
ar
X

iv
:2

00
5.

01
13

6v
5 

 [m
at

h.
O

C
]  

9 
Ju

l 2
02

1

Solving natural conic formulations with Hypatia.jl

Chris Coey1, Lea Kapelevich1, and Juan Pablo Vielma2

1Operations Research Center, MIT, Cambridge, MA
2Google Research and MIT Sloan School of Management, Cambridge, MA

July 12, 2021

Abstract

Many convex optimization problems can be represented through conic extended formulations with

auxiliary variables and constraints using only the small number of standard cones recognized by ad-

vanced conic solvers such as MOSEK 9. Such extended formulations are often significantly larger and

more complex than equivalent conic natural formulations, which can use a much broader class of exotic

cones. We define an exotic cone as a proper cone for which we can implement tractable logarithmically

homogeneous self-concordant barrier oracles for either the cone or its dual cone. In this paper we intro-

duce Hypatia, a highly-configurable open-source conic primal-dual interior point solver with a generic

interface for exotic cones. Hypatia is written in Julia and accessible through JuMP, and currently im-

plements around two dozen useful predefined cones (some with multiple variants). We define some of

Hypatia’s exotic cones, and for conic constraints over these cones, we analyze techniques for construct-

ing equivalent representations using the standard cones. For optimization problems from a variety of

applications, we introduce natural formulations using these exotic cones, and we show that the natural

formulations are simpler and lower-dimensional than the equivalent extended formulations. Our compu-

tational experiments demonstrate the potential advantages, especially in terms of solve time and memory

usage, of solving the natural formulations with Hypatia compared to solving the extended formulations

with either Hypatia or MOSEK 9.
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1 Introduction

Any convex optimization problem may be represented as a conic problem that minimizes a linear function

over the intersection of an affine subspace with a Cartesian product of primitive proper cones (i.e. irreducible,

closed, convex, pointed, and full-dimensional conic sets). An advantage of using conic form is that, under

certain conditions, a conic problem has a simple and easily checkable certificate of optimality, primal infea-

sibility, or dual infeasibility [Permenter et al., 2017]. Although the scope of this paper is limited to conic

problems, there are other useful notions of duality that can be leveraged by convex optimization solvers (see

for example DDS solver [Karimi and Tunçel, 2019, 2020]).

1.1 Conic interior point methods

Most conic solvers, such as CSDP [Borchers, 1999], CVXOPT [Andersen et al., 2011], ECOS [Serrano, 2015],

MOSEK [MOSEK ApS, 2020b], and SDPA [Yamashita et al., 2003], implement primal-dual interior point

methods (PDIPMs). Complexity analysis of PDIPMs, which relies on properties of logarithmically homoge-

neous self-concordant barrier functions (LHSCBs; defined in Nesterov and Nemirovskii [1994, Sections 2.3.1

and 2.3.3]), shows they require fewer iterations to converge but exhibit higher per-iteration cost compared

to first order conic methods (see O’Donoghue et al. [2016] on SCS solver). Computational evidence accords

with this result and demonstrates the superior numerical robustness of PDIPMs.

Historically, PDIPM solvers were based on efficient algorithms specialized for symmetric cones, in particular,

the nonnegative, (rotated) second order, and positive semidefinite (PSD) cones. However, many useful non-

symmetric conic constraints (such as u ≤ log(w), representable with an exponential cone) are not exactly

representable with symmetric cones. Early non-symmetric conic PDIPMs such as Nesterov et al. [1996],

Nesterov [2012] had several disadvantages compared to the specialized symmetric methods, for example

requiring a strictly feasible initial iterate, the solution of larger linear systems, and conjugate LHSCB oracles.

To address these issues, Skajaa and Ye [2015] (henceforth referred to as SY ) introduced a PDIPM that

requires just a few oracles for the primal cone only: a fixed initial point in the cone’s interior, a feasibility

test (to determine whether a given point is in the cone’s interior), and gradient and Hessian evaluations for

an LHSCB.
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1.2 Natural and extended formulations

Although advanced conic solvers currently recognize at most only a handful of standard cones (nonnega-

tive, second order, rotated second order, positive semidefinite (PSD), and 3-dimensional exponential and

power cones), these cones are sufficient for representing many problems of interest [Lubin et al., 2016,

MOSEK ApS, 2020b]. Modeling tools such as disciplined convex programming (DCP) packages (see CVX

[Grant and Boyd, 2014], CVXPY [Diamond and Boyd, 2016], and Convex.jl [Udell et al., 2014]) and Math-

OptInterface’s bridges [Legat et al., 2020] are designed to facilitate transformations of convex problems into

conic problems with standard cones, to enable access to powerful specialized conic solvers. However, for

many problems of interest, a representation in terms of standard cones is not the most natural or efficient

conic representation.

The process of transforming a general conic problem into a conic extended formulation (EF) that uses

only standard cones often requires introducing many artificial variables, linear equalities, and/or higher-

dimensional conic constraints. For example, in our density estimation example problem in Section 5.6, these

dimensions are typically orders of magnitude larger for the EFs than for the NFs. By increasing the size

and complexity of problem data, EFs can increase the computational cost of preprocessing/initialization and

linear system solving at each iteration. If conic solvers could recognize a much larger class of exotic cones,

they could directly solve simpler, smaller conic natural formulations (NFs).1 We define an exotic cone as

a proper cone for which we can implement a small set of tractable (i.e. fast, numerically stable, analytic)

oracles for a logarithmically homogeneous self-concordant barrier for the cone or for its dual cone.

In the particular context of polynomial weighted sum-of-squares (SOS) optimization, Papp and Yildiz [2019]

illustrate the potential advantages of using NFs with SOS cones (see Section 4.7) instead of PSD cone

EFs, which are much larger. The authors describe tractable LHSCB oracles for dual SOS cones, noting that

analytic oracles are not known for primal SOS cones. They show that their SOS NF-based approach has lower

theoretical time and space complexity overall compared to a standard EF-based semidefinite programming

method. After implementing SY in their MATLAB solver Alfonso [Papp and Yıldız, 2017, 2021], the authors

observe improved solve times and scaleability from solving the NFs with Alfonso compared to solving the

EFs with MOSEK.

To broaden the computational argument for NFs, in Section 4 we define a variety of exotic cone types (some

of which required the development of new LHSCBs; see Coey et al. [2021d]) and describe general techniques

for constructing equivalent EFs of NF constraints involving these cones. We analyze how these EF techniques

necessarily increase formulation dimensions. We also observe that the EFs are often associated with larger

values of the LHSCB parameter ν, which impacts the number of iterations O(
√
ν log(1/ε)) needed in the

worst case by an idealized algorithm such as SY to obtain a solution within ε tolerance [Nesterov and Todd,

1997]. However, most performance-oriented conic solver implementations do not directly implement idealized

PDIPMs, so the practical impact of the parameter ν on average performance is unclear. Another potential

advantage of using the NFs is that converting conic certificates from the space of the EF back into the more

meaningful NF space can be complicated. Furthermore, the convergence conditions used by PDIPMs can

provide numerical guarantees about conic certificates, but if EF certificates are converted to NF space, the

NF certificates might lack such guarantees.

1We note that EFs can be beneficial for accelerating outer approximation algorithms for mixed-integer conic optimization,

such as the method implemented in Pajarito solver [Coey et al., 2020]. However, folklore says that the EF for the second order

cone likely slows down the conic solver, which is why Pajarito manages the EF in the MILP outer approximation model and

only solves NFs for the conic subproblems.
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1.3 Hypatia: a generic conic solver

We introduce our new open source generic conic PDIPM solver, Hypatia.2 Hypatia is written in the Julia

language [Bezanson et al., 2017] and is accessible through either a flexible, low-level native interface or the

open-source modeling tools JuMP [Dunning et al., 2017] and Convex.jl [Udell et al., 2014]. Unlike Alfonso,

Hypatia uses a primal-dual form (matching CVXOPT’s cone LP form [Andersen et al., 2011]) that does not

force the user to introduce slack variables, and allows linear operators to be represented with Julia’s sparse,

dense, or structured abstract matrix types (see Section 3). Hypatia already supports more than two dozen

predefined exotic cone types, some of which have multiple variants (for example, real and complex flavors);

these cones and associated LHSCBs are listed at Coey et al. [2021a,b].

