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We introduce MathOptInterface, an abstract data structure for representing mathematical optimization

problems based on combining pre-defined functions and sets. MathOptInterface is significantly more general

than existing data structures in the literature, encompassing, for example, a spectrum of problems classes

from integer programming with indicator constraints to bilinear semidefinite programming. We also outline

an automated rewriting system between equivalent formulations of a constraint. MathOptInterface has been

implemented in practice, forming the foundation of a recent rewrite of JuMP, an open-source algebraic mod-

eling language in the Julia language. The regularity of the MathOptInterface representation leads naturally

to a general file format for mathematical optimization we call MathOptFormat. In addition, the automated

rewriting system provides modeling power to users while making it easy to connect new solvers to JuMP.
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1. Introduction

JuMP (Lubin and Dunning 2015, Dunning et al. 2017) is an algebraic modeling language

for mathematical optimization written in the Julia language (Bezanson et al. 2017). JuMP,

like other algebraic modeling languages (e.g., AMPL (Fourer et al. 1990), Convex.jl (Udell

et al. 2014), CVX (Grant and Boyd 2014), CVXPY (Diamond and Boyd 2016), GAMS

(Brook et al. 1988), Pyomo (Hart et al. 2011, 2017), and YALMIP (Löfberg 2004)), has an

appearingly simple job: it takes a mathematical optimization problem written by a user,

converts it into a standard form, passes that standard form to a solver, waits for the solver

to complete, then queries the solver for a solution and returns the solution to the user.

At the heart of this process is the definition of the standard form. By standard form, we

mean a concrete data structure, specified either by an in-memory API or via a file format,
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of a mathematical optimization problem that the user and solver agree upon so that they

can communicate. For example, based on the textbook presentation of linear programming

(LP), one might assume that the following is a standard form accepted by solvers:

min
x∈RN

c>x

subject to: Ax = b

x≥ 0,

(1)

where c is a dense N -dimensional vector, b a dense M -dimensional vector, and A a sparse1

M ×N matrix.

Anyone who has interacted directly with LP solvers would know this is far from accurate.

Some solvers allow linear constraints to have lower and upper bounds, so the user must

pass l≤Ax≤ u. Other solvers allow only one bound per row of A, but the user must also

pass a vector of constraint senses (i.e., =, ≤, or ≥), representing the problem constraints

Ax . b, where . is the vector of constraint senses. Differences in these formulations also

flow through to solutions, where, given an affine constraint l≤ a>x≤ u, some solvers may

return two dual variables—one for each side of the constraint—whereas other solvers may

return one dual variable corresponding to the active side of the constraint. In addition,

some solvers may support variable bounds, whereas others based on conic methods may

require variables to be non-negative.

Moreover, as mathematical optimization has matured, research has focused on formu-

lating and solving new types of optimization problems. Each time a new type of objective

function or constraint has been added to the modeler’s toolbox, the standard form nec-

essarily has had to change. For example, the commercial solvers MOSEK (MOSEK ApS

2019) and Gurobi (Gurobi Optimization 2019) have both developed independent (and

incompatible) extensions to the MPS file format (IBM World Trade Corporation 1976) to

support quadratic objectives and constraints. In our opinion, this has led to a fracturing of

the optimization community as each sub-community developed a different standard form

1 For this discussion, consider any standard sparse storage format, e.g., compressed sparse column or coordinate-list
format.



Legat, Dowson, Garcia, and Lubin: MathOptInterface: a data structure for mathematical optimization problems
3

and solver for the problems of their interest. For example, nonlinear programming solvers

often require the standard form:

min
x∈RN

f(x)

subject to: g(x)≤ 0

h(x) = 0,

where f : RN 7→ R, g : RN 7→ RG, and h : RN 7→ RH (and their respective derivatives) are

specified via callbacks. In another sub-community, semidefinite solvers require the standard

form:
min

X∈RN×RN
〈C,X〉

subject to: 〈Ai,X〉= bi, i= 1,2, . . . ,M

X � 0,

where C and Ai are N×N matrices, bi is a constant scalar, 〈·, ·〉 denotes the inner product,

and X � 0 enforces the matrix X to be positive semidefinite.

Even within communities, there can be equivalent formulations. For example, in conic

optimization, solvers such as CSDP (Borchers 1999) accept what we term the standard

conic form:
min
x∈RN

c>x

subject to: Ax = b

x∈K,

(2)

whereas others solvers, such as SCS (O’Donoghue et al. 2016), accept what we term the

geometric conic form:

min
x∈RN

c>x

subject to: Ax + b∈K

x free.

(3)

Here, c is a N -dimensional vector, A is an M ×N matrix, b is an M -dimensional vector,

and K⊆RN (K⊆RM for the geometric conic form) is a convex cone from some pre-defined

list of supported cones.

1.1. Contributions and outline

The variation in standard forms accepted by solvers makes writing a generalized algebraic

modeling language such as JuMP difficult. In this paper, we introduce three conceptual

contributions to make this job easier:



Legat, Dowson, Garcia, and Lubin: MathOptInterface: a data structure for mathematical optimization problems
4

(i) We define MathOptInterface, a new abstract data structure2 for representing math-

ematical optimization problems that generalizes the real-world diversity of the forms

expected by solvers.

(ii) We describe an automated rewriting system called “bridges” between equivalent

formulations of a constraint.

(iii) We introduce a file format called MathOptFormat which is a direct serialization of

MathOptInterface models into the JSON file format.

As a fourth contribution, we provide an implementation our ideas in the

MathOptInterface3 library in Julia. This library is the foundation of a recent rewrite of

JuMP. MathOptInterface was first released in February 2019, and provides a practical

validation of our conceptual ideas. In addition, the implementation is a useful guide for

others looking to implement our conceptual ideas in different programming languages.

It is important to note that this paper deals with both the abstract idea of the MathOpt-

Interface standard form, and an implementation of this idea in Julia. To clearly distinguish

between the two, we will always refer to the Julia constructs in typewriter font. Read-

ers should note however, that our standard form is not restricted to the Julia language.

Instead, it is intended to be a generic framework for thinking and reasoning about math-

ematical optimization. It is possible to write implementations in other languages such as

Python; however, we chose Julia because JuMP is in Julia. Incidentally, the features of

Julia make it well suited for implementing MathOptInterface in a performant way.

The rest of this paper is laid out as follows. In Section 2, we review the approaches

taken by other algebraic modeling languages and the old version of JuMP, before outlining

the ideas behind the conception of MathOptInterface in Section 3. Then, in Section 4,

we formally introduce the MathOptInterface abstract data structure, which is the main

contribution of this paper. In Section 5, we introduce the automated constraint rewriting

system. In Section 6, we present a new file format—called MathOptFormat—for mathe-

matical optimization that is based on MathOptInterface. Finally, in Section 7, we describe

how the introduction of MathOptInterface has influenced JuMP.

2 By abstract data structure, we mean that we omit discussions of details like which storage format to use for sparse
matrices and how an API should be implemented in a specific programming language.

3 https://github.com/jump-dev/MathOptInterface.jl
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2. Literature review

In this section, we review how existing modeling packages manage the conflict between the

models provided by users and the standard forms expected by solvers.

2.1. A history of modeling packages

Orchard-Hays (1984) provides a detailed early history of the inter-relationship between

computing and optimization, beginning with the introduction of the simplex algorithm

in 1947, through to the emergence of microcomputers in the early 1980s. Much of this

early history was dominated by a punch-card input format called MPS (IBM World Trade

Corporation 1976), which users created using problem-specific computer programs called

matrix generators.

However, as models kept getting larger, issues with matrix generators began to arise.

Fourer (1983) argues that the main issues were: (i) a lack of verifiability, which meant

that bugs would creep into the matrix generating code; and (ii) a lack of documentation,

which meant that it was often hard to discern what algebraic model the matrix generator

actually produced. Instead of matrix generators, Fourer (1983) advocated the adoption of

algebraic modeling languages. Algebraic modeling languages can be thought of as advanced

matrix generators which build the model by parsing an algebraic model written in a human-

readable domain-specific language. Two examples of early modeling languages that are still

in wide-spread use are AMPL (Fourer et al. 1990) and GAMS (Brook et al. 1988).

Modeling languages allowed users to construct larger and more complicated models. In

addition, they were extended to support the ability to model different types of programs,

e.g., nonlinear programs, and specific constraints such as complementarity constraints.

Because of the nonlinear constraints, modeling languages such as AMPL and GAMS repre-

sent constraints as expression graphs. They are able to communicate with solvers through

the NL file-format (Gay 2005), or through modeling-language specific interfaces such as

the AMPL Solver Library (Gay 1997).

