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The purpose of this study is to gain insights on the nature of the electrostatic energy of interaction
between two uniformly charged hemispherical surfaces with constant surface charge density. The
present system of these two interacting bodies represents a very difficult scenario since hemispherical
surfaces lack the spherical symmetry of a uniformly charged spherical surface or a solid sphere
counterpart. For this reason, an exact analytical calculation of the electrostatic interaction energy
is not possible for an arbitrary orientation. However, this work shows that analytical results are
possible for scenarios where the system of the two interacting hemispherical surfaces manifests some
form of inherent symmetry. We identify such situations where combination of suitable mathematical
tools appropriate for the axial symmetry together with transformations that apply to a spherical
system of coordinates can reduce the difficulty of the problem. We show that there are some special
cases where this very difficult integral problem can be reduced to a simpler one of summation of an
infinite series. The approach is illustrated by showing explicitly the calculation of the interaction
energy between the two uniformly charged hemispherical surfaces when they are brought together

so that they are touching each other across the ”equator”.
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I. INTRODUCTION

The calculation of the electrostatic energy of inter-
action between two charged bodies is impossible to be
carried out in analytical form if the two bodies have
an arbitrary shape. As a result, the main focus of an-
alytical studies in electrostatics! © are systems consist-
ing of regular bodies possessing some symmetry such as
spherical surfaces/shells, solid spheres, disks, rings, etc.
Even for these cases, calculations are very difficult if the
charge distribution is arbitrary or unknown. In many
cases, the equilibrium charge distribution (that makes a
body an equipotential) is impossible te determine ana-
lytically if the body is slightly more complicated than a
spherical suface or a disk” . Given the situation, a very
common approach widely used is to assume a uniform
distribution of charge over the volume/surface/length
of the bodies resulting, respectively, in a constant vol-
ume/surface/length charge density!0:!!.

A perfect example of a body that illustrates such a
point of view would be a charged hemispherical surface,
namely, one of the halves of a spherical surface as di-
vided by the ”equator”. The equilibrium charge distri-
bution on a spherical surface (that makes the body an
equipotential) happens to be a uniform charge distribu-
tion. However, this does not mean that the equilibrium
charge distribution on a hemispherical surface will remain
uniform if the two halves of the spherical surface are di-
vided from the whole. In fact, as far as we know, finding
the equilibrium charge distribution on a hemispherical
surface remains an unsolved problem. Therefore, in order
to shed some light on the electric properties of a charged
hemispherical surface one assumes that the charge is uni-
formly distributed resulting in a constant surface charge
density. A uniformly charged hemispherical surface lacks
spherical symmetry, but may offer the possibility of an

analytical treatment by virtue of the system still retain-
ing axial symmetry.

In view of these considerations, the wishful thinking is
that one might be able to calculate the electrostatic en-
ergy of interaction between two uniformly charged hemi-
spherical surfaces as long as the two bodies are not ar-
bitrarily positioned in space relative to each other. This
means that it is essential to have such a configuration of
this system that retains some form of symmetry. With a
little bit of thinking one reaches the conclusion that a ge-
ometric configuration that has axial symmetry is one rep-
resented by two identical uniformly charged hemispheri-
cal surfaces that are coaxial, for instance, in such a way
that their ”equatorial” planes are parallel and separated
by an arbitrary finite distance or, at the most, they can
be so close that they touch each other on the ”equa-
tor”. In this work, we consider precisely this system and
attempt an exact analytical calculation of the resulting
electrostatic energy of interaction. It turns out that even
this setup is a very challenging. The only instance that
led to an exact analytical result is the one where the two
hemispherical surfaces are brought together so that they
are touching across the ”equator”.

The paper is organized in the following form: In Sec-
tion II we introduce the model under consideration and
explain some basic theoretical concepts. In Section IIT
we show the key mathematical calculations and the main
results that we obtained. In Section IV we summarize
the essence of the work and give few concluding remarks.

II. MODEL

Let us consider a system consisting of two identical
uniformly charged hemispherical surfaces each with ra-
dius, R and each containing the same amount of charge,
Q. This means that the charge distribution in each of the
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FIG. 1: A system of two identical uniformly charged hemi-
spherical surfaces with radius, R and containing the same
amount of charge, Q. The two hemispherical surfaces are
considered coaxial. The ”equatorial” plane of the ”"southern”
hemispherical surface is on the z = 0 plane of the system
of coordinates while the ”equatorial” plane of the "northern”
hemispherical surface is on an arbitrary z > 0 plane. For sim-
plicity of view, the system is projected on the y = 0 plane.

two hemispherical surfaces has a constant surface charge
density:

o= @)