A key feature of Hypatia is the generic cone interface, which allows defining new proper cones. The interface,

like that of Alfonso, requires only the implementation of the few tractable cone oracles needed by SY. However,

unlike Alfonso, defining a new cone in Hypatia makes both the cone and its dual cone simultaneously available

for use in conic formulations (see Coey et al. [2021c] for details). For many cones of interest, tractable (i.e.

fast, numerically stable, and analytic) oracles are only known for either the primal cone or the dual cone but

not both. This means Hypatia is able to handle a broader class of conic formulations than SY and Alfonso,

which require oracles specifically for all cones in the primal conic formulation. For example, in our portfolio

rebalancing example NF in Section 5.1, we have both ℓ1 norm cone and ℓ∞ norm cone constraints; we are

aware of an LHSCB with analytic oracles for the ℓ∞ norm cone, but not for its dual cone - the ℓ1 norm

cone (see Section 4.1). Unlike Alfonso, Hypatia’s cone interface allows optional specification of additional

cone oracles (such as dual cone feasibility tests, inverse Hessians, and third order directional derivatives; see

Coey et al. [2021c]), which can improve computational efficiency and numerical performance.

Hypatia’s solver interface is also highly extensible. We provide several optional interior point search and

stepping procedures, described in Coey et al. [2021c]. For example, while Alfonso alternates between predic-

tion and correction steps, Hypatia’s default interior point stepping procedure uses a combined directions

method incorporating third-order LHSCB information, inspired by techniques of Andersen et al. [2011],

Dahl and Andersen [2021], Domahidi et al. [2013]. Since the per-iteration bottleneck of PDIPMs such as

Hypatia’s algorithm tends to be solving the large structured linear system for search directions, Hypatia

allows the user to choose from several predefined methods (including options for sparse or dense factorization-

based solves or linear-operator-based iterative/indirect solves) or to implement their own formulation-specific

procedure to leverage additional structure. Unlike Alfonso, Hypatia allows representing and solving conic

problems in any real floating point type in Julia, hence it can solve conic problems to arbitrary precision

using BigFloat types. We do not explore these advanced algorithmic features in this paper, and for our

computational experiments, we use a fixed set of default algorithmic options.

1.4 Examples and computational experiments

In Section 5 we present a series of example problems from applications such as matrix completion, experiment

design, and smooth density optimization. For these examples, we describe simple NFs using the exotic cones

we define in Section 4. Some of these NFs are new and may be valuable to try in real-world applications.

We randomly generate NF instances of a wide variety of sizes, construct equivalent EFs using the general

EF techniques in Section 4, and observe that the EFs are significantly larger.

Our computational experiments demonstrate significant improvements in solve time and memory overhead

2Hypatia is available at github.com/chriscoey/Hypatia.jl under the MIT license; see Coey et al. [2021b] for documentation.
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from solving the NFs with Hypatia compared to solving the EFs with Hypatia or MOSEK 9. Our experience

also suggests that since EFs are often larger and more complex than NFs, they can be less convenient for

the modeler, and noticeably slower and more memory-intensive to construct using JuMP or Hypatia’s native

interface. For many instances, we could build the NF efficiently, but we hit time or memory limits while

constructing the EF.

2 Notation

For sets, cl denotes the closure and int denotes the interior. R is the scalar reals, R≥ is the nonnegative

reals, and R> = int(R≥) is the positive reals, R≤ is the nonpositive reals, and R< = int(R≤) is the negative

reals. The set of d-dimensional real vectors is R
d, and the set of d1-by-d2-dimensional real matrices is

R
d1×d2 . S

d is the set of symmetric matrices of side dimension d, S
d
� ⊂ S

d is the positive semidefinite

matrices, and S
d
≻ = int

(

S
d
�

)

is the positive definite matrices. For some natural number d, JdK is the index

set {1, 2, . . . , d}.

If a, b, c, d are scalars, vectors, or matrices (of appropriate dimensions), the notation
[

a b
c d

]

usually denotes

concatenation into a matrix. For a vector or matrix A, the transpose is A′. I(d) is the identity matrix in

R
d×d. For dimensions implied by context, 0 may represent vectors or matrices of 0s, and e is a vector of

1s. Diag represents the diagonal matrix of a given vector, and diag represents the diagonal vector of a given

square matrix. The inner product of vectors u,w ∈ R
d is u′w =

∑

i∈JdKuiwi. log is the natural logarithm,

‖·‖p is the ℓp norm (for p ≥ 1) of a vector, det is the determinant of a symmetric matrix, tr is the matrix

trace, and σi(·) is the ith largest singular value of a matrix.

The operator vec maps R
d1×d2 (matrices) to R

d1d2 (vectors) by stacking columns. The inverse operator

matd1,d2
maps R

d1d2 to R
d1×d2 . For symmetric matrices, vec maps S

d to R
sd(d), where we define sd(d) :=

d(d+1)/2, by rescaling off-diagonal elements by
√
2 and stacking columns of the upper triangle. For example,

for S ∈ S
3 we have sd(3) = 6 and vec(S) =

(

S1,1,
√
2S1,2, S2,2,

√
2S1,3,

√
2S2,3, S3,3

)

∈ R
sd(3). The inverse

mapping mat from R
sd(d) to S

d is well-defined. The linear operators vec and mat preserve inner products,

so vec(S)′ vec(Z) = tr(S′Z) for S,Z ∈ R
d1×d2 or S,Z ∈ S

d.

3 Conic duality and standard form

Let K be a proper cone in R
q, i.e. a conic subset of Rq that is closed, convex, pointed, and full-dimensional

(see Skajaa and Ye [2015]). We call K a primitive (or irreducible) cone if it cannot be written as a Cartesian

product of two or more lower-dimensional cones. K∗ ⊂ R
q is the dual cone of K:

K∗ := {z ∈ R
q : s′z ≥ 0, ∀s ∈ K}. (1)

K∗ is a primitive proper cone if and only if K is a primitive proper cone.

In Section 4, we introduce a subset of Hypatia’s predefined primitive proper cones and their dual cones. We

use these cones to formulate NFs and EFs for our applied example problems in Section 5. In this paper, we

omit the LHSCBs for the cones in Section 4, but these can be found in Coey et al. [2021a], Kapelevich et al.

[2021], Coey et al. [2021d]. We note in Section 4 that for many of these cones, computing conjugate barrier

oracles requires optimization, which is slow and numerically fraught in our experience. Fortunately, like

the algorithm by Skajaa and Ye [2015] (and its implementation in Alfonso), Hypatia does not use conjugate

barrier oracles.
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Hypatia’s generic cone interface allows defining any proper cone K by specifying a small list of oracles: an

initial interior point t ∈ int(K), a feasibility test for int(K), and gradients and Hessians of an LHSCB f for K.

Recall that Nesterov and Nemirovskii [1994, Sections 2.3.1 and 2.3.3] defines an LHSCB for a proper cone.

The cone interface also allows optional specification of other oracles that can improve performance. Once

defined, the cone and its dual cone may be used in any combination with other cones recognized by Hypatia

to construct the Cartesian product cone K in the primal conic form (2) below.

Hypatia’s primal conic form over variable x ∈ R
n is:

infx c′x : (2a)

b−Ax = 0, (2b)

h−Gx ∈ K, (2c)

where c ∈ R
n, b ∈ R

p, and h ∈ R
q are vectors, A : Rn → R

p and G : Rn → R
q are linear maps, and

K ⊂ R
q is a Cartesian product K = K1 × · · · × KK of primitive proper cones. Henceforth we use n, p, q to

denote the variable, equality, and conic constraint dimensions of a conic problem in the form (2). This primal

form matches CVXOPT’s form, though CVXOPT only recognizes symmetric cones [Vandenberghe, 2010].

Unlike the conic form used by Skajaa and Ye [2015] (and Alfonso and MOSEK 9), which recognizes conic

constraints of the form x ∈ K, our form does not require the user to introduce slack variables to represent a

more general constraint h−Gx ∈ K.

The corresponding conic dual problem over variable y ∈ R
p associated with (2b), and z ∈ R

q associated with

(2c), is:

supy,z −b′y − h′z : (3a)

c+A′y +G′z = 0, (3b)

z ∈ K∗, (3c)

where (3b) is associated with primal variable x ∈ R
n. Note K∗ = K∗

1 × · · · × K∗
K .

If neither the primal nor the dual is ill-posed,3 there exists a simple conic certificate providing an easily

verifiable proof of infeasibility of the primal (2) or dual (3) or optimality of a given primal-dual solution. A

primal improving ray x is a feasible direction for the primal along which the primal objective improves (i.e.

c′x < 0, −Ax = 0, −Gx ∈ K), and hence it certifies dual infeasibility via the conic generalization of Farkas’

lemma. Similarly, a dual improving ray (y, z) certifies primal infeasibility (i.e. −b′y−h′z > 0, A′y+G′z = 0,

z ∈ K∗). Finally, a complementary solution (x, y, z) satisfies the primal-dual feasibility conditions (2b) to (2c)

and (3b) to (3c) and has equal and attained objective values c′x = −b′y−h′z, and hence certifies optimality

of (x, y, z) via conic weak duality.

