacy mechanism. The challenge is exacerbated by the fact that the
conődential likelihood is speciőed by the data analyst, whereas the privacy mechanism is
speciőed by the data curator. These choices are typically independent of one another, and
either of them may already be complex and computationally demanding on its own.

Algorithm 1 presents a recipe to generate independent and identically distributed samples
from the exact posterior distribution (3.2). It demands little in terms of the tractability of the
conődential likelihood. The only requirement is that for given values of θ, one can simulate
data from π(s | θ), but otherwise it need not be available in closed form. Algorithm 1 is
a type of ABC algorithm, which was designed to supply practical solutions to large-scale
models for which the likelihood may be implicit or intractable and have posteriors that lack
closed-form expressions. ABC brought computational feasibility to stochastic differential
equation models for complex dynamic systems in population genetics (Beaumont et al., 2002),
systems biology (Toni et al., 2008) and ecology (Wood, 2010), albeit ABC posteriors are
typically only approximate relative to the true target posterior. However, as will be shown
in Theorem 3.1 and discussed in Section 6, the employment of ABC for differentially private
data serendipitously eradicates the łapproximatež nature of the resulting posterior samples,
which otherwise would be the case if the data were noise-free.

Theorem 3.1. Let π(s | θ) be the likelihood for the unobserved conődential query s, π0(θ)
a proper prior distribution, and ηdp (sdp | s) a perturbation mechanism. Then, Algorithm 1
samples independently and identically from the exact posterior distribution π (θ | sdp) deőned
in (3.2).

Proof of Theorem 3.1 can be found in Appendix B. Key to the validity of Theorem 3.1
is that the differentially private perturbation mechanism is ignorable for θ (Little and Rubin,
2014), or in other words, the unobserved conődential query s is sufficient with respect to
the complete likelihood π(s, sdp | θ). Traditional statistical disclosure limitation mechanisms
may or may not enjoy ignorability, a matter further complicated by their non-transparency
to impact the quality of downstream statistical analysis (Abowd and Schmutte, 2016). By
contrast, the ignorability property of differential privacy enables exact statistical inference
and may substantially simplify the computational task.

An intuitive connection with traditional ABC can be drawn if we restrict attention to
the case of additive perturbation. As deőned in (2.3), assume ηdp (sdp | s) = η ((sdp − s) /h)
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where η(·) is the density of the additive noise u and h a scale parameter, both known precisely
to the analyst. Algorithm 1 adopts the kernel density η, properly scaled by a factor of c,
with bandwidth h = h(ϵ, δ,∆(s)) and center sdp to be its acceptance probability at step
3, thus reduces to a classic rejection ABC algorithm with tuning parameters (i.e. kernel
and bandwidth) set to match precisely the additive perturbation mechanism employed to
generate sdp.

One way to understand Theorem 3.1 is that the privacy mechanism plays the role of the
łrandom summary statisticž in the noisy ABC algorithm of Fearnhead and Prangle (2012).
Noisy ABC is calibrated with respect to the joint Bayesian model, whereas ABC typically
isn’t. However, the kernel and bandwidth in noisy ABC are merely parameters to őne-tune
the tradeoff between approximation error and the Monte Carlo error in the posterior, which
in turn controls the efficiency of the sampler. In contrast, both the kernel and the bandwidth
of Algorithm 1 are dictated externally by the perturbation mechanism and the privacy
loss budget. The computational tradeoff and the privacy tradeoff are łbundledž together:
specifying the parameters of ABC also speciőes those of the privacy mechanism, and vice
versa.

The overall acceptance probability of Algorithm 1 is π (sdp) /max ηdp, or the model
evidence evaluated at sdp divided by the modal density of ηdp (see Appendix B). This means
that rejection can be frequent if model evidence is low, such as when the prior and the
observed likelihood are in disagreement (termed prior-data conŕict ; Evans and Moshonov,
2006), or if the privacy bandwidth h is too small.

To address the concern, Algorithm 1 can be adapted to work with a variety of alternative
ABC sampling techniques to produce consistent posterior estimates for functions of interest.
As an example, we discuss an importance sampling variation to Algorithm 1 as follows. At
step 1 of each iteration, sample θi ∼ g(θ), a proposal distribution that is positive wherever
the prior π0(θ) is positive. At step 3, no rejection is performed, but instead θi is assigned a
weight

ωi = ω(si, θi) = ηdp (sdp | si)π0(θi)/g(θi).

The algorithm returns weighted draws {θi, ωi}
N
i=1. For a square-integrable function of interest

a(θ), the weighted average estimator converges in probability to its posterior expectation
given sdp as N → ∞ (Liu, 2008):

∑N
i=1 ωia (θi)
∑N

i=1 ωi

p
→

Eg (ω (θ, s) a (θ))

Eg (ω (θ, s))
= E (a (θ) | sdp) , (3.3)

where Eg (·) is with respect to the joint distribution g(θ)π(s | θ), and E (· | sdp) is with
respect to the true posterior in (3.2). The proposal distribution g(·) can be chosen to minimize
the variance of the estimator in (3.3), such as a density that is close in shape to a(θ)π0(θ)
(Liu, 2008). Further adaptations of and beyond ABC, such as hybrid importance-rejection
sampling (Fearnhead and Prangle, 2012), rejection control (Sisson et al., 2018, ch.4), Markov
chain Monte Carlo (Marjoram et al., 2003) and sequential Monte Carlo (Sisson et al., 2007)
can be developed likewise, while the consistency result of (3.3) remains standing.

