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Spectral functions on Euclidean Jordan algebras arise frequently in convex optimization models. Despite
the success of primal-dual conic interior point solvers, there has been little work on enabling direct support
for spectral cones, i.e. proper nonsymmetric cones defined from epigraphs and perspectives of spectral func-
tions. We propose simple logarithmically homogeneous barriers for spectral cones and we derive efficient,
numerically stable procedures for evaluating barrier oracles such as inverse Hessian operators. For two useful
classes of spectral cones - the root-determinant cones and the matrix monotone derivative cones - we show
that the barriers are self-concordant, with nearly optimal parameters. We implement these cones and oracles
in our open source solver Hypatia, and we write simple, natural formulations for four applied problems. Our
computational benchmarks demonstrate that Hypatia often solves the natural formulations more efficiently
than advanced solvers such as MOSEK 9 solve equivalent extended formulations written using only the cones
these solvers support.
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1. Introduction. A conic problem minimizes a linear function over the intersection of an
affine subspace with a Cartesian product of primitive proper cones (i.e. irreducible, closed, convex,
pointed, and full-dimensional conic sets). Any convex problem can be represented in conic form.
An advantage of using conic form is that under mild assumptions, a conic problem has a simple
and easily checkable certificate of optimality, primal infeasibility, or dual infeasibility [35].
In convex optimization applications, we frequently encounter spectral functions on Euclidean

Jordan algebras such as the real vectors and real symmetric or complex Hermitian matrices. In this
context, a spectral function is a real-valued symmetric function of the (real) eigenvalues. Examples
include the geometric mean (or root-determinant), the entropy (e.g. von Neumann entropy), and
the trace of the inverse (e.g. the A-optimal design criterion). Indeed, many disciplined convex pro-
gramming (DCP) functions are spectral functions [20, 19]. We define a spectral cone as a proper
cone that is the epigraph (or hypograph) set of either a homogeneous spectral function or the per-
spective function of a nonhomogeneous spectral function. These cones allow simple, natural conic
reformulations of a wide range of convex optimization problems. Despite this, to our knowledge
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there has been little prior work on enabling direct support for various spectral cones in primal-dual
conic solvers.
Many conic solvers (such as CSDP [4], CVXOPT [1], ECOS [12, 38], MOSEK [25], SDPA [44])

implement primal-dual interior point methods (PDIPMs). Conic PDIPMs require easily computable
oracles for a logarithmically homogeneous self-concordant barrier (LHSCB) function for the proper
cone of the conic problem. Complexity analysis of idealized PDIPMs shows that they converge to
ε tolerance in O(

√
ν log(1/ε)) iterations, where ν is the barrier parameter of the LHSCB.

Currently, most PDIPMs are specialized for the nonnegative, second order, and positive semidef-
inite (PSD) cones, which are cones of squares of Euclidean Jordan algebras. However, these sym-
metric cones limit modeling generality and often require the construction of large extended for-
mulations (EFs) [9]. For many spectral cones (e.g. for the negative entropy function), equivalent
EFs using only symmetric cones do not exist, and when they do, they can be impractically large.
Nonsymmetric conic PDIPMs can handle a much broader class of cones [30, 27, 39]. In Coey et al.
[8], we generalize the method by Skajaa and Ye [39] and enhance its practical performance, and
we test our implementations in our open-source conic solver Hypatia [9].
A key feature of Hypatia is its generic cone interface, which allows specifying a proper cone K by

implementing a small list of oracles. Once K is defined, both K and its dual cone K∗ may be used
in any combination with other recognized cones in Hypatia to construct conic models. The oracles
to implement are: an initial interior point t ∈ int(K), a feasibility test for the cone interior int(K)
(and optionally for the dual cone interior int(K∗)), and several derivative oracles for an LHSCB for
the cone. The LHSCB oracles needed for ideal performance are the gradient, the Hessian operator
(i.e. the second order directional derivative applied once to a given direction), the inverse of the
Hessian operator, and the third order directional derivative (applied twice to a given direction).
Fast and numerically stable procedures for evaluating oracles are crucial for practical performance
in conic PDIPM solvers such as Hypatia. Note that these oracles may be useful in other algorithms
and solvers - for example, application of the inverse Hessian operator is typically a bottleneck in
computing Newton directions.
Our first main contribution is to define simple logarithmically homogeneous barriers for spectral

cones and derive efficient and numerically stable barrier oracle procedures. For example, for the
case where the spectral function of the cone is separable, we show how to apply the inverse Hessian
operator of the barrier function very cheaply using a closed-form formula, without the need to
compute or factorize an explicit Hessian matrix (which can be expensive and prone to numerical
issues). Similarly, for the negative log-determinant and root-determinant spectral cones, we derive
highly-efficient specialized oracle procedures. The Jordan algebra abstraction allows us to derive
oracles for a large class of cones in a unified way without needing to specialize on the cone of
squares domain.
Our second main contribution is to show that for two important classes of spectral cones - the

root-determinant cones and the matrix monotone derivative (MMD) cones - the barriers we propose
are LHSCBs. Again, the Jordan algebra abstraction allows us to write one simple proof per class,
rather than separate proofs for every possible cone of squares domain of interest. Our new LHSCBs
have parameters that are only a small additive increment of one larger than the parameter of
the standard LHSCB for the cone of squares domain of the cone, hence the parameters are near-
optimal. MMD cones allow modeling epigraphs of a variety of useful separable spectral functions,
in particular the trace (or sum) of the negative logarithm (i.e. the negative log-determinant),
negative entropy, and certain power functions. Furthermore, the dual cones of the MMD cones
allow modeling epigraphs of even more separable spectral functions, such as the trace of the inverse,
exponential, and more power functions.
These two contributions enable efficient and numerically stable implementations of the MMD

cone and the log-determinant and root-determinant cones in nonsymmetric conic PDIPM solvers
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such as Hypatia. We define these cones through Hypatia’s cone interface. Our MMD cone imple-
mentation is parametrized by both a Jordan algebra domain and an MMD function, allowing the
user to define new domains and MMD functions. An MMD function is easily specified by imple-
menting a small set of oracles for its univariate form: the function itself, its first three derivatives,
and its convex conjugate, as well as an interior point for the corresponding MMD cone. We prede-
fine five common MMD functions and three typical Jordan algebra domains: the real vectors, real
symmetric matrices, and complex Hermitian matrices.
We use these new spectral cones in Hypatia to formulate example problems from distribution

estimation, experiment design, quantum information science, and polynomial optimization. The
natural formulations (NFs) using these cones are simpler and smaller than equivalent EFs written
in terms of the handful of standard cones recognized by either ECOS or MOSEK 9 (i.e. the common
symmetric cones and the three-dimensional exponential and power cones). Our computational
experiments demonstrate that, across a wide range of sizes and spectral functions, Hypatia can
solve the NFs faster than Hypatia, MOSEK, or ECOS can solve the equivalent EFs. Furthermore,
to illustrate the practical impact of our efficient oracle procedures, we show that our closed-form
formula for the MMD cone inverse Hessian product is faster and more numerically reliable than a
naive direct solve using an explicit Hessian factorization.

1.1. Overview. We describe relevant aspects of Euclidean Jordan algebras, cones of squares,
and spectral decompositions in Section 2. In Section 3, we define spectral functions on Euclidean
Jordan algebras and give expressions for gradients and second and third order directional derivatives
of spectral functions. We also specialize these formulae for separable spectral functions and the
log-determinant case. We use these results in later sections to derive expressions for barrier oracles.
In Section 4, we define spectral function cones (and their dual cones) from epigraphs of homog-

enized convex spectral functions on cones of squares. We propose simple logarithmically homoge-
neous barriers for these cones and describe the additional properties that must be satisfied by an
LHSCB. We also define several barrier oracles needed by Hypatia’s PDIPM. Then in Section 5, we
describe fast and numerically stable procedures for these oracles, using the derivative results from
Section 3. We specialize the oracle procedures for cones defined from separable spectral functions
and the log-determinant function.
In Section 6, we define the MMD cone and its dual cone, and we give useful examples of MMD

functions. We show that for the MMD cone, our barrier function is an LHSCB with near-optimal
parameter. In Section 7, we define the root-determinant cone and its dual cone, prove that our
barrier is an LHSCB with near-optimal parameter, and derive efficient oracle procedures.
Finally, in Section 8, we describe four applied examples over the new root-determinant, log-

determinant, and MMD cones and their dual cones. We perform computational testing to demon-
strate the advantages of solving these NFs directly with Hypatia and to exemplify the impact of
our efficient oracle procedures.

1.2. Notation. We often write equation references above relation symbols to indicate the
use of earlier results. For a natural number d, we define the index set JdK = {1,2, . . . , d}. For a
set C, cl(C) and int(C) denote the closure and interior. R is the space of reals, R≥ is the cone of
nonnegative reals, R> = int(R≥) is the positive reals, and Rd is the d-dimensional real vectors. Sd

and Hd are the real symmetric and complex Hermitian matrices with side dimension d, and Sd
⪰ and

Hd
⪰ are the corresponding cones of positive semidefinite matrices.
The inner product of w and r is ⟨w,r⟩. The kth derivative of a function f evaluated at a point w

is ∇kf(w), which may be interpreted as an operator. For example, the second directional derivative
of f at w in the direction r, r is ∇2f(w)[r, r] = ⟨∇2f(w)[r], r⟩. Often we omit the point at which
the derivative is evaluated if this is clear from context. We use subscripts for partial derivatives,
for example ∇wf .
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2. Jordan algebras. Jordan algebraic concepts provide a useful and straightforward abstrac-
tion for spectral functions, spectral cones, and our barrier results in later sections. We follow the
notation of Faraut and Koranyi [13, Chapter 2] where possible.
An algebra over the real or complex numbers is a vector space V equipped with a bilinear product

◦ : V ×V → V . For w ∈ V , w2 :=w ◦w. We refer to V as a Jordan algebra if for all wa,wb ∈ V :

wa ◦wb =wb ◦wa, (1a)
wa ◦ (w2

a ◦wb) =w2
a ◦ (wa ◦wb). (1b)

For example, for V = Rd, we can define ◦ as an elementwise multiplication, or for V = Sd and
V =Hd, we can let wa ◦wb =

1
2
(wawb +wbwa).

Given wa ∈ V , we define the linear map L(wa) : V → V satisfying:

L(wa)wb =wa ◦wb ∀wb ∈ V. (2)

Given w ∈ V , we define the linear map P (w) : V → V satisfying:

P (w) = 2L(w)2 −L(w2). (3)

P is called the quadratic representation of V . In general, P (w) ̸= L(w)2 ̸= L(w2) because ◦ need
not be associative. For example, for V = Sd, we have L(w2

a)wb =
1
2
(w2

awb + wbw
2
a), L(wa)

2wb =
1
2
(L(w2

a)wb +wawbwa), and P (wa)wb =wawbwa.
For any positive integer k, we have [42, Corollary 2.3.9]:

P (w)k = P (wk). (4)

It is standard to assume the existence of a multiplicative identity e. Note that P (e)w = w and
P (w)e= w2. A point w ∈ V is invertible if and only if L(w) is invertible, and the inverse of w is
the element w−1 ∈ V such that w−1 =L(w)−1e [13, Proposition II.2.2]. Equation (4) also holds for
k=−1 if w is invertible [13, Proposition II.3.1].
Henceforth we consider only the finite dimensional Euclidean Jordan algebras. A Jordan algebra

V is Euclidean if ⟨wa ◦wb,wc⟩= ⟨wb,wa ◦wc⟩ for all wa,wb,wc ∈ V .
We call Q a cone of squares on V if Q= {w ◦w :w ∈ V }. The cone Q is proper (closed, convex,

pointed, and solid) because V is Euclidean (and therefore formally real); see Papp and Alizadeh
[32, Theorem 3.3] and Faraut and Koranyi [13, Section III.1 and Proposition VIII.4.2]. In addition,
Q is self-dual and homogeneous ; see Vieira [42, Proposition 2.5.8] and Faraut and Koranyi [13,
Theorem III.2.1]. For example, for V = Sd, the cone of squares is Q= Sd

⪰.
For convenience, we often write a⪰ b instead of a−b∈Q, or a≻ b instead of a−b∈ int(Q), where

Q is clear from context. If w ≻ 0, then w is invertible [13, Theorem III.2.1]. Furthermore w ≻ 0
implies that w1/2 is well-defined and invertible, and P (w1/2) = P (w)1/2 Vieira [42, Proposition
2.5.11]. This also implies by Equation (4) (with k=−1) that P (w−1/2) = P (w)−1/2.