4 Cones and extended formulations

Recall that we define the standard cones as those recognized by MOSEK 9, listed below.

Nonnegative cone. The self-dual nonnegative cone is K≥ = K∗
≥ := R≥.

3Intuitively, according to MOSEK ApS [2020b, Section 7.2], a conic problem is ill-posed if a small perturbation of the

problem data can change the feasibility status of the problem or cause arbitrarily large perturbations to the optimal solution.

See Permenter et al. [2017] for more details.
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Euclidean norm cone. The self-dual Euclidean norm cone (or second order cone) is the epigraph of the

ℓ2 norm:

Kℓ2 = K∗
ℓ2

:=
{

(u,w) ∈ R≥ × R
d : u ≥ ‖w‖

}

. (4)

Euclidean norm-squared cone. The self-dual Euclidean norm-squared cone (or rotated second order

cone) is the epigraph of the perspective function of g for g(w) = 1
2‖w‖2:

Ksqr = K∗
sqr :=

{

(u, v, w) ∈ R
2
≥ × R

d : 2uv ≥ ‖w‖2
}

. (5)

Positive semidefinite cone. The self-dual (vectorized) positive semidefinite (PSD) cone is:

K� = K∗
� :=

{

w ∈ R
sd(d) : mat(w) ∈ S

d
�

}

. (6)

3-dimensional exponential cone. The exponential cone in R
3 is a special case of our logarithm cone Klog

defined in Section 4.5 (let d = 1 in (17a)), so any 3-dimensional Klog constraint is an exponential cone

constraint.

3-dimensional power cone. The power cone in R
3 (defined in MOSEK ApS [2020b, Section 4.1]) is a

special case of Hypatia’s generalized power cone (see Coey et al. [2021a]). However, none of our example

NFs or EFs in Section 5 need power cones, so we omit these definitions here.

In Sections 4.1 to 4.7, we define a subset of Hypatia’s predefined exotic cones. For simplicity, we refer

to a particular exotic cone constraint as an NF, and an equivalent reformulation of such a constraint in

terms of only standard cones as an EF. We describe general techniques for constructing EFs for the types

of exotic conic constraints we use in our example NFs in Section 5. In general, an NF constraint has the

form h−Gx ∈ K, but in this section we write s ∈ K for simplicity, since s = h−Gx can be substituted into

the EF description. An EF may use auxiliary variables, linear equalities, and/or conic constraints, which

affect the dimensions n, p, and q (respectively) of the primal conic form (2). In Table 1, we compare the

dimensions and LHSCB parameters (ν) associated with equivalent NF and EF constraints; as we mention

in Section 1.2, these properties may affect the performance of PDIPMs.

The EFs we describe below follow best practices from DCP modeling tools such as Convex.jl [Udell et al.,

2014] and descriptions such as Ben-Tal and Nemirovski [2001, chapter 4]. We use JuMP [Dunning et al.,

2017] to build the NFs and EFs in Section 5, so we contributed several exotic cones and the EFs described in

Sections 4.1 to 4.3 to MathOptInterface’s bridges [Legat et al., 2020] to permit automated EF construction.

MathOptInterface does not currently recognize Klog (for d > 1), KSOS, and KmatSOS (or their dual cones),

so we construct the EFs in Sections 4.5 and 4.7 manually using JuMP. For some EFs with auxiliary variables

and equalities, it is possible to perform eliminations to reduce dimensions slightly, but this can impact the

sparsity of problem data (note that in our experiments in Section 5, both Hypatia and MOSEK perform

preprocessing).

4.1 Infinity norm cone

The ℓ∞ norm cone is the epigraph of ℓ∞, and its dual cone is the ℓ1 norm cone:

Kℓ∞ :=
{

(u,w) ∈ R≥ × R
d : u ≥ ‖w‖∞

}

, (7a)

K∗
ℓ∞

:=
{

(u,w) ∈ R≥ × R
d : u ≥ ‖w‖1

}

. (7b)
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Table 1: Properties of NFs and EFs for the exotic conic constraints in Sections 4.1 to 4.7. q and ν are the

dimension and LHSCB parameter for the NF cone, and q̄ and ν̄ are the corresponding values for the EF

Cartesian product cone. n̄ and p̄ are the EF auxiliary variable and equality dimensions. Note sd(k) is O(k2).

NF q ν EF q̄ ν̄ n̄ p̄

Kℓ∞ 1 + d 1 + d K≥ 2d 2d 0 0

K∗
ℓ∞

1 + d 1 + d K≥ 1 + 2d 1 + 2d 2d d

Kℓspec
1 + rs 1 + r K� sd(r + s) r + s 0 0

K∗
ℓspec

1 + rs 1 + r K≥,K� 1 + sd(r + s) 1 + r + s sd(r) + sd(s) 0

Kgeo 1 + d 1 + d K≥,Klog 2 + 3d 2 + 3d 1 + d 0

Krtdet 1 + sd(d) 1 + d K≥,Klog,K� 2 + 3d+ sd(2d) 2 + 5d 1 + d+ sd(d) 0

Klog 2 + d 2 + d K≥,Klog 1 + 3d 1 + 3d d 0

Klogdet 2 + sd(d) 2 + d K≥,Klog,K� 1 + 3d+ sd(2d) 1 + 5d 1 + d+ sd(d) 0

KSOS d
∑

ltl K�

∑

l sd(tl) ν q̄ d

K∗
SOS d

∑

lsl K�

∑

l sd(sl) ν 0 0

KmatSOS sd(t)d t
∑

lsl K�

∑

l sd(tsl) ν q̄ q

For Kℓ∞ , we use the LHSCB from Güler [1996, Section 7.5]. We are not aware of an LHSCB for K∗
ℓ∞

with

similarly efficient oracles.

Our examples in Sections 5.1 and 5.4 use the following NF (left) and EF (right):

(u,w) ∈ Kℓ∞ ⊂ R
1+d ⇔ (ue− w, ue+ w) ∈ (K≥)

2d, (8)

and similarly, Section 5.1 uses:

(u,w) ∈ K∗
ℓ∞ ⊂ R

1+d ⇔ ∃θ ∈ (K≥)
d, ∃λ ∈ (K≥)

d, w = θ − λ, u− e′(θ + λ) ∈ K≥. (9)

4.2 Spectral norm cone

The spectral norm cone is the epigraph of the matrix spectral norm, and its dual cone is the epigraph of the

matrix nuclear norm:

Kℓspec(r,s) :=
{

(u,w) ∈ R≥ × R
rs : u ≥ σ1(W )

}

, (10a)

K∗
ℓspec(r,s)

:=
{

(u,w) ∈ R≥ × R
rs : u ≥ ∑

i∈JrKσi(W )
}

, (10b)

where W := matr,s(w) ∈ R
r×s and r ≤ s (this is nonrestrictive since the singular values are the same for

W and W ′). For Kℓspec
we use the LHSCB from Nesterov and Nemirovskii [1994]. We are not aware of an

LHSCB for K∗
ℓspec

with similarly efficient oracles.

Section 5.2 uses the EF from Ben-Tal and Nemirovski [2001, Section 4.2]:

(u,w) ∈ Kℓspec(r,s) ⊂ R
1+rs ⇔

[

uI(r) W

W ′ uI(s)

]

∈ S
r+s
� . (11)

Section 5.3 uses the EF from Recht et al. [2010]:

(u,w) ∈ K∗
ℓspec(r,s)

⊂ R
1+rs ⇔

∃θ ∈ R
sd(r), ∃λ ∈ R

sd(s),

[

Θ W

W ′ Λ

]

∈ S
r+s
� ,

u− (tr(Θ) + tr(Λ))/2 ∈ K≥,

(12)
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where Θ := mat(θ) ∈ S
r,Λ := mat(λ) ∈ S

s.

4.3 Geometric mean cone

The geometric mean cone is the hypograph of the geometric mean function:

Kgeo :=
{

(u,w) ∈ R× R
d
≥ : u ≤

∏

i∈JdKw
1/d
i

}

, (13a)

K∗
geo :=

{

(u,w) ∈ R≤ × R
d
≥ : u ≥ −d

∏

i∈JdKw
1/d
i

}

. (13b)

For Kgeo we use the LHSCB from Nesterov [2006].