More recently, the last 15 years has seen the creation of modeling languages embedded

in high-level programming languages. Examples include CVX (Grant and Boyd 2014) and

YALMIP (Löfberg 2004) in MATLAB R©, CVXPY (Diamond and Boyd 2016) and Pyomo

(Hart et al. 2011) in Python, and Convex.jl (Udell et al. 2014) and JuMP in Julia.

Like AMPL and GAMS, Pyomo represents models using expression graphs and inter-

faces with solvers either through files (e.g., MPS and NL files), or, for a small number
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of solvers, via direct in-memory interfaces which convert the expression graph into each

solver’s specific standard form.

YALMIP is a MATLAB R©-based modeling language for mixed-integer conic and non-

linear programming. It also has support for other problem classes, including geometric

programs, parametric programs, and robust optimization. Internally, YALMIP represents

conic programs in the geometric form (3). Because of this design decision, if the user pro-

vides a model that is close to the standard conic form (2), YALMIP must convert the

problem back to the geometric form, introducing additional slack variables and constraints.

This can lead to sub-optimal formulations being passed to solvers. As a work-around for

this issue, YALMIP provides functionality for automatic dualizing conic models (Löfberg

2009). Solving the dual instead of the primal can lead to significantly better performance

in some cases; however, the choice of when to dualize the model is left to the user.

Since YALMIP represents the problem in geometric form and has no interface allowing

users to specify the cones the variables belong to, when dualizing it needs to reinterpret the

affine constraints when the affine expression contains only one variable as a specification of

the cone for the variable. Given that there is no unique interpretation of the dual form if

a variable is interpreted to belong to two or more cones, in such cases YALMIP considers

one of the constraints as a variable constraint and the others as affine constraints. It uses

the following heuristic if the constraints are on different cones: “Notice that it is important

to detect the primal cone variables in a certain order, starting with SDP cones, then SOCP

cones, and finally LP cones” (Löfberg 2009).

The rigidity of a standard form chosen by a modeling language such as YALMIP also

limits the structure that the user is able to transmit to the solver. The resulting transfor-

mations needed to make a problem fit in the standard form can have significant impacts on

the runtime performance of the solver. For example, in addition to formulation (2), SDP-

NAL+ (Sun et al. 2019) supports adding bounds on the variables and adding affine interval

constraints. Forcing the problem to fit in the standard form (2) requires the addition of

slack variables and equality constraints that have a negative impact on the performance

of SDPNAL+ as described in Sun et al. (2019):

The final number of equality constraints present in the data input to SDPNAL+ can

also be substantially fewer than those present in CVX or YALMIP. It is important
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to note here that the number of equality constraints present in the generated prob-

lem data can greatly affect the computational efficiency of the solvers, especially for

interior-point based solvers.

CVXPY (Diamond and Boyd 2016) is a modeling language for convex optimization in

Python. A notable feature of CVXPY is that it is based on disciplined convex programming

(Grant et al. 2006); this is a key difference from many other modeling languages, including

JuMP. The rules of disciplined convex programming mean that the convexity of a user-

provided function can be inferred at construction time in an axiomatic way. This has

numerous benefits for computation, but restricts the user to formulating models with a

reduced set of operators (called atoms), for which the convexity of the atom is known.

One feature of CVXPY that the re-write of JuMP does inherit is the concept of a

reduction. A reduction is a transformation of one problem into an equivalent form. Reduc-

tions allow CVXPY to re-write models formulated by the user into equivalent models

that solvers accept (Agrawal et al. 2018). Examples of reductions implemented in CVXPY

include Complex2Real, which lifts complex-valued variables into the real domain by intro-

ducing variables for the real and imaginary terms, and FlipObjective, which converts

a minimization objective into a maximization objective, and vice versa. Reductions can

be chained together to form a sequence of reductions. CVXPY uses pre-defined chains of

reductions to convert problems from the disciplined convex programming form given by

the user into a standard form required by a solver.

Constraint transformations have also been explored in the context of the constraint pro-

gramming language MiniZinc (Nethercote et al. 2007). MiniZinc is a standalone modeling

language similar to AMPL and GAMS. To communicate with solvers, MiniZinc compiles

problems formulated by the user into a low-level file format called FlatZinc (Marriott et al.

2008). During this compilation step, the user’s model is rewritten into a form supported

by the targeted solver. In particular, MiniZinc allows users to write constraints such as

alldifferent(x), which enforces that no two elements in the vector x can take the same

value. These constraints can be either passed directly to constraint programming solvers,

or reformulated into a mixed-integer linear program by including a redefinition file in the

model’s source code. MiniZinc provides a default library of redefinition files which can be

chosen by the user. However, if the user has advanced knowledge of their problem and
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solver, they can write a new definition that will be used in-place of the default transform

(Brand et al. 2008, Belov et al. 2016).

Like CVXPY’s reductions, MiniZinc’s transformations need to be chosen ahead-of-time

by the user (or the solver author). A key innovation in the bridging system we describe in

Section 5 is that the chain of transformations are automatically chosen as the model is built

at run-time. However, JuMP’s reductions apply only to classes of constraints, variables,

and objective functions, rather than applying global transformations as CVXPY does.

2.2. A history of file formats

In Section 6, we introduce a new file format for mathematical optimization. Given the

existing, widely adopted file formats that have served the community well to date, creating

a new format is not a decision that we made lightly. Our main motivation was to create

a way to serialize MathOptInterface problems to disk. However, to fully understand our

justification for creating a new format, it is necessary to give a brief history of the evolution

of file formats in mathematical optimization.

As we have outlined, in order to use an optimization solver, it is necessary to com-

municate a model instance to the solver. This can be done either through an in-memory

interface, or through a file written to disk. File formats are also used to collate models

into instance libraries for benchmarking purposes, e.g., CBLIB (Friberg 2016), MINLPLib

(Bussieck et al. 2003, Vigerske 2020), and MIPLIB (Zuse Institute Berlin 2018).

Many different instance formats have been proposed over the years, but only a few (such

as MPS (IBM World Trade Corporation 1976)) have become the industry standard. Each

format is a product of its time in history and the problem class it tried to address. For

example, we retain the rigid input format of the MPS file that was designed for 1960s

punch-cards despite the obsolescence of this technology (Orchard-Hays 1984). Although the

MPS format has since been extended to problem classes such as nonlinear and stochastic

linear programming, MPS was not designed with extensibility in mind. This has led some

authors (e.g., Friberg (2016)) to conclude that developing a new format is easier than

extending the existing MPS format.

The LP file-format is an alternative to the MPS file-format that is human-readable and

row-oriented (LP-solve 2016). However, there is no longer a single standard for the LP

file-format. This has led to subtle differences between implementations in different readers

that hampers the usefulness of the format as a medium for interchange. Much like the
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MPS file, the LP file is also limited in the types of problems it can represent and was not

designed for extensibility.

In contrast to the LP file, the NL file (Gay 2005) explicitly aims for machine-readability

at the expense of human-readability. It is also considerably more flexible in the problem

classes it can represent (in particular, nonlinear functions are supported). However, once

again, the format is not extensible to new problem formats and has limited support for

conic problems.

GAMS scalar format (Bussieck et al. 2003), is a GAMS-based file format for serializing

nonlinear programs. The GAMS scalar format uses a subset of the full GAMS syntax, and

so it is human readable. However, it has limited support for conic programs. That is, simple

second-order cone constraints can be specified, although this feature has been deprecated.

The OSiL format (Fourer et al. 2010) is an XML-based file format that targets a broad

range of problem classes. In developing OSiL, Fourer et al. identified many of the chal-

lenges and limitations of previous formats and attempted to overcome them. In particular,

they choose to use XML as the basis for their format to remove the burden of writing

custom readers and writers for each programming language that wished to interface with

optimization software, allowing more focus on the underlying data structures. XML is also

human-readable and can be rigidly specified with a schema to prevent the proliferation

of similar, but incompatible versions. The XML approach has been extended to support

multiple problem classes including nonlinear, stochastic, and conic.

However, despite the many apparent advantages of the OSiL format, we believe it has

enough short-comings to justify the development of a new instance format. The main

reason is the lack of a strong, extensible standard form. A secondary reason is the waning

popularity of XML in favor of simpler formats such as JSON.

2.3. The previous design of JuMP

Until recently, JuMP, described by Lubin and Dunning (2015) and Dunning et al. (2017),

featured a collection of three different standard forms: (i) a linear-quadratic standard form

for specifying problems with linear, quadratic, and integrality constraints; (ii) a conic

standard form for specifying problems with linear, conic, and integrality constraints; and

(iii) a nonlinear standard form for specifying problems with nonlinear constraints.