4. Exact likelihood inference with differentially private data

This section discusses a Monte Carlo Expectation-Maximization (EM; Dempster et al., 1977;
Wei and Tanner, 1990) implementation for likelihood inference with differentially private
data. Under the classic setting, when a likelihood involves both observed and latent data, EM
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seeks the maximum likelihood estimate of the parameter by iteratively integrating the log
likelihood over the conditional predictive distribution of the latent data given the observed
data and a current parameter value (the E-step), and maximizing the parameter value over
this integral (the M-step).

In the context of differential privacy, the complete data is (s, sdp), in which the latent
data is the conődential query s, and the observed data is the privatized query sdp. In the
special case of additive perturbation, sdp = s + hu is a convolution of s and the noise
component u. The complete likelihood is written as L(θ; s, sdp) ∝ π(s, sdp | θ), as deőned in
Section 3. The EM algorithm for maximum likelihood inference for θ given the differentially
private sdp is schematically described in Algorithm 2.

Algorithm 2: EM algorithm for differentially private queries

Data: Privatized query sdp, initial θ(0);

Result: A local maximizer θ(t
∗);

while ∆
(

θ(t), θ(t−1)
)

>tol. do
E-step: Evaluate the expectation of the complete log likelihood with respect to
the conditional predictive distribution of s given sdp and the current maximizer

θ(t):

Q(θ; θ(t)) = E

(

logL(θ; s, sdp) | sdp, θ
(t)
)

= E

(

log π(s | θ) | sdp, θ
(t)
)

+ const.; (4.1)

M-step: Calculate θ(t+1) := argmaxθQ(θ; θ(t)), and set t := t+ 1;

end

The E- and M-steps are iterated until convergence, that is when θ(t) stabilizes so that
its distance (somehow measured) from the previous iteration, dist

(

θ(t), θ(t−1)
)

, is sufficiently
small. It is worth noting that the constant term in (4.1) is equal to

E

(

log ηdp(sdp | s) | sdp, θ
(t)
)

,

which can be ignored within the EM algorithm. This is because, as discussed in Section 3, the
privacy mechanism ηdp is known and independent of θ, and so is the conditional predictive
expectation of its log density.

As alluded to in Section 1, for likelihood modeling of differentially private data, the
conődential data likelihood and the privacy mechanism are typically speciőed by separate
parties without coordination with one another. Thus in general, one cannot expect the
observed data likelihood (which is an integral of their product) to come from an exponential
family (cf. Park et al., 2017), nor be able to perform both the E- and the M-steps analytically.
Monte Carlo implementation of one or both steps may be needed, which amounts to
implementing the E-step of Algorithm 2 via an importance sampling scheme. We describe
this scheme in Algorithm 3. The set of weighted samples {si, ωi}

N
i=1 produced by Algorithm 3

may be used in two ways, depending on whether the conődential data likelihood is or is not
from an exponential family. We discuss both cases below.
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Algorithm 3: E-step via importance sampling for differentially private queries

Data: Privatized query sdp, perturbation mechanism ηdp;

Result: A set of weighted samples {si, ωi}
N
i=1, to be used for (4.2)-(4.7);

for the tth E-step of Algorithm 2, do

1. Simulate si ∼ π(s | θ(t));

2. Calculate ωi = ηdp (sdp | si);

end

4.1. Conődential data with exponential family likelihood. In the simpler scenario
that the conődential data likelihood π(s | θ) as speciőed by the analyst belongs to the
exponential family, it admits a sufficient statistic to the parameter θ which we denote as
b (s). The function Q(θ; θ(t)) in (4.1) can be written as an explicit function of θ and

E

(

b(s) | sdp, θ
(t)
)

, (4.2)

the conditional expectation of b(s) given sdp and the current maximizer θ(t). With this
simpliőcation, however, (4.2) may still not be estimable in closed form, in which case we
utilize the set of weighted samples {si, ωi}

N
i=1 produced by Algorithm 3 to consistently

estimate it at every iteration t. Indeed, as N → ∞, the weighted estimator
∑N

i=1 ωib (si)
∑N

i=1 ωi

(4.3)

converges in probability to (4.2). For the E-step of the (t+1)st iteration, θ(t+1) can be found

by maximizing Q(θ; θ(t)), replacing (4.2) therein with (4.3). The effective sample size at the
tth iteration is

ess
(t) (N) = Nπ2

(

sdp | θ(t)
)

E
−1
s|θ(t)

(

η2dp (sdp | s)
)

, (4.4)

where the subscript łs | θ(t)ž signiőes that the expectation is taken with respect to the current
approximation to the conődential data likelihood, or equivalently, the proposal distribution
of the E-step importance sampler. Derivation of (4.4) may be found in Appendix C.

In Algorithm 3, the si’s are simulated from the current approximation to the analyst’s
conődential data likelihood, and the weights ωi’s are separately determined by the curator’s
privacy mechanism. Similar in spirit to Algorithm 1, this separation allows the computation to
easily accommodate independently derived choices of data likelihood and privacy mechanisms,
and does not require the evaluation or integration of quantities that are nontrivial functions
of both. Whenever appropriate, however, one may modify Algorithm 3 to sample from
the conditional predictive distribution in more efficient ways. For example, with rejection
or Markov chain-based samplers, si follows a proposal distribution and ωi = 1 if si is
accepted and 0 otherwise (McCulloch, 1997; Booth and Hobert, 1999). One may also perform

importance sampling where si ∼ π
(

s | sdp, θ
(t−1)

)

, the approximation to the conditional

predictive distribution at the previous iteration, and ωi = π
(

s | sdp, θ
(t)
)

/π
(

s | sdp, θ
(t−1)

)

the ratio between the current and previous approximations, thereby reweighting and recycling
the multiply-imputed si’s to save computational effort (Quintana et al., 1999). One may also
resample the simulated si’s according to their associated weights to obtain an unweighted
rejection sample, as long as the goal is to construct as accurate as possible an estimate for
(4.2) as part of the E-step.
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4.2. Conődential data with general likelihood. If the conődential data likelihood does
not come from an exponential family, Q(θ; θ(t)) of (4.1) may not reduce to a straightforward
expression involving θ and (4.2). In this case, the E-step requires a full approximation to

Q(θ; θ(t)) as a mixture of augmented log likelihoods, constructed as follows.