The example in Section 5.2 uses an EF for Kgeo, and the root-determinant variant of the example in Section 5.4

uses an EF for Kgeo indirectly through a Krtdet EF (see Section 4.4). We are aware of three EFs for Kgeo:

a rotated second order cone EF (EF-sec) from Ben-Tal and Nemirovski [2001, Section 3.3.1], a power cone

EF (EF-pow) from MOSEK ApS [2020b], and an exponential cone EF (EF-exp). We contributed EF-exp

to MathOptInterface as a combination of two bridges (geometric mean cone to relative entropy cone to

exponential cones):

(u,w) ∈ Kgeo ⊂ R
1+d ⇔

∃θ ∈ K≥, ∃λ ∈ R
d, e′λ ∈ K≥,

(λi, u+ θ, wi) ∈ Klog, ∀i ∈ JdK.
(14)

EF-pow is not currently available through MathOptInterface bridges, and it has a very similar size and

structure to EF-exp, so we do not describe or test it. EF-sec uses multiple levels of variables and 3-dimensional

Ksqr constraints and is complex to describe, so we refer the reader to Ben-Tal and Nemirovski [2001, Section

3.3.1]. In our empirical comparisons in Sections 5.2 and 5.4, EF-sec typically has larger variable and conic

constraint dimensions but smaller barrier parameter than EF-exp.

4.4 Root-determinant cone

The root-determinant cone is the hypograph of the root-determinant function:

Krtdet :=
{

(u,w) ∈ R
1+sd(d) : W ∈ S

d
�, u ≤ (det(W ))1/d

}

, (15a)

K∗
rtdet :=

{

(u,w) ∈ R≤ × R
sd(d) : W ∈ S

d
�, u ≥ −d(det(W ))1/d

}

, (15b)

where W := mat(w). For Krtdet we propose an LHSCB with efficient oracles in Coey et al. [2021d].

Section 5.4 uses the EF from Ben-Tal and Nemirovski [2001, Section 4.2]:

(u,w) ∈ Krtdet ⊂ R
1+sd(d) ⇔

∃θ ∈ R
sd(d), (u, diag(Θ)) ∈ Kgeo,

[

W Θ

Θ′ Diag(diag(Θ))

]

∈ S
2d
� ,

(16)

where Θ := mat(θ) ∈ S
d, and the Kgeo constraint is itself replaced with one of the geometric mean cone EFs

described in Section 4.3.

4.5 Logarithm cone

The logarithm cone is the hypograph of the perspective function of a sum of natural log functions:

Klog := cl
{

(u, v, w) ∈ R× R
1+d
> : u ≤

∑

i∈JdKv log(wi/v)
}

, (17a)

K∗
log := cl

{

(u, v, w) ∈ R< × R× R
d
> : v ≥ ∑

i∈JdKu(log(−wi/u) + 1)
}

. (17b)
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For Klog we propose an LHSCB with efficient oracles in Coey et al. [2021d].

Section 5.6 uses the EF (when d > 1):

(u, v, w) ∈ Klog ⊂ R
2+d ⇔ ∃θ ∈ R

d, e′θ − u ∈ K≥, (θi, 1, wi) ∈ Klog, ∀i ∈ JdK. (18)

4.6 Log-determinant cone

The log-determinant cone is the hypograph of the perspective function of the log-determinant function:

Klogdet := cl
{

(u, v, w) ∈ R× R> × R
sd(d) : W ∈ S

d
≻, u ≤ v logdet(W/v)

}

, (19a)

K∗
logdet := cl

{

(u, v, w) ∈ R< × R
1+sd(d) : W ∈ S

d
≻, v ≥ u(logdet(−W/u) + d)

}

, (19b)

where W := mat(w). For Klogdet we propose an LHSCB with efficient oracles in Coey et al. [2021d].

Section 5.4 adapts the root-determinant cone EF (16):

(u, v, w) ∈ Klogdet ⊂ R
2+sd(d) ⇔

∃θ ∈ R
sd(d), (u, v, diag(Θ)) ∈ Klog,

[

W Θ

Θ′ Diag(diag(Θ))

]

∈ S
2d
� ,

(20)

where Θ := mat(θ) ∈ S
d, and the Klog constraint is itself replaced with the logarithm cone EF described in

Section 4.5.

4.7 Polynomial weighted SOS scalar and matrix cones

Given a collection of matrices Pl ∈ R
d×sl , ∀l ∈ JrK derived from basis polynomials evaluated at d interpolation

points as in Papp and Yildiz [2019], the interpolant basis polynomial weighted SOS cone is:

KSOS(P ) :=
{

w ∈ R
d : ∃Θl ∈ S

sl
� , ∀l ∈ JrK, w =

∑

l∈JrK diag
(

PlΘlP
′
l

)}

, (21a)

K∗
SOS(P ) :=

{

w ∈ R
d : P ′

l Diag(w)Pl ∈ S
sl
� , ∀l ∈ JrK

}

. (21b)

These cones are useful for polynomial and moment modeling; for example, a point in KSOS(P ) corresponds

to a polynomial that is pointwise nonnegative on a semialgebraic domain defined by P .

Given a side dimension t of a symmetric matrix of polynomials (for simplicity, all using the same interpolant

basis), and Pl ∈ R
d×sl , ∀l ∈ JrK defined as for KSOS(P ) in Section 4.7, the interpolant basis polynomial

weighted SOS matrix cone is:

KmatSOS(P ) :=

{

w ∈ R
sd(t)d : ∃Θl ∈ S

slt
� , ∀l ∈ JrK,

Wi,j,: =
∑

l∈JrK diag
(

Pl(Θl)i,jP
′
l

)

, ∀i, j ∈ JtK : i ≥ j

}

, (22a)

K∗
matSOS(P ) :=

{

w ∈ R
sd(t)d :

[

P ′
l Diag(Wi,j,:)Pl

]

i,j∈JtK
∈ S

slt
� , ∀l ∈ JrK

}

, (22b)

where Wi,j,: ∈ R
d is the contiguous slice of w (scaled to account for symmetry) corresponding to the inter-

polant basis values in the (i, j)th position of the symmetric matrix, (S)i,j is the (i, j)th block in a symmetric

matrix S with square blocks of equal dimensions, and [g(Wi,j,:)]i,j∈JtK is the symmetric matrix with square

matrix g(Wi,j,:) in the (i, j)th block. A point in KmatSOS(P ) corresponds to a polynomial matrix that is

pointwise PSD on a semialgebraic domain defined by P . See Kapelevich et al. [2021] for more details.
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Papp and Yildiz [2019] describe an LHSCB with efficient oracles for K∗
SOS(P ), but they state that one is not

known for KSOS(P ). We are not aware of a useful LHSCB for KmatSOS(P ); indeed, for t = 1, KmatSOS(P )

reduces to KSOS(P ). Noting that (22b) implicitly constrains a linear function of w to a Cartesian product

of PSD cones, we can use Nesterov and Nemirovskii [1994, Propositions 5.1.1 and 5.1.3] (with the − logdet

LHSCB for K�) to derive an LHSCB with efficient oracles for K∗
matSOS(P ). This LHSCB reduces to the

KSOS(P ) LHSCB for t = 1.

Our examples in Sections 5.5 to 5.7 use the EFs implicit in the definitions of K∗
SOS, KSOS, and KmatSOS in

(21a), (21b) and (22a). These EFs each use r K� cones.

5 Numerical examples

In Sections 5.1 to 5.7, we present example problems with NFs using some of Hypatia’s predefined cones

and EFs constructed using the techniques from Section 4. For each example problem, we generate random

instances of a wide variety of sizes, and we observe larger dimensions and often larger barrier parameters

for EFs compared to NFs. In Tables 2 to 10, ν and n, p, q refer to the NF barrier parameter and primal

variable, linear equality, and cone inequality dimensions (in our general conic form (2)), and ν̄, n̄, p̄, q̄ refer to

the corresponding EF values. For three solver/formulation combinations - Hypatia with NF (Hypatia-NF ),

Hypatia with EF (Hypatia-EF ), and MOSEK with EF (MOSEK-EF ) - we compare termination statuses,

iteration counts, and solve times in seconds (columns st, it, and time) in Tables 2 to 10 and Figure 1. In

Sections 5.2 and 5.4 we depend on a geometric mean cone EF, so we compare the EF-exp and EF-sec

formulations from Section 4.3. Note that all of our instances are primal-dual feasible, so we expect solvers to

return optimality certificates. Compared to Hypatia-EF and MOSEK-EF, Hypatia-NF generally converges

faster and more reliably, and solves larger instances within time and memory limits.