The two hemispherical surfaces are coaxial. The respec-
tive "equatorial” planes of the two hemispherical surfaces
are parallel to each other and are separated by an arbi-
trary distance that may become zero when the two planes
touch each other across the ”equator”. The system pro-
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where dQ1 = o R? sin#; df; d¢; is an elementary surface
on Body 1, dQy = o R? sinfy df, doy is an elementary
surface on Body 2 and 6;, ¢; (i = 1,2) are, respectively,
the polar and the azimuthal (longitudinal) angles. The
calculation of the above quantity in Eq.(3) is not straight-
forward. Nevertheless and despite the challenges, we suc-
ceeded on calculating it exactly. We achieved this succes
by using an approach that we recently applied to the
calculation of the electrostatic self-energy of a uniformly
charged hemispherical surface!?.

jected on the y = 0 plane is shown in Fig. 1. The system
of coordinates is shown in Fig. 1 with origin chosen to
correspond to the center of the ”southern” hemispherical
surface. Based on this setup, the "northern” hemispher-
ical surface (Body 1) has its "equatorial” plane at some
arbitraty z > 0 plane. On the other hand, the ”south-
ern” hemispherical surface (Body 2) has its ”equatorial”
plane on the z = 0 plane all the time. The special sit-
uation of the two hemispherical surfaces touching each
other accross the ”"equator” occurs when we have z = 0
for the "northern” hemispherical surface.

The electrostatic energy of interaction between the two
bodies is denoted as Uj2(z) since we know from the sym-
metry of the problem that it will depend only on the
variable, z and reads:

1
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where k. is Coulomb’s electric constant, d@Q; is an ele-
mentary charge located on the "northern” hemispherical
surface (Body 1) at position vector, 71, dQs is an ele-
mentary charge located on the ”southern” hemispherical
surface (Body 2) at position vector, 7. The domain of
integration for Body 2 is easy to write in spherical coordi-
nates. However, the domain of integration for Body 1 is
not at all easy to write in spherical coordinates if z > 0.
Our efforts to obtain an analytical result for Ujs(z) at
an arbitrary z > 0 separation were not succesful with
the exception of the case z = 0 that we report in this
work. As one will see, even this special case, is quite dif-
ficult. The case z = 0 corresponds to that scenario where
the two hemispherical surfaces touch each other on the
”equator” with coinciding equatorial planes both on the
z = 0 plane. It is simple and we leave it to the reader to
check that, indeed, the domains of integration in spher-
ical coordinates simplify considerably when z = 0. For
such a configuration, one has:
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A drawing of the system of two uniformly charged
hemispherical surfaces for such a case projected on the
y = 0 plane is shown in Fig. 2. This drawing is useful for
the representation of the three-dimensional (3D) vectors
71, T2 and key angular variables in spherical coordinates
that appear in the expression of Eq.(3) as well as subse-
quent calculations.
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FIG. 2: Two identical uniformly charged hemispherical sur-
faces with radius, R containing the same amount of charge,
Q@ are brought close together as to touch each other along
the "equatorial” (z = 0) plane. The polar angles, ; and 62
for the respective 3D vectors, 71 and 7> are explicitly shown.
The angle, 7 is the angle between these two vectors and, for
the present system of spherical coordinates, is calculated from
cosy = cos 61 cos O3 + sin 6 sin 02 cos(¢p1 — ¢2). For simplicity
of view, the system is projected on the y = 0 plane.

III. CALCULATIONS AND RESULTS

The mathematical approach that we mentioned relies
on the theory of Legendre polynomials and the following
well known expansion of the Coulomb term:
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where r. denotes the smaller of r; = || and 9 = |7,

r~ denotes the larger of r; and ro, P;(cos ) are Legendre

polynomials and v is the angle between the two vectors

71 and 75. The above expansion is always valid when

T1 7é 9.

However, the case in Eq.(3) corresponds to:

(5)

By following the remarks in pg. 740 of Ref.[ 13] one can
prove that:
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except for angles v = 0 and 7 where the infinite sum
diverges. The case r; = r5 = R and v = 0 means that
71 = T and, thus, it is obvious that there is a singularity.
The case 71 = ro = R and v = 7 is a peculiarity. How-
ever, replacing 1/| — 72| by the infinite sum in Eq.(6)

and avoiding the special angle v = 7 from the integra-
tion process is not going to cause any trouble when the
integrals are calculated.

After sheding some light on this technical point, one
substitutes the Coulomb term given by the expansion
from Eq.(6) into Eq.(3). Keeping an eye on the specific
details of the current model but by following the same
mathematical steps as in Ref.[ 12] one obtains:
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The quantity in Eq.(7) that we want to calculate involves
integrals of Legendre polynomials over half a range and
an infinite sum over such resulting integrals. It turns out
that all these integrals can be done exactly in analytical
form as shown for some values of [ in Table. I.

Uia(z =0) =

TABLE I: Exactly calculated integrals for few values of [
ranging from [ = 0 to lmaez = 10 where the chosen value
of l;maz = 10 has no particular significance except for being
sufficiently small as to lead to a quick exact calculation of the
integrals.