2.1. Spectral decomposition. In a Euclidean Jordan algebra V , an idempotent is an element
c ∈ V such that c2 = c. Two idempotents c1, c2 are orthogonal if c1 ◦ c2 = 0. Let d be the rank
of V . c1, . . . , cd is a complete system of orthogonal idempotents if c1, . . . , cd are all idempotents,
pairwise orthogonal, and

∑
i∈JdK ci = e. An idempotent is primitive if it is non-zero and cannot be

written as the sum of two orthogonal non-zero idempotents. A Jordan frame is a complete system
of orthogonal idempotents, where each idempotent is primitive. The number of elements in any
Jordan frame is called the rank of V . For example, the rank of Rd, Sd, or Hd is d.
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For any w ∈ V , there exist unique real numbers (not necessarily distinct) w1, . . . ,wd and a unique
Jordan frame c1, . . . , cd such that w has the spectral decomposition [13, Theorem III.1.2]:

w=
∑
i∈JdK

wici. (5)

We call w1, . . . ,wd the eigenvalues of w. The determinant is det(w) =
∏

i∈JdK wi and the trace is

tr(w) =
∑

i∈JdK wi [13, Section II.2, page 29]. For example, for V = Rd, the Jordan frame is the

standard unit vectors and w is its own vector of eigenvalues. For V = Sd, we can think of the Jordan
frame as the rank one PSD matrices from a full symmetric eigendecomposition.
Henceforth, we define the inner product on V as ⟨wa,wb⟩= tr(wa ◦wb). Under this inner product,

P (w) is self-adjoint [42, Page 27]. Thus for w ∈ int(Q) and r1, r2 ∈ V , we have:

⟨P (w)r1, r2⟩= ⟨P (w1/2)r1, P (w1/2)r2⟩= ⟨r1, P (w)r2⟩. (6)

2.2. Peirce decomposition. We let c1, . . . , cd be a Jordan frame for V , and define for i, j ∈
JdK:

V (ci, λ) := {w : ci ◦w= λw}, (7a)
Vi,i := V (ci,1) = {tci : t∈R}, (7b)
Vi,j := V (ci,

1
2
)∩V (cj,

1
2
). (7c)

V has the direct sum decomposition V = ⊕i,j∈JdK:i≤jVi,j [13, Theorem IV.1.3]. For example, for
V = Sd, let Ei,j be a matrix of zeros except in the (i, j)th position, and let ci = Ei,i; then Vi,i =
{tEi,i : t∈R} and Vi,j = {t(Ei,j +Ej,i) : t∈R}.
The Peirce decomposition allows us to write any r ∈ V as:

r=
∑

i,j∈JdK:i≤j

ri,j =
∑

i,j∈JdK:i<j

ri,j +
∑
i∈JdK

rici, (8)

where ri = ⟨r, ci⟩ ∈R and ri,j ∈ Vi,j for all i, j ∈ JdK. Each ri,j is a projection of r onto Vi,j, where:

ri,i = rici = P (ci)r ∀i∈ JdK, (9a)
ri,j = 4L(ci)L(cj)r= 4ci ◦ (cj ◦ r) ∀i, j ∈ JdK : j ̸= i. (9b)

Note that ri,j = rj,i, since L(ci) and L(cj) commute [13, Lemma IV.1.3]. For example, let c1, . . . , cd
be a Jordan frame for V = Sd and let r ∈ V ; then ri = circi and ri,j = circj + cjrci, for i, j ∈ JdK.

We list some facts relating to compositions of projection operators (see Faraut and Koranyi [13,
Theorem IV.2.2] and Sun and Sun [40, page 430]):

L(ci)L(cj)L(ck)L(cl) = 0 ∀i, j, k, l ∈ JdK : i ̸= j, k ̸= l, (i, j) ̸= (k, l), (10a)
L(ci)L(cj)P (ck) = P (ck)L(ci)L(cj) = 0 ∀i, j, k ∈ JdK : i ̸= j, (10b)

(4L(ci)L(cj))
2 = 4L(ci)L(cj) ∀i, j ∈ JdK, (10c)

P (ci)
2 = P (ci) ∀i∈ JdK, (10d)∑

i,j∈JdK:i<j

4L(ci)L(cj)+
∑
i∈JdK

P (ci) =L(e). (10e)

Given λi,j ̸= 0∈R for i, j ∈ JdK, consider an operator Λ : V → V of the form:

Λ :=
∑

i,j∈JdK:i<j

4λi,jL(ci)L(cj)+
∑
i∈JdK

λi,iP (ci). (11)
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The inverse operator Λ−1 is given by:

Λ−1 =
∑

i,j∈JdK:i<j

4λ−1
i,jL(ci)L(cj)+

∑
i∈JdK

λ−1
i,i P (ci). (12)

It can be verified using Equation (10) that for any r ∈ V , ΛΛ−1r = Λ−1Λr = r. For example, let
w=

∑
i∈JdK wici ∈ V be invertible and suppose that λi,j =wiwj for i, j ∈ JdK; then:

Λ=
∑

i,j∈JdK:i<j

4wiwjL(ci)L(cj)+
∑
i∈JdK

w2
iP (ci) = P (w), (13a)

Λ−1 =
∑

i,j∈JdK:i<j

4w−1
i w−1

j L(ci)L(cj)+
∑
i∈JdK

w−2
i P (ci) = P (w−1). (13b)

3. Spectral functions and derivatives. Let V be a Jordan algebra of rank d. A real-valued
function f :Rd →R is symmetric if it is invariant to the order of its inputs. A symmetric function
f composed with an eigenvalue map λ : V → Rd induces a spectral function φ : V → R such that
φ(w) = f(λ(w)), where λ(w) = (w1, . . . ,wd) is the eigenvalue vector of w [2, Definition 8]. Note that
φ is convex if and only if f is convex [10].

In this section, we give expressions for (directional) derivatives of the spectral function φ. We
express these derivatives at a point w ∈ V (satisfying certain assumptions as necessary below)
with spectral decomposition Equation (5). The derivatives are taken in direction r ∈ V with Peirce
decomposition Equation (8). The gradient is ∇φ(w)∈ V and the second and third order directional
derivatives are ∇2φ(w)[r] ∈ V and ∇3φ(w)[r, r] ∈ V . These derivative expressions are needed for
the barrier oracles we derive in Section 5 and for our LHSCB proofs in Sections 6 and 7.

We begin with the general nonseparable spectral function case in Section 3.1, before specializing
for separable spectral functions in Section 3.2. The root-determinant function, from which we define
the root-determinant cone in Section 7, is nonseparable. The class of matrix monotone derivative
(MMD) trace functions that we use to define the MMD cone in Section 6 are separable. Finally
we specialize for the important case of the negative log-determinant function in Section 3.3; as we
discuss in Section 4.4, this is the standard LHSCB for a cone of squares of a Jordan algebra, and
it appears as an additive component in the barrier functions we propose.

3.1. The nonseparable case. Let ∇f , ∇2f , and ∇3f denote the derivatives of f evaluated
at λ(w). We use subindices to denote particular components of these derivatives. According to
Baes [2, Theorem 38] and Sun and Sun [40, Theorem 4.1], the gradient of φ at w is:

∇φ(w) =
∑
i∈JdK

(∇f)ici. (14)

Henceforth we assume the eigenvalues of w are all distinct for simplicity. The second order direc-
tional derivative of φ in direction r is [40, Theorem 4.2]:

∇2φ(w)[r] =
∑

i,j∈JdK:i<j

(∇f)i − (∇f)j
wi −wj

ri,j +
∑

i,j∈JdK

(∇2f)i,jricj. (15)

Sun and Sun [40, Theorem 4.2] also generalize this expression to allow for non-distinct eigenvalues.
To derive an expression for the third order directional derivative ∇3φ(w)[r, r], we let:

w(t) :=w+ tr=
∑
i∈JdK

wi(t)ci(t), (16)
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where wi(t) is the ith eigenvalue of w(t). Note that ∇2φ(w)[r] = d
dt
∇φ(w(t))|t=0 and ∇3φ(w)[r, r] =

d2

dt2
∇φ(w(t))|t=0. We let ∇f(t),∇2f(t), and∇3f(t) denote the derivatives of f evaluated at λ(w(t)).

Due to the chain rule and Equation (15):

d

dt
∇φ(w(t)) =∇2φ(w(t))[r] (17a)

=
∑

i,j∈JdK:i<j

(∇f(t))i − (∇f(t))j
wi(t)−wj(t)

ri,j(t)+
∑

i,j∈JdK

(∇2f(t))i,jri(t)cj(t). (17b)

We differentiate Equation (17) once more. From Vieira [43, Corollary 1 and Theorem 3.3] and Sun
and Sun [40, Equation 37], for i∈ JdK we have:

d

dt
wi(t) = ri(t), (18a)

d

dt
ci(t) = si(t) :=

∑
j∈JdK:j ̸=i

ri,j(t)

wi(t)−wj(t)
. (18b)

Using the chain rule, Equation (18a) implies:

d

dt
(∇f(t))i =

∑
k∈JdK

(∇2f(t))i,krk(t) ∀i∈ JdK, (19a)

d

dt
(∇2f(t))i,j =

∑
k∈JdK

(∇3f(t))i,j,krk(t) ∀i, j ∈ JdK. (19b)

Applying the chain and product rules, we have:

d

dt

1

wi(t)−wj(t)
=

rj(t)− ri(t)

(wi(t)−wj(t))2
∀i, j ∈ JdK : i ̸= j, (20a)

d

dt
ri,j(t) =

d

dt
(4ci(t) ◦ (cj(t) ◦ r)) (20b)

= 4ci(t) ◦ (sj(t) ◦ r)+ 4si(t) ◦ (cj(t) ◦ r) ∀i, j ∈ JdK : i ̸= j, (20c)
d

dt
⟨ci(t), r⟩cj(t) = ⟨si(t), r⟩cj(t)+ ri(t)sj(t) ∀i, j ∈ JdK. (20d)

Finally, letting si := si(0) for all i∈ JdK, these results imply that:

∇3φ[r, r] =
d2

dt2
∇φ(w(t))

∣∣
t=0

(21a)

=
∑

i,j∈JdK:i<j

(∇f)i − (∇f)j
wi −wj

(
4ci ◦ (sj ◦ r)+ 4si ◦ (cj ◦ r)−

ri − rj
wi −wj

ri,j

)
+

∑
i,j,k∈JdK:i<j

(∇2f)i,k − (∇2f)j,k
wi −wj

rkri,j +∑
i,j∈JdK

(∇2f)i,j(⟨si, r⟩cj + risj)+
∑

i,j,k∈JdK

(∇3f)i,j,krirkcj

(21b)

=
∑

i,j∈JdK:i<j

(∇f)i − (∇f)j
wi −wj

(
4ci ◦ (sj ◦ r)+ 4si ◦ (cj ◦ r)−

ri − rj
wi −wj

ri,j

)
+∑

i,j∈JdK

(∇2f)i,j(2rjsi + ⟨si, r⟩cj)+
∑

i,j,k∈JdK

(∇3f)i,j,krirkcj.
(21c)

The derivative expressions simplify significantly for V =Rd. For V = Sd, the form of Equation (15)
is well-known [16] and the form of Equation (21c) appears in Sendov [37].
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3.2. The separable case. The spectral function φ induced by f is separable if f is a separable
function, i.e. f(λ) =

∑
i∈JdK h(λi) for λ∈Rd and some function h :R→R. For convenience, if w ∈ V ,

we also define h : V → V as h(w) :=
∑

i∈JdK h(wi)ci. This allows us to write φ(w) = tr(h(w)) =∑
i∈JdK h(λi). Note that φ is convex if and only if h is convex. For example, if h(w) =− log(w) then

φ(w) = tr(− log(w)) =− logdet(w); we consider this special case in Section 3.3.
We specialize the derivatives from Equations (14), (15) and (21c), maintaining the simplifying

assumption of distinct eigenvalues. Since (∇2f)i,j = (∇3f)i,j,k = 0 unless i= j = k, we have:

∇φ(w) =
∑
i∈JdK

∇h(wi)ci, (22a)

∇2φ(w)[r] =
∑

i,j∈JdK:i<j

∇h(wi)−∇h(wj)

wi −wj

4ci ◦ (cj ◦ r)+
∑
i∈JdK

∇2h(wi)P (ci)r, (22b)

∇3φ(w)[r, r] =
∑

i,j∈JdK:i<j

∇h(wi)−∇h(wj)

wi −wj

(
4ci ◦ (sj ◦ r)+ 4si ◦ (cj ◦ r)−

ri − rj
wi −wj

ri,j

)
+∑

i∈JdK

∇2h(wi)(2risi + ⟨si, r⟩ci)+
∑
i∈JdK

∇3h(wi)r
2
i ci.