We perform all instance generation, computational experiments, and results analysis with Ubuntu 21.04, Julia

1.7, and Hypatia 0.5.0, on dedicated hardware with an AMD Ryzen 9 3950X 16-core processor (32 threads)

and 128GB of RAM. We limit each solver to using 16 threads. We use JuMP 0.21.5 and MathOptInterface

0.9.18 to build all instances. We use MOSEK 9 through MosekTools.jl 0.9.4 (which is maintained in part by

MOSEK).4 MOSEK uses its conic interior point method for all solves. We note that MOSEK heuristically

determines whether it is more efficient to solve the primal or dual of an instance [MOSEK ApS, 2020a, Section

13.1]; Hypatia does not do this. We do not disable any MOSEK features. Hypatia uses one particular default

algorithmic implementation that we describe broadly in Coey et al. [2021c] (the combined directions method);

this is not the most efficient method for all instances, but Hypatia does not currently have heuristics for

choosing which stepper or linear system solver procedure to use, for example. Simple scripts and instructions

for reproducing all results are available in Hypatia’s benchmarks/natvsext folder. A CSV file containing raw

results is available at the Hypatia wiki page.

Hypatia and MOSEK use similar convergence criteria (see MOSEK ApS [2020a, Section 13.3.2]), and we

set their feasibility and optimality gap tolerances to 10−7. In the solver statistics tables, asterisks indicate

missing data, and we use the following codes for the termination status (st) columns:

4We note that MOSEK 9’s primal conic form only recognizes conic constraints of the form x ∈ K [MOSEK ApS, 2020b,

Section 8], whereas Hypatia accepts the more general affine form h − Gx ∈ K (see (2c)). MathOptInterface recognizes both

VectorOfVariables form x ∈ K and VectorAffineFunction form h − Gx ∈ K. Since JuMP and MathOptInterface (including

bridges) use the x ∈ K form whenever possible, unnecessary high dimensional slack variables are not introduced when instances

in Hypatia’s general conic form (2) are converted into MOSEK 9’s form.
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co - the solver claims it has an approximate optimality certificate,

tl - the solver stops itself due to a solve time limit of 1800 seconds, or the solve run is killed because it takes

at least 1.2× 1800 seconds,

rl - the solve is terminated because insufficient RAM is available,

sp - the solver reports slow progress during iterations,

er - the solver encounters a numerical error,

m - the model cannot be constructed with JuMP due to insufficient RAM or a model generation time limit

of 1.2× 1800 seconds (EFs tend to be slower and more memory-intensive to construct than NFs, so EF

columns often have missing data),

sk - we skip the solve run because a smaller instance has a tl or rl status, or we skip model generation

because a smaller instance has an m status.

For each solve run that yields a primal-dual point (x, y, z, s) (see Section 3; s ∈ K and z ∈ K∗ are the solver’s

primal and dual cone interior points at termination), we compute:

ǫ := max

{‖A′y +G′z + c‖∞
1 + ‖c‖∞

,
‖−Ax+ b‖∞
1 + ‖b‖∞

,
‖−Gx+ h− s‖∞

1 + ‖h‖∞
,
|c′x+ b′y + h′z|
1 + |b′y + h′z|

}

, (23)

and if ǫ < 10−5, we underline the corresponding status code (e.g. co, tl) to indicate that the solution

approximately satisfies the optimality certificate conditions from Section 3. In our solve time plots in

Figure 1, we only plot solve runs with underlined status codes. Finally, for each instance and each pair of

corresponding solve runs with co status codes, we compute the relative difference of the primal objective

values g1 and g2 as ǫ̃ := |g1 − g2|/(1 + max(|g1|, |g2|)). We note ǫ̃ < 10−5 for most instances and pairs of

solvers, and ǫ̃ < 10−3 in all cases.

5.1 Portfolio rebalancing

Suppose there are k possible investments with expected returns g ∈ R
k
> and covariance matrix Σ ∈ S

k
≻. We

let ρ ∈ [−1, 1]k be the investment variable, which must also satisfy side constraints Fρ = 0, where F ∈ R
l×k.

We formulate a risk-constrained portfolio rebalancing optimization problem as:

maxρ∈Rk g′ρ : (24a)

e′ρ = 0, (24b)

Fρ = 0, (24c)

(1, ρ) ∈ Kℓ∞ , (24d)

(γ,Σ1/2ρ) ∈ K∗
ℓ∞ . (24e)

Note (24d) expresses ρ ∈ [−1, 1]k and (24e) is a risk constraint. The EFs for (24d) and (24e) follow (8)

and (9). Note the EF is a standard linear program.

To build random instances of (24), we generate g with independent uniform positive entries, and Σ1/2 and F

with independent Gaussian entries, for l = k/2 and various values of k. We use Σ1/2 to compute reasonable

values for the risk parameter γ > 0. Our results are summarized in Table 2 and Figure 1a. Note that

ν = q = 2k + 2, ν̄ = q̄ = 4k + 1, n = k, n̄ = 2k, p = p̄ = k/2 + 1. The variable and conic constraint

dimensions of the EFs are approximately double those of the NFs. Hypatia-NF exhibits the fastest solve
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times and solves much larger instances than Hypatia-EF and MOSEK-EF. MOSEK requires notably fewer

PDIPM iterations than Hypatia.

Table 2: Portfolio rebalancing solver statistics.

Hypatia-NF Hypatia-EF MOSEK-EF

k st it time st it time st it time

1000 co 31 0.6 co 25 2.7 co 9 1.7

2000 co 36 2.9 co 28 16. co 10 7.0

4000 co 45 20. co 29 92. co 10 34.

6000 co 49 60. co 34 292. co 10 83.

8000 co 51 131. co 33 615. co 10 160.

10000 co 55 244. co 36 1192. co 12 305.

12000 co 62 421. tl 32 1805. co 10 433.

14000 co 61 624. sk ∗ ∗ rl ∗ ∗

16000 co 63 924. sk ∗ ∗ sk ∗ ∗

18000 co 64 1327. sk ∗ ∗ sk ∗ ∗

20000 co 66 1810. sk ∗ ∗ sk ∗ ∗

5.2 Matrix completion

Suppose there exists a matrix F ∈ R
k×l and we know the entries (Fi,j)(i,j)∈S in the sparsity pattern S. In

the matrix completion problem, we seek to estimate the missing components (Fi,j)(i,j) 6∈S . We modify the

formulation in Agrawal et al. [2019, Section 4.3] by replacing the spectral radius in the objective function

with the spectral norm (allowing rectangular matrices) and using a convex relaxation of the geometric mean

equality constraint:

minρ∈R,X∈Rk×l ρ : (25a)

Xi,j = Fi,j ∀(i, j) ∈ S, (25b)

(ρ, vec(X)) ∈ Kℓspec(k,l), (25c)
(

1, (Xi,j)(i,j) 6∈S

)

∈ Kgeo. (25d)

The EF for (25c) follows (11), and for (25d) we compare EF-exp and EF-sec (see Section 4.3).

To build random instances of (25), we generate sparse matrices F with independent Gaussian nonzero

entries, for various values of k, column-to-row ratios m ∈ {10, 20}, and l = mk. Our results are summarized

in Tables 3 and 4 and Figure 1b. Note we only plot EF-sec results for Hypatia-EF and MOSEK-EF, as

MOSEK performs better with EF-sec (which only uses symmetric cones) than with EF-exp, though Hypatia

exhibits the opposite trend. Hypatia-NF is much faster and solves more instances than the Hypatia-EFs and

MOSEK-EFs.

5.3 Multi-response regression

In the multi-response linear regression problem, we seek to estimate a coefficient matrix F ∈ R
m×l from a

design matrix X ∈ R
l×k and response matrix Y ∈ R

m×k. We use a similar formulation to the one proposed
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Table 3: Matrix completion formulation statistics. Note p = p̄ = |S|.

NF EF-exp EF-sec

m k ν n p q ν̄ n̄ q̄ ν̄ n̄ q̄

10

5 57 251 200 302 207 302 1692 182 314 1730

10 218 1001 794 1208 730 1208 6725 621 1256 6871

15 472 2251 1795 2707 1532 2707 15062 1188 2762 15229

20 846 4001 3176 4826 2694 4826 26784 2267 5024 27380

25 1299 6251 4978 7524 4093 7524 41768 4370 8298 44092

30 1858 9001 7174 10828 5810 10828 60095 4425 11048 60757

35 2477 12251 9810 14692 7707 14692 81627 8576 16346 86591

40 3256 16001 12786 19216 10084 19216 106664 8631 20096 109306

45 4142 20251 16155 24347 12782 24347 135047 8686 24346 135046

20

5 114 501 393 609 428 609 5888 360 628 5947

10 418 2001 1594 2408 1430 2408 23375 1233 2512 23689

15 933 4501 3584 5418 3065 5418 52520 2362 5524 52840

20 1663 8001 6359 9643 5345 9643 93335 4515 10048 94552

25 2513 12501 10014 14988 7985 14988 145535 8716 16596 150361

30 3643 18001 14389 21613 11465 21613 209600 8821 22096 211051

Table 4: Matrix completion solver statistics.