In code, the three standard forms were implemented in an intermediate layer called

MathProgBase. As the first step, JuMP converted the problem given by the user into
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one of the three MathProgBase standard forms. Underneath MathProgBase, each solver

required a thin layer of Julia code (called wrappers) that connected the solver’s native

interface (typically written in C) to one of the three standard forms, e.g, Clp (Forrest et al.

2019) to linear-quadratic, SCS (O’Donoghue et al. 2016) to conic, and Ipopt (Wächter and

Biegler 2006) to nonlinear. There were also automatic converters between the standard

forms, including linear-quadratic to conic, conic to linear-quadratic, and linear-quadratic

to nonlinear. This enabled, for example, the user to formulate a linear program and solve it

with Ipopt (a nonlinear programming solver). Figure 1 visualizes the architecture of JuMP

just described.

JuMP

Linear-Quadratic

standard form

Conic

standard form

Nonlinear

standard form

Linear-Quadratic

solver

Conic

solver

Nonlinear

solver

MathProgBase

Figure 1 Architecture of JuMP before it switched to MathOptInterface. JuMP models are communicated

through to solvers via the MathProgBase interface layer (dashed line), which consists of three standard

forms.

The design of MathProgBase made it impossible to flexibly combine different standard

forms. For example, JuMP could not communicate a program with both nonlinear and

conic constraints to a solver.

3. Conception of a new abstraction

The inflexibility of MathProgBase for mixing problem classes, the difficulty of adding

support for new types of constraints, in addition to various other early design decisions

that became hard to change4, motivated the JuMP developers in mid-2017 to decide to

move away from MathProgBase and re-write JuMP based on a new, all-encompassing

4 Although out of scope for this paper, these shortcomings were addressed by the features briefly mentioned in
Section 7.1.
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standard form and interface layer that became the MathOptInterface specification and the

MathOptInterface package.

On one hand, the intended scope of the new abstraction was relatively narrow. At a

minimum, MathOptInterface needed to support all the problem classes that JuMP sup-

ported at the time (via MathProgBase) and combinations thereof. We did not try to cover

new paradigms like multi-level or stochastic optimization. Additionally, because of the

complexities surrounding automatic differentiation, we deferred first-class support for non-

linear programming for future work. Finally, we were willing to accept some trade-off in

performance for simplicity of the design, although we have taken care to ensure that the

abstraction layer does not induce a bottleneck in the solve process.

On the other hand, extensibility in the types of constraints supported was a key require-

ment. We had learned from JuMP development under the former MathProgBase interface

that the set of possible constraints that users want to model can overwhelm our ability as

a small team of open-source developers to accommodate. For example, we did not manage

to support indicator or complementarity constraints in MathProgBase because doing so

would have required simultaneous invasive changes in MathProgBase and JuMP, a task

effectively too large for even a committed contributor who was not part of the core team.

A goal for MathOptInterface was to have a well-documented and accessible structure for

introducing new constraint types that required few, if any, changes to JuMP. We settled

on a very regular representation for constraints (and for other aspects of the abstraction),

so much so that JuMP can process new types of constraints defined in add-on packages.

Another important consideration was the idea to expose the tension we had observed

between how users expect to express their models’ constraints and how solvers accept the

constraints. This could be, for example, the difference between a typical LP model and

the more rigid standard conic form (2) that doesn’t support explicit bounds on variables,

the difference between the second order cone and the rotated second order cone (each is

a linear transformation of the other), or the difference between indicator constraints and

pure integer programming formulations (e.g., big-M). We wanted modelers and solvers to

speak the same “language,” so that solvers can advertise which constraints they support,

modelers have an array of options for how to express their model, and the two sides can be

bridged by transformations of a common data structure. It was intended that this bridging

could happen, either (i) by an automated rewriting system, as we later describe, or (ii)
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by modelers deciding to rewrite their model in a format closer to what a solver natively

supports for additional control and performance, or (iii) by solver authors deciding to

support new types of constraints in response to demand from users. The latter two goals

reflect a view of modeling and solver development as dynamic processes with multiple self-

motivated agents. Indeed, while this tension between modelers and solvers is always visible

to developers of algebraic modeling interfaces, our idea was to expose it more concretely

and programmatically so that any motivated modeler or solver developer could take their

own steps to address it while remaining within a common abstraction instead of reverting

to solver-specific interfaces.

4. MathOptInterface

These considerations came together to produce MathOptInterface, an abstract specifica-

tion for a data structure for mathematical optimization problems, which we now describe

formally. MathOptInterface represents problems in the following form:

min
x∈RN

f0(x)

subject to: fi(x)∈ Si, i= 1,2, . . . , I,
(4)

with functions fi : RN 7→RMi and sets Si ⊆RMi drawn from a pre-defined set of functions

F and sets S.

The sets F and S are provided in Section 4.1 (for F) and Appendix A (for S). In addi-

tion, we provide a concrete description in the form of a JSON schema (JSON Schema 2019)

as part of the MathOptFormat file format described in Section 6. In the JuMP ecosys-

tem, the definitions of supported functions and sets are contained in the Julia package

MathOptInterface. JuMP additionally allows third-party packages to extend the set of

recognized functions and sets F and S at run-time, but this is not required for an imple-

mentation of MathOptInterface; for example, MathOptFormat does not allow extensions.

Since constraints are formed by the combination of a function and a set, we will often

refer to constraints by their function-in-set pairs. The key insight is the ability to mix-

and-match a small number of pre-defined functions and sets to create a wide variety of

different problem classes.

We believe model (4) is very general, and encompasses almost all of existing deterministic

mathematical optimization with real-valued variables. (An extension to complex numbers
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could be achieved by replacing R with C.) Readers should note that when the objective is

vector-valued, the objective vectors are implicitly ranked according to partial ordering such

that if y1 = f0(x1) and y2 = f0(x2), then y1 ≤ y2 ⇐⇒ y2 − y1 ∈ RM0
+ . In the future, we

plan to extend MathOptInterface to model general vector-valued programs, which define

the partial ordering in terms of a convex cone C (see, e.g., Löhne (2011)). However, we omit

a full description of this extension because we do not have a practical implementation.

4.1. Functions

MathOptInterface defines the following functions in the set F :

• The SingleVariable function f : RN 7→R with f(x) = ei
>x, where ei is an N -dimensional

vector of zeros with a 1 in the ith element.

• The VectorOfVariables function f : RN 7→RM with f(x) = [xi1 , xi2 , . . . , xiM ], where ij ∈

{1,2, . . . ,N} for all j ∈ 1, . . . ,M .

• The ScalarAffineFunction f : RN 7→ R withf(x) = a>x + b, where a is a sparse N -

dimensional vector and b is a scalar constant.

• The VectorAffineFunction f : RN 7→ RM with f(x) = A>x + b, where A is a sparse

M ×N matrix and b is a dense M -dimensional vector.

• The ScalarQuadraticFunction f : RN 7→R with f(x) = 1
2
x>Qx + a>x + b, where Q is a

sparse N ×N matrix, a is a sparse N -dimensional vector, and b is a scalar constant.

• The VectorQuadraticFunction f : RN 7→ RM with f(x) =[
x>Q1x, · · · ,x>Qix, · · · ,x>QMx

]>
+ A>x + b, where Qi is a sparse N × N matrix for

i= 1,2, . . .M , A is a sparse M ×N matrix, and b is a dense M -dimensional vector.

Notably missing from this list is ScalarNonlinearFunction and VectorNonlinearFunction. At

present, MathOptInterface defines (from the legacy of MathProgBase) a separate mecha-

nism for declaring a block of nonlinear constraints l≤ g(x)≤ u and/or a nonlinear objective

f(x). Integrating nonlinear functions into MathOptInterface as a first-class object will

likely require further generalizations, particularly around modular support for automatic

differentiation. We leave such details to future work.

Moreover, note that many of the function definitions are redundant, e.g., a ScalarAffine-

Function is a VectorAffineFunction where M = 1. The reason for this redundancy is to expose

the variety of ways modelers and solvers prefer to express their problems, as discussed in

Section 3.
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4.2. Sets

The set of sets supported by MathOptInterface, S, contains a large number of elements.