Let {si, ωi}
N
i=1 be a weighted sample from the target distribution π

(

s | sdp, θ
(t)
)

, the

tth approximation to the conditional predictive distribution. Speciőcally {si, ωi}
N
i=1 can be

the importance sample generated by Algorithm 3, or by one of its variations described above.
Then,

Q̂(θ; θ(t)) = m
N
∑

i=1

ωi log π(si | θ) (4.5)

serves as a consistent approximation to Q(θ; θ(t)). The constant m−1 =
∑N

i=1 ωi in (4.5)
is inconsequential to the maximizer in the ensuing M-step, as long as the ωi’s do not
involve the unknown parameter θ. That is indeed the case since, again, the perturbation
mechanism is ignorable for θ. Writing λθ(s) = ∇θ log π (s | θ), the observed score function

∇θ log π
(

sdp | θ(t)
)

can be approximated at the tth iteration according to

E

(

λθ(s) | sdp, θ
(t)
)

·
= m

N
∑

i=1

ωiλθ(si). (4.6)

The observed Fisher information can also be approximated according to

−∇2
θ log π

(

sdp | θ(t)
)

·
=

m
N
∑

i=1

ωi

{

−∇θλθ (si)− λθ (si)λθ (si)
⊤
}

+m2
N
∑

i=1

N
∑

j=1

ωiωjλθ (si)λθ (sj)
⊤ . (4.7)

Derivations of the observed score function and observed Fisher information can be found in
Appendix D. Both (4.6) and (4.7) may be used for quantifying the inferential uncertainty
under the normal approximation to the likelihood (Meilijson, 1989), as well as accelerating and
assessing convergence for Newton-type implementations of the M-step. The approximations
given above rely only the őrst and second derivatives of the conődential likelihood be evaluable
at the simulated si’s.

For any EM algorithm (and not just Monte Carlo EM) to be applicable to likelihood
inference from differentially private data, one must be able to evaluate the conődential data
likelihood π(s | θ), to the extent that maximization of the Q function can be done at least
numerically. The vast literature on Monte Carlo EM has much to offer in terms of options
for implementing both the E- and the M-steps with better convergence rates, sampling
efficiency, or under computational capacity constraints, and for adapting modeling scenarios
to differentially private data. The additive perturbation mechanism of (2.3) is a special
instance of a linear mixed effects model, which is particularly suitable for Monte Carlo EM
and has been studied extensively in the literature, e.g. Wolőnger and O’Connell (1993);
McCulloch (1997).
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Figure 1: Algorithm 1 produces exact draws (black histogram, N = 104) from the true
posterior (green density), which is different from the naïve posterior (red dotted
density) which treats the observed sdp = 37.4 (black diamond) as if without
privatization. The blue dashed density is the prior.

5. Numerical Demonstrations

5.1. Bayesian and likelihood inference from privatized count data. In this simple
example, we consider modeling the number of respondents from a sample x in possession
of a certain feature. s(·) is the univariate counting query, for which we posit the sampling
model s (x) | θ ∼ Pois (θ). θ is the population expectation parameter for which we wish to
draw Bayesian and likelihood inference.

First consider a Bayesian model for θ. We implement rejection ABC as described in
Algorithm 1 to draw from the exact Bayesian posterior based on the privatized count sdp.
Suppose sdp is produced by the ϵ-differentially private Laplace mechanism (Example 1 in
Appendix A), where the additive noise follows u ∼ Lapp(1) with bandwidth h = ϵ−1. As with
general ABC samplers, Algorithm 1 can work with arbitrary choices of prior and likelihood
that need not be conjugate, so long as the prior is proper. For the purpose of illustration, we
consider the prior θ ∼ Gamma (α, β), where α and β are őxed hyperparameters, so that an
analytically tractable posterior can be obtained for visual comparison.

Figure 1 depicts both the correct and the naïve analyses, with hyperparameters α =
25, β = 1, privacy loss budget ϵ = 0.2, and sdp = 37.4. The true analytical posterior (green
solid density), normalized via numerical integration, coincides with the differentially private
ABC posterior histogram tabulated from 104 draws from Algorithm 1. The correct analysis
differs substantially from the incorrect naïve posterior (red dotted density), which treats sdp

as if it were an observed conődential query. (The latter posterior amounts to the posterior
from the standard Gamma-Poisson conjugate model.) Compared to the correct posterior, the
naïve posterior succumbs less to the shrinkage effect imposed by the prior. It assigns a heavier
weight of evidence to the observed value of sdp, more than it deserves. It is furthermore
overly concentrated at the mode, underestimating the posterior uncertainty associated with
θ.