NF EF-exp EF-sec

Hypatia Hypatia MOSEK Hypatia MOSEK

m k st it time st it time st it time st it time st it time

10

5 co 14 0.0 co 19 0.1 co 15 0.9 co 18 0.2 co 11 0.7

10 co 19 0.4 co 34 2.2 co 20 20. co 30 2.3 co 10 11.

15 co 23 2.6 co 42 16. co 21 120. co 41 18. co 9 58.

20 co 26 14. co 52 70. co 24 524. co 47 78. co 11 251.

25 co 30 52. co 59 225. co 26 1758. co 69 387. co 11 770.

30 co 34 166. co 61 556. tl 11 1817. co 55 587. co 10 1712.

35 co 39 402. co 61 1228. sk ∗ ∗ tl 61 1817. rl ∗ ∗

40 co 48 949. tl 34 1820. sk ∗ ∗ sk ∗ ∗ sk ∗ ∗

45 co 47 1806. sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗

20

5 co 15 0.1 co 29 0.8 co 17 14. co 26 0.9 co 8 7.6

10 co 22 2.2 co 48 25. co 25 448. co 45 27. co 10 203.

15 co 30 24. co 59 179. tl 14 1871. co 52 176. co 10 1375.

20 co 33 119. co 71 786. sk ∗ ∗ co 70 924. rl ∗ ∗

25 co 41 448. tl 47 1822. sk ∗ ∗ tl 26 1804. sk ∗ ∗

30 co 52 1305. sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗

in Yang et al. [2016], with nuclear norm loss and ℓ2 norm regularization:

minρ∈R,µ∈R,F∈Rm×l ρ+ γµ : (26a)

(ρ, vec(Y − FX)) ∈ K∗
ℓspec(m,k), (26b)

(µ, vec(F )) ∈ Kℓ2 . (26c)
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The EF for NF constraint (26b) follows (12).

To build random instances of (26), we generate random X and Y with independent Gaussian entries, for

various values of k with l = m ∈ {15, 30}, and we use regularization parameter γ = 0.1. Our results

are summarized in Table 5 and Figure 1c. Note that ν = 3 + m, ν̄ = ν + k, n = 2 + m2, p = p̄ = 0,

q̄ = n̄+mk. The variable dimensions for the NFs only depend on k and are much smaller than those of the

EFs. The EFs also have much larger conic constraint dimensions. Hypatia-NF exhibits faster solve times

than Hypatia-EF and MOSEK-EF. Hypatia-NF solves much larger instances and takes a fairly consistent

number of iterations.

Table 5: Multi-response regression formulation and solver statistics.

form. stats. Hypatia-NF Hypatia-EF MOSEK-EF

m k n̄ q st it time st it time st it time

15

50 1622 977 co 11 0.1 co 12 1.1 co 4 0.6

100 5397 1727 co 10 0.5 co 12 17. co 5 6.7

150 11672 2477 co 10 1.2 co 13 98. co 5 36.

250 31722 3977 co 10 3.3 co 14 1331. co 5 308.

500 125597 7727 co 10 17. m ∗ ∗ tl ∗ ∗

1000 ∗ 15227 co 13 129. sk ∗ ∗ sk ∗ ∗

1500 ∗ 22727 co 10 209. sk ∗ ∗ sk ∗ ∗

2000 ∗ 30227 co 9 395. sk ∗ ∗ sk ∗ ∗

2500 ∗ 37727 co 11 949. sk ∗ ∗ sk ∗ ∗

3000 ∗ 45227 co 11 1375. sk ∗ ∗ sk ∗ ∗

30

50 2642 2402 co 13 1.4 co 11 3.7 co 5 1.6

100 6417 3902 co 14 4.9 co 11 23. co 5 12.

150 12692 5402 co 12 7.0 co 12 123. co 5 47.

250 32742 8402 co 15 41. co 13 1412. co 5 409.

500 126617 15902 co 11 107. m ∗ ∗ tl ∗ ∗

750 ∗ 23402 co 11 232. sk ∗ ∗ sk ∗ ∗

1000 ∗ 30902 co 13 768. sk ∗ ∗ sk ∗ ∗

1250 ∗ 38402 co 12 1098. sk ∗ ∗ sk ∗ ∗

1500 ∗ 45902 co 12 1637. sk ∗ ∗ sk ∗ ∗

5.4 D-optimal experiment design

In a continuous relaxation of the D-optimal experiment design problem (see Boyd and Vandenberghe [2004,

Section 7.5]), the variable µ ∈ R
m is the number of trials to run for each of m experiments, and our goal is

to minimize the determinant of the error covariance matrix (F Diag(µ)F ′)−1, given a menu of experiments

F ∈ R
k×m useful for estimating a vector in R

k. We require that a total of j experiments are performed and

that each experiment can be performed between 0 and l times. We formulate this problem as:

maxρ∈R,µ∈Rm ρ : (27a)

e′µ = j, (27b)

(l/2, µ− (l/2)e) ∈ Kℓ∞ , (27c)

(ρ, vec(F Diag(µ)F ′)) ∈ Krtdet. (27d)
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In an alternative logdet variant of the rtdet variant (27), we replace (27d) with:

(ρ, 1, vec(F Diag(µ)F ′)) ∈ Klogdet, (28)

noting that both variants have the same optimal solution set for µ. The EFs for (27c), (27d) and (28) follow

(8), (16) and (20). Since the EF for Krtdet depends on a Kgeo EF, for the rtdet variant we compare EF-exp

and EF-sec (see Section 4.3).

To build random instances of (27), we generate F with independent Gaussian entries, for various values of

k, m = j = 2k, and l = 5. Our results are summarized in Tables 6 and 7 and Figure 1d. For the logdet

variant, ν = 3 + 3k, ν̄ = 1 + 9k, n = 1 + 2k, p = p̄ = 1. The sizes for the rootdet formulations are similar

to those of the logdet formulations, so we exclude these. Note for the rootdet variant, we only plot EF-sec

results for Hypatia-EF and MOSEK-EF, as MOSEK typically performs slightly better with EF-sec than

with EF-exp, though Hypatia exhibits the opposite trend. For both variants, the NFs have much lower

variable and conic constraint dimensions than the EFs. Although the EF solvers typically solve instances up

to k = 150, Hypatia-NF solves instances with k at least 900. Hypatia-NF is also much faster than the EF

solvers for all k.

Table 6: D-optimal experiment design logdet variant formulation and solver statistics.

form. stats. Hypatia-NF Hypatia-EF MOSEK-EF

k n̄ q q̄ st it time st it time st it time

50 1426 1378 5401 co 25 0.3 co 21 4.5 co 15 12.

100 5351 5253 20801 co 26 0.9 co 25 91. co 15 277.

150 11776 11628 46201 co 29 3.0 co 27 690. tl 14 1825.

200 20701 20503 81601 co 28 7.2 tl 17 1849. sk ∗ ∗

300 46051 45753 182401 co 36 36. sk ∗ ∗ sk ∗ ∗

400 81401 81003 323201 co 36 81. m ∗ ∗ sk ∗ ∗

500 126751 126253 504001 co 36 169. sk ∗ ∗ sk ∗ ∗

600 182101 181503 724801 co 36 298. sk ∗ ∗ sk ∗ ∗

700 ∗ 246753 ∗ co 39 624. sk ∗ ∗ m ∗ ∗

800 ∗ 322003 ∗ co 37 838. sk ∗ ∗ sk ∗ ∗

900 ∗ 407253 ∗ co 37 1282. sk ∗ ∗ sk ∗ ∗

1000 ∗ 502503 ∗ tl 37 1838. sk ∗ ∗ sk ∗ ∗

5.5 Polynomial minimization

Following Papp and Yildiz [2019], we use an interpolant basis weighted SOS dual formulation to find a

lower bound for a multivariate polynomial f of maximum degree 2k in m variables over the unit hypercube

D = [−1, 1]m. We let U =
(

m+2k
m

)

, L =
(

m+k
m

)

, L̃ =
(

m+k−1
m

)

. We select multivariate Chebyshev basis

polynomials gj, ∀j ∈ JLK of increasing degree up to k, and suitable interpolation points ou ∈ D, ∀u ∈ JUK.

