Detailed study of an ultra-small Pauli crystal
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Abstract

Particular geometric arrangements, called Pauli crystals, have been conjectured to exist in a
two-dimensional system of free fermions under harmonic confinement. The fermions are neutral
fermionic atoms with frozen spins. The question whether such crystalline structures do really exist
is open for discussion. We adopted an effective statistical interaction potential approach to study
such structures in the past, but without conducting a detailed analysis of their stability. In this work,
we point out the fact that the smallest Pauli crystal that contains three fermions can be studied
exactly within the framework of our approach. This means that we can predict the structure, size
and geometry at any temperature where the Pauli crystal, presumably, emerges. Our results for
three fermions appear to be in good quantitative agreement with the reported values of Pauli crystals
seen in single-shot imaging data at a specific temperature. However, it is remarked that the size of
the crystal is temperature-dependent in our approach. This feature seems to have gone unobserved

and/or unnoticed in earlier work.
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I. INTRODUCTION

The Pauli exclusion principle states that two fermions
cannot have the same values for all their quantum num-
bers [1]. The Pauli exclusion principle has countless im-
portant applications in quantum mechanics [2, 3] and
helps explain an extensive range of physical phenomena
that are relevant to many disciplines [4-11]. For exam-
ple, given that electrons are fermions, one particularly
important consequence of the Pauli exclusion principle is
the elaborate electron shell structure of atoms. In turn,
this helps us explain the structure of the periodic table of
elements. Based on our current knowledge, the conven-
tional understanding is that a system of free fermions (in
the sense that they are non-interacting with each other)
should behave as a quantum gas.

However, recent work [12-14] focused on confined sys-
tems of free fermions in a two-dimensional (2D) har-
monic trap has conjectured the possible existence of crys-
talline structures, called Pauli crystals. Emergence of
such structures in total absence of interaction between
fermions is a very surprising scenario that has stimulated
few other studies including some work ruling out their
existence [15]. The idea of formation of crystalline struc-
tures would have been acceptable and not controversial
if there were interactions, no matter how weak, between
fermions. There are precedents for systems of interacting
fermions stabilizing into a crystallline state in the form of
Wigner crystals of electrons [16, 17] or Coulomb crystals
of ions [18]. However, in the case of Pauli crystals, it is
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remarked that there is no interaction between fermions.
This means that Pauli crystals, should they exist, have a
different origin.

The present authors have been the first to introduce
a theoretical model for the description of a Pauli crystal
with an arbitrary number of fermions, at an arbitrary
temperature, for a model of free fermions in a 2D har-
monic trap [19, 20]. We used the statistical interaction
potential approach [21] to treat a quantum system of free
fermions (that abides to the Pauli exclusion principle)
as an ensemble of classical particles interacting with the
above-mentioned interaction potential. In simple words,
the statistical interaction potential tends to mimic the
quantum statistics of the fermions. Having adopted this
model, we carried out numerical work to calculate the
minimum energy configuration that would correspond to
various systems of fermions at a limited number of se-
lected temperatures. In this work, we focus our atten-
tion on an ultra-small Pauli crystal consisting of only
N = 3 fermions. Such a system caught our attention,
not only because it is the simplest Pauli crystal that po-
tentially may exist, but because it seems to be the only
one that allows a fully exact analytical treatment within
the framework of the statistical interaction potential ap-
proach.

The results that we obtain for the Pauli crystal of
N = 3 fermions show that the minimum energy configu-
rations in this model is an equilateral triangle consistent
with the symmetry of the system, as expected. However,
the crucial point of our findings is the clear temperature-
dependence of the equilibrium parameters of the crys-
talline structure. One may, casually, choose a specific
temperature and find that the size of the crystal obtained
is in quite good quantitative agreeement with the orig-
inal work reported in Ref.[12, 13]. However, change of



the temperature, in our model, would lead to a change
of the size of the Pauli crystal in a predictable way. Such
an effect, in our view, should have been noticed in recent
quantum experiments that presumably showed existence
of a Pauli crystal [22]. Absence of it, in our view, raises
questions that, hopefully will be fully answered in future
work.

II. GENERAL APPROACH

Let us consider a system of IV free identical fermions
with mass, m and frozen spins. They can be thought
as, typically, a cloud of neutral fermionic atoms. The
fermions do not interact with each other, but they are
confined in a 2D isotropic harmonic trap with angular
frequency, w. The center of the trap corresponds to the
origin of the system of coordinates. It is straightforward
to write down an expression for the quantum Hamilto-
nian of the system of N fermions as:
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where p' = (Pw, Py) is the 2D linear momentum operator
and 7 = (z,y) is the 2D position vector of the fermions.
The one-particle wave functions that solve the stationary
Schrédinger equation for such a case are well known:
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where N, is a normalization constant, i, () is a Her-
mite polynomial, n; , = 0,1,... are the allowed quantum