The complete list is given in Appendix A and by the JSON schema described in Section

6, so we only present some of the more common sets that will later be referenced in this

paper:

• The LessThan set (−∞, u] where u∈R
• The GreaterThan set [l,∞) where l ∈R
• The Interval set [l, u], where l ∈R and u∈R
• The Integer set Z

• The Nonnegatives set
{
x∈RN : x≥ 0

}
• The Zeros set {0} ⊂RN

• The SecondOrderCone set
{

(t,x)∈R1+N : ||x||2 ≤ t
}

, where x∈RN

• The RotatedSecondOrderCone set
{

(t, u,x)∈R2+N : ||x||22 ≤ 2tu, t≥ 0, u≥ 0
}

, where

x∈RN

MathOptInterface also defines sets like the positive semidefinite cone, and even sets that

are not cones or standard sets like Interval and Integer. For example, MathOptInterface

defines the SOS1 and SOS2 sets, which are special ordered sets of Type I and Type II

respectively (Beale and Tomlin 1970). In addition, it also defines the Complements set,

which can be used to specify mixed complementarity constraints (Dirkse and Ferris 1995).

See Appendix A for more details.

To demonstrate how these functions and sets can be combined to create mathematical

programs, we now consider a number of examples.

4.3. Example: linear programming

Linear programs are often given in the form:

min
x∈RN

c>x + 0 (5a)

subject to: Ax≥ b, (5b)

where c is a vector with N elements, A is an M ×N matrix, and b is a vector with M

elements.

In the MathOptInterface standard form, objective (5a) is the ScalarAffineFunction

f0(x) = c>x+0, and constraint (5b) is composed of the VectorAffineFunction f1(x) =Ax−b

and the M -dimensional Nonnegatives set.



Legat, Dowson, Garcia, and Lubin: MathOptInterface: a data structure for mathematical optimization problems
15

4.4. Example: multi-objective problems with conic constraints

Because of its generality, MathOptInterface is able to represent problems that do not

neatly fit into typical standard forms. For example, here is a multi-objective mathematical

program with a second-order cone constraint:

min
x∈RN

Cx + 0 (6a)

subject to: Ax = b (6b)

||x2, x3, . . . , xN ||2 ≤ x1 (6c)

li ≤ xi ≤ ui, i= 1,2, . . . ,N, (6d)

where C is an P ×N matrix, A is an M ×N matrix, b is an M -dimensional vector, and

li and ui are constant scalars.

In the MathOptInterface standard form, objective (6a) is the VectorAffineFunction

f0(x) = Cx + 0, constraint (6b) is composed of the VectorAffineFunction f1(x) = Ax− b

and the M -dimensional Zeros set, constraint (6c) is composed of the VectorOfVariables

function f2(x) = x and the SecondOrderCone set, and constraints (6d) are composed of the

SingleVariable functions f2+i(x) = xi and the Interval sets [li, ui].

4.5. Example: special ordered sets

Many mixed-integer solvers support a constraint called a special ordered set (Beale and

Tomlin 1970). There are two types of special ordered sets. Special ordered sets of type I

require that at most one variable in an ordered set of variables can be non-zero. Special

ordered sets of type II require that at most two variables in an ordered set of variables can

be non-zero, and, if two variables are non-zero, they must be adjacent in the ordering.

An example of a problem with a special ordered set of type II constraint is as follows:

min
x∈RN

c>x + 0 (7a)

subject to: Ax≥ b (7b)

[x1, x2, x3]∈ SOSII([1,3,2]). (7c)

Here, the weights on the variables imply an ordering x1, x3, x2.

In the MathOptInterface standard form, objective (7a) is the ScalarAffineFunction

f0(x) = c>x + 0, constraint (7b) is composed of the VectorAffineFunction f1(x) = Ax− b

and the M -dimensional Nonnegatives set, and constraint (7c) is composed of the VectorOf-

Variables function f2(x) = [x1, x2, x3] and the SOS2 set SOS2([1, 3, 2]).
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4.6. Example: mixed-complementarity problems

A mixed-complementarity problem, which can be solved by solvers such as PATH (Dirkse

and Ferris 1995), can be defined as follows:

min
x∈RN

0

subject to: Ax + b⊥ x

l≤ x≤ u,

(8)

where A is an N ×N matrix, and b, l, and u are N -dimensional vectors. The constraint

Ax + b⊥ x requires that the following conditions hold in an optimal solution:

• if xi = li, then ei
>Ax + bi ≥ 0;

• if li <xi <ui, then ei
>Ax + bi = 0; and

• if xi = ui, then ei
>Ax + bi ≤ 0.

Thus, we can represent model (8) in the MathOptInterface standard form as:

min
x∈RN

0 (9a)

subject to:

A
I

x +

b

0

∈ Complements() (9b)

xi ∈ [li, ui], i= 1,2, . . . ,N. (9c)

Here, objective (9a) is the ScalarAffineFunction f0(x) = 0, constraint (9b) is composed of

the VectorAffineFunction f1(x) = [A; I]x + [b;0] and the N -dimensional Complements set,

and constraints (9c) are composed of the SingleVariable functions f1+i(x) = xi and Interval

sets [li, ui].

5. Bridges

By defining a small list of functions and sets, we obtain a large number of different con-

straint types. This design is naturally extensible and captures the diverse ways that solvers

natively accept input, satisfying our two main design considerations. However, by creating

many ways to express constraints, we also have to confront the challenge of translating

between mathematically equivalent forms.

For example, the constraint l≤ a>x≤ u can be formulated in many ways, three of which

are listed here:

• using the original formulation: l≤ a>x≤ u (ScalarAffineFunction-in-Interval);
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• by splitting the constraint into a>x≤ u (ScalarAffineFunction-in-LessThan) and a>x≥ l

(ScalarAffineFunction-in-GreaterThan); or

• by introducing a slack variable y, with constraints a>x− y = 0 (ScalarAffineFunction-

in-EqualTo) and l≤ y≤ u (SingleVariable-in-Interval).

This generality means that solver authors need to decide which functions and sets to sup-

port, users need to decide how to formulate constraints, and modeling language developers

need to decide how to translate constraints between the user and the solver.

One approach to this problem is to require every solver to implement an interface to

every combination of function-in-set that the user could provide, and inside each solver

transform the user-provided constraint into a form that the solver natively understands.

However, as the number of functions and sets increases, this approach quickly becomes

burdensome.

An alternative approach, and the one implemented in MathOptInterface, is to centralize

the problem transformations into a collection of what we call bridges. A bridge is a thin

layer that transforms a function-in-set pair into an equivalent list of function-in-set pairs.

An example is the transformation of a ScalarAffineFunction-in-Interval constraint into a

ScalarAffineFunction-in-LessThan and a ScalarAffineFunction-in-GreaterThan constraint. The

bridge is also responsible for reversing the transform to provide information such as dual

variables back to the user.

MathOptInterface defines a large number of bridges. For example, there are slack

bridges, which convert inequality constraints like a>x ≥ b into equality constraints like

a>x− y = b by adding a slack variable y ≥ 0. There are also bridges to convert between

different cones. For example there is a bridge to convert a rotated second-order cone into

a second-order cone using the following relationship:

2tu≥ ||x||22 ⇐⇒ (t/
√

2 +u/
√

2)2 ≥ ||x||22 + (t/
√

2−u/
√

2)2.

Bridges can also be nested to allow multiple transformations. For example, a solver that

supports only ScalarQuadraticFunction-in-EqualTo constraints can support RotatedSecon-

dOrderCone constraints via a transformation into a SecondOrderCone constraint, then into

a ScalarQuadraticFunction-in-LessThan constraint, and then into a ScalarQuadraticFunction-

in-EqualTo via a slack bridge.
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The proliferation in the number of these bridges leads to a new challenge: there are

now multiple ways of transforming one constraint into an equivalent set of constraints

via chains of bridges. To demonstrate this, consider bridging a ScalarAffineFunction-in-

Interval constraint into a form supported by a solver which supports only SingleVariable-in-

GreaterThan and ScalarAffineFunction-in-EqualTo constraints. Two possible reformulations

are given in Figure 2.

l≤ a>x≤ u

l≤ a>x

a>x≤ u

a>x− y= l

y≥ 0

a>x + y= u

y≥ 0

split-interval

slack

slack

l≤ a>x≤ u

l≤ a>x

a>x≤ u

a>x− y= l

y≥ 0

−u≤−a>x
−a>x− y=−u

y≥ 0

split-interval

slack

slack
flip-sign

Figure 2 Two equivalent solutions to the problem of bridging a ScalarAffineFunction-in-Interval constraint (oval

nodes). Outlined rectangular nodes represent constraint actually added to the model. Nodes with no

outline are intermediate nodes. Typewriter font describes the bridge used in the transformation.