To parametrize K∗
SOS(P ), we set up the collection of matrices P by evaluating functions of basis polynomials

at the points:

(P1)u,j = gj(ou) ∀u ∈ JUK, j ∈ JLK, (29a)

(P1+i)u,j = gj(ou)
(

1− o2u,i
)

∀i ∈ JmK, u ∈ JUK, j ∈ JL̃K. (29b)
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Table 7: D-optimal experiment design rtdet variant solver statistics.

NF EF-exp EF-sec

Hypatia Hypatia MOSEK Hypatia MOSEK

k st it time st it time st it time st it time st it time

50 co 25 0.3 co 22 4.7 co 14 11. co 22 5.1 co 11 10.

100 co 25 0.9 co 25 93. co 13 247. co 26 97. co 11 220.

150 co 26 2.6 co 27 696. co 12 1580. sp 36 921. co 10 1432.

200 co 23 5.8 tl 17 1821. tl 0 1821. tl 17 1848. tl 0 1868.

300 co 31 31. sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗

400 co 29 67. m ∗ ∗ sk ∗ ∗ m ∗ ∗ sk ∗ ∗

500 co 32 152. sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗

600 co 33 281. sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗

700 co 32 530. sk ∗ ∗ m ∗ ∗ sk ∗ ∗ sk ∗ ∗

800 co 32 728. sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗

900 co 36 1253. sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗

1000 co 33 1729. sk ∗ ∗ sk ∗ ∗ sk ∗ ∗ sk ∗ ∗

Letting f̄ = (f(ou))u∈U be evaluations of f at the points, the conic formulation is:

minρ∈RU f̄ ′ρ : (30a)

e′ρ = 1, (30b)

ρ ∈ K∗
SOS(P ). (30c)

The EF for NF constraint (30c) uses K� and is implicit in (21b).

To build random instances of (30), we generate f̄ (which implicitly defines a polynomial f) with independent

Gaussian entries, for various values of m and k. Our results are summarized in Table 8. Note that ν = ν̄,

p = p̄ = 1, n = n̄ = q. For fixed m, the conic constraint dimensions are larger for the EFs and grow much

faster for the EFs as the degree k increases. Hypatia-NF is faster than the EF solvers on all instances with

k > 1, and solves instances with much higher degrees.

5.6 Smooth density estimation

Rm,2k[x] is the ring of polynomials of maximum degree 2k in m variables [Papp and Yildiz, 2019]. We seek

a polynomial density function f ∈ Rm,2k[x] over the domain D = [−1, 1]m that maximizes the log-likelihood

of N given observations zi ∈ D, ∀i ∈ JNK (compare to Papp and Alizadeh [2014, Section 4.3]). For f to be

a valid density it must be nonnegative on D and integrate to one over D, so we aim to solve:

maxf∈Rm,2k[x]

∑

i∈JNK log(f(zi)) : (31a)
∫

D
f(x) dx = 1, (31b)

f(x) ≥ 0 ∀x ∈ D. (31c)

To find a feasible solution for (31), we build an SOS formulation. We obtain interpolation points and

matrices P parametrizing KSOS(P ), using the techniques from Section 5.5. From the interpolation points and

the domain D, we compute a vector of quadrature weights µ ∈ R
U . We compute a matrix B ∈ R

N×U by
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Table 8: Polynomial minimization formulation and solver statistics.

form. stats. Hypatia-NF Hypatia-EF MOSEK-EF

m k ν n q̄ st it time st it time st it time

1 100 201 201 10201 co 12 0.1 co 34 1.2 co 15 27.

1 200 401 401 40401 co 14 0.3 co 39 13. co 11 409.

1 500 1001 1001 251001 co 18 2.4 co 57 329. rl ∗ ∗

1 1000 2001 2001 ∗ co 19 11. m ∗ ∗ sk ∗ ∗

1 2000 4001 4001 ∗ co 21 73. sk ∗ ∗ sk ∗ ∗

1 3000 6001 6001 ∗ co 24 235. sk ∗ ∗ sk ∗ ∗

1 4000 8001 8001 ∗ co 24 508. sk ∗ ∗ sk ∗ ∗

1 5000 10001 10001 ∗ co 24 916. sk ∗ ∗ sk ∗ ∗

2 15 376 496 23836 co 15 0.4 co 21 5.0 co 10 87.

2 30 1426 1891 339946 co 25 10. co 49 751. rl ∗ ∗

2 45 3151 4186 ∗ co 22 58. m ∗ ∗ sk ∗ ∗

2 60 5551 7381 ∗ co 28 300. sk ∗ ∗ sk ∗ ∗

2 75 8626 11476 ∗ co 30 1019. sk ∗ ∗ sk ∗ ∗

3 6 252 455 8358 co 17 0.3 co 17 1.6 co 9 9.1

3 9 715 1330 65395 co 20 3.1 co 24 104. co 9 799.

3 12 1547 2925 303030 co 23 20. co 33 1775. rl ∗ ∗

3 15 2856 5456 ∗ co 26 89. m ∗ ∗ sk ∗ ∗

3 18 4750 9139 ∗ er 34 1340. sk ∗ ∗ sk ∗ ∗

4 4 210 495 5005 co 18 0.4 co 16 1.7 co 8 3.9

4 6 714 1820 54159 co 15 4.8 co 18 222. co 10 579.

4 8 1815 4845 ∗ co 20 63. m ∗ ∗ m ∗ ∗

4 10 3861 10626 ∗ co 22 458. sk ∗ ∗ sk ∗ ∗

8 2 117 495 1395 co 26 0.5 co 21 0.7 co 11 0.9

8 3 525 3003 21975 co 18 15. co 16 148. co 8 125.

8 4 1815 12870 ∗ co 27 633. m ∗ ∗ m ∗ ∗

16 1 33 153 169 co 13 0.1 co 12 0.7 co 7 0.0

16 2 425 4845 14229 co 27 86. co 22 174. sp 10 192.

32 1 65 561 593 co 15 0.7 co 12 1.0 co 7 0.2

64 1 129 2145 2209 co 15 14. co 12 3.1 co 9 3.0

evaluating the U Lagrange basis polynomials corresponding to the interpolation points (see Papp and Yildiz

[2019]) at the N observations. Letting variable ρ represent the coefficients on the Lagrange basis, the conic

formulation is:

maxψ∈R,ρ∈RU ψ : (32a)

µ′ρ = 1, (32b)

(ψ, 1, Bρ) ∈ Klog, (32c)

ρ ∈ KSOS(P ). (32d)

The EFs for NF constraints (32c) and (32d) follow (18) and (21a).

To build random instances of (32) for various values of m and k, we generate N = 500 independent uniform

samples in [−1, 1]m for zi ∈ D, ∀i ∈ JNK. As our method for computing µ is numerically unstable for larger
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m, we only use m ≤ 16. Our results are summarized in Table 9. Note that ν̄ = 999 + ν, p = 1, p̄ = n,

q = 501+ n, q̄ = 1001+ n̄− n. All dimensions are larger for the EFs than for the NFs. Hypatia-NF is faster

than the EF solvers and solves instances with much higher degrees.

Table 9: Smooth density estimation.

dimensions Hypatia-NF Hypatia-EF MOSEK-EF

m 2k ν n n̄ st it time st it time st it time

1 250 753 252 16628 co 35 0.2 sp 43 1040. co 25 112.

1 500 1003 502 64003 co 42 1.1 rl ∗ ∗ tl 18 1814.

1 1000 1503 1002 ∗ co 41 5.1 m ∗ ∗ m ∗ ∗

1 2000 2503 2002 ∗ co 56 23. sk ∗ ∗ sk ∗ ∗

1 4000 4503 4002 ∗ co 82 185. sk ∗ ∗ sk ∗ ∗

1 6000 6503 6002 ∗ co 106 663. sk ∗ ∗ sk ∗ ∗

2 20 678 232 6023 co 50 0.3 co 29 73. co 19 7.4

2 40 1153 862 72468 co 34 2.9 rl ∗ ∗ sp 22 1522.

2 60 1928 1892 ∗ co 36 11. m ∗ ∗ m ∗ ∗

2 80 3003 3322 ∗ co 53 64. sk ∗ ∗ sk ∗ ∗

2 100 4378 5152 ∗ co 64 247. sk ∗ ∗ sk ∗ ∗

3 12 754 456 9314 co 57 0.9 co 25 293. sp 19 20.