Appendix E reports additional experiments that employ Gamma prior distributions with
hyperparameters α = 2, 5, 50, 75 and β = 1. It is worth noting that when the privatized
observation sdp appears highly unlikely under the chosen prior (or is in conŕict with it, in other
words), the correct posterior heavily discounts the contribution by sdp. Such is the case when
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Table 1: Acceptance rate of Algorithm 1 under various priors ; sdp = 37.4

prior: θ ∼ Gamma(α, 1) prior predictive: Eθ(sdp) acceptance rate (%) s.e. (%)

α = 2 2 0.09 0.02
α = 5 5 0.21 0.06

(Figure 1) α = 25 25 16.24 0.35
α = 50 50 19.83 0.31
α = 75 75 0.64 0.07

α = 2 or 5, as seen in Figure 3 (a) and (b): the correct posterior is in close alignment with the
prior and differs signiőcantly from the naïve posterior. As alluded to in Section 3, prior-data
conŕict presents a challenge for ABC algorithms in general, because forward sampling tends
to explore the area with higher prior predictive concentration. A realized observation far
from that area would result in a low acceptance rate. To see this, Table 1 reports the average
acceptance rates and their standard errors over 20 direct repetitions of Algorithm 1 under
various choices of Gamma priors. In comparison with the observed query, these priors range
from congruent to conŕicting, as can be seen from the varied differences between sdp and its
prior predictive expectation: Eθ(sdp) =

∫

sdp

∫

ηdp (sdp | s)
∫

π (s | θ)π0 (θ) dθdsdsdp.
Maximum likelihood estimation for θ is carried out as follows. The conődential data

likelihood is the Poisson density. Importance sampling as described in Algorithm 3 is used
to construct estimates for (4.2) at every iteration of the E-step, followed by an analytical
M-step. Appendix E describes details of the implementation using three stages of successively
more stringent tolerance levels. With θ(1) = 1, the algorithm converges to the maximizer
θ̂ = 37.237, with observed Fisher information estimated to be 1.582 × 10−2. If sdp were
erroneously treated as the conődential data, the MLE for θ would’ve been 37.4, and the
observed Fisher information would’ve been 2.674 × 10−2, or 69% larger than the correct
estimate, again displaying an underestimation of inferential uncertainty. The reduction of
Fisher information content reŕects a loss of statistical efficiency induced by the privatization
mechanism, and is expected in typical inference problems whenever conődential data are
replaced with their privatized counterparts. Details of the above calculations can be found
in Appendix E.

5.2. Lalonde dataset. The Lalonde dataset (LaLonde, 1986) was built from the randomized
trial of the National Supported Work (NSW) Demonstration and nonexperimental comparison
data, for the purpose of studying the efficacy of the job training program on recipients’
future earnings. The dataset, with a total of 185 treated and 260 control units, is well-
studied in the causal inference and econometrics literatures using regression and propensity
matching methods, see e.g. Heckman and Hotz (1989); Dehejia and Wahba (1999, 2002). We
employ the example here to illustrate a Bayesian analysis that compares the 1978 earnings
of the treatment and control groups, if ϵ-differentially private versions of the key descriptive
statistics were released instead.

Let zi be the observed indicator for whether subject i received treatment (zi = 1) or
control (zi = 0), and yi their earning in 1978 (in $1k). The full parameter of the model is
θ =

(

τ, µ, σ2
t , σ

2
c

)

, in which τ is the difference in average earnings between the treatment and
control groups, and is the primary parameter of interest. We posit independent priors for
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elements of θ, as well as the sampling model

yi | zi, θ ∼ N
(

τzi + µ, σ2
t zi + σ2

c (1− zi)
)

.

For the sake of simplicity, we do not consider additional covariates that distinguish the
treatment and control subjects.

Among the descriptive statistics that the publisher plans to release, relevant to the
inferential task at hand are the within-group sample means and sample variances: s =
(

ȳt, ȳc, s
2
t , s

2
c

)

. Together they make up the sufficient statistic for the full parameter θ. The
top row of Figure 2 displays the posterior inference for θ by repeatedly őtting this model
in RStan using the actual value of s. Discrepancies among the ten boxplots within each
őgure, all of them minor, are due to Monte Carlo errors. According to the model, there is a
discernible positive treatment effect since the posterior mass of τ is overwhelmingly positive.

Suppose that the data publisher releases ϵ-differentially private version of sample means
and variances. Since the mean and the variance are real-valued functions, they do not have a
őnite global sensitivity ∆GS as deőned in (A.1), hence the Laplace mechanism cannot apply
directly to them. To circumvent this issue, the publisher may clamp the underlying query,
that is to enforce its value to stay within a bounded range. For simplicity’s sake, suppose that
the clamping range on individual income is conservatively set, say to between zero and $100k,
and the treatment and control groups are guaranteed to exceed 100 people. This effectively
restricts the global sensitivity of ȳt and ȳc to 1 and that of s2t and s2c to 100. For reference,
the maximum observed individual income in the dataset is $60.3k, and the treatment and
control group are respectively of sizes nt = 185 and nc = 260, ensuring that all conődential
query values fall well within the clamping range. The beneőt of conservative clamping is that
the privatized statistics would not require truncation correction, even though it amounts
to an inefficient privacy budget allocation strategy. Further suppose two separate privacy
loss budgets of ϵ = 1/3 and 100/6 are respectively expended on the sample means and
variances, through Laplace mechanisms employing independent zero-mean noise components
with bandwidths h−1 = 1/3 for each of the sample means ȳt, ȳc, and h−1 = 1/6 for each of
the sample variances s2t , s

2
c .