The first reformulation converts l ≤ a>x ≤ u into l ≤ a>x and a>x ≤ u via the

split-interval bridge, and then converts each inequality into a ScalarAffineFunction-in-

EqualTo constraint and a SingleVariable-in-GreaterThan constraint using the slack bridge,

which introduces an additional slack variable y. The second reformulation includes an

additional step of converting the temporary constraint a>x≤ u into −u≤−a>x via the

flip-sign bridge. Notably, both reformulations add two ScalarAffineFunction-in-EqualTo

constraints, two slack variables, and two SingleVariable-in-GreaterThan constraints, but the

first reformulation is preferred because it has the least number of transformations.

5.1. Hyper-graphs and shortest paths

It is easy to see that as the number of constraint types and bridges increases, the number

of different equivalent reformulations also increases, and choosing an appropriate reformu-

lation becomes difficult. We overcome the proliferation challenge by posing the question
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of how to transform a constraint into a set of supported equivalents as a shortest path

problem through a directed hyper-graph.

We define our directed hyper-graph G(N,E) by a set of nodes N , containing one node

n for each possible function-in-set pair, and a set of directed hyper-edges E. Each directed

hyper-edge e ∈E, corresponding to a bridge, is comprised of a source node s(e) ∈N and

a set of target nodes T (e) ⊆ N . For each hyper-edge e, we define a weight w(e). For

simplicity, MathOptInterface chooses w(e) = 1 for all e ∈ E, but this need not be the

case. In addition, each solver defines a set of supported nodes S. Finally, for each node

n ∈N , we define a cost function, C(n), which represents the cost of bridging node n into

an equivalent set of supported constraints:

C(n) =


0 n∈ S

min
e∈E : s(e)=n

{w(e) +
∑

n′∈T (e)

C(n′)} otherwise.

In the spirit of dynamic programming, if we can find the minimum cost C(n) for any

node n, we also obtain a corresponding hyper-edge e. This repeats recursively until we

reach a terminal node at which C(n) = 0, representing a constraint that the solver natively

supports. The collection of edges associated with a solution is referred to as a hyper-path.

Problems of this form are well studied by Gallo et al. (1993), who propose an efficient

algorithm for computing C(n) and obtaining the minimum cost edge e associated with

each node. Due to the large number of nodes in the hyper-graph, we do not precompute

the shortest path for all nodes a priori. Instead, we compute C(n) in a just-in-time fashion

whenever the first constraint of type n is added to the model. Because the computation is

performed once per type of constraint, the decision is independent of any constraint data

like coefficient values.

The choice of cost function has a significant impact both on the optimal solution and on

the computational tractability of the problem. Indeed, if the cost function is chosen to be

the number of different bridges used, the shortest path problem is NP-complete (Italiano

and Nanni 1989). In the present case, if a bridge is used twice, it makes sense to include

its weight twice as well. This cost function is part of the more general family of additive

cost functions for which the shortest hyper-path problem can be solved efficiently with a

generalization of the Bellman-Ford or Dijkstra algorithms; see Gallo et al. (1993, Section 6)

for more details.
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5.2. Variable and objective bridges

In the interest of simplicity, we have described only constraint bridges, in which the nodes

in the hyper-graph correspond to function-in-set pairs. In practice, there are three types of

nodes in N : constraint nodes for each pair of function type f and set type S representing

f -in-S constraints; objective nodes for each type f representing an objective function of

type f ; and variable nodes for each set type S representing variables constrained to S.

Hyper-edges beginning at a node n can have target nodes of different types.

Objective nodes (and corresponding bridges) allow, for example, conic solvers that sup-

port only affine objectives to solve problems modeled with a quadratic objectives by replac-

ing the objective with a slack variable y, and then adding a quadratic inequality constraint.

If necessary, the quadratic inequality constraint may be further bridged to a second-order

cone constraint.

Variable nodes correspond to a concept we call variables constrained on creation, and

they are needed due to differences in the way solvers handle variable initialization. A näıve

way of creating variables is to first add N variables to the model, and then add Single-

Variable and VectorOfVariables constraints to constrain the domain. This approach works

for many solvers, but fails in two common cases: (i) some solvers, e.g., CSDP (Borchers

1999), do not support free variables; and (ii) some solvers, e.g., MOSEK (MOSEK ApS

2019), have a special type of variable for PSD variables which must be specified at cre-

ation time. For example, adding the constraint X � 0 to MOSEK after X has been created

will result in a bridge that creates a new PSD matrix variable Y � 0, and then a set of

ScalarAffineFunction-in-EqualTo constraints such that X = Y .

Similar to constraints, solvers specify a set of supported variable sets (i.e., so C(n) = 0).

For most solvers, the supported variable set is the singleton Reals. If the user attempts to

add a variable constrained on creation to a set S that is not supported, a bridge first adds

a free variable (x-in-Reals) and then adds a SingleVariable-in-S constraint. Thus, variable

nodes allow solvers such as CSDP to declare that they support only x-in-Nonnegatives and

not x-in-Reals, and they provide an efficient way for users to add PSD variables to MOSEK,

bypassing the slack variables and equality constraints that would need to be added if the

PSD constraint was added after the variables were created.

It is important to note that constraint and objective bridges are self-contained; they do

not return objects that are used in other parts of the model. However, variable bridges do
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return objects that are used in other parts of the model. For example, adding x ∈ Reals

may add two variables [x+, x−] ∈ Nonnegatives and return the expression x+ − x− for x.

The expression x+ − x− must then be substituted for x on every occurrence. A detailed

description of how this substitution is achieved in code is non-trivial and is outside the

scope of this paper.

5.3. Example

To demonstrate the combination of the three types of nodes in the hyper-graph, consider

bridging a ScalarQuadraticFunction objective function to a solver that supports only:

• VectorAffineFunction-in-RotatedSecondOrderCone constraints;

• ScalarAffineFunction objective functions; and

• Variables in Nonnegatives.

As a simple example, we use:

min x2 +x+ 1

s.t. x∈R1
+.

The first step is to introduce a slack variable y and replace the objective with the Single-

Variable function y:

min y

s.t. x2 +x+ 1≤ y

x∈R1
+

y free.

However, since the solver supports only ScalarAffineFunction objective functions, the objec-

tive function is further bridged to:

min 1y+ 0

s.t. x2 +x+ 1≤ y

x∈R1
+

y free.

The second step is to bridge the ScalarQuadraticFunction-in-LessThan constraint into a

VectorAffineFunction-in-RotatedSecondOrderCone constraint using the relationship:

1
2
x>Qx + a>x + b≤ 0 ⇐⇒ ||Ux||22 ≤ 2(−a>x− b)

⇐⇒ [1,−a>x− b,Ux]∈ RotatedSecondOrderCone,
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where Q=U>U . Therefore, we get:

min 1y+ 0

s.t. [1,−x+ y− 1,
√

2x]∈ RotatedSecondOrderCone

x∈R1
+

y free.

Finally, since the solver does not support free variables, a variable bridge is used to

convert y into two non-negative variables, resulting in:

min 1y+− 1y−+ 0

s.t. [1,−x+ y+− y−− 1,
√

2x]∈ RotatedSecondOrderCone

[x, y+, y−]∈R3
+.

Note how the expression y+− y− is substituted for y throughout the model.

The optimal hyper-path corresponding to this example is given in Figure 3. To sum-

marize, the ScalarQuadraticFunction objective node is bridged to a SingleVariable objec-

tive node, a x ∈ Reals variable node, and a ScalarQuadraticFunction ∈ LessThan con-

straint node. Then, the SingleVariable objective is further bridged to a ScalarAffineFunction

objective node, the x ∈ Reals variable node is bridged to a x ∈ Nonnegatives node, and

the ScalarQuadraticFunction ∈ LessThan constraint is bridged to a VectorAffineFunction ∈

RotatedSecondOrderCone constraint node.

min

ScalarQuadraticFunction

x∈ Reals
min

SingleVariable

ScalarQuadraticFunction

∈

LessThan

min

ScalarAffineFunction
x∈Nonnegatives

VectorAffineFunction

∈

RotatedSecondOrderCone

Figure 3 Optimal hyper-path of example in Section 5.3. Dashed box is the objective node we want to add to the

model, solid boxes are supported nodes, nodes with no outline are unsupported intermediate nodes,

and arcs are bridges.
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5.4. Benchmarks

To benchmark the performance of MathOptInterface, and the bridging system in particu-

lar, we consider the continuous version of the P -median problem used by Hart et al. (2011)

to compare Pyomo with AMPL and also by Lubin and Dunning (2015) when benchmark-

ing an earlier version of JuMP. The model determines the location of d facilities over N

possible locations to minimize the cost of serving M customers, where the cost of serving

customer i from facility j is given by cij. The decision variable xij represents the proportion

of customer i’s demand served by facility j, and the decision variable yj represents the

proportion of facility j to open. In practice, this model is usually solved as a mixed-integer

linear program with yj ∈ {0,1}; we consider the continuous relaxation.