(22c)

3.3. The negative log-determinant case. The negative log-determinant function φ(w) =
− logdet(w) is a separable spectral function. We let w≻ 0 and drop the simplifying assumption of
distinct eigenvalues. For convenience, we let r̂ := P (w−1/2)r ∈ V . First, note that (similar to Vieira
[42, Lemma 3.3.4]):

⟨w−1, r⟩= ⟨P (w−1/2)e, r⟩ 6
= ⟨e,P (w−1/2)r⟩= tr(r̂). (23)

Due to Faraut and Koranyi [13, Proposition II.2.3]:

∇w(tr(r̂)) =∇w(w
−1)[r] =−P (w−1)r. (24)

Adapting the result in Faybusovich and Tsuchiya [15, Lemma 3.4]:

∇w(P (w−1)r)[r] =−2P (w−1/2)r̂2. (25)

Now, the gradient of φ is [13, Propositions III.4.2(ii)]:

∇φ(w) =−w−1, (26)

so the second and third order directional derivatives are:

∇2φ(w)[r]
24
= P (w−1)r, (27a)

∇3φ(w)[r, r]
25
=−2P (w−1/2)(P (w−1/2)r)2. (27b)

Note that unlike the separable spectral function case in Section 3.2, here we do not need the explicit
eigenvalues of w.

4. Cones and barrier functions. In this paper we are concerned with a class of proper
cones that can be characterized as follows:

K := cl{ũ∈ E : ζ(ũ)≥ 0} ⊂ Ṽ , (28)

where ζ : E →R is a concave, (degree one) homogeneous function and E is some convex cone in the
space Ṽ . In particular, we define ζ in terms of a C3-smooth spectral function φ that is defined on
the interior of a cone of squares Q of a Jordan algebra V of rank d.
In Sections 4.1 and 4.2, we define two types of spectral function cones, and in Section 4.3 we define

their dual cones. Then in Section 4.4, we propose simple logarithmically homogeneous barriers for
these cones and describe the additional properties that must be satisfied by an LHSCB. We also
define the barrier oracles needed for ideal performance of Hypatia’s PDIPM.
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4.1. The homogeneous case. First, we suppose that φ is convex and homogeneous. Then
ζ(u,w) := u−φ(w) is concave and homogeneous, and we let E :=R× int(Q) and Ṽ :=R×V . This
defines a convex cone that is the closure of the epigraph set of φ:

Kh := cl{(u,w)∈R× int(Q) : u≥φ(w)}. (29)

Note that if φ is concave, we can analogously define a cone from the hypograph set of φ. In
Section 7, we consider the root-determinant cone, which is the hypograph of the concave root-
determinant function. To check membership in int(Kh), we first determine whether w ∈ int(Q)
(which is equivalent to positivity of the eigenvalues), and if so, whether ζ(ũ)> 0.

4.2. The non-homogeneous case. Now we suppose that φ is convex and non-homogeneous.
We define the perspective function of φ, perφ : R> × int(Q) → R, as (perφ)(v,w) := vφ(v−1w).
This is a homogeneous and convex function [5, Section 3.2.6]. We let ζ(u, v,w) := u− (perφ)(v,w),
with E := R×R> × int(Q) and Ṽ := R×R× V . This defines a convex cone that is the closure of
the epigraph set of the perspective function of φ:

Kp := cl{(u, v,w)∈R×R> × int(Q) : u≥ vφ(v−1w)}. (30)

Equivalently, we can view Kp as the closed conic hull of the epigraph set of φ [29, Chapter 5].
In Section 6, we consider the special case where φ is a separable spectral function with matrix
monotone first derivative. The membership check for int(Kp) is similar to that of int(Kh) except
we first check whether v > 0.

4.3. Dual cones. A proper cone is primitive if it cannot be written as a Cartesian product
of two or more lower dimensional proper cones. The dual cone of a primitive, proper cone K is
another primitive, proper cone:

K∗ := {z : ⟨s, z⟩ ≥ 0,∀s∈K}. (31)

Recall that when K is defined through Hypatia’s generic cone interface, both K and K∗ become
available for constructing conic models.
We assume that φ is convex, and we derive the dual cones of the epigraph cones Kh and Kp

(these steps can be adapted for analogous hypograph cones if φ is concave). We define the convex
conjugate function φ∗ : V →R∪∞ of φ as the modified Legendre-Fenchel transformation (similar
to Zhang [45, page 483]):

φ∗(r) = sup
w∈dom(φ)

{−⟨w,r⟩−φ(w)}, (32)

which is a convex function. The conjugate of a symmetric function is also a symmetric function
[2, Lemma 29], and the conjugate of a spectral function induced by a symmetric function f is the
spectral function induced by f∗ [2, Theorem 30]. Thus for φ(w) = f(λ(w)) we have the conjugate
function φ∗(w) = f∗(λ(w)).

For the epigraph-perspective cone Kp in Equation (30), Zhang [45, Theorem 3.2] and Rockafellar
[36, Theorem 14.4] derive the dual cone K∗

p:

K∗
p = cl{(u, v,w)∈R> ×R×V : v≥ uφ∗(u−1w)}. (33)

We can view K∗
p as the epigraph set of the perspective function of the conjugate of φ, but with

the epigraph and perspective components swapped (compare to Equation (30)). Depending on the
natural domain of φ∗, the w component of K∗

p is not necessarily restricted to lie in Q; in Section 6.2
we discuss several example spectral functions, some of which have conjugates defined on all V and
others only on int(Q).
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For Kh in Equation (29), we derive the dual cone K∗
h as follows. Since φ is homogeneous in this

case, (perφ)(v,w) = vφ(v−1w) = φ(w). Therefore the corresponding perspective cone Kp for φ is
not a primitive cone, as it can be written as a (permuted) Cartesian product of R≥ and Kh:

Kp = cl{(u, v,w)∈ Ṽ : v ∈R≥, (u,w)∈Kh}. (34)

Since the dual cone of a Cartesian product of cones is the Cartesian product of their dual cones,
we have (since R∗

≥ =R≥):

K∗
p = cl{(u, v,w)∈ Ṽ : v ∈R≥, (u,w)∈K∗

h}. (35)

By [23, Theorem 2.1], the homogeneity of φ implies that φ∗ can only take the values zero or infinity.
Hence by Equation (33), we know:

K∗
p = cl{(u, v,w)∈R> ×R×V : v≥ 0, uφ∗(u−1w)<∞}. (36)

Since Equations (35) and (36) describe the same cone, we can conclude that the dual cone of Kh

is:

K∗
h = cl{(u,w)∈R> ×V :φ∗(u−1w)<∞}. (37)

4.4. Barrier functions and oracles. A logarithmically homogeneous barrier (LHB) function
Γ for a proper cone K⊂ Ṽ is C2-smooth and satisfies Γ(ũi)→∞ along every sequence ũi ∈ int(K)
converging to the boundary of K, and:

Γ(θũ) = Γ(ũ)− ν log(θ) ∀ũ∈ int(K), θ ∈R>, (38)

for some ν ≥ 0 [29, Definition 2.3.2]. If Γ is also self-concordant, then it is an LHSCB with parameter
ν ≥ 1 (or a ν-LHSCB) for K. For self-concordance, Γ must be C3-smooth and satisfy [29, Definition
2.1.1]:

|∇3Γ(ũ)[p̃, p̃, p̃]| ≤ 2(∇2Γ(ũ)[p̃, p̃])3/2 ∀ũ∈ int(K), p̃∈ Ṽ . (39)

The best known PDIPMs need at most O(
√
ν log(1/ε)) iterations to converge to a solution within

ε tolerance [31]. This includes the algorithm by Skajaa and Ye [39], Papp and Yıldız [33], which
Hypatia is based on [8].
The LHB we consider for a cone of the form Equation (28) is:

Γ(ũ) :=− log(ζ(ũ))+Ψ(ũ), (40)

where Ψ can be thought of as an LHSCB for the domain of ζ or cl(E). The negative logarithm
function − log is the standard LHSCB for R≥, with parameter ν = 1. Similarly, the spectral function
− logdet (see Section 3.3) is the standard LHSCB for a cone of squares Q of V , with ν = d (the
rank of V ). For Kh we let Ψ(ũ) =− logdet(w), hence Γ has parameter ν = 1+ d. Since an LHSCB
for a Cartesian product of cones is the sum of LHSCBs for the primitive cones, for Kp we let
Ψ(ũ) =− log(v)− logdet(w), hence Γ has parameter ν = 2+ d. Note that although Γ is an LHB, it
is not necessarily self-concordant; in Sections 6.4 and 7.3 we prove that Γ is an LHSCB for some
useful special cases.
We now define four barrier oracles that Hypatia’s PDIPM uses; for ideal performance, these

oracle implementations should be efficient and numerically stable. For an interior point ũ∈ int(K)
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and a direction p̃∈ Ṽ , the gradient g, the Hessian product H, the inverse Hessian product H̄, and
the third order directional derivative T are:

g :=∇Γ(ũ), (41a)
H :=∇2Γ(ũ)[p̃], (41b)
H̄ := (∇2Γ(ũ))−1[p̃], (41c)
T :=∇3Γ(ũ)[p̃, p̃]. (41d)

Note g,H, H̄,T ∈ Ṽ . In later sections, we use subscripts to refer to subcomponents of these oracles,
for example the w component of the gradient oracle is gw :=∇wΓ(ũ) ∈ V . Ideally, H applies the
positive definite linear operator ∇2Γ(ũ) : Ṽ → Ṽ without constructing an explicit Hessian, and
similarly, H̄ applies the (unique) inverse operator (∇2Γ(ũ))−1 : Ṽ → Ṽ without constructing or
factorizing an explicit Hessian.
We note that for the standard LHSCB Ψ for a cone of squares, efficient and numerically stable

procedures for these four oracles are well-known. The same cannot be said for the LHB Γ currently.
In Section 5, we derive these oracles for Kp (noting that they can be adapted easily for Kh). In
the special cases for which we show Γ is an LHSCB, the oracles can be computed particularly
efficiently.