The middle and bottom rows of Figure 2 respectively display posterior inferences from
naïvely őtting the original model (i.e. disregarding the privacy mechanism) in RStan, and
correctly őtting the exact posterior (i.e. accounting for the privacy mechanism) using
rejection ABC of Algorithm 1. Both methods were őtted to the same ten independent
realizations of sdp from the Laplace mechanism. Discrepancies among the ten boxplots
within each őgure in these two rows are due to the random privacy mechanism and to Monte
Carlo errors ś the latter to a much lesser extent. We see that with the correct analysis,
posterior uncertainty for all parameters are substantially inŕated, in part due to the highly
inefficient allocation of the privacy loss budget. As a result, we can no longer conclude that
the treatment effect is signiőcant in either direction. However, the posterior quantiles overlap
substantially with their counterparts from the original posterior on the top row, indicating
that the cost of privacy manifests more as an estimation precision loss rather than bias.
This stand in contrast against the naïve analysis which delivers tight, yet idiosyncratically
displaced, posterior masses. Details of this analysis can be found in Appendix F.
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Figure 2: Boxplots of (1%, 25%, 50%, 75%, 99%) posterior quantiles of
(

τ, µ, σ2
t , σ

2
c

)

. Top row:
ten repeated RStan őttings of the original model to the original data s; Mid row:
naïve RStan őttings of the original model to ten realizations of sdp via the Laplace
mechanism; Bottom row: exact posterior őttings using rejection ABC (Algorithm 1)
on the same ten sdp realizations as above.

6. Conclusion and Discussion

Modern likelihood and Bayesian inference face the challenge of model complexity. They
appeal to Monte Carlo and approximate methods to carry out needed computation, even
if the resulting inferences are only approximate with respect to the full statistical model.
This paper discussed how approximate computation algorithms, speciőcally ABC and Monte
Carlo EM, can be adapted to obtain exact Bayesian and likelihood statistical inferences
based on differentially private data products. In both cases, the tuning elements of the
approximate computation algorithms are chosen to accord with the speciőcations of the
differentially private perturbation mechanism, which can be made transparent to the data
analyst. Both methods are applicable to a wide range of modeling scenarios, and may help
data users transition existing methodologies to apply to differentially private data products
while maintaining the statistical validity of their analysis.

When no privacy mechanism is involved, ABC algorithms exhibits a bias whenever they
cannot enforce an exact match between the observed and the simulated data (Nunes and
Balding, 2010; Drovandi et al., 2011; Gleim and Pigorsch, 2013; Barnes et al., 2012; Bernton
et al., 2019), which is typically the case in practice. The justiőcation of ABC relies on that
in the limit as the bandwidth h → 0, the ABC posterior πABC(θ | s) approaches the true
posterior π(θ | s) (Blum et al., 2013; Sisson et al., 2018). However in practice, h cannot be
too small in order for the algorithm to generate an adequate number of samples, trading off
a larger approximation error with a smaller Monte Carlo error.

The statistical insight underscored by this paper is the duality

approximate computation on exact data ↔ exact computation on approximate data.
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Differentially private data is approximate data. The perturbation mechanism with which
the data were treated serves coincidentally as the attributable cause of the approximation
error. When differentially private data are employed, the Monte Carlo error becomes the
sole kind of error attributable to the ABC algorithm, and vanishes as N → +∞ as any other
consistent method of simulation.

The pursuit of differential privacy pits a direct tradeoff against statistical efficiency
(Duchi et al., 2018). But the efficiency-privacy tradeoff as a statistical consideration is
interweaved with the approximation-exactness tradeoff as a computational consideration, a
sentiment that is shared by explorations of other simulation-based Bayesian computational
algorithms with differentially private data, including stochastic gradient Monte Carlo (Wang
et al., 2015) and Gibbs sampling (Foulds et al., 2016). For ABC algorithms, to insist on
maximal statistical efficiency necessitates computational approximation. Whereas the act of
data perturbation not only gains differential privacy, but also computational exactness for
free. Both the ABC and Monte Carlo EM approaches adapt to differentially private data
using the same logic, by setting the tuning parameters governing their numerical performance
based on the privacy parameters. Tailoring an algorithm according to the data generative
speciőcation exploits the alignment between the statistical and computational tradeoffs,
hitting two birds with one stone, so to speak.

There are several computational challenges to the practical implementation of the
proposed frameworks. These challenges are of two types: those intrinsic to ABC and other
forward sampling techniques, and those induced by the privacy mechanism. A weakness in
either of these aspects may impact the computational efficiency of these proposals, or in the
worst case, render them infeasible. We discuss the two types of challenges below.

A data analyst operating under the dissemination mode of data access is on the receiving
end of data products which are designed and privatized by the data curator. As this paper
discusses the migration of existing statistical methodology to accommodate privacy-protected
data products, we assume that the analyst knows how to perform their preferred analysis
on the data product were it not privatized, i.e. if the curator releases s rather than sdp.
That is, π(θ | s) in (3.1) is taken to be the ultimate posterior the analyst targets. Depending
on the model, however, the analyst may or may not prefer to use ABC or other forward
sampling techniques to draw inference from π(θ | s). The strength of ABC lies in its ability
to handle intractable likelihoods, but it presents several limitations. In the construction of
the current paper, the intended query function s (and hence the private query sdp) may
be multi-dimensional, where each dimension is generated in isolation, in conjunction, or
sequentially. In particular, we do not preclude the identity function, s(x) = x, in which case
the privacy perturbation is performed element-wise on the full dataset for publication, such
as may be encountered in the local differential privacy setting.

Whenever the full data likelihood does not admit a low-dimensional sufficient summary
to s, the computational efficiency of both proposed algorithms will likely suffer. For classic
ABC, the synthetic data matching step (step 3 in Algorithm 1) will be computationally
wasteful. The ABC literature explores the use of approximate summary statistics (Beaumont
et al., 2002; Joyce and Marjoram, 2008; Wegmann et al., 2009) to achieve dimension reduction
and efficient matching. Unless carefully designed, however, general approximate summary
reduction to s will complicate the expression of the privacy kernel ηdp, and will destroy the
łexactž nature of the proposed algorithm. The lack of sufficient reduction challenges the
feasibility of other modes of computational for privacy-aware Bayesian inference as well; see
e.g. Bernstein and Sheldon (2018, 2019). The question remains with the data curator: in
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anticipation of a broad range of data analysis needs, how to choose the query s that provides
better statistical utility and computational efficiency?