3 18 1217 1331 67226 co 55 6.6 rl ∗ ∗ sp 17 1216.

3 24 2049 2926 ∗ co 46 35. m ∗ ∗ m ∗ ∗

3 30 3358 5457 ∗ co 63 348. sk ∗ ∗ sk ∗ ∗

4 8 712 496 6001 co 57 1.0 co 25 133. sp 22 12.

4 12 1216 1821 56480 co 72 16. tl ∗ ∗ sp 20 934.

4 16 2317 4846 ∗ co 70 192. m ∗ ∗ m ∗ ∗

8 4 619 496 2391 co 96 2.1 co 30 9.8 sp 17 2.1

8 6 1027 3004 25479 co 90 62. tl ∗ ∗ sp 17 379.

5.7 Shape constrained regression

A common type of shape constraint imposes monotonicity or convexity of a polynomial over a basic semialge-

braic set [Hall, 2019, Section 6]. Given an m-dimensional feature variable z and a scalar response variable g,

we aim to fit a polynomial f ∈ Rm,2k[x] that is convex over D = [−1, 1]m to N given observations (zi, gi)i∈JNK

with zi ∈ D, ∀i ∈ JNK:

minf∈Rm,2k[x]

∑

i∈JNK(gi − f(zi))
2 : (33a)

y′(∇2f(x))y ≥ 0 ∀x ∈ D, y ∈ R
m. (33b)

Constraint (33b) ensures the Hessian matrix ∇2f(x) of polynomials is PSD at every point x ∈ D, which is

equivalent to convexity of f over D. To find a feasible solution for (33), we build an SOS formulation. The

polynomial variable, represented in an interpolant basis with the optimization variable ρ ∈ R
U , has degree

2k and U =
(

m+2k
m

)

coefficients. Each polynomial entry of ∇2f(x) has degree 2k − 2 and Ū =
(

m+2k−2
m

)

coefficients. Following the descriptions in Sections 5.5 to 5.6, we obtain interpolation points and a Lagrange

polynomial basis for these U -dimensional and Ū -dimensional spaces, and we define the matrix B ∈ R
N×U

containing evaluations of the U -dimensional Lagrange basis at the N feature observations. Finally, we let

F ∈ R
sd(m)Ū×U be such that Fρ is a vectorization of the tensor H ∈ R

m×m×Ū (scaled to account for
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symmetry) with Ha,b,u equal to the uth coefficient of the (a, b)th polynomial in ∇2f(x) for a, b ∈ JmK and

u ∈ JŪK. This yields the formulation:

minψ∈R,ρ∈RU ψ : (34a)

(ψ, g −Bρ) ∈ Kℓ2 , (34b)

Fρ ∈ KmatSOS(P ). (34c)

Note that for N > U , we use a QR factorization to reduce the dimension of Kℓ2 in (34b) from 1 + N to

2 + U .5 The EF for NF constraint (34c) follows (22a).

To build random instances of (34) for various values of m and k, we generate N = ⌈1.1U⌉ independent

observations with zi sampled uniformly from D and gi = exp(‖z‖2/m) − 1 + εi, where εi is a Gaussian

sample yielding a signal to noise ratio of 10, for all i ∈ JNK. We exclude the case m = 1, since KSOS(P )

could be used in place of KmatSOS(P ). Our results are summarized in Table 10. Note that ν = ν̄, p = 0,

p̄ = q−n−1, q̄ = n̄+1. All dimensions are larger for the EFs. The instances are numerically challenging, and

MOSEK-EF often encounters slow progress. Hypatia-NF is faster than the EF solvers and solves instances

with much higher degrees.

6 Conclusions

Although many convex problems are representable with conic EFs using the small number of standard

cones currently recognized by some advanced conic solvers, these formulations can be much larger and more

complex than NFs with exotic cones. In Section 4, we describe some of Hypatia’s predefined exotic cones

and analyze general techniques for constructing EFs from NFs that use these cones. For several example

problems, we propose NFs and generate instances of a wide range of sizes. Across these instances, we observe

much higher empirical dimensions (variable, equality, and conic constraint dimensions in the conic general

form (2)) for the EFs than for the NFs. We demonstrate significant computational advantages from solving

the NFs with Hypatia compared to solving the EFs with either Hypatia or MOSEK 9, especially in terms of

solve time and memory usage. We also observe that the NFs are typically faster and less memory-intensive

to generate using JuMP.

Our results suggest that when there exists an NF that is significantly smaller than any EF, it is probably

worth trying to solve the NF with Hypatia. In deciding whether to formulate an NF or an EF, it can

be helpful to examine our summary in Table 1 of computational properties for NFs and EFs of exotic

cone constraints. For spectral and nuclear norm constraints, when the matrix (W ∈ R
d1×d2) has many

more columns than rows (d2 ≫ d1), the dimensions look relatively more favorable for the NF. For SOS

and SOS matrix constraints, the dimensions grow much more slowly for the NF as the polynomial degree

increases. Sometimes the modeler has to choose between different EFs. For our matrix completion problem

and experiment design root-determinant variant, we compare two EFs for the geometric mean cone and find

that Hypatia performs better with the exponential cone EF (EF-exp) and MOSEK performs better with the

second order cone EF (EF-sec).

If the modeler has an NF that uses a proper cone not already defined in Hypatia, the user can add support

for the cone through Hypatia’s generic cone interface. It may require some effort to make the cone oracles

5Let [−B g] = QR, where Q ∈ RN×(U+1) has orthonormal columns and R ∈ R(U+1)×(U+1) is upper triangular. Then

(ψ, g −Bρ) ∈ Kℓ2
if and only if (ψ, R(ρ, 1)) ∈ Kℓ2

.
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Table 10: Shape constrained regression formulation and solver statistics.

form. stats. Hypatia-NF Hypatia-EF MOSEK-EF

m 2k ν n n̄ q st it time st it time st it time

2 10 72 67 952 203 co 18 0.0 co 24 0.6 sp 19 0.4

2 20 292 232 14527 803 co 37 0.5 sp 68 1348. sp 20 60.

2 30 662 497 73727 1803 co 58 5.6 rl ∗ ∗ tl 12 1845.

2 40 1182 862 ∗ 3203 co 84 34. m ∗ ∗ sk ∗ ∗

2 50 1852 1327 ∗ 5003 er 52 161. sk ∗ ∗ sk ∗ ∗

2 60 2672 1892 ∗ 7203 er 120 939. sk ∗ ∗ sk ∗ ∗

3 8 152 166 3391 671 co 19 0.1 co 27 14. sp 23 4.3

3 12 485 456 31347 2173 co 38 3.5 tl ∗ ∗ sp 15 244.

3 16 1118 970 161584 5051 co 61 44. m ∗ ∗ rl ∗ ∗

3 20 2147 1772 ∗ 9753 co 87 325. sk ∗ ∗ sk ∗ ∗

3 24 3668 2926 ∗ 16727 co 111 1605. sk ∗ ∗ sk ∗ ∗

4 6 142 211 2881 912 co 17 0.4 co 23 7.8 sp 18 3.7

4 8 382 496 17686 2597 co 24 3.1 co 38 1621. sp 14 94.

4 10 842 1002 79822 5953 co 38 35. rl ∗ ∗ tl 12 2068.

4 12 1626 1821 ∗ 11832 co 58 283. m ∗ ∗ sk ∗ ∗

4 14 2858 3061 ∗ 21262 co 72 1430. sk ∗ ∗ sk ∗ ∗

6 4 80 211 1240 800 co 13 0.3 co 15 0.7 co 9 0.6

6 6 422 925 20539 5336 co 22 15. co 32 1630. sp 17 260.

6 8 1514 3004 215440 22409 co 29 638. m ∗ ∗ rl ∗ ∗

8 4 138 496 3412 2117 co 19 2.1 co 20 8.0 co 11 4.1

8 6 938 3004 89008 20825 co 31 515. rl ∗ ∗ rl ∗ ∗

10 4 212 1002 7657 4633 co 26 13. co 24 87. co 13 25.

12 4 302 1821 15003 8920 co 29 73. co 28 504. co 11 125.

14 4 408 3061 26686 15662 co 33 346. tl 0 1884. sp 21 767.

as efficient and numerically stable as possible. However, we have already predefined over two dozen exotic

cone types with tractable oracles in Hypatia [Coey et al., 2021c,a], many of which have multiple variants

(such as real or complex flavors). We use these cones to model hundreds of formulations in our over three

dozen examples available in Hypatia’s examples folder. Our experience with these examples suggests that

NFs tend to be more convenient for modeling and interpreting conic certificates.
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