5. Barrier oracles for epigraph-perspective cones. In this section, we derive expressions
and evaluation procedures for the g, H, T , and H̄ oracles (defined in Section 4.4) corresponding
to the LHB Γ for the epigraph-perspective cone Kp (defined in Equation (30)). Recall that we
let p̃= (p, q, r) ∈ R×R× V and ũ= (u, v,w) ∈ int(Kp), and we define ζ and Γ : int(Kp)→ R from
Equation (40) as:

ζ(ũ) := u− vφ(v−1w), (42a)
Γ(ũ) :=− log(ζ(ũ))− log(v)− logdet(w). (42b)

We note that the oracles for Kh in Equation (29) are simpler because no perspective operation is
needed for a homogeneous φ; they can be obtained by fixing v = 1 and q = 0 and ignoring the v
components in the oracle expressions in this section.
Without assuming any particular form for φ, we write g, H, and T in Section 5.1 and H̄ in

Section 5.2 in terms of the derivatives of φ. If φ is a spectral function, these derivatives can be
computed using the expressions from Section 3. In the case that φ is a separable spectral function
(see Section 3.2), we derive in Section 5.3 a more specialized procedure for H̄, which is no more
expensive than H. Finally, in Section 5.4, we specialize the four oracles for the negative log-
determinant function (i.e. φ(w) = − logdet(w); see Section 3.3) and discuss implementations. In
Section 8.1, we describe our implementations of these oracles in Hypatia and link to the high-level
Julia code.

5.1. Derivatives. First, we express the derivatives of ζ in terms of those of φ. We define the
function µ : R> × int(Q)→ int(Q) and its first directional derivative ξ ∈ V in the direction (q, r)
as:

µ(v,w) := v−1w, (43a)
ξ :=∇µ(v,w)[(q, r)] =∇vµ(v,w)q+∇wµ(v,w)[r] = v−1(r− qµ(v,w)). (43b)

For convenience, we fix the constants µ := µ(v,w), φ := φ(µ), and ζ := ζ(ũ). Let ∇φ, ∇2φ, and
∇3φ be the derivatives of φ evaluated at µ, and let ∇ζ, ∇2ζ, and ∇3ζ be the derivatives of ζ
evaluated at ũ. Using Equation (43), the directional derivatives of ζ can be written compactly as:

∇uζ = 1, (44a)
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∇vζ =−φ+∇φ[µ], (44b)
∇wζ =−∇φ, (44c)
∇ζ[p̃] = p− qφ− v∇φ[ξ], (44d)

(∇2ζ[p̃])v =∇2φ[ξ,µ], (44e)
(∇2ζ[p̃])w =−∇2φ[ξ], (44f)
∇2ζ[p̃, p̃] =−v∇2φ[ξ, ξ], (44g)

(∇3ζ[p̃, p̃])v =∇3φ[ξ, ξ,µ] +∇2φ[ξ, ξ]− 2v−1q∇2φ[ξ,µ], (44h)
(∇3ζ[p̃, p̃])w = 2v−1q∇2φ[ξ]−∇3φ[ξ, ξ], (44i)
∇3ζ[p̃, p̃, p̃] =−v∇3φ[ξ, ξ, ξ] + 3q∇2φ[ξ, ξ]. (44j)

Using Equation (44), we now derive the directional derivatives of Γ. For convenience, we let ∇Γ,
∇2Γ, ∇3Γ be the derivatives of Γ evaluated at ũ. We define:

σ :=−∇vζ =φ−∇φ[µ]∈R. (45)

The components of the gradient g of Γ are:

gu =−ζ−1, (46a)
gv = ζ−1σ− v−1, (46b)

gw
26
= ζ−1∇φ−w−1. (46c)

Differentiating Equation (46), the Hessian components are:

∇2
u,uΓ= ζ−2 > 0, (47a)

∇2
v,uΓ=−ζ−2σ ∈R, (47b)

∇2
w,uΓ=−ζ−2∇φ∈ V, (47c)

∇2
v,vΓ= v−2 + ζ−2σ2 + v−1ζ−1∇2φ[µ,µ]> 0, (47d)

∇2
w,vΓ= ζ−2σ∇φ− v−1ζ−1∇2φ[µ]∈ V. (47e)

Differentiating Equation (46c) in the direction r:

∇2
w,wΓ[r]

24
= ζ−2∇φ[r]∇φ+ v−1ζ−1∇2φ[r] +P (w−1)r ∈ V. (48)

Let:
χ := ζ−1(p− qσ−∇φ[r])∈R. (49)

The components of the Hessian product H are:

Hu = ζ−1χ, (50a)
Hv =−ζ−1σχ− ζ−1∇2φ[ξ,µ] + v−2q, (50b)
Hw =−ζ−1χ∇φ+ ζ−1∇2φ[ξ] +P (w−1)r. (50c)

Let:
κ := 2ζ−1(χ+ v−1q)∇2φ[ξ]− ζ−1∇3φ[ξ, ξ]∈ V. (51)

The components of the third order directional derivative T are:

Tu =−2ζ−1χ2 − vζ−2∇2φ[ξ, ξ], (52a)
Tv =−Tuσ+ ⟨κ,µ⟩− ζ−1∇2φ[ξ, ξ]− 2q2v−3, (52b)

Tw
25
=−Tu∇φ−κ− 2P (w−1/2)(P (w−1/2)r)2. (52c)
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5.2. Inverse Hessian operator. The Hessian of Γ at any point ũ ∈ int(Kp) is a positive
definite linear operator and hence invertible. By treating the components of the Hessian in Equa-
tions (47) and (48) analogously to blocks of a positive definite matrix, we derive the inverse
operator. For convenience, we let:

Yu := (∇2
w,wΓ)

−1∇2
w,uΓ, (53a)

Yv := (∇2
w,wΓ)

−1∇2
w,vΓ, (53b)

Zu,u :=∇2
u,uΓ−⟨∇2

w,uΓ, Yu⟩, (53c)
Zv,u :=∇2

v,uΓ−⟨∇2
w,uΓ, Yv⟩, (53d)

Zv,v :=∇2
v,vΓ−⟨∇2

w,vΓ, Yv⟩. (53e)

Note Yu, Yv ∈ V . We let Z be:

Z :=

[
Zu,u Zv,u

Zv,u Zv,v

]
∈ S2

≻, (54)

and its inverse is:

Z̄ :=Z−1 =
1

Zu,uZv,v −Z2
v,u

[
Zv,v −Zv,u

−Zv,u Zu,u

]
∈ S2

≻. (55)

It can be verified (for example, by analogy to the block symmetric matrix inverse formula) that
the inverse Hessian product oracle H̄ in Equation (41c) is:

H̄u = Z̄u,u(p−⟨Yu, r⟩)+ Z̄v,u(q−⟨Yv, r⟩), (56a)
H̄v = Z̄v,u(p−⟨Yu, r⟩)+ Z̄v,v(q−⟨Yv, r⟩), (56b)
H̄w =−H̄uYu − H̄vYv +(∇2

w,wΓ)
−1r. (56c)

Hence computing H̄ is essentially only as difficult as applying the positive definite linear operator
(∇2

w,wΓ)
−1. We are not aware of a simple expression for (∇2

w,wΓ)
−1 in general, but we explore the

special cases of separable spectral functions in Section 5.3, the negative log-determinant function
in Section 5.4, and the root-determinant function in Section 7.4.

5.3. Inverse Hessian operator for the separable spectral case. Suppose w≻ 0 has the
spectral decomposition Equation (5), i.e. w has the eigenvalues w1, . . . ,wd > 0 and the Jordan frame
c1, . . . , cd. As in Section 3.2, we assume distinct eigenvalues for simplicity. In the special case where
φ is a convex separable spectral function, i.e. φ(w) =

∑
i∈JdK h(wi) for some convex h :R> →R, we

show how to compute H̄ as efficiently as Hessian product oracle H. For all i∈ JdK, we let hi, (∇h)i,
(∇2h)i, and (∇3h)i denote the value and derivatives of h evaluated at µ. We define mi,j ∈ R for
i, j ∈ JdK as:

mi,j :=

{
ζ−1 (∇h)i−(∇h)j

wi−wj
+w−1

i w−1
j i ̸= j,

ζ−1v−1(∇2h)i +w−2
i i= j.

(57)

Since h is convex, mi,j > 0,∀i, j ∈ JdK. Let M : V → V be the self-adjoint linear operator:

M := v−1ζ−1∇2φ+P (w−1) =
∑

i,j∈JdK:i<j

4mi,jL(ci)L(cj)+
∑
i∈JdK

mi,iP (ci). (58)

Using Equation (12), we have the self-adjoint inverse operator of M :

M−1 =
∑

i,j∈JdK:i<j

4m−1
i,jL(ci)L(cj)+

∑
i∈JdK

m−1
i,i P (ci). (59)
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Substituting Equation (58) into Equation (48), we have:

∇2
w,wΓ[r] = ζ−2∇φ[r]∇φ+Mr. (60)

Note that the first term in Equation (60) is analogous to the application (to r) of a low-rank update
to M , and that M−1 in Equation (59) is easy to apply. By analogy to the Sherman-Morrison-
Woodbury formula [11, Theorem 1.1], we can derive a simple expression for the inverse operator
(∇2

w,wΓ)
−1r.

We let:

α :=M−1∇φ=
∑
i∈JdK

m−1
i,i (∇h)ici ∈ V, (61a)

γ := v−2ζ−1M−1∇2φ[w] = v−2ζ−1
∑
i∈JdK

m−1
i,i (∇2h)iwici ≻ 0. (61b)

Noting that γ,w−1 ≻ 0 implies ⟨γ,w−1⟩> 0, we define the scalar constants:

k1 := ζ2 + ⟨∇φ,α⟩> 0, (62a)
k2 := σ+ ⟨∇φ,γ⟩= σ+ v−2ζ−1⟨∇2φ[w], α⟩, (62b)
k3 := v−2 + v−2ζ−1⟨∇2φ[w], µ− γ⟩= v−2 + v−1⟨γ,w−1⟩> 0. (62c)

Now using the Sherman-Morrison-Woodbury formula:

(∇2
w,wΓ)

−1r=M−1r− ζ−2⟨M−1∇φ, r⟩
1+ ζ−2⟨M−1∇φ,∇φ⟩

M−1∇φ (63a)

=M−1r− k−1
1 ⟨α, r⟩α. (63b)

Substituting Equations (47) and (63) into Equation (53):

Yu = (∇2
w,wΓ)

−1(−ζ−2∇φ) (64a)
=−ζ−2α+ ζ−2k−1

1 ⟨α,∇φ⟩α (64b)
=−k−1

1 α, (64c)
Yv = (∇2

w,wΓ)
−1(ζ−2σ∇φ− v−1ζ−1∇2φ[µ]) (64d)

=−σYu − v−2ζ−1(∇2
w,wΓ)

−1∇2φ[w] (64e)
= σk−1

1 α− γ+ v−2ζ−1k−1
1 ⟨α,∇2φ[w]⟩α (64f)

= k−1
1 k2α− γ, (64g)

Zu,u = ζ−2 −⟨∇2
w,uΓ, Yu⟩ (64h)

= ζ−2 − ζ−2k−1
1 ⟨∇φ,α⟩ (64i)

= k−1
1 , (64j)

Zv,u =−ζ−2σ−⟨∇2
w,uΓ, Yv⟩ (64k)

=−ζ−2(σ−⟨∇φ,k−1
1 k2α− γ⟩) (64l)

=−ζ−2(σ− k−1
1 k2(k1 − ζ2)+ k2 −σ) (64m)

=−k−1
1 k2, (64n)

Zv,v =∇2
v,vΓ−⟨∇2

w,vΓ, Yv⟩ (64o)
=∇2

v,vΓ+σ⟨∇2
w,uΓ, Yv⟩+ v−2ζ−1⟨∇2φ[w], Yv⟩ (64p)

64n
=∇2

v,vΓ+σ(k−1
1 k2 − ζ−2σ)+ v−2ζ−1⟨∇2φ[w], Yv⟩ (64q)

= v−2 + v−3ζ−1∇2φ[w,w] +σk−1
1 k2 + v−2ζ−1⟨∇2φ[w], Yv⟩ (64r)

= v−2 + v−3ζ−1∇2φ[w,w] +σk−1
1 k2 + k−1

1 k2(k2 −σ)− v−2ζ−1⟨∇2φ[w], γ⟩ (64s)
= v−2 + k−1

1 k2
2 + v−2ζ−1⟨∇2φ[w], µ− γ⟩ (64t)