We compare two formulations of this problem. The first is a scalar-valued formulation

in which we exclusively use functions and sets that are natively supported by the solver

GLPK (Makhorin 2017):

min
M∑
i=1

N∑
j=1

cijxij

s.t.
N∑
j=1

xij = 1 ∀i= 1, . . . ,M

N∑
j=1

yj = d

xij − yj ≤ 0 ∀i= 1, . . . ,M, j = 1, . . . ,N

xij ≥ 0 ∀i= 1, . . . ,M, j = 1, . . . ,N

yj ∈ [0,1] ∀j = 1, . . . ,N.

(10)

There are M + 1 ScalarAffineFunction-in-EqualTo constraints, M ×N ScalarAffineFunction-

in-LessThan constraints, M ×N SingleVariable-in-GreaterThan constraints, and N Single-

Variable-in-Interval constraints.
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The second formulation we consider exclusively uses vector-valued functions that are

natively supported by the solver SCS (i.e., in the standard geometric form (2)):

min c>x

s.t. Ax −1∈ {0}M

1>y −d∈ {0}1

Bx −Cy +0∈RM×N
−

Ix +0∈RM×N
+

Iy +0∈RN
+

Iy −1∈RN
− ,

(11)

where c, x, and y are column vectors created by stacking the scalar elements cij, xij,

and yj, I is the identity matrix, and A, B, and C are appropriately valued matrices so

that model (11) is equivalent to model (10). There are two VectorAffineFunction-in-Zeros

constraints (of dimension M and 1), two VectorAffineFunction-in-Nonpositives constraints

(of dimension M ×N and N), and two VectorAffineFunction-in-Nonnegatives constraints

(of dimension M ×N and N). Note that SCS does not support variable bounds, so we

convert variable bounds into VectorAffineFunction equivalents.

Because GLPK natively supports all constraints in the first formulation but none in

the second, and SCS supports all constraints in the second but none in the first, these

two formulations allow us to test the efficacy of the bridging system. Moreover, this test

represents a worst-case bridging scenario in which we have to bridge every constraint.

In addition to the two MathOptInterface models, we also coded a version for GLPK

and SCS using their C API directly from Julia, thereby bypassing the overhead of

MathOptInterface. Moreover, as an additional baseline, we implemented an equivalent

model in CVXPY (Diamond and Boyd 2016). To improve the performance of CVXPY, our

implementation constructs the B and C matrices directly—at an arguable loss of model

readability—because adding the xij ≤ yj constraints individually was many times slower.

In total, there are four versions of the problem for both GLPK and SCS, which we refer

to as scalar, vector, direct, and cvxpy, respectively.

Following Lubin and Dunning (2015), in our benchmarks we fixed d= 100 and M = 100

and varied N . For each problem, we partition the solution time into a generation step, in

which the data is processed, and a load step, in which the data is passed to the solver.



Legat, Dowson, Garcia, and Lubin: MathOptInterface: a data structure for mathematical optimization problems
25

While it is natural to compare the overhead of the modeling API with the time to solve

the model, i.e., find an optimal solution, the latter depends on algorithmic parameters

and tolerances that are challenging to set fairly (the overhead becomes arbitrarily small as

the solve time increases). Instead, we consider a worst case by configuring the solvers to

terminate immediately (after 1 millisecond for GLPK and 1 iteration for SCS). Hence, we

call the time taken to load the data into the solver then immediately return as the load

time. Our experiments were performed on a Linux system with an Intel Xeon E5-2687

processor, 250 GB RAM, and the following combinations of software: Julia 1.5, Python

3.8, CVXPY 1.1.3, GLPK 4.64, and SCS 2.1.2. The results are shown in Table 1.

GLPK SCS

N scalar vector direct cvxpy scalar vector direct cvxpy

1,000

generate 0.05 0.14 0.05 1.51 0.48 0.05 0.07 1.38

load 0.19 0.46 0.06 0.26 0.71 0.18 0.11 0.10

total 0.24 0.59 0.11 1.77 1.19 0.23 0.18 1.48

5,000

generate 0.23 0.72 0.31 11.49 1.85 0.11 0.54 10.89

load 1.40 1.84 0.41 1.55 3.99 1.51 0.82 0.72

total 1.63 2.57 0.72 13.04 5.84 1.62 1.36 11.61

10,000

generate 0.69 1.35 0.65 30.27 3.98 0.28 0.91 29.31

load 2.49 3.64 0.70 2.77 8.28 3.17 1.81 1.42

total 3.19 5.00 1.34 33.04 12.26 3.45 2.72 30.73

50,000

generate 3.32 6.58 3.32 464.19 24.65 1.17 4.55 455.42

load 14.04 20.90 4.09 12.33 54.45 22.38 9.39 7.26

total 17.36 27.48 7.41 476.52 79.09 23.55 13.94 462.68

Table 1 P -Median benchmark results measuring the overhead of MathOptInterface and bridges with GLPK

and SCS for various size N . All times in seconds. scalar is formulation (10), vector is formulation (11), direct is

using the C API for each solver, and cvxpy an equivalent implementation in CVXPY. generate is the time taken

to generate the problem data, load is the time taken to load the data into the solver and begin the solution

process, total is the sum.

Using MathOptInterface or CVXPY results in overhead compared to using the C

API of each solver directly. For CVXPY, this overhead can be a factor of 10 to 20. For
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MathOptInterface, it depends on whether the bridging system is used. If the bridg-

ing system is bypassed (i.e., scalar for GLPK and vector for SCS), the overhead of

MathOptInterace varies between a factor of 1 and 2.5. If the bridging system is used,

the overhead is approximately a factor of 4 for GLPK, and a factor of 4–7 for SCS. The

performance difference between MathOptInterface and CVXPY is most noticeable as the

problem size increases. Readers may note that the load time for SCS direct is always greater

than the load time for SCS cvxpy. This is because the direct mode results in an extra copy

in order to shift indices from 1-based Julia arrays to 0-based C arrays. Nevertheless, direct

always wins on total time.

5.5. Future extensions

There are many aspects of the shortest path problem that we have not explored in our

current implementation. For example, the current implementation in MathOptInterface

assigns each bridge a weight of 1.0 in the path. Therefore, the objective of our shortest

path problem is to minimize the number of bridges in a transformation. However, it is

possible to use other scores for the desirability of a reformulation. For example, in the

ScalarAffineFunction-in-Interval example mentioned at the start of this section, the third

option may be computationally beneficial since it adds fewer rows to the constraint matrix,

even though it adds an extra variable. Therefore, we may assign the corresponding edge

in the graph a lower weight (e.g., 0.6).

As we described in Section 2, similar systems for automatically transforming problems

have appeared in the literature before, e.g., CVXPY has a similar concept called reductions

(Agrawal et al. 2018) and MiniZinc has the ability to redefine constraint transforms (Belov

et al. 2016). However, MiniZinc requires the user to manually choose the redefinitions for

a particular model, and since CVXPY targets a fixed set of solvers, it can pre-specify the

chain of reductions needed for each solver. On the other hand, our shortest-path formu-

lation enables us to separate the transformation logic from the solvers. The fact that we

compute the sequence of transformations at runtime additionally makes it possible to use

new bridges and sets defined in third-party extensions.

Moreover, the bridging system makes it easy to add new solvers to JuMP, because they

need only support the minimal set of functions and sets that they natively support. Once

this is done, users can use the solver and the full modeling power of MathOptInterface. For
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example, users can solve problems with rotated second order cones and convex quadratic

objectives and constraints using a solver that only implements a second order cone.

New solvers are already being written to target the flexibility and power of

MathOptInterface’s bridging system. One example is ConstraintSolver.jl (Kröger

2020), which extends MathOptInterface by providing constraint programming sets such

as AllDifferent and NotEqualTo. A second example is Hypatia.jl (Coey et al. 2020).

Hypatia is a conic interior point algorithm that provides specialized barrier functions for

a range of non-standard conic sets (e.g., the relative entropy cone, the log-determinant

cone, and the polynomial weighted sum-of-squares cone). If the user forms a model using

these new cones and uses Hypatia to solve it, the bridging system is bypassed and the

model is passed directly to Hypatia. However, when the user solves the same model with

a solver like Mosek (MOSEK ApS 2019), then the bridging system reformulates the non-

standard cones into an equivalent formulation using only cones that are supported by

Mosek. This allows users to focus on modeling their problem in the most natural form,

and allows solver authors to experiment with (and easily benchmark and test) novel cones

and reformulations.