Another limitation of ABC methods is that their performance depends on the prior and
the nature of the state space. As mentioned previously, ABC must work with proper prior
distributions. This minimal requirement speaks nothing about the algorithm’s efficiency.
As the numerical experiment in Section 5.1 demonstrates, the acceptance probability of
Algorithm 1 is low when the observed data is in conŕict with the prior. The remedy is to
devote more sampling resource to areas of the parameter space for which the data exhibit
more support. This is a tautology of sorts, since the area we seek is precisely the area with
high posterior density, which may be particularly difficult to locate when the parameter
space is high dimensional, and when the prior distribution is diffuse (despite being proper).

There are also computational challenges brought forth by the privacy mechanism. Since
both proposed algorithms require the transparency of ηdp(sdp | ·), any act that deprives the
analyst’s ability to evaluate this quantity also hinders the proposed computational schemes.
Two notable causes to diminished transparency of the privacy mechanism are clamping and
post-processing. As discussed in Section 5.2, the curator performs clamping when the query
has unbounded global sensitivity. While naïve and conservative clamping (such as presented
in Section 5.2) requires little additional work from the analyst, carefully designed clamping
procedures typically involve the underlying conődential dataset in a nontrivial fashion (see
e.g. Biswas et al., 2020). The resulting privacy mechanism may not be simply captured by
an analytically tractable ηdp. In addition, the post-processing of differentially private data
products may also complicate an otherwise simple expression of ηdp. Such is the case if the
post-processing operation depends nontrivially on aspects of the observed data. For example,
the TopDown algorithm imposes invariants on the differentially private noisy measurements
via optimization-based post-processing (Abowd et al., 2022). As a result, the output of the
algorithm does not permit a straightforward probabilistic description, which threatens its
congeniality as a building block in the data processing pipeline (Gong and Meng, 2020).
From the statistical point of view, a transparent privacy mechanism is instrumental to the
feasibility of conducting exact statistical inference from privacy-protected data (Gong, 2022).
To ensure transparency of the privacy mechanism is yet another challenging task that lies
with the data curator.
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Appendix A. Examples of additive perturbation DP mechanisms

Example 1 (ϵ-Laplace mechanism; Dwork et al. (2006)). In (2.3), let u ∼ Lapp(1), the
p-dimensional product of independent and identically distributed standard Laplace variables,
and h = ϵ−1∆GS(s), where

∆GS(s) = sup
x,x′

{∥

∥

s (x)− s

(

x
′
)∥

∥ : d
(

x,x′
)

= 1
}

, (A.1)

is the global sensitivity of s, with ∥ · ∥ denoting the ℓ1 norm. Then, sdp is ϵ-differentially
private.

Example 2 ((ϵ, δ)-Laplace mechanism; Nissim et al. (2007)). In (2.3), let u ∼ Lapp(1),

h = ϵ−1∆ξ(s,x), and ξ = ϵ {4 (p+ log (2/δ))}−1, where

∆ξ(s,x) = sup
x
′

{

e−ξd(x,x′)∆LS

(

s,x′
)

: x′ ∈ X
}

(A.2)

is the ξ-smooth sensitivity (ξ > 0) of s at x, and

∆LS(s,x) = sup
x
′

{∥

∥

s (x)− s

(

x
′
)∥

∥ : d
(

x,x′
)

= 1
}

(A.3)

is the local sensitivity of s at x. Then, sdp is (ϵ, δ)-differentially private.

Example 3 (Gaussian mechanism; Blum et al. (2005); Nissim et al. (2007)). In (2.3), let u ∼

N(0, Ip) the p-dimensional standard multivariate Normal variable, h = ϵ−15
√

2 log(2/δ)∆ξ(s,x),

and ξ = ϵ {4 (p+ log (2/δ))}−1. Then, sdp is (ϵ, δ)-differentially private.

The above examples invoke three notions of functional sensitivity (A.1)-(A.3), generally
denoted as ∆(s), to capture the idea that certain choices of s may be more revealing of
individual information in x than others. The global sensitivity measures the extent to which
s varies between all conceivable pairs of neighboring datasets, whether or not realized in
the observed sample. For example, the global sensitivity of the counting query is 1. On the
other hand, the local sensitivity of s measures its maximum variability among neighboring
datasets to a given observed dataset x. The smooth sensitivity strikes a balance between the
two, by providing an upper bound on the local sensitivity at x in such a way that the bound
does not vary too quickly as a function of x. It is crucial that the scale parameter of the
additive perturbation mechanism is chosen as a function of both the sensitivity of s as well
as the privacy budget, that is, h = h(ϵ, δ,∆(s)).

Appendix B. Proof of Theorem 3.1

Proof. Let I be the indicator of the event that a draw of θ is accepted. The joint distribution
of all quantities produced by the ith iteration is π̃(θ, s, I) = π0(θ)π(s | θ)π̃(I | s), where
π̃(I | s) is the Bernoulli mass function with proportion parameter cηdp (sdp | s). The marginal
distribution of an accepted θ sample is

π̃ (θ | I = 1) =

∫

π̃ (θ, s, I = 1)

π̃ (I = 1)
ds =

∫

π0 (θ)π (s | θ) cηdp (sdp | s) ds
∫ ∫

π0 (θ)π (s | θ) cηdp (sdp | s) dsdθ
, (B.1)

which is equal to π (θ | sdp) as deőned in (3.2). From here, one can see that the overall
acceptance probability of Algorithm 1 is

π̃(I = 1) = π (sdp) /max ηdp(·).
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Note that under the special case of additive perturbation, the proof of Theorem 3.1
parallels Theorem 1 of Wilkinson (2013). However, there is an important conceptual difference.
In Wilkinson (2013), the conditioning query is a query that was observed noiselessly, but
construed as if subject to additive error. The ABC-induced posterior of θ therein, while
essentially identical to (3.2), is not the true posterior of θ but that of a łbest model input

θ̂ž given sdp. With sdp being a privatized query, no pretense is necessary in treating it as
observed with error, since it indeed was.