= k3 + k−1
1 k2

2. (64u)
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For Z in Equation (54), we have det(Z) = k−1
1 k3, so its inverse Z̄ in Equation (55) is:

Z̄u,u = k1(k3 + k−1
1 k2

2)k
−1
3 = k1 + k2

2k
−1
3 , (65a)

Z̄u,v = k2k
−1
3 , (65b)

Z̄v,v = k−1
3 . (65c)

Finally, we substitute Equations (64) and (65) into Equation (56) to derive the inverse Hessian
product H̄. We let:

c1 := p−⟨Yu, r⟩
64
= p+ k−1

1 ⟨α, r⟩, (66a)

c2 := q−⟨Yv, r⟩
64
= q− k−1

1 k2⟨α, r⟩+ ⟨γ, r⟩. (66b)

For convenience, we derive H̄v before H̄u and H̄w:

H̄v = Z̄u,vc1 + Z̄v,vc2 (67a)
= k−1

3 (k2c1 + c2) (67b)
= k−1

3 (k2p+ q+ ⟨γ, r⟩), (67c)
H̄u = Z̄u,uc1 + Z̄u,vc2 (67d)

67b
= (Z̄u,u − Z̄u,vk2)c1 + Z̄u,vk3H̄v (67e)
= k1p+ k2H̄v + ⟨α, r⟩, (67f)

H̄w =−H̄uYu − H̄vYv +(∇2
w,w)

−1r (67g)
63
= H̄uk

−1
1 α− H̄v(k

−1
1 k2α− γ)+M−1r− k−1

1 ⟨α, r⟩α (67h)
= pα+ H̄vγ+M−1r. (67i)

In Section 8.5, we compare the efficiency and numerical performance of the closed-form formula
for H̄ in Equation (67) against a naive approach to computing H̄ that performs a Cholesky fac-
torization of an explicit Hessian matrix and uses a direct linear solve. The closed-form formula
is faster and more scalable, more memory-efficient, more reliable to compute (as the Cholesky
decomposition can fail), and more numerically accurate.

5.4. Oracles for the log-determinant case. We now specialize the oracles derived in Sec-
tions 5.1 and 5.3 for the separable spectral function φ(w) = − logdet(w) = −

∑
i∈JdK log(wi). In

Section 6, we show that Γ is an LHSCB in this case. We let:

ξ̂ := P (w−1/2)ξ = v−1P (w−1/2)(−v−1qw+ r) = v−1(−v−1qe+ r̂)∈ V. (68)

We have:

∇φ
26
=−µ−1 =−vP (w−1/2)e, (69a)

∇2φ[ξ]
27a
= v2P (w−1)ξ = v2P (w−1/2)ξ̂, (69b)

∇3φ[ξ, ξ]
27b
=−2v3P (w−1/2)ξ̂2. (69c)

The constants from Section 5.1 have the form:

σ
45
=φ+ d, (70a)

χ
49
= ζ−1(p− qσ+ v tr(r̂)). (70b)

From Equation (46), the w component of the gradient is:

gw =−(1+ vζ−1)w−1. (71a)
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From Equation (50), the v and w components of the Hessian product are:

Hv =−ζ−1σχ− vζ−1 tr(ξ̂)+ v−2q, (72a)

Hw = P (w−1/2)(vζ−1χe+ v2ζ−1ξ̂+ r̂). (72b)

From Equation (52), the third order directional derivative is:

Tu =−2ζ−1χ2 − v3ζ−2 tr(ξ̂2), (73a)

Tv =−Tuσ+ vζ−1(2(χ+ v−1q) tr(ξ̂)+ v tr(ξ̂2))− 2v−3q2, (73b)

Tw = P (w−1/2)(Tuve− 2ζ−1v2((χ+ v−1q)ξ̂+ vξ̂2)− 2r̂2). (73c)

We derive the inverse Hessian product H̄ by specializing the separable case in Equation (67).
We let:

ř := P (w1/2)r ∈ V, (74a)
θ := v2(ζ +(1+ d)v)−1. (74b)

From Equations (61) and (62), we have:

M−1 = ζ(ζ + v)−1P (w), (75a)
α=−vζ(ζ + v)−1w, (75b)
γ = (ζ + v)−1w, (75c)
k1 = ζ2 + dv2ζ(ζ + v)−1, (75d)
k2 =φ+ dζ(ζ + v)−1, (75e)

k−1
3 = (ζ + v)θ. (75f)

For convenience, we derive H̄v before H̄u and H̄w as in Equation (67):

H̄v = k−1
3 (k2p+ q+ ⟨γ, r⟩) (76a)

= (ζ + v)θ((φ+ dζ(ζ + v)−1)p+ q+ ⟨r,w⟩(ζ + v)−1) (76b)
= θ((ζ + v)(φp+ q)+ dζp+tr(ř)), (76c)

H̄u = k1p+(φ+ dζ(ζ + v)−1)H̄v + ⟨α, r⟩ (76d)
= (ζ2 + dv2ζ(ζ + v)−1)p+(φ+ dζ(ζ + v)−1)H̄v + ⟨−vζ(ζ + v)−1w,r⟩ (76e)
= ζ(ζ + v)−1(dv2p+ dH̄v − v⟨w,r⟩)+ ζ2p+φH̄v, (76f)

H̄w = pα+ H̄vγ+M−1r (76g)
=−pvζ(ζ + v)−1w+ H̄v(ζ + v)−1w+ ζ(ζ + v)−1P (w)r (76h)
= (ζ + v)−1P (w1/2)((−ζpv+ H̄v)e+ ζř). (76i)

Recall that in Section 5.3, we used the simplifying assumption of distinct eigenvalues, but for
the negative log-determinant case this is not necessary. Note that if it is possible to apply P (w1/2)
and P (w−1/2) without accessing the eigenvalues of w, then all oracles can be computed without an
explicit eigendecomposition. For example, in our implementation for V = Sd and V =Hd, only a
Cholesky factorization of w is needed. This is unlike the more general separable spectral function
case, where the explicit eigenvalues of w are needed.

6. Matrix monotone derivative cones. After defining the matrix monotone property of a
function in Section 6.1, we introduce the matrix monotone derivative cone KMMD in Section 6.2.
KMMD is a special case of the epigraph-perspective cone Kp with a separable spectral function φ. In
Section 6.4, we prove that our barrier function Γ for KMMD is an LHSCB, using derivative results
we obtain in Section 6.3.
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6.1. Matrix monotonicity. A function f is matrix monotone (or operator monotone) if
wa ⪰ wb ⪰ 0 implies f(wa) ⪰ f(wb) for all wa,wb ∈ Sd for all integers d. The following integral
representation result is attributed to Löwner [24] (see e.g. Kwong [22, Theorem 1] and Furuta
[18, Theorem L]). A function f : R> → R is matrix monotone in R> if and only if it has the
representation:

f(x) = α+βx+

∫ ∞

0

x

x+ t
dρ(t) = α+βx+

∫ ∞

0

(
1− t

x+ t

)
dρ(t), (77)

where α∈R, β ∈R≥ and ρ is a positive measure on R> such that
∫∞
0
(1+ t)−1 dρ(t)<∞.

This result implies that, for a cone of squares Q of a Jordan algebra, and for w ∈ int(Q) with
the spectral decomposition w=

∑
i∈JdK wici, we have:

f(w) =
∑
i∈JdK

f(wi)ci (78a)

= αe+βw+

∫ ∞

0

∑
i∈JdK

(
1− t

wi + t

)
ci dρ(t) (78b)

= αe+βw+

∫ ∞

0

(e− t(w+ te)−1) dρ(t). (78c)

This is similar to the representation in Faybusovich and Tsuchiya [15, page 1520].

6.2. Cone definition. Let h :R> →R be a convex C3-smooth function. We assume that the
first derivative of h, ∇h, is a matrix monotone function. This also implies that h is convex. We call
such functions matrix monotone derivative (MMD) functions. In Table 1, we give some common
examples of MMD functions, with abbreviated names in the first column. We also give ∇h, the
domain of the convex conjugate h∗ (defined in Equation (32)), and a closed-form formula for h∗.

Due to Carlen [6, Theorem 2.6 (Löwner-Heinz Theorem)], the functions x→ log(x), x→−xp

for p ∈ [−1,0], and x→ xp for p ∈ [0,1] are matrix monotone. This implies that in Table 1, each
function in the ∇h column is matrix monotone. Note that NegSqrt is equivalent to NegPower
for p= 1/2; we highlight NegSqrt as an interesting case, for which the conjugate h∗ is a positive
rescaling of the inverse function. Note we exclude the case p= 1 in NegPower and Power because
it is homogeneous (h is linear).

More examples of matrix monotone functions (i.e. possible ∇h functions) can be found in Kwong
[22], Furuta [18]. Some of these functions may correspond to h or h∗ functions that are directly
useful for applied optimization modeling.

Table 1. Examples of MMD functions.

h ∇h dom(h∗) h∗

NegLog − log(x) −x−1 R> −1− log(x)
NegEntropy x log(x) 1+ log(x) R exp(−1−x)

NegSqrt −
√
x − 1

2
x−1/2 R>

1
4
x−1

NegPower, p∈ (0,1) −xp −pxp−1 R≥ −(p− 1)(x/p)q

Power, p∈ (1,2] xp pxp−1 R (p− 1)(x−/p)
q

We let q := p/(p − 1), which gives q ∈ (−∞,0) for p ∈ (0,1) in the
NegPower case, or q ∈ [2,∞) for p∈ (1,2] in the Power case. We also let
x− :=max(−x,0) in the Power case.
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Figure 1. Graphs of some MMD functions (h, left) and their conjugates (h∗, right) from Table 1.

Suppose Q is the cone of squares of a Jordan algebra V with rank d. Let φ : int(Q)→R be the C3-
smooth function φ(w) = tr(h(w)) =

∑
i∈JdK h(wi), which is a convex separable spectral function (see

Section 3.2). As in Section 4.2, we let ũ= (u, v,w) ∈ E =R×R> × int(Q). The function ζ : E →R
has the form:

ζ(ũ) := u− v tr(h(v−1w)). (79)

We define the matrix monotone derivative cone KMMD, a special case of the epigraph-perspective
cone Kp in Equation (30), as:

KMMD := cl{ũ∈ E : u≥ v tr(h(v−1w))}, (80)

which is a proper cone. For the separable case, the convex conjugate φ∗ : V → R∪∞ (see Equa-
tion (32)) of φ is φ∗(r) = tr(h∗(r)). So from Equation (33), the dual cone is:

K∗
MMD := cl{ũ∈R> ×R×V : v≥ u tr(h∗(u−1w))}. (81)

6.3. Derivatives of the MMD trace. We derive some expressions needed for our LHSCB
proof in Section 6.4. Suppose w ≻ 0. Since φ(w) = tr(h(w)) and ∇h is matrix monotone, from
Equation (78) we can write the gradient:

∇φ(w) =∇h(w) = αe+βw+

∫ ∞

0

(e− t(w+ te)−1) dρ(t). (82)

Note that w+ te≻ 0 for t≥ 0, so (w+ te)−1 is well-defined. Differentiating Equation (82) in the
direction r ∈ V , we have the second order directional derivative:

∇2φ(w)[r]
24
= βr+

∫ ∞

0

tP ((w+ te)−1)r dρ(t), (83)

and the third order directional derivative:

∇3φ(w)[r, r]
25
=−2

∫ ∞

0

tP ((w+ te)−1/2)(P ((w+ te)−1/2)r)2 dρ(t). (84)
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6.4. Self-concordant barrier. For KMMD, the LHB Γ : int(KMMD)→R from Equation (40)
has the form:

Γ(ũ) :=− log(ζ(ũ))− log(v)− logdet(w). (85)

We describe easily-computable oracles for this Γ in Section 5, including an inverse Hessian product
H̄ in Section 5.3 that is as easy to compute as the Hessian product H (since φ is a separable
spectral function).
We note that Faybusovich and Tsuchiya [15] derive a (1 + d)-self-concordant barrier for the

related convex (but not conic) set S:

S := cl{(u,w)∈R× int(Q) : u−φ(w)≥ 0}. (86)

KMMD is the conic hull of S. In Proposition 1, we prove that our barrier Γ in Equation (85) is self-
concordant, hence it is an LHSCB for KMMD with parameter 2+ d. This small additive increment
of one in the barrier parameter is in sharp contrast to generic conic hull results, which give barriers
with a multiplicative factor in the parameter. For example, Nesterov [26] proposes a barrier with
parameter (3.08

√
1+ d+3.57)2, and Freund et al. [17] use the result of Nesterov and Nemirovskii

[29, Proposition 5.1.4] to propose a barrier with parameter no less than 9.48(1+ d).

