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Abstract. We consider a two-dimensional electron gas in the thermodynamic (bulk) limit. It
is assumed that the system consists of fully spin-polarized (spinless) electrons with anisotropic
mass. We study the variation of the shape of the expected elliptical Fermi surface as a function
of the density of the system in presence of such form of internal anisotropy. To this effect,
we calculate the energy of the system as well as the optimum ellipticity of the Fermi surface
for two possible liquid states. One corresponds to the standard system with circular Fermi
surface while the second one represents a liquid anisotropic phase with a tunable elliptical
deformation of the Fermi surface that includes the state that minimizes the kinetic energy. The
results obtained shed light on several possible scenarios that may arise in such a system. The
competition between opposing tendencies of the kinetic energy and potential energy may lead to
the stabilization of liquid phases where the optimal elliptical deformation of the Fermi surface
is non-obvious and depends on the density as well as an array of other factors related to the
specific values of various parameters that characterize the system.

1. Introduction

The model of a two-dimensional electron gas (2DEG) of electrons with constant isotropic
(effective) mass is one of the most studied models in condensed matter physics [1, 2, 3, 4, 5, 6, 7].
At absolute zero temperature and in absence of interactions, the electrons occupy all the quantum
states inside a circular Fermi disk in reciprocal space [8]. These quantum states are typically
associated with plane wave states that arise when we solve the quantum problem for a two-
dimensional (2D) box after imposing periodic boundary conditions. In the common jellium
approximation one guarantees the overall charge neutrality of the system by filling the 2D box
with uniformly distributed positive charge that represents the neutralizing background.

On the other hand, the 2DEG model for electrons possessing an anisotropic (effective) mass [9]
is much less studied. For such a case, based on naive considerations, one expects that an
(effective) anisotropic mass will lead to a specific elliptical deformation of the Fermi surface
in order to minimize the kinetic energy. However, the role of the potential energy term is
overlooked in this discussion. It turns out that kinetic energy and potential energy terms have
opposing tendencies under an elliptical deformation of the Fermi surface. This fact calls for a
more detailed study of the interplay between these two terms in presence of such form of internal
anisotropy of the system as represented by the (effective) mass anisotropy of the electrons.

In our work we study a 2DEG in the thermodynamic (bulk) limit. For simplicity, we
assume that the system consists of fully spin-polarized (spinless) electrons with anisotropic
mass. The jellium approximation is used and the quantum state of the electrons is described



by an anti-symmetrized Slater determinant wave function of plane waves [10] as required by
Pauli’s exclusion principle. Two distinct liquid states of electrons are considered: (i) A standard
isotropic liquid phase with circular Fermi surface; and (ii) A liquid anisotropic phase with a
tunable elliptical deformation of the Fermi surface that includes the state that minimizes the
kinetic energy. It is shown that the competition between opposing tendencies of the kinetic
energy and potential energy may lead to the stabilization of liquid phases where the optimal
elliptical deformation of the Fermi surface is non-obvious and depends on several factors.

2. Theory and model

Let us consider a 2DEG system of N electrons with anisotropic mass, mx and my( 6= mx)

immersed in a 2D region, Ω :
{

−L
2 ≤ x, y ≤ +L

2

}

. We assume a spin-polarized (spinless) system

of electrons. The electron number density of the system reads:

ρ0 =
N

L2
. (1)

Density remains constant in the N → ∞, L → ∞ limit. We must remember that, differently
from other conventional 2DEG systems treated in the literature [11, 12], the current model
assumes an anisotropic (effective) mass for the electrons. The Hamiltonian is:

Ĥ = T̂ + Û , (2)

where

T̂ =
N
∑

i=1

[

p̂2ix
2mx

+
p̂2iy
2my

]

, (3)

is the kinetic energy operator and

Û = Ûee + Ûeb + Ûbb , (4)

is the potential energy operator. The potential energy operator in Eq.(4) includes the electron-
electron (ee), electron-background (eb) and background-background (bb) interaction energy
terms written as:

Ûee =
1

2

N
∑

i=1

N
∑

j 6=i

v(|~ri − ~rj |) , (5)

Ûeb = −ρ0

N
∑

i=1

∫

Ω
d2r ′ v(|~ri − ~r ′|) , (6)

and

Ûbb =
ρ20
2

∫

Ω
d2r

∫

Ω
d2r′ v(|~r − ~r ′|) , (7)

where v(|~ri−~rj |) = ke e
2/|~ri−~rj | represent the Coulomb interaction energy between two electrons

with charge, −e (e > 0) at a distance rij = |~ri − ~rj | and ke is Coulomb’s electric constant.

If electrons fill a circular Fermi surface, all vectors, ~k would be in the region |~k| ≤ kF where:

k2F = 4π ρ0 . (8)

where kF represents the value of the Fermi wave number for a circular Fermi surface. However,
if the electrons fill an elliptically deformed Fermi surface, all the vectors, ~k would be in the
reciprocal space domain, D~k

written as:

~k ∈ D~k
:

{

k2x
k2a

+
k2y
k2b

≤ 1

}

; ka = αkF ; kb =
kF
α

, (9)



where we introduced a real positive parameter, α > 0 in Eq.(9) consistent with the constraint:
ka kb = k2F . We describe the ground state of the 2DEG by a normalized Slater determinant wave
function of ortho-normalized plane waves

Ψ(α) =
1√
N !