6. A new file format for mathematical optimization

As we saw in Section 4, a model in the MathOptInterface standard form is defined by a

list of functions and a list of sets. In this section we utilise that fact to describe a new file

format for mathematical optimization problems called MathOptFormat. MathOptFormat

is a serialization of the MathOptInterface abstract data structure into a JSON file (ECMA

International 2017), and it has the file-extension .mof.json. A complete definition of

the format, including a JSONSchema (JSON Schema 2019) that can be used to validate

MathOptFormat files, is available at Dowson (2020).

In addition, due to the role of file formats in problem interchange, the JSONSchema

serves as the canonical description of the set of functions F and sets S defined in Math-

OptInterface. We envisage that the schema will be extended over time as more functions

and sets are added to the MathOptInterface abstract data structure.

Importantly, the schema is a concrete representation of the format, and it includes a

description of how the sparse vectors and matrices are stored. Moreover, although speci-

fied in JSON, this representation utilizes simple underlying data structures such as lists,
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dictionaries, and strings. Therefore, the format could be ported to a different format (e.g.,

protocol buffers (Google 2019)), without changing the basic layout and representation of

the data.

6.1. Definition and example

Rather than rigorously define our format, we shall, in the interest of brevity, explain the

main details of MathOptFormat through an example. Therefore, consider the following

simple mixed-integer program:

max
x,y

x+ y

subject to: x∈ {0,1}

y≤ 2.

(12)

This example, encoded in MathOptFormat, is given in Figure 4.

Let us now describe each part of the file in Figure 4 in turn. First, notice that the file

format is a valid JSON file. Inside the document, the model is stored as a single JSON

object. JSON objects are key-value mappings enclosed by curly braces ({ and }). There

are four required keys at the top level:

1. version: A JSON object describing the minimum version of MathOptFormat needed

to parse the file. This is included to safeguard against later revisions. It contains two fields:

major and minor. These fields should be interpreted using semantic versioning (Preston-

Werner 2020). The current version of MathOptFormat is v0.5.

2. variables: A list of JSON objects, with one object for each variable in the model. Each

object has a required key name which maps to a unique string for that variable. It is illegal

to have two variables with the same name. These names will be used later in the file to

refer to each variable.

3. objective: A JSON object with one required key:

(a) sense: A string which must be min, max, or feasibility.

If the sense is min or max, a second key function, must be defined:

(b) function: A JSON object that describes the objective function. There are many

different types of functions that MathOptFormat recognizes, each of which has a different

structure. However, each function has a required key called type which is used to describe

the type of the function. In this case, the function is ScalarAffineFunction.
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{
"version": {"minor": 5, "major": 0},
"variables": [
{"name": "x"}, {"name": "y"}

],
"objective": {
"sense": "max",
"function": {
"type": "ScalarAffineFunction",
"terms": [
{"coefficient": 1.0, "variable": "x"},
{"coefficient": 1.0, "variable": "y"}

],
"constant": 0.0

}
},
"constraints": [{
"function": {
"type": "SingleVariable",
"variable": "x"

},
"set": {"type": "ZeroOne"}

}, {
"function": {
"type": "SingleVariable",
"variable": "y"

},
"set": {
"type": "LessThan",
"upper": 2.0

}
}]
}

Figure 4 The complete MathOptFormat file describing model (12).

4. constraints: A list of JSON objects, with one element for each constraint in the model.

Each object has two required fields:

(a) function: A JSON object that describes the function fi associated with constraint

i. The function field is identical to the function field in objective; however, in this example,

the first constraint function is a SingleVariable function of the variable x.

(b) set: A JSON object that describes the set Si associated with constraint i. In

this example, the second constraint set is the MathOptFormat set LessThan with the field

upper.

6.2. Comparison with other formats

We believe the creation of a new file format is justified because we can now write down

problems that cannot be written in any other file format, e.g., programs with exponential
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cones and complementary constraints. As an illustration, Table 2 compares the features

supported by MathOptFormat against a number of file formats. The file formats we com-

pare are the Conic Benchmark Format (.cbf) (Friberg 2016), the GAMS Scalar Format

(.gms) (Bussieck et al. 2003), the LP file format (.lp) (LP-solve 2016), the MPS file format

(.mps) (IBM World Trade Corporation 1976), the NL file format (.nl) (Gay 2005), the

Optimization Services Instance Language (.osil) (Fourer et al. 2010), and the SDPA file

format (.sdpa) (Fujisawa et al. 1998).

Due to the large number of functions and sets supported by MathOptFormat, we do not

compare every combination. Instead we compare a selection of general constraint types for

which there are differences between the file formats. Table 2 demonstrates that MathOpt-

Format generalizes a broad class of problems, from conic formats such as CBF to classical

formats for mixed-integer linear programming such as MPS.

.mof.json .cbf .gms .lp .mps .nl .osil .sdpa

Lower and upper bounds on variables Y Y Y Y Y Y

Integer variables Y Y Y Y Y Y Y Y*

Binary variables Y Y Y Y Y Y

Semi-integer and semi-continuous variables Y Y Y* Y

Linear constraints Y Y Y Y Y Y Y Y

Quadratic constraints Y Y Y* Y* Y Y

Second-order cones Y Y Y Y

Exponential cones Y Y

Power cones Y Y

Positive semidefinite cones Y Y Y Y

Complementarity constraints Y Y Y Y

General nonlinear constraints Y Y Y

Table 2 Summary of types of constraints supported by various file formats. Y = yes. Y* = some non-standard

variations.

7. The impact on JuMP and conclusions

We created MathOptInterface in order to improve JuMP. Therefore, it is useful to reflect

on how JuMP has changed with the introduction of MathOptInterface
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From a software engineering perspective, the largest change is that 90% of the code in

JuMP was re-written during the transition. In terms of lines of code, 14,341 were added,

10,649 were deleted, 2,994 were modified, and only 2,428 remained unchanged. This rep-

resents a substantial investment in engineering time from a large number of individual

contributors. In addition, 26,498 lines of code were added to the MathOptInterface pack-

age (although, 30% of these lines were tests for solvers), and many more thousand lines were

added accounting for the more than 20 individual solvers supporting MathOptInterface.

From an architectural perspective, the main change is that instead of representing opti-

mization models using three standard forms, JuMP now represents models using a com-

bination of functions and sets. At the bottom level, instead of solvers implementing one

of the three standard forms, they now declare a subset of function-in-set constraint pairs

that they natively support, along with supported objective functions and sets for vari-

ables constrained on creation. Between these two representations sits the bridging system

described in Section 5. Thus, analogous to Figure 1, the JuMP architecture now looks like

the diagram in Figure 5.

JuMP

minf1 x∈ S2 f3 ∈ S3 f4 ∈ S4 f5 ∈ S5

minf1 x∈ S2 f3 ∈ S3 f4 ∈ S4 f5 ∈ S5

Solver 2Solver 1 Solver 3

MathOptInterface

... bridges ...

Figure 5 Architecture of the new version of JuMP. JuMP and the solvers agree on a common set of definitions in

the MathOptInterface layer. JuMP allows users to formulate models using all combinations of functions

and sets, solvers implement a subset of the complete functionality, and (if possible) the bridging system

transforms the user-provided model into an equivalent representation of the same model supported by

the solver.

Despite the major changes at the solver and interface level, little of the user-facing code

in JuMP changed (aside from some sensible renaming). An example of a JuMP model
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using the CPLEX (IBM 2019) optimizer is given in Figure 6. This deceptively simple

example demonstrates many unique features discussed in this paper. The t >= 0 vari-

able lower bound is converted into a SingleVariable-in-GreaterThan constraint. The Int tag,

informing JuMP that the variable t is an integer variable, is converted into a SingleVari-

able-in-Integer constraint. The SecondOrderCone constraint is bridged into a ScalarQuadrat-

icFunction-in-LessThan constraint. The 1 <= sum(x) <= 3 constraint is formulated as a

ScalarAffineFunction-in-Interval, and then bridged into a ScalarAffineFunction-in-LessThan

constraint and a ScalarAffineFunction-in-GreaterThan constraint. After solving the problem

with optimize!, we check that the termination status is OPTIMAL before querying the

objective value. Finally, we write out the model to a MathOptFormat file. This model can

be loaded in future using model = read from file("example.mof.json").

using JuMP, CPLEX

model = Model(CPLEX.Optimizer)

@variable(model, t >= 0, Int)

@variable(model, x[1:3] >= 0)

@constraint(model, [t; x] in SecondOrderCone())

@constraint(model, 1 <= sum(x) <= 3)

@objective(model, Min, t)

optimize!(model)

if termination_status(model) == MOI.OPTIMAL

@show objective_value(model)

end

write_to_file(model, "example.mof.json")

Figure 6 An example using the version 0.21.3 of JuMP.