Proposition 1. Γ in Equation (85) is a (2+ d)-LHSCB for KMMD in Equation (80).

Proof. We show that ζ in Equation (79) is (R≥,1)-compatible with the domain E , in the sense
of Nesterov and Nemirovskii [29, Definition 5.1.1]. This follows if (i) ζ is C3-smooth on E , (ii) ζ is
concave with respect to R≥, (iii) for any point ũ∈ int(KMMD) and direction p̃= (p, q, r)∈R×R×V
satisfying v± q≥ 0 and w± r⪰ 0 it holds that:

∇3ζ(ũ)[p̃, p̃, p̃]≤−3∇2ζ(ũ)[p̃, p̃]. (87)

Suppose v ± q ≥ 0 and w ± r ⪰ 0. As in Equation (43), we let µ := µ(v,w) = v−1w ≻ 0 and
ξ := v−1(r− qµ). From Equation (44), the second and third order directional derivatives of ζ at ũ
in direction p̃ are:

∇2ζ(ũ)[p̃, p̃] =−v∇2φ(µ)[ξ, ξ], (88a)
∇3ζ(ũ)[p̃, p̃, p̃] =−v∇3φ(µ)[ξ, ξ, ξ] + 3q∇2φ(µ)[ξ, ξ]. (88b)

Since φ is convex and C3-smooth on int(Q) by assumption, Equations (79) and (88) imply that ζ
is concave and C3-smooth on E . It remains to show that Equation (87) holds.
For t≥ 0, let:

a(t) := µ+ te≻ 0, (89a)
ā(t) := a(t)−1/2 ≻ 0, (89b)

ξ̂(t) := P (ā(t))ξ. (89c)

By the integral representation result from Section 6.1 [24], there exists a positive measure ρ and
β ≥ 0 such that the directional derivatives of φ are:

∇2φ(µ)[ξ, ξ]
83
= β tr(ξ2)+

∫ ∞

0

t tr(ξ̂(t)2) dρ(t), (90a)

∇3φ(µ)[ξ, ξ, ξ]
84
=−2

∫ ∞

0

t tr(ξ̂(t)3) dρ(t). (90b)
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From Equations (88) and (90), the compatibility condition Equation (87) is equivalent to nonneg-
ativity of:

− 3∇2ζ(ũ)[p̃, p̃]−∇3ζ(ũ)[p̃, p̃, p̃] (91a)

= 3(v− q)β tr(ξ2)+

∫ ∞

0

t(3(v− q) tr(ξ̂(t)2)− 2v tr(ξ̂(t)3)) dρ(t). (91b)

Since v ≥ q, the first term in Equation (91b) is nonnegative. The second term (the integral) is
nonnegative if for all t≥ 0, the following inner term is nonnegative:

3(v− q) tr(ξ̂(t)2)− 2v tr(ξ̂(t)3) = ⟨ξ̂(t)2,3(v− q)e− 2vξ̂(t)⟩. (92)

By self-duality of Q, Equation (92) is nonnegative if 3(v− q)e− 2vξ̂(t)⪰ 0, which we now prove.
For t≥ 0, let:

b(t) := (1− v−1q)a(t)− ξ = v−1(w− r)+ t(1− v−1q)e. (93)

Since w⪰ r and 1− v−1q≥ 0, we have b(t)⪰ 0. Hence we have:

(1− v−1q)e− ξ̂(t)
93
= P (ā(t))b(t)⪰ 0, (94)

since ā(t)≻ 0 implies P (ā(t)) is an automorphism on Q (see Faraut and Koranyi [13, Page 48]).
Therefore:

3(v− q)e− 2vξ̂(t)
94

⪰ 3(v− q)e− 2v(1− v−1q)e= (v− q)e⪰ 0. (95)

So Equation (92) is nonnegative, which implies the integral term in Equation (91b) is nonnegative.
Thus Equation (91b) is nonnegative, so Equation (87) holds and compatibility is proved. Now

by Nesterov and Nemirovskii [29, Proposition 5.1.7], Γ is an LHSCB for KMMD with parameter
2+ d. □
Note that the negative log-determinant cone, whose barrier function we examined in Section 5.4,

is a special case of KMMD where h is the NegLog function from Table 1. When d = 1 (i.e. Q is
just the nonnegative reals), this cone is equivalent to the standard three-dimensional exponential
cone, and our barrier Γ matches the usual 3-LHSCB for this cone from Nesterov [28, Section 5.4.7,
Example 2]. Furthermore for d= 1, KMMD with NegEntropy is an invertible linear transformation
of the exponential cone, and again our barrier Γ matches the 3-LHSCB derived through the linear
transformation. When d= 1 and h is the NegPower function, KMMD is equivalent to a special case
of Nesterov [28, Section 5.4.7, Example 3] and Γ matches the proposed 3-LHSCB therein (see also
case 3 of Hildebrand [21, Theorem 2]).

7. Root-determinant cones. In Section 7.1, we define the root-determinant cone Krtdet,
which is the hypograph of the homogeneous nonseparable spectral root-determinant function. After
expressing the derivatives of this function in Section 7.2, we prove that our barrier function Γ for
Krtdet is an LHSCB in Section 7.3, and we derive easily-computable barrier oracles in Section 7.4.

7.1. Cone definition. Suppose Q is a cone of squares of a Jordan algebra V with rank d.
Let φ :Q→R≥ denote the root-determinant function (or the geometric mean of the eigenvalues):

φ(w) := det(w)1/d =
∏
i∈JdK

w
1/d
i , (96)

which is a concave, homogeneous nonseparable spectral function (see Section 3.1). We let ũ :=
(u,w)∈ E =R×Q. The function ζ : E →R has the form:

ζ(ũ) :=φ(w)−u. (97)
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We define the root-determinant cone Krtdet and its dual cone as:

Krtdet := {(u,w)∈R×Q : u≤ det(w)1/d}, (98a)
K∗

rtdet := {(u,w)∈R≤ ×Q :−d−1u≤ det(w)1/d}. (98b)

We note that Krtdet is a hypograph modification of the epigraph cone Kh in Equation (29), and
it is a primitive proper cone. K∗

rtdet can be derived by modifying the steps we use to derive K∗
h in

Equation (37) and using the convex conjugate of the negative root-determinant function.

7.2. Derivatives of root-determinant. We derive some expressions needed for our LHSCB
proof in Section 7.3. Suppose w≻ 0. Since φ(w) = exp(d−1 logdet(w)), applying the chain rule and
using Equation (26) gives us the gradient:

∇φ(w) = d−1φ(w)w−1. (99)

Let r ∈ V and r̂ := P (w−1/2)r ∈ V . Using the product rule on Equation (99), we have the second
order directional derivative:

∇2φ(w)[r] = d−2⟨w−1, r⟩∇φ(w)+ d−1φ(w)∇w(w
−1)[r] (100a)

24
= d−1φ(w) tr(r̂)w−1 − d−1φ(w)P (w−1)r (100b)
= d−1φ(w)(d−1 tr(r̂)w−1 −P (w−1)r) (100c)
= d−1φ(w)P (w−1/2)(d−1 tr(r̂)e− r̂). (100d)

Finally, using the product rule on Equation (100c), we have the third order directional derivative:

∇3φ(w)[r, r] = d−1⟨d−1 tr(r̂)w−1 −P (w−1)r, r⟩∇φ(w)+ d−1φ(w)(
d−1(⟨w−1, r⟩∇w(⟨w−1, r⟩)+ tr(r̂)∇w(w

−1)[r])−∇w(P (w−1)r)[r])
(101a)

25
= d−2φ(w)(d−1 tr(r̂)2 − tr(r̂2))w−1 + d−1φ(w)(
−2d−1 tr(r̂)P (w−1)r+2P (w−1/2)(P (w−1/2)r)2)

(101b)

= d−1φ(w)P (w−1/2)(d−1(d−1 tr(r̂)2 − tr(r̂2))e− 2d−1 tr(r̂)r̂+2r̂2). (101c)

7.3. Self-concordant barrier. For Krtdet, the LHB Γ : int(Krtdet)→ R from Equation (40)
has the form:

Γ(ũ) :=− log(ζ(ũ))− logdet(w). (102)

In Proposition 2 we show that Γ is self-concordant with parameter 1+ d. Since the optimal barrier
parameter for E is d, our parameter cannot be reduced by more than one.

Proposition 2. Γ in Equation (102) is a (1+ d)-LHSCB for Krtdet in Equation (98a).

Proof. Note Ψ(ũ) :=− logdet(w) is a d-LHSCB for E . We show that ζ in Equation (97) is (R≥,1)-
compatible with the barrier Ψ in the sense of Nesterov and Nemirovskii [29, Definition 5.1.2].
Compatibility follows if (i) ζ is C3-smooth on int(E), (ii) concave with respect to R≥, (iii) for any
point ũ∈ int(Krtdet) and direction p̃= (p, r)∈R×V it holds that:

∇3ζ(ũ)[p̃, p̃, p̃]≤−3(∇2Ψ(ũ)[p̃, p̃])1/2∇2ζ(ũ)[p̃, p̃]. (103)

Suppose ũ∈ int(Krtdet). From Equation (97), we have:

∇2ζ(ũ)[p̃, p̃] =∇2φ(w)[r, r], (104a)
∇3ζ(ũ)[p̃, p̃, p̃] =∇3φ(w)[r, r, r]. (104b)
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Since φ is concave and C3-smooth on int(Q), Equation (104) implies ζ is concave and C3-smooth

on int(E). It remains to show that Equation (103) holds.

Let σ ∈Rd be the eigenvalues of r̂ := P (w−1/2)r. Then:

(∇2Ψ(ũ)[p̃, p̃])1/2
27a
= tr(r̂2)1/2 = ∥σ∥. (105)

Let mk := d−1 tr(r̂k),∀k ∈ J3K, and let δi := σi −m1,∀i ∈ JdK. By the formulae for variance and

skewness, we have:

m2 −m2
1 = d−1

∑
i∈JdK

δ2i , (106a)

m3 − 3m1m2 +2m3
1 = d−1

∑
i∈JdK

δ3i . (106b)

For convenience, let φ :=φ(w)> 0 be a constant. We have:

∇2φ(w)[r, r]
100
= d−1φ⟨P (w−1/2)(d−1 tr(r̂)e− r̂), r⟩ (107a)

=−φ(d−1 tr(r̂2)− d−2 tr(r̂)2) (107b)

=−φ(m2 −m2
1) (107c)

106a
=−d−1φ

∑
i∈JdK

δ2i ≤ 0. (107d)

Similarly:

∇3φ(w)[r, r, r]
101
= d−1φ⟨d−1(d−1 tr(r̂)2 − tr(r̂2))e− 2d−1 tr(r̂)r̂+2r̂2, r̂⟩ (108a)

= d−1φ(d−1(d−1 tr(r̂)2 − tr(r̂2)) tr(r̂)− 2d−1 tr(r̂) tr(r̂2)+ 2tr(r̂3)) (108b)

=φ(m3
1 − 3m1m2 +2m3) (108c)

=φ(3m1(m2 −m2
1)+ 2(m3 − 3m1m2 +2m3

1)) (108d)
106
= d−1φ

∑
i∈JdK

(3m1δ
2
i +2δ3i ) (108e)

= d−1φ
∑
i∈JdK

δ2i (m1 +2σi). (108f)

Finally, using Equations (105), (107) and (108) the compatibility condition Equation (103) is

equivalent to nonnegativity of:

−∇3ζ(ũ)[p̃, p̃, p̃]− 3(∇2Ψ(ũ)[p̃, p̃])1/2∇2ζ(ũ)[p̃, p̃] (109a)

=−d−1φ
∑
i∈JdK

δ2i (m1 +2σi)+ 3∥σ∥d−1φ
∑
i∈JdK

δ2i (109b)

= d−1φ
∑
i∈JdK

δ2i (∥σ∥−m1 +2(∥σ∥−σi)). (109c)

Clearly, d−1φδ2i ≥ 0 and σi ≤ ∥σ∥ for all i ∈ JdK. We have m1 ≤ d−1∥σ∥1 ≤ d−1/2∥σ∥ ≤ ∥σ∥. Hence
Equation (109c) is nonnegative.