Det
{

φ~k1(~r1), . . . , φ~kN (~rN )
}

; ~k ∈ D~k
, (10)

where the parameter α is shown as argument of the wave function in order to draw asttention
to the fact that we are dealing, in general, with an elliptically deformed Fermi surface. The
state Ψ(α = 1) would represent the case of an isotropic liquid phase with circular Fermi surface.
However, any Ψ(α 6= 1) state represents an anisotropic one with elliptical Fermi surface. The

plane wave states are written as: φ~kj (~ri) =
1√
A
ei

~kj ~ri where A = L2 is the area of the 2D box.

The total energy of the system, which is the expectation value of the Hamiltonian with respect
to the Slater determinant wave function for a system with an elliptical Fermi surface can be
calculated through well-established procedures. The total kinetic energy is:

T (α) =
〈Ψ(α)|T̂ |Ψ(α)〉
〈Ψ(α)|Ψ(α)〉 =

∑

{~k∈D~k
}

[

h̄2 k2x
2mx

+
h̄2 k2y
2my

]

. (11)

The total potential energy is written as:

U(α) =
〈Ψ(α)|Û |Ψ(α)〉
〈Ψ(α)|Ψ(α)〉 = −1

2

∫

Ω
d2r1

∫

Ω
d2r2 |ρ(α,~r1, ~r2)|2 v(r21) , (12)

where Ω is the 2D square box region with area, A = L2 in the thermodynamic limit of L → ∞,
v(r21) is the pair Coulomb interaction potential and ρ(α,~r1, ~r2) =

∑N
j=1 φ~kj (~r1)

∗ φ~kj (~r2) =

1
A

∑

{~k∈D~k
} e

i~k (~r2−~r1) is the so-called one-particle density matrix. Note the negative sign of

the (exchange) potential energy in Eq.(12).

3. Results and conclusions

The kinetic energy per particle denoted as t(α, β) is calculated to be:

t(α, β) =
T (α)

N
=

1

4

h̄2 k2F
2m0

(

α2

β
+

β

α2

)

; β =

√

mx

my
; m0 =

√
mxmy , (13)

where β > 0 is a dimensionless parameter that measures the mass anisotropy and has a given
value. Calculation of the potential energy per particle gives:

u(α) =
U(α)

N
= − 8

3π2
kF ke e

2 F (α) , (14)

where

F (α) =
1

α
K

(

m = 1− 1

α4

)

, (15)

is an auxiliary function that is expressed in terms of K(m), a complete elliptic integral of the
first kind with parameter, m [13]. Note that F (α = 1) = π/2 represents the largest possible
value for this function. This means that the minimum potential energy per particle is always
obtained for α = 1 and has the value:

umin = u(α = 1) = − 4

3π
kF ke e

2 . (16)



The key point that we make here is that, for a given mass anisotropy parameter β, the value
of kinetic energy depends on it, but the potential energy does not. This means the value of
ellipticity that optimizes the kinetic energy depends on β but that value may not be the optimal
one for the potential energy. In fact, it can be proved that kinetic energy has its minimum for
the specific value: α0 =

√
β, resulting in:

tmin = t(α =
√

β, β) =
1

2

h̄2 k2F
2m0

. (17)

On the flip side, the potential energy has its minimum for α = 1 (irrespective of the value β) and,
thus, favors a circular Fermi surface. In short, an elliptical deformation of the Fermi surface for
β 6= 1 decreases the kinetic energy, but increases the potential energy. This means that a sizeable
elliptical deformation is not at all obvious or expected to happen in those instances where the
dominant energy term is the potential energy. This is precisely the situation that happens
when the density of the 2DEG system is relatively low. Density enters in the expressions for
both kinetic and potential energy via the Fermi wave number, kF . After writing the electron
number density as ρ0 = 1/[π (rs aB)

2] where rs is the Wigner-Seitz radius parameter and
aB = h̄2/(kem0 e

2) is some ”effective” Bohr radius (related to mass, m0 =
√
mxmy) one can

prove that (kF rs aB)
2 = 4. Therefore, one concludes that kinetic energy (∝ 1/r2s) and potential

energy (∝ −1/rs) dominate, respectively, at high density (small rs) and low density (large rs).
Thus, for β 6= 1, at relatively low density, the isotropic liquid state, Ψ(α = 1) may have a

total energy per particle, ε(α = 1, β) = t(α = 1, β) + u(α = 1) lower than the total energy per
particle, ε(α =

√
β, β) = t(α =

√
β, β) + u(α =

√
β) of its anisotropic counterpart, Ψ(α0). At

all other higher densities, a 2DEG with elliptical Fermi surface might be favored although it is
very likely that Ψ(α0) is not necessarily the optimum state with the lowest global energy.

In conclusion, the results obtained shed light on interesting scenarios that may arise in a
2DEG system with mass anisotropy. The competition between opposing tendencies of the kinetic
energy and potential energy may lead to the stabilization of liquid phases where the optimal
elliptical deformation of the Fermi surface is non-obvious and may depend on the density of the
system. It is also possible that very little deformation of the Fermi surface may happen at small
density where the potential energy term dominates over the kinetic energy.
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