Appendix C. Effective sample size for Monte Carlo EM

In reference to Algorithm 3, at the tth iteration, the normalized version of the importance
sampling weights is

ω̃i = c(t)ηdp (sdp | si) = c(t)ωi

where c(t) = 1/π(sdp | θ(t)) is the reciprocal of the current approximation to the observed

likelihood and is free of si. The weighted estimator
∑N

i=1 ω̃ib (si) is a consistent estimator of
(4.2) because

E

(

b (s) | sdp, θ
(t)
)

=

∫

b (s)π
(

s | sdp, θ
(t)
)

ds

=

∫

b (s)
π
(

s | θ(t)
)

ηdp (sdp | s)
∫

π
(

s | θ(t)
)

ηdp (sdp | s) ds
ds

=

∫

ω̃ (s) b (s)π
(

s | θ(t)
)

ds.

We have that at the expectation of weights for the tth iteration is

E
s|θ(t) (ω̃) =

∫

c(t)ηdp (sdp | s)π(s | θ(t))ds

= c(t)π(sdp | θ(t)) = 1,

where the subscript s | θ(t) signiőes the expectation is evaluated with respect to the current
approximation to the latent data likelihood, or equivalently, the proposal distribution of the
importance sampler. Similarly,

var
s|θ(t) (ω̃) = E

s|θ(t)
(

ω̃2
)

− E
2
s|θ(t)

(ω̃)

= c2(t)Es|θ(t)(η
2
dp (sdp | s))− 1.

This gives rise to the effective sample size

ess
(t) (N) = N/

(

1 + var
s|θ(t) (ω̃)

)

= Nπ2
(

sdp | θ(t)
)

E
−1
s|θ(t)

(

η2dp (sdp | s)
)

.

See also section 2.5.3 of (Liu, 2008).
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Appendix D. Observed score and Fisher information for Monte Carlo EM

We have that the observed data log likelihood

log π (sdp | θ) = log

∫

π (sdp | s)π (s | θ) ds,

thus the observed score

∇θ log π (sdp | θ) =

∫

π (sdp | s)∇θπ (s | θ) ds
∫

π (sdp | s)π (s | θ) ds

=

∫ π(sdp|s)∇θπ(s|θ)

π(sdp|s)π(s|θ)
π (sdp | s)π (s | θ) ds

∫

π (sdp | s)π (s | θ) ds

=

∫

∇θπ (s | θ)

π (s | θ)

π (sdp, s | θ)
∫

π (sdp, s | θ) ds
ds

=

∫

∇θ log π (s | θ)π (s | sdp, θ) ds

= E (∇θ log π (s | θ) | sdp, θ) .

Writing λθ(s) = ∇θ log π (s | θ), we have that E
(

λθ(s) | sdp, θ
(t)
)

serves as the tth approxi-

mation to the observed score ∇θ log π
(

sdp | θ(t)
)

, giving rise to the expression

E

(

λθ(s) | sdp, θ
(t)
)

≈ m
N
∑

i=1

ωiλθ(si).

Similarly the Hessian, or the negative of the observed Fisher information matrix, is

∇2
θ log π (sdp | θ) =

∫

∇2
θπ (s | θ)

π (s | θ)
π
(

s | sdp, θ
(t)
)

ds

− (∇θ log π (sdp | θ)) (∇θ log π (sdp | θ))⊤

= E

(

∇2
θ log π (s | θ) +∇θ log π (s | θ)∇θ log π (s | θ)⊤ | sdp, θ

)

− (∇θ log π (sdp | θ)) (∇θ log π (sdp | θ))⊤ .

Substituting again λθ(s) and the expression for the observed score into the above equation,

we have that the tth approximation to the observed Fisher information −∇2
θ log π

(

sdp | θ(t)
)

takes the form

E

(

−∇θλθ (s)− λθ (s)λθ (s)
⊤ | sdp, θ

(t)
)

+ E

(

λθ (s) | sdp, θ
(t)
)

E

(

λθ (s) | sdp, θ
(t)
)⊤

≈ m

N
∑

i=1

ωi

{

−∇θλθ (si)− λθ (si)λθ (si)
⊤
}

+m2
N
∑

i=1

N
∑

j=1

ωiωjλθ (si)λθ (sj)
⊤ .

See also the appendix of Louis (1982).
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Appendix E. Details of Section 5.1: privatized count inference

For the Bayesian analysis, by the ϵ-Laplace perturbation mechanism, the conditional distribu-
tion of sdp given s is Lap

(

s, ϵ−1
)

, which has density ϵ
2 exp (−ϵ |sdp − s|). By construction,

sdp is not an integer with probability one, hence

π (sdp | θ) =

∫

π (s | θ)π (sdp | s) ds

∝ e−θ











⌊sdp⌋
∑

s=0

θs

s!
e−ϵsdp+ϵs +

∞
∑

s=⌈sdp⌉

θs

s!
eϵsdp−ϵs











.