Thus Equation (103) holds and compatibility is proved. Now by Nesterov and Nemirovskii [29,

Proposition 5.1.7], Γ is a (1+ d)-LHSCB for Krtdet. □
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7.4. Evaluating barrier oracles. Using the derivatives of φ from Section 7.2, we derive
easily-computable oracles for the LHSCB Equation (102). In Section 8.1, we describe our imple-
mentations of these oracles in Hypatia and link to the high-level Julia code.
Let ũ ∈ int(Krtdet) and p̃= (p, r) ∈R× V . For convenience, let φ := φ(w)> 0 be a constant. We

define the scalar constants:

η := d−1φζ−1, (110a)
θ := 1+ η, (110b)
χ :=−ζ−1p+ η tr(r̂), (110c)
τ := χ− d−1 tr(r̂), (110d)
υ := tr(r̂2)− d−1 tr(r̂)2. (110e)

Note that:

∇u(ζ
−1) = ζ−2, (111a)
∇uη= ζ−1η, (111b)
∇uχ= ζ−1χ, (111c)

∇w(ζ
−1) =−ζ−2∇φ(w)

99
=−ζ−1ηw−1, (111d)

∇wη= η(d−1 − η)w−1, (111e)

∇wχ
24
= ζ−1ηpw−1 + η(d−1 − η) tr(r̂)w−1 − ηP (w−1)r (111f)
=−η(τw−1 +P (w−1)r). (111g)

The gradient of Γ in Equation (102) is:

gu = ζ−1, (112a)
gw =−ζ−1∇φ(w)−w−1 (112b)

=−θw−1. (112c)

Differentiating Equation (112), the Hessian product is:

Hu =∇ugup+∇ugw[r] (113a)
= ζ−2p− ζ−1η tr(r̂) (113b)
=−ζ−1χ, (113c)

Hw =∇wgup+∇wgw[r] (113d)
24
=−ζ−1ηpw−1 − tr(r̂)η(d−1 − η)w−1 + θP (w−1)r (113e)
= P (w−1/2)(ητe+ θr̂). (113f)

Differentiating Equation (113), the third order directional derivative is:

Tu =∇uHup+∇uHw[r] (114a)
=−2ζ−2pχ+ ζ−1η(τ tr(r̂)+ tr(r̂2))+ ζ−1η tr(r̂)χ (114b)
= ζ−1(2χ2 + ηυ), (114c)

Tw =∇wHup+∇wHw[r] (114d)
25
= ζ−1ηpχw−1 + ζ−1ηp(τw−1 +P (w−1)r)− ητP (w−1)r+

tr(r̂)τη(d−1 − η)w−1 + η(−η(τ tr(r̂)+ tr(r̂2))+ d−1 tr(r̂2))w−1 +
η(d−1 − η) tr(r̂)P (w−1)r− 2θP (w−1/2)r̂2

(114e)

= η(−χτ + ζ−1pχ+(d−1 − η)(tr(r̂)τ +tr(r̂2)))w−1 +
η(−τ + ζ−1p+(d−1 − η) tr(r̂))P (w−1)r− 2θP (w−1/2)r̂2

(114f)

= P (w−1/2)(η(−2χτ +(d−1 − η)υ)e− 2ητ r̂− 2θr̂2). (114g)

In Lemma 1 below, we give a closed-form inverse Hessian product operator. This operator Equa-
tion (115) a similar structure to the Hessian product operator Equation (113), except that it applies
P (w1/2) instead of P (w−1/2).



Coey, Kapelevich, and Vielma: Conic optimization with spectral functions on Euclidean Jordan algebras
24 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Lemma 1. Letting ř := P (w1/2)r ∈ V , the inverse Hessian product is:

H̄u = (ζ2 + d−1φ2)p+ d−1φ tr(ř), (115a)
H̄w = P (w1/2)(d−1(φp+ ηθ−1 tr(ř))e+ θ−1ř). (115b)

Proof. Note that the Hessian operator Equation (113) is a positive definite linear operator, so it
has a unique inverse linear operator. We show that (∇2Γ)−1(∇2Γ[p̃]) = p̃. Into Equation (115), we
substitute the values from Equation (113) i.e. p=Hu =−ζ−1χ and r=Hw = P (w−1/2)(ητe+ θr̂).
Since P (w1/2) = P (w−1/2)−1, we have:

ř= P (w1/2)Hw = ητe+ θr̂, (116a)
tr(ř) = dητ + θ tr(r̂). (116b)

We have:

H̄u = (ζ2 + d−1φ2)(−ζ−1χ)+ d−1φ(dητ + θ tr(r̂)) (117a)
=−ζχ+φη(τ −χ)+ d−1φθ tr(r̂) (117b)
=−ζ(χ− η tr(r̂)) (117c)
= p, (117d)

and:

H̄w = P (w1/2)(d−1(−φζ−1χ+ ηθ−1(dητ + θ tr(r̂)))e+ θ−1(ητe+ θr̂)) (118a)
= P (w1/2)(η(−τ + ηθ−1τ + θ−1τ)e+ r̂) (118b)
= P (w1/2)(r̂) (118c)
= r. (118d)

Hence Equation (115) is the unique inverse operator of Equation (113). □
We note the polynomial-like structure of the oracles. In particular, the w components of the g, H,

and T oracles are computed by applying P (w−1/2) to a polynomial in r̂, of degree zero for g, degree
one for H, and degree two for T . Analogously to H, its inverse H̄ is computed by applying P (w1/2)
to a polynomial of degree one in ř. This structure leads to simple, efficient, and numerically-stable
implementations. We also note the structural similarity (ignoring constants) between the u and w
components of these oracles and those of the negative log-determinant barrier in Section 5.4. In
both cases, the oracles can be computed without an explicit eigendecomposition if it is possible
to apply P (w1/2) and P (w−1/2) directly. For example for V = Sd and V = Hd, only a Cholesky
factorization of w is needed.

8. Examples and computational testing. In Coey et al. [8], we describe a performance-
oriented PDIPM and we implement this algorithm in our open-source conic solver, Hypatia. In
Section 8.1, we outline our implementations of the MMD cone and the log-determinant and root-
determinant cones in Hypatia. Then in Sections 8.4.1 to 8.4.4, we present example problems with
simple, natural formulations (NFs) in terms of these cones. Using techniques we describe in Sec-
tion 8.2, we construct equivalent extended formulations (EFs) that can be recognized by MOSEK
9 or ECOS.
Our computational benchmarks follow the methodology we describe in Section 8.3 and show that

Hypatia often solves the NFs much more efficiently than Hypatia, MOSEK, or ECOS solve the
EFs. Finally, in Section 8.5, we exemplify the computational impact of efficient oracle procedures
by comparing the performance of our closed-form inverse Hessian product formula in Equation (67)
with that of a naive direct solve using the explicit Hessian matrix.
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8.1. Hypatia solver. Hypatia’s generic cone interface (see Coey et al. [8, Section 3]) allows
specifying a vectorized proper cone K⊂Rq for some dimension q. The nonnegative cone is already in
vectorized format. For the real symmetric PSD cone Sd

⪰, we use the standard svec transformation,
which rescales and stores only the elements of the matrix triangle in a vector of dimension d(d+
1)/2. For the complex Hermitian PSD cone Hd

⪰, we perform a modified svec transformation to a
d2-dimensional vector, storing each real diagonal element as a single element and each complex off-
diagonal element in the triangle as two (rescaled) consecutive real elements (the real part followed
by the imaginary part). These transformations preserve inner products and the self-duality of cones
of squares.
We adapt these transformations to enable vectorization of spectral cones. For example, for the

epigraph-perspective cone Kp in Equation (30), the vectorization is (u, v,vec(w)) ∈ R2+q, where
vec(w)∈Rq is the appropriate vectorization of w ∈Q. Fortunately, the dual cone of this vectorized
cone is the analogous vectorization of the dual cone K∗

p in Equation (33).
Hypatia’s primal general conic form (see Coey et al. [8, Section 4]) over a vector of variables

x minimizes a linear function ⟨c,x⟩ subject to linear equality constraints b − Ax = 0 and conic
constrains h − Gx ∈ K. Here, the vectorized proper cone K is specified as a Cartesian product
K1 × · · · × KK of K proper cones recognized by Hypatia. This means for each Ki, we must have
either Ki or K∗

i defined through Hypatia’s cone interface.
For the domains Rd, Sd, and Hd, we implement vectorizations of the MMD cone KMMD, the

log-determinant cone Klogdet, and the root-determinant cone Krtdet.
1 This allows the user to model

with these cones or their dual cones in Hypatia. As we discuss at the end of Sections 5.4 and 7.4, for
Klogdet and Krtdet the oracle procedures are quite specialized, for example we compute a Cholesky
factorization rather than an eigendecomposition for the Sd and Hd domains.

For KMMD, we predefine the MMD functions in Table 1. The user can easily add support for any
MMD function by implementing a list of simple oracles.2 Recall that K∗

MMD in Equation (81) is
defined using the convex conjugate of the MMD function; in the examples below we suffix the MMD
function names with Conj (e.g. NegEntropyConj ) to indicate use of the convex conjugate function
and K∗

MMD. We write NegLogdet or NegRtdet for the negative log-determinant or negative root-
determinant function, the epigraph of which we represent using Klogdet or Krtdet. In our examples,
we choose not to use K∗

rtdet or K∗
logdet (or equivalently, K∗

MMD with NegLogConj ), because these
particular dual cones provide little additional modeling power over their primal cones.

8.2. Natural and extended formulations. To assess the computational value of our new
cones and efficient oracles, we compare the performance of Hypatia on NFs over KMMD, Klogdet, and
Krtdet against that of other conic PDIPM solvers on equivalent EFs. ECOS [12] is another open-
source conic PDIPM solver, but it only supports nonnegative, second-order, and three-dimensional
exponential cones. MOSEK version 9 [25] is a commercial conic PDIPM solver that supports the
same cones as ECOS as well as three-dimensional power cones and real symmetric PSD cones. We
call the cones supported by MOSEK 9 the standard cones. Hypatia currently supports around two

1 Our Klogdet implementation is for the hypograph of the log-determinant, rather than the epigraph of nega-
tive log-determinant considered in Section 5.4; this only requires minor changes to the oracle derivations and
the LHSCB proof from Section 6.4 for validity. KMMD is implemented at https://github.com/chriscoey/

Hypatia.jl/tree/master/src/Cones/epipersepspectral, and Klogdet and Krtdet are implemented at https:

//github.com/chriscoey/Hypatia.jl/blob/master/src/Cones/hypoperlogdettri.jl and https://github.com/

chriscoey/Hypatia.jl/blob/master/src/Cones/hyporootdettri.jl for symmetric/Hermitian matrix domains and
https://github.com/chriscoey/Hypatia.jl/blob/master/src/Cones/hypoperlog.jl and https://github.com/

chriscoey/Hypatia.jl/blob/master/src/Cones/hypogeomean.jl for vector domains.