numbers and
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is the harmonic oscillator length. The corresponding en-
ergies for a quantum state labeled as (ng,n,) are:
Engn, = (nz +ny +1)hw 5 ngy,=0,1,... . (4)
The allowed discrete energies, hw, 2hw, 3hw, can also
be written as: E, = (n+ 1) hw where n = n, +n, =
0,1,2,.... Each energy value, E,, is (n+1) times degener-
ate. At absolute zero temperature (T’ = 0), the system of
N fermions fills the quantum states starting from n =0
to a maximum, n,,q.. If all quantum states correspond-
ing to an energy level are occupied, that energy shell is
completely filled. It easy to estimate for fermions with
frozen spins, that systems where the number of particles
is N = 1,3,6,10,15,21,... correspond to filled energy
shells. As long as the fermions are not interacting with
each other, a (normalized) many-body ground state wave
function consistent with Pauli exclusion principle can be
written as a Slater determinant wave function of occupied

one-particle states,

V() = o Det{unn ()} )
where (niy, n;y,) represents the quantum state and 7; =
(xj,y;) is a 2D position vector for each of the j =
1,..., N particles. For a system of N = 3 particles,
one fermion has an energy, iw and occupies the state
(0,0) while the two other ones have an energy, 2 hw and
occupy, respectively, the states, (1,0) and (0, 1).

In the single-shot measurements where Pauli crystals
were detected, one attempts to determine the position
configuration of IV fermions that maximizes the value of
|U(7,...,7n)|* at a given nonzero temperature, 7' > 0.
It was found that the most probable configurations ob-
served had a distinct crystalline nature if the number N
of fermions corresponds to filled shells [12]. For the case
of N = 3 particles, a Wigner crystal with the geome-
try of an equilateral triangle was observed [12-14]. The
temperature considered was T = 1hw/kp where kp is
Boltzmann’s constant.

At temperatures, T' > 0, fermions occupy the quan-
tum states according to the Fermi-Dirac distribution. If
temperature is high, the system can be treated as a non-
degenerate ideal gas with Boltzmann statistics. The first
quantum correction to the classical partition function of
an ideal gas can be rigorously calculated by following a
recipe developed by Uhlenbeck et al. [21]. The central
notion of the method is the mapping of non-interacting
fermions into a classical interacting system via the so-
called Uhlenbeck’s effective temperature-dependent sta-
tistical interaction potential. This correction has the
same effect as endowing the particles with an inter-
particle effective statistical interaction potential, v4(r)
and treating the system classically. The statistical po-
tential between quantum particles (case of fermions) that
arises from the symmetry properties of the N-particle
wave function can be written as:

v(r)=—kgT ln{l — eXp(f27T’l"2/>\2)i| , (6)

where A represents the mean thermal wavelength param-

eter defined as:
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If A is small relative to a typical interparticle separation,
the system of fermions is approximately classical at that
temperature. One can easily verify that the statistical
interaction potential between two of fermions is highly
"repulsive” at short separation distances.

This approach allows one to map the system of N non-
interacting fermionic quantum particles (that obey quan-
tum statistics) to a system of N interacting classical par-
ticles whose total energy under an isotropic 2D harmonic
confinement can be written as:
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where v(r;;) is given from Eq.(6), 7;; = |F; — ;| repre-
sents the 2D inter-particle separation distance and 7; are
2D position vectors. The energy of the system can be
conveniently expressed in units of Aw and the distances
in units of . In these units, the total energy of the clas-
sical system of N interacting particles in the given 2D
harmonic trap reads:
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is a dimensionless temperature parameter and [y is the
harmonic oscillator length defined in Eq.(3). It is easy to
verify, by comparing Eq.(7), Eq.(10) and Eq.(3), that
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which explains the form of the argument of the expo-
nential function in Eq.(9). Furthermore, note that we
denoted the total energy in Eq.(9) as En(«) in order to
draw attention to the fact that the value of this quantity
depends on the parameter « (thus, temperature).

III. RESULTS AND DISCUSSION

The lowest energy crystalline configuration found for
N = 3 fermions is an equilateral triangle with its cen-
ter corresponding to the center of the harmonic trap as
we thoroughly checked through Monte Carlo calculations
with the simulated annealing method. This geometric ar-

FIG. 1: An equilateral triangle represents the minimum en-
ergy configuration for a system of N = 3 fermions under 2D
harmonic confinement.

rangement is the same as one reported in Ref. [12].