Adopting the notations θ+ϵ = θeϵ and θ−ϵ = θe−ϵ, the őrst sum within the brackets can be
written as

e−ϵsdp

⌊sdp⌋
∑

s=0

(θ+ϵ )
s

s!
= eθ

+
ϵ −ϵsdpFθ+ϵ

(⌊sdp⌋)

where Fλ (a) stands for the Pois (λ) CDF evaluated at a. Similarly, the second sum can be
written as

eϵsdp

∞
∑

s=⌈sdp⌉

(θ−ϵ )
s

s!
= eθ

−

ϵ +ϵsdp

(

1− Fθ−ϵ
(⌊sdp⌋)

)

.

Combining the above with the Gamma prior, π0 (θ) ∝ θα−1e−βθ, we have that the posterior
π (θ | sdp) takes the form

π (θ | sdp) ∝ θα−1e−(β+1)θ

[

Γ (⌈sdp⌉ , θ
+
ϵ )

Γ (⌈sdp⌉)
eθ

+
ϵ −ϵsdp +

γ (⌈sdp⌉ , θ
−
ϵ )

Γ (⌈sdp⌉)
eθ

−

ϵ +ϵsdp

]

,

where θ+ϵ = θeϵ, θ−ϵ = θe−ϵ, ⌈·⌉ is the ceiling function, and Γ (s, x) =
∫∞
x

rs−1e−rdr is the
incomplete Gamma function with Γ (s) = Γ (s, 0) and γ (s, x) = Γ (s)− Γ (s, x).

Figure 3 displays additional comparisons between the true posterior and the naïve
posterior for the same privatized count under other choices of prior distributions in the
Gamma family. Notice that when the observed count appears highly unlikely under a chosen
prior (such as Gamma(2, 1) or Gamma(5, 1)), a situation known as prior-data conŕict
(Evans and Moshonov, 2006), the correct posterior heavily discounts the contribution by the
privatized observation. The discounting can be seen from the close alignment between the
correct posterior (represented by either the solid green density or the black histogram) and
the prior (blue dashed density), which in contrast differ drastically from the naïve posterior
(red dotted density) in Figure 3 (a) and (b). The acceptance rate of Algorithm 1 in these
situations are reported in Table 1.

For the implementation of the Monte Carlo EM, three stages of iterations were performed
with successively more stringent tolerance levels (

∣

∣θ(t) − θ(t−1)
∣

∣ < 10−3, 10−4, and 10−5) and

larger Monte Carlo sample size (N = 103, 105, and 107), using the stable maximizer from the
last stage as the starting point. This is a crude rule to let N increase, hence the Monte Carlo
error decrease, as θ(t) approaches the true mle. Advanced adaptive techniques, such as the
ascent-based modiőcation of Caffo et al. (2005), can be employed achieve better performance.



EXACT INFERENCE WITH APPROXIMATE COMPUTATION FOR DP DATA 25

(a) π0 ∼ Gamma(2, 1) (b) π0 ∼ Gamma(5, 1)
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(c) π0 ∼ Gamma(50, 1) (d) π0 ∼ Gamma(75, 1)
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Figure 3: Comparisons between the true posterior (green density; approximated by exact
draws as black histogram, N = 104) and the naïve posterior (red dotted density)
treating observed sdp = 37.4 (black diamond) as if without privatization, under
four different choices of prior distribution π0 (blue dashed density).

Appendix F. Details of Section 5.2: Lalonde dataset

Let zi be the indicator variable for whether subject i received treatment (zi = 1) or
control (zi = 0), and yi the earning in 1978 (in $1k). The full parameter of the model is
θ =

(

τ, µ, σ2
t , σ

2
c

)

, for which we posit independent priors

θ ∼ π0 (τ)× π0 (µ)× π0
(

σ2
t

)

× π0
(

σ2
c

)

,

where for concreteness, we use π0 (τ) ∼ N(0, 5), π0 (µ) ∼ N(4, 5), π0 (σt) ∼ Gamma(2, 0.2)
and π0 (σc) ∼ Gamma(2, 0.2) for the analysis. The sampling model is

yi | zi, θ ∼ N
(

τzi + µ, σ2
t zi + σ2

c (1− zi)
)

,

where τ is the difference in average earnings between the treatment and control groups.
Equivalently stated, treatment group earnings have the distribution N

(

µ+ τ, σ2
t

)

and the

control group earnings have distribution N
(

µ, σ2
c

)

.
The sufficient statistics for θ are the within-group mean and sample variances

s =
(

ȳt, ȳc, s
2
t , s

2
c

)

=

(

1

nt

∑

i:zi=1

yi,
1

nc

∑

i:zi=0

yi,
1

nt − 1

∑

i:zi=1

(yi − ȳt)
2 ,

1

nc − 1

∑

i:zi=0

(yi − ȳc)
2

)

.

Due to statistical independence of the sample mean and variance of normal random variables,
the likelihood can be equivalently represented by the generative model

ȳt, ȳc, s
2
t , s

2
c | z, θ ∼ N

(

µ+ τ,
σ2
t

nt

)

×N

(

µ,
σ2
c

nc

)

×
σ2
t

nt−1
χ2
nt−1 ×

σ2
c

nc−1
χ2
nc−1.
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Through a conservative clamping treatment described in Section 5.2, the ϵ-differentially
private statistic sdp is obtained via a Laplace mechanism with independent Laplace noise
components with bandwidth h−1 = (1/3, 1/3, 1/6, 1/6) corresponding to s. Since the
clamping range well exceeds the anticipated range of observable data, we do not perform
inferential correction for truncation. Both the original analysis using s (top row of Figure 2)
and the naïve analysis using sdp (bottom row of Figure 2) are carried out in RStan, whereas
the correct analysis (middle row of Figure 2) is carried out using rejection ABC of Algorithm 1.

This work is licensed under the Creative Commons License Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0). To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative Com-
mons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
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