L[} dw P(x)| [, dv Pi(x)
0 1 1

1 1/2 -1/2
2 0 0

3] -1/8 1/8
4 0 0

50 1/16 -1/16
6 0 0

71 -5/128 5/128
8 0 0

9| 7/256 -7/256
10 0 0

A useful mathematical result that one can easily prove
is:

0 1
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This mathematical formula allows us to write the expres-
sion for Uja(z = 0) in Eq.(7) as:
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where
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By knowing that [ dz Po(z) = 1 and [, dz Pyy(z) =
0 ; k=1,2,... one writes C in Eq.(10) as:
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1 2
0:1—§:[OMfﬂHu4. (11)

k=0

With help from Eq.(13) of Ref.[ 12] one can express the
constant C' in Eq.(11) as:
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We used symbolic computation software!* to calculate
the above finite sum with the final result:

c—2-1. (13)
T
Hence, the electrostatic energy of interaction between
two uniformly charged hemispherical surfaces that are
brought together so that they are touching across the
”equator” has the exact value:
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where each of two hemispherical surfaces has radius, R
and charge, Q. At this juncture, we also became aware
that the correctness of the above result can be checked by
a simpler line of analysis. We mentioned earlier that, in
a previous work'? we were able to calculate the electro-
static potential energy stored in a hemispherical surface
with uniform surface charge distribution. In the work in
question, we showed that the self-energy of a uniformly
charged hemispherical surface with total charge @) equals
(2/m) ke Q?/R. Since the "northern” hemispherical sur-
face is identical to the ”southern” one, the self-energies of
each of them are equal, Uy; = Upe = (2/7) ke Q?/R. The
full spherical surface (with total charge, 2Q) formed af-
ter the two hemispherical surfaces touch each other along
the "equator” will have a self-energy of (1/2) k.(2Q)?/R.
The self-energy of the uniformly charged spherical sur-
face (with total charge 2 (@) must equal the sum of the
self-energies of its two hemispherical surfaces (each with
charge @), plus the energy of interaction, Uy2(z = 0) be-
tween them. It is reassuring to see that the expression in
Eq.(14) follows from here confirming again the exactness
of our result derived via a whole different approach.

As stated earlier, an analytical result for Uja(z > 0)
does not seem possible to attain by using the current
method. It is quite likely that it is impossible to calculate
exactly Uja(z > 0) in analytic form with any method.
Therefore, numerical methods are the only tools left that
could be used in future works to calculate Uj2(z > 0)
for the configuration in Fig. 1 at an arbitrary separation
z > 0. As in any numerical implementation, one must
carefully control and scrutinize the numerical accuracy
of such calculations.

Combining numerical and analytical results would sub-
stantially increase the utility of the work while retaining
the interesting mathematical derivation. In this sense,
the current exact result for Uja(z = 0) can serve as a
gauge to measure the accuracy any numerical calcula-
tion that, in principle, can be applied at arbitrary values
of z > 0. From a more practical perspective, the sys-
tem depicted in Fig. 1 can also be viewed as a capacitor
with electrodes having a hemispherical shape, but, for
such a case, the respective hemispherical surfaces should
contain +@) charges. Capacitance can be derived from
the total energy stored for such a system and, thus, the
present calculations help in this direction.

IV. CONCLUSIONS

The only instances where we have seen the model of
two coaxial uniformly charged hemispherical surfaces be-
ing considered is from the perspective of the net force
exerted by one hemispherical surface on the other un-
der the assumption that they are touching each other on
the "equator”'® 7. For such an occurrence, the prob-
lem is solved by using symmetry arguments and special
methods that do not apply to the calculation of the en-
ergy of interaction between them. This is a hint that
the counterpart calculation of the electrostatic interac-
tion energy between two coaxial uniformly charged hemi-
spherical surfaces is a much more complicated problem
as highlighted by this work.

The objective of this study is to address this issue and
gain some insight on the nature of the electrostatic en-
ergy of interaction between these two bodies. Despite the
fact that the two interacting hemispherical surfaces are
coaxial, it turns out that this a very challenging prob-
lem to tackle. As a result, we found out that an exact
analytical calculation of the electrostatic interaction en-
ergy is not possible for an arbitrary separation except for
the special case when the two hemispherical surfaces are
touching accross the ”equator”. For such a situation, a
combination of suitable mathematical tools and expan-
sions appropriate for the axial symmetry of the system
reduces the difficulty of the problem. As shown in this
work, the starting very difficult integral problem can be
ultimately simplified to the calculation of an infinite sum
which can be done exactly.

As final remarks, we point out that this work can be
of interest to a wide audience of researchers working on
the field of electrostatics'® or opto-electronic materials'®.
Furthermore, the exact analytical result obtained can
also be helpful to researchers dealing with numerical cal-
culations. For example, it can be utilized to test and
enhance the accuracy and the stability of computarional
routines used in numerical calculation of integrals2’.
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