The importance of the N = 3 model is that we can
proceed and calculate exactly all the quantities of inter-
est at any given temperature as a function of the param-
eters that characterize the system. The geometry of the
N = 3 Pauli crystal is shown in Fig. 1. The distances of
each of the three fermions at the vertices of the equilat-
eral triangle from the center of the 2D harmonic trap are
written as:

rHI=To=Tr3=". (12)

It is easy to verify that, for an equlaterial triangle, the
separation distances, r;; = |F; — ;| can be expressed in
terms of 7 as:

T12 = T23 =T31 = \/§T . (13)

For the case of the equilateral triangle configuration,
the total energy of the system for the NV = 3 fermions
reads:
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where the argument of the energy shows explicitely the
dependence on the variable r after one has used the re-
sults in Eq.(12) and Eq.(13).
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FIG. 2: Dependence of rmin/lo as a function of « for the case
of the equilateral triangular crystal where 7., is the distance
of each fermion from the center of the harmonic trap that
gives rise to a minimum of total energy and o = kg T/(hw)
is the dimensionless temperature parameter. Distances are
expressed in units of the harmonic oscillator length, lo.

To find the lowest energy configuration at any given
temperature, we minimize the energy En—s(«,r)/(hw)
with respect to r which is the only parameter to optimize.



This way one obtains the optimal distance, r that gives
rise to the minimum energy. We denote this quantity as
Tmin and we calculate it analytically as a function of a.
The final result reads:
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The dependence of 7., /1o as a function of the dimen-
sionless temperature parameter, « is shown in Fig. 2.

By subsituting the value of 7., from Eq.(15) into
Eq.(14) one can calculate the corresponding minimum
energy, En—s(a, rmin) as a function of parameter, a. The
result found is:

En—s(a,Tmin) _ In (602 +1) Y <1 B 1 ) .
hw 2a 6a2+1

(16)

The dependence of En_3(c, rmin)/(hw) as a function

of the dimensionless temperature parameter, « is shown

in Fig. 3. The dependence of total minimum energy as

En=3(0,Tmin)
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FIG. 3: Dependence of En=3(c, rmin) (in units of Aw) as a
function of @ = kp T'/(Aw).

a function of « is qualititively similar to that of r,,;, in
terms of a. Since 7,4, measures the size of the triangular
crystal, the most striking conclusion is that the largest
of such crystals will be observed at temperatures that,
crudely, correspond to values of o between 0.5 and 1.0.
In our opinion, the question of the nature of the Pauli
crystals should have a relatively clear answer for the case
of N = 3 fermions. In other words, a triangular Pauli
crystal can be distinguished from its triangular Wigner
counterpart (case of three point charges under the same
type of 2D harmonic confinement) for manifesting its pe-
culiar non-monotonic dependence of its size as a function
of temperature.

IV. CONCLUSIONS

The key objective of this work is to investigate an-
alytically the properties of a possible ultra-small Pauli
crystal consisting of only N = 3 fermions. The reason
why we studied such a small N in this work is to gen-
erate results that can be fully analytically checked. We
adopted an effective statistical interaction potential ap-
proach [21] that captures both qualitatively and quanti-
tatively the physics of a Pauli crystal and can be solved
exactly. It is found that the lowest energy structure for
a system of N = 3 fermions under 2D harmonic confine-
ment calculated at an arbitrary temperature is an equi-
lateral triangle with center corresponding to the center of
the harmonic trap. This is in agreement with the Pauli
crystal structure recently reported [12]. It appears that
the model considered in our work, despite its simplicity,
is able to capture both qualitatively and quantitatively
the essential features of few-body Pauli crystals.

Our results for three fermions show that the size
of the triangular Pauli crystal is heavily dependent on
the temperature. This is consistent with the fact that
the effective statistical potential, to start with, involves
a temperature-dependent characteristic length, namely,
the mean thermal wavelength, A. Obviusly, the ap-
proach has limitations in its applicability since, after
all, it is a classical approximation at the pair level to
high-order quantum correlations. Nevertheless, we be-
lieve that the observation that the size of the crystal must
be temperature-dependent should be a feature associated
with real quantum Pauli crystals, too. From our under-
standing of earlier work, this feature seem to have gone
unobserved or not studied in detail. We believe that size,
geometry, shape of a Pauli crystal, should this crystal in-
deed exist, must manifest some form of temperature de-
pendence. This observation would be consistent, at least
qualitatively, with the findings of the current work.

The general expression for the energy of N = 3
fermions, for an arbitrary a, depends only on one variable
that determines its size. Therefore, one can minimize the
energy exactly to determine the optimal size of the trian-
gular Pauli crystal at any given arbitrary temperature,
namely, obtain 7,,,,/lp as a function of the variable a.
The plot of the dependence 7, /lo as a function of «
indicates that there is a specific temperature that leads
to the formation of the largest possible triangular crys-
tal. For any other temperature, the size of the structures
is smaller than this specific one. This means that the
findings of our work may be tested experimentally by
analyzing the size of the N = 3 triangular Pauli crystal
as a function of the temperature in the appropriate tem-
perature range specified by our model. Results for Pauli
crystals reported in previous work [12, 13] typically in-
volve the choice of parameter o = 1. Such results, when
extended to different values of o, should show variations
of the size of the triangular structure in the vicinity of
the value of a for whom the largest Pauli crystal is ob-
served within the framework of the statistical interaction



model adopted in this work.
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