2 The MMD function interface is described and implemented at https://github.com/chriscoey/Hypatia.jl/blob/
master/src/Cones/epipersepspectral/sepspectralfun.jl.

https://github.com/chriscoey/Hypatia.jl/tree/master/src/Cones/epipersepspectral
https://github.com/chriscoey/Hypatia.jl/tree/master/src/Cones/epipersepspectral
https://github.com/chriscoey/Hypatia.jl/blob/master/src/Cones/hypoperlogdettri.jl
https://github.com/chriscoey/Hypatia.jl/blob/master/src/Cones/hypoperlogdettri.jl
https://github.com/chriscoey/Hypatia.jl/blob/master/src/Cones/hyporootdettri.jl
https://github.com/chriscoey/Hypatia.jl/blob/master/src/Cones/hyporootdettri.jl
https://github.com/chriscoey/Hypatia.jl/blob/master/src/Cones/hypoperlog.jl
https://github.com/chriscoey/Hypatia.jl/blob/master/src/Cones/hypogeomean.jl
https://github.com/chriscoey/Hypatia.jl/blob/master/src/Cones/hypogeomean.jl
https://github.com/chriscoey/Hypatia.jl/blob/master/src/Cones/epipersepspectral/sepspectralfun.jl
https://github.com/chriscoey/Hypatia.jl/blob/master/src/Cones/epipersepspectral/sepspectralfun.jl
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dozen cone types (not counting dual cones), including KMMD, Klogdet, Krtdet, and (generalizations of)
the standard cones [8]. We generate the EFs automatically using formulation techniques discussed
in Coey et al. [9] and Coey [7, Section 2.2.3].3

For V =Rd, our EFs are constructed as follows. The EFs for NegLog, NegEntropy, NegEntropy-
Conj, and NegRtdet use d exponential cones. The EFs for NegSqrt and NegSqrtConj use d three-
dimensional second-order cones. The EFs for Power, NegPower, PowerConj, and NegPowerConj
use d power cones. The example in Section 8.4.1 uses V =Rd.

For V = Sd, our EFs are constructed as follows. For most spectral functions, we adapt the EF
from Ben-Tal and Nemirovski [3, Proposition 4.2.1], which requires using an EF from the V =Rd

case for the corresponding spectral function, and adding constraints on the sum of the i largest
eigenvalues of a matrix for each i∈ JdK. This is a large formulation with many additional variables
and PSD constraints. For NegLog and NegRtdet, we use a much simpler EF from Ben-Tal and
Nemirovski [3, Example 18.d]. Since NegSqrtConj is a scaling of the inverse function (see Table 1),
a Schur complement representation allows us to use an EF with one PSD cone constraint. For
V =Hd, we reformulate any complex PSD cone constraint to a real PSD cone constraint with twice
the side dimension [25, Section 6.2.7]. The examples in Sections 8.4.2 and 8.4.3 use V = Sd and the
example in Section 8.4.4 uses V =Hd.

8.3. Computational methodology. We perform all instance generation, computational
experiments, and results analysis with Ubuntu 21.10, Julia 1.8.0-DEV.862, and Hypatia 0.5.3.4 We
use dedicated hardware with an AMD Ryzen 9 3950X 16-core processor (32 threads) and 128GB
of RAM. For each example problem in Sections 8.4.1 to 8.4.4, we generate random instances of a
range of sizes, using JuMP 0.21.10 and MathOptInterface v0.9.22. All instances are primal-dual
feasible, so we expect solvers to return optimality certificates.
We use the conic PDIPM solvers in MOSEK version 9 and ECOS version 2.0.5 (with no features

disabled). Hypatia uses a particular default algorithmic implementation that we describe in Coey
et al. [8] (the combined directions method with the QR-Cholesky linear system procedure). We
limit each solver to 16 threads and set a solve time limit of 1800 seconds. We set relative feasibility
and optimality gap tolerances to 10−7 and absolute optimality gap tolerances to 10−10.
For each instance, the relative difference between the objective values of the formulation/solver

combinations that converge never exceeds 10−4. For each instance/formulation/solver combination
that returns a solution, we measure the maximum violation ϵ of the primal-dual optimality condi-
tions in Coey et al. [9, Equation 19]. In Figures 2 to 5, we plot solve times in seconds against an
instance size parameter, excluding solves for which ϵ > 10−5. Hypatia-NF (i.e. Hypatia solving the
NF) is faster than any EF solver (Hypatia-EF, MOSEK-EF, ECOS-EF) across all instance sizes
and spectral functions tested for each example, and always scales to larger sizes.

8.4. Examples and results.

8.4.1. Nonparametric distribution estimation. Suppose we have a random variable X
taking values in the finite set {αi}i∈JdK. We seek a probability distribution ρ ∈Rd that minimizes
a convex spectral function φ, given some prior information expressed with d/2 linear equality
constraints. Adapting Boyd et al. [5, Section 7.2], the problem is:

minρ∈Rd φ(ρ) : (119a)
tr(ρ) = d, (119b)
Aρ= b. (119c)

3 See https://github.com/chriscoey/Hypatia.jl/blob/master/examples/spectral_functions_JuMP.jl.

4 Benchmark scripts and instructions for reproducing and analyzing results are available at https://github.com/

chriscoey/Hypatia.jl/tree/master/benchmarks/natvsext. A raw output CSV file and detailed results tables are
at https://github.com/chriscoey/Hypatia.jl/wiki.

https://github.com/chriscoey/Hypatia.jl/blob/master/examples/spectral_functions_JuMP.jl
https://github.com/chriscoey/Hypatia.jl/tree/master/benchmarks/natvsext
https://github.com/chriscoey/Hypatia.jl/tree/master/benchmarks/natvsext
https://github.com/chriscoey/Hypatia.jl/wiki
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For four spectral functions φ on Rd
≥ (with EFs that ECOS can recognize) and a range of sizes d,

we build random instances of Equation (119). The solver timings are summarized in Figure 2. Note
that for NegRtdet, no solve times are plotted for MOSEK-EF because the optimality condition
violations ϵ are too large (see Section 8.3); tightening MOSEK’s tolerance options improves these
violations, though in either case MOSEK-EF is significantly slower than Hypatia-NF. We do not
plot results for NegLogdet (the Klogdet formulation using the specialized oracles from Section 5.4)
as they are nearly identical to the results for KMMD/NegLog ; however, the efficiency benefits of
NegLogdet are realized for the matrix domain in Section 8.4.2.
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Figure 2. Nonparametric distribution estimation solver performance.

8.4.2. Experiment design. We formulate a continuous relaxation of the experiment design
problem, similar to Boyd et al. [5, Section 7.5]. The variable ρ ∈ R2d is the number of trials to
run for each of 2d experiments that are useful for estimating a vector in Rd. The experiments are
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described by the columns of V ∈ Rd×2d and we require that 2d experiments are performed. We
minimize a convex spectral function of the information matrix:

minρ∈R2d φ(V Diag(ρ)V ′) : (120a)
tr(ρ) = 2d, (120b)

ρ≥ 0, (120c)

where V ′ is the transpose of V and Diag(ρ) is the diagonal matrix of ρ. For four different φ on Sd
⪰

and various d, we build random instances of Equation (120). The solver timings are summarized
in Figure 3. Since ECOS does not support Sd

⪰, we only compare with MOSEK. The Hypatia-
NegLogdet curve indicates that Hypatia with Klogdet is somewhat more efficient than Hypatia with
the equivalent KMMD/NegLog formulation; this is due to our oracle specializations in Section 5.4
and our implementation using a Cholesky factorization rather than an eigendecomposition.
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Figure 3. Experiment design solver performance.
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8.4.3. Central polynomial Gram matrix. Suppose we have a polynomial of degree 2k in
m variables. Let L =

(
m+k
m

)
and U =

(
m+2k

m

)
, and let b ∈ RU be the monomial coefficients of the

polynomial. We seek a Gram matrix ρ∈ SL corresponding to b [34, Lemma 3.33] that minimizes a
convex spectral function φ:

minρ∈SL φ(ρ) : (121a)
C vec(ρ) = b, (121b)

where the matrix C ∈RU×L(L+1)/2 maps the Gram matrix to the (lower-dimensional) polynomial
coefficient space. We build random instances of Equation (121), varying m∈ {1,4} and k (depending
on m). Recall from Table 1 that ConjNegEntr and ConjPower-1.5 are defined on Sd, but NegEntr
and MatPower12(1.5) are only defined on Sd

⪰, which implicitly requires that b be a sum of squares
polynomial and hence globally nonnegative. The solver timings are summarized in Figure 4 (a
log-log plot).

8.4.4. Classical-quantum channel capacity. We compute the capacity of a classical-
quantum channel, adapting the formulation from Sutter et al. [41, Example 2.16] and Fawzi and
Fawzi [14, Section 3.1]. The variable ρ∈Rd is a probability distribution on the d-dimensional input
alphabet. For i∈ JdK, let Pi ∈Hd

⪰ be fixed density matrices satisfying tr(Pi) = 1. Letting φ represent
the trace of NegEntropy on Hd

⪰, the formulation is:

minρ∈Rd φ
(∑

i∈JdK ρiPi

)
−
∑

i∈JdK ρiφ(Pi) : (122a)

tr(ρ) = 1, (122b)
ρ≥ 0. (122c)

We generate random instances of Equation (122), varying d. The solver timings are summarized
in Figure 5.

8.5. Inverse Hessian product oracle. To illustrate the importance of our efficient and
numerically stable oracle procedures, we compare the performance of two different approaches to
computing the inverse Hessian product oracle H̄ in Equation (41c) for KMMD cones. The naive
approach is to compute the explicit Hessian matrix, perform a Cholesky factorization, and use a
direct linear solve. Alternatively, we derive a closed-form formula for H̄ in Equation (67), since
KMMD is a special case of Kp with a separable spectral function. This formula is essentially as
easy to compute as the Hessian product oracle H in Equation (50) (which does not use an explicit
Hessian matrix). In Table 2, we compare the worst-case memory and time complexities for these
procedures.

Table 2. Cone dimension and worst-case complexities for the two
inverse Hessian product procedures.

closed-form formula factorize and solve

V dim(KMMD) memory time memory time

Rd O(d) O(d) O(d) O(d2) O(d3)

Sd or Hd O(d2) O(d2) O(d3) O(d4) O(d6)

To compare the practical performance of these procedures, we perform computational exper-
iments using Hypatia. We first solve NF instances of a range of sizes for the examples from
Section 8.4.1 (with V = Rd) and Section 8.4.2 (with V = Sd), using KMMD with the NegEntropy
function. For each instance, at Hypatia’s final PDIPM iterate, we take the direction p̃ = g (i.e.
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Figure 4. Central polynomial Gram matrix solver performance.

the gradient oracle in Equation (41a) at the iterate) and compute H̄ for this direction using both
procedures. To measure the numerical accuracy of each procedure, we compute ϵ := |1−ν−1⟨H̄, g⟩|,
which measures the violation of a particular identity [31, Equation 2.5] satisfied by a logarithmi-
cally homogeneous function such as the LHSCB Γ with parameter ν = 2+ d. We also time each
procedure, excluding Hessian memory allocation time for the factorization-based procedure.
Our results are displayed in Figure 6. The Cholesky factorization fails at d = 3000 for the Rd

example and at d= 20,50,200 for the Sd example; when this occurs, Hypatia uses a Bunch-Kaufman
factorization as a fallback (note Julia calls performant OpenBLAS routines for the Cholesky and
Bunch-Kaufman factorizations). Note that we loosen the convergence tolerances specified in Sec-
tion 8.3 by a factor of 100, so that the factorization-based procedure fails less often. These com-
parisons demonstrate that our closed-form formula generally allows computing H̄ faster and with
greater numerical accuracy. Also, the closed-form procedure is much more memory efficient than
the factorization-based procedure, as it never forms an explicit Hessian matrix.
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Figure 5. Classical-quantum channel capacity solver performance.
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Figure 6. Speed and logarithmic homogeneity condition violation.
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