7.1. Other features of MathOptInterface

This paper has described three main contributions that make writing an algebraic model-

ing language like JuMP easier: the MathOptInterface abstract data structure; the bridging

system for automatically rewriting constraints; and the MathOptFormat file format. How-

ever, the re-write of JuMP and MathOptInterface involved many more changes than the

ones outlined here. In particular, we have not discussed:

• The API of MathOptInterface, which includes a standardized way to get and set a

variety of model and solver attributes (e.g., names, primal/dual starting points, etc.), and
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the ability to incrementally modify problems in-place (e.g., deleting variables and changing

constraint coefficients);

• MathOptInterface’s manual and automatic caching modes for solvers that do not

support the afformentioned incremental modifications;

• JuMP’s new direct mode, which avoids storing an intermediate copy of the model,

bypasses the bridging system, and instead hooks directly into the underlying solver with

minimal overhead;

• The introduction of a new status reporting mechanism at the JuMP and

MathOptInterface level featuring three distinct types of solution statuses: termination

status (Why did the solver stop?), primal status (What is the status of the primal solu-

tion?), and dual status (What is the status of the dual solution?);

• JuMP and MathOptInterface’s re-vamped support for solver callbacks, offering both

solver-independent callbacks and solver-dependent callbacks, which allow the user to inter-

act with solver-specific functionality; and

• MathOptInterface’s unified testing infrastructure for solvers, which subjects all

solvers to thousands of tests for correctness every time a change is made to the codebase.

This testing has revealed bugs and undocumented behavior in a number of solvers.

We leave a description of these changes, and many others, to future work.

For more information on JuMP and MathOptInterface, including documentation, exam-

ples, tutorials, and source code, readers are directed to https://jump.dev.

Supplemental Material

Supplemental material to this paper is available at https://github.com/jump-dev/

MOIPaperBenchmarks.
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A. Sets defined by MathOptInterface

Here we provide a complete list of the sets defined by MathOptInterface in S.

A.1. One-dimensional sets

MathOptInterface defines the following one-dimensional sets where S ⊆R:

• LessThan(u): (−∞, u] where u∈R.

• GreaterThan(l): [l,∞) where l ∈R.

• EqualTo(a): {a} where a∈R.

• Interval(l, u): [l, u] where l ∈R, u∈R, and l≤ u.

• Integer: Z.

• ZeroOne: {0,1}.

• Semiinteger(l, u): {0}∪ {l, . . . , u} where l ∈Z, u∈Z, l≤ u.

• Semicontinuous(l, u): {0}∪ [l, u] where l ∈R, u∈R, l≤ u.

A.2. Cones

MathOptInterface defines the following multi-dimensional cones where S ⊆RN :

• Zeros: {0}N .

• Reals: RN .

• Nonpositives: {x∈RN : x≤ 0}.

• Nonnegatives: {x∈RN : x≥ 0}.

• SecondOrderCone: {(t,x)∈R1+N : t≥ ||x||2}.

• RotatedSecondOrderCone: {(t, u,x)∈R2+N : 2tu≥ ||x||22, t≥ 0, u≥ 0}.

• ExponentialCone:
{

(x, y, z)∈R3 : yex/y ≤ z, y≥ 0
}

.

• DualExponentialCone:
{

(u, v,w)∈R3 : −uev/u ≤ e1w,u< 0
}

.

• GeometricMeanCone;
{

(t,x)∈R1+N :
∏N

i=1 x
1
N
i

}
.

• PowerCone(a): {(x, y, z)∈R3 : xay1−a ≥ |z|, x≥ 0, y≥ 0} where a∈R.

• DualPowerCone(a):
{

(u, v,w)∈R3 : (u
a
)a( v

1−a
)1−a ≥ |w|, u≥ 0,w≥ 0

}
where a∈R.

• NormOneCone:

{
(t,x)∈R1+N : t≥

N∑
i=1

|xi|
}

.

• NormInfinityCone:

{
(t,x)∈R1+N : t≥ max

i=1,...,N
|xi|
}

.

• RelativeEntropyCone:

{
(u, v,w)∈R1+2N : u≥

N∑
i=1

wi log
(

wi

vi

)
, v≥ 0,w≥ 0

}
.

A.3. Matrix cones

MathOptInterface defines the following matrix-valued cones (unless specified, X is assumed to be a d× d

matrix):

• RootDetConeTriangle:
{

(t,X)∈R1+d(d+1)/2 : t≤ det(X)1/d
}

.

• RootDetConeSquare:
{

(t,X)∈R1+d2 : t≤ det(X)1/d,X =X>
}

.

• LogDetConeTriangle:
{

(t, u,X)∈R2+d(d+1)/2 : t≤ udet(X/u), u > 0
}

.

• LogDetConeSquare:
{

(t, u,X)∈R2+d2 : t≤ udet(X/u), u > 0,X =X>
}

.

• PositiveSemidefiniteConeTriangle: The cone of positive semidefinite matrices
{
X ∈Rd(d+1)/2 : X � 0

}
.
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• PositiveSemidefiniteConeSquare: The cone of positive semidefinite matrices
{
X ∈Rd2 : X � 0,X =X>

}
.

• NormSpectralCone: {(t,X)∈R1+M×N : t≥ σ1(X)}, where σ1(X) is the 1st singular value of the matrix

X with dimensions M ×N .

• NormNuclearCone:

{
(t,X)∈R1+M×N : t≥

∑
i

σi(X)

}
, where σi(X) is the ith singular value of the matrix

X with dimensions M ×N .

Some of these cones can take two forms: XXXConeTriangle and XXXConeSquare. In XXXConeTriangle sets,

the matrix is assumed to be symmetric, and the elements are provided by a vector, in which the entries of

the upper-right triangular part of the matrix are given column by column (or equivalently, the entries of the

lower-left triangular part are given row by row). In XXXConeSquare sets, the entries of the matrix are given

column by column (or equivalently, row by row), and the matrix is constrained to be symmetric.

As an example, given a 2-by-2 matrix of variables X and a one-dimensional variable t, we can specify a root-

det constraint as [t,X11,X12,X22]∈ RootDetConeTriangle or [t,X11,X12,X21,X22]∈ RootDetConeSquare. We

provide both forms to enable flexibility for solvers who may natively support one or the other. Transforma-

tions between XXXConeTriangle and XXXConeSquare are handled by bridges, which removes the chance of

conversion mistakes by users or solver developers.

A.4. Multi-dimensional sets with combinatorial structure

MathOptInterface also defines a number of multi-dimensional sets that specify some combinatorial structure.

• Complements: A set defining a mixed-complementarity constraint:(x,y)∈R2N :


yi ∈ (li, ui) =⇒ xi = 0

yi = li =⇒ xi ≥ 0

yi = ui =⇒ xi ≤ 0

∀i= 1, . . . ,N

 ,

where li and ui are the lower- and upper-bounds on variable yi (added separately as SingleVariable-in-XXX

constraints).

Note that (x,y) is defined by a single multi-dimensional function (e.g., VectorAffineFunction), but the y

component must be interpretable as a vector of variables. For simplicity, complementarity constraints are

often written f(x)⊥ y. As an example, −4x+1⊥ x can be specified as [−4x+1, x]∈ Complements. Classically,

the bounding set for y is R+, which recovers the “classical” complementarity constraint 0≤ f(x)⊥ y≥ 0.

• IndicatorSet(b,S): A set used to construct indicator constraints:{
(y,x)∈R1+N : y= b =⇒ x∈ S

}
,

where b∈ {0,1} and S ∈ S. (Note that most solvers will require a constraint that y ∈ ZeroOne before the user

can add this constraint.)

For example, y= 0 =⇒ 2x≤ 1 can be given by: [y,2x]∈ IndicatorSet(0,LessThan(1)).

• SOS1(w): A set for Special Ordered Sets of Type I constraints (Beale and Tomlin 1970):

{x∈RN : |{xi 6= 0}Ni=1| ≤ 1},

where w∈RN . Note that although the weight vector w is not used in the definition of the set, it induces an

ordering on the elements of x that may be used to guide the solver’s branching decisions.
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• SOS2(w): A set for Special Ordered Sets of Type II constraints (Beale and Tomlin 1970):

{x∈RN : |{xi 6= 0}Ni=1| ≤ 2,non-zeros are adjacent under w},

where w∈RN . Here, the weight vector w induces an ordering on the elements of x, and at most two elements

can be non-zero. In addition, if two elements are non-zero, they must be adjacent according to the ordering.


