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ABSTRACT

We complete Dyson’s dream by cementing the links between symmetric spaces and classical random matrix ensembles. Previous work has
focused on a one-to-one correspondence between symmetric spaces and many but not all of the classical random matrix ensembles. This
work shows that we can completely capture all of the classical random matrix ensembles from Cartan’s symmetric spaces through the use
of alternative coordinate systems. In the end, we have to let go of the notion of a one-to-one correspondence. We emphasize that the KAK
decomposition traditionally favored by mathematicians is merely one coordinate system on the symmetric space, albeit a beautiful one. How-
ever, other matrix factorizations, especially the generalized singular value decomposition from numerical linear algebra, reveal themselves to
be perfectly valid coordinate systems that one symmetric space can lead to many classical random matrix theories. We establish the connec-
tion between this numerical linear algebra viewpoint and the theory of generalized Cartan decompositions. This, in turn, allows us to produce
yet more random matrix theories from a single symmetric space. Yet, again, these random matrix theories arise from matrix factorizations,
though ones that we are not aware have appeared in the literature.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0087010

I. INTRODUCTION

Random matrix theory (RMT) is a big subject touching so many fields of mathematics, science, and engineering. For such a subject, it is
helpful to have a means of cataloging the objects to be studied and a theory that covers the objects in the catalog. In 1962, Dyson' * was the
first to propose a systematic approach to RMT. In the beginning of Ref. 4, he states his noble intent:

To bring together and unify three trends of thought which have grown up independently during the last thirty years.

which he enumerates as (i) group representations including time-inversion, (ii) Weyl’s theory of matrix algebras, and (iii) RMT.

Around a decade later, Dyson hit upon the idea that symmetric spaces should play a key role (Ref. 5, Sec. V). Dyson’s suggestion was
taken up in famous papers by Zirnbauer et al.”” and others.”” These papers mainly focus on the noncompact cases. On the mathematical side,
inspired by Katz and Sarnak, """ Duefiez detailed connections to RMT for the compact symmetric spaces.' "’

Nonetheless, we felt there was a gap. When one juxtaposes (i) the well-established theory of classical random matrix ensembles with (ii)
the RMTs associated with symmetric spaces, ensembles are missing. In particular, only very special Jacobi ensembles (the left side of Fig. 2
seem to be making the symmetric space list. More precisely, if one starts with a symmetric space, one has to make what we call a coordinate
system choice, what others might call a matrix factorization choice. This choice has been the map @ : K x A - G/K; (k,a) — kaK of Cartan,
which we could call the KAK decomposition. (Although it is often called Cartan’s KAK decomposition, Cartan was not aware of G = KAK.)
See Fig. 1.
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FIG. 1. Families of matrix factorizations associated with a symmetric space, its tangent space, and its isometry group: Shown above are the skeleton of five factorizations

associated with noncompact (left) and compact (right) symmetric spaces. Each serves as coordinate systems on the respective manifolds. Previous approaches (manifold,
coordinate system, and measure) are shown in magenta. Examples of the linked factorizations/coordinate systems are shown.
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We show that coordinate systems from the generalized Cartan (K;AK,) decomposition associate a single symmetric space to multiple
RMTs. Letting go of the historical bias of the KAK decomposition, the full set of Jacobi ensembles (the right side of Fig. 2) emerges, thereby
leading to the complete list of classical random matrix ensembles. Of course, there is much mathematical precedent in differential geometry
to letting go of any one special coordinate system.

A. Classical random matrix ensembles

The objects that we are interested in are the classical random matrix ensembles. Well-established conventions in random matrix theory
agree that the ensembles in this class consist of the Hermite, Laguerre, Jacobi, and circular ensembles built from matrices of integer sizes and
involve entries that are real, complex, or quaternion. (Dyson denoted f8 = 1, 2,4, and other authors in mathematics denote a = 2/ = 2,1,1/2.)

The possible parameters (o, az) of the 5 = 2 Jacobi ensemble are
q

Javaz (@) ~ [ lzj — @ [T 25 (1 =)
j=1

j<k

(&5}

Qg (€3]
Cartan’s coordinates GSVD coordinates

FIG. 2. The parameter space (a1, a;) € (—1,00)? of the 8 = 2 Jacobi ensemble obtained from Cartan’s coordinates (KAK) (left) and the generalized singular value
decomposition coordinates (K1AKy) (right).
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The term “classical random matrix ensembles” may be found in the following well-known references:

e Chapter 1 of Forrester’s paper'* has the title “Classical Random Matrix Ensembles,” and the even sections (1.2, 1.4, 1.6, and 1.8) are
explicitly Hermite, circular, Laguerre, and Jacobi in that order. (Odd sections have discussions related to these ensembles.) Forrester’s
comprehensive book'® deals exclusively Hermite, Laguerre, Jacobi and circular ensembles in Chaps. 1-3 where the preface states:
“eigenvalue p.d.f. of the various classical f-ensembles given in Chaps. 1-3.” Then, later in Chap. 5.4, he further justifies the terminology
by pointing out the four weights from classical orthogonal polynomial theory.

o In Ref. 16, Chap. 4.1 is entitled “Joint distribution of eigenvalues in the classical matrix ensembles” and specifically covers exactly the
Hermite, Laguerre, Jacobi, and circular ensembles.

e The first author’s 2005 Acta Numerica article (Ref. 17, Sec. 4).

If one starts with the list of ten infinite families of Cartan’s symmetric spaces (we will not discuss finite families of the exceptional types)
and asks to characterize which classical random matrix ensembles are covered, answers could be found in Ref. 8 (Table 1), Ref. 9 (Table 1)
(noncompact cases), and Ref. 13 (Table 1) (compact cases). However, turning the question around, if one starts with the classical random
matrix ensembles and asks whether symmetric spaces are adequate to explain all of them, we find that the answer is a big “almost,” as the
Jacobi ensembles are not adequately covered. To be precise, the Jacobi densities associated with compact symmetric spaces BDI, AIIl, and
CII from the previous attempts by the KAK decomposition are the following joint probability densities with 8 = 1,2,4 (up to constant) and
integers p > g,

4 b_ Blp=a+1) _
KAK decomposition : [ |x - x| *T] x; ‘a - x) R (1.1)
j<k j=1

where we observe the powers of x;’s restricted to ’g — 1. The possible parameters of (1.1) are described in the left side of Fig. 2. Additional four
compact symmetric spaces DIII, BD, C, and CI add four more Jacobi ensembles,'” but they are not sufficient to cover the two dimensional
parameter set of the Jacobi ensembles.

B. Coordinate systems on the Grassmannian manifold

It is always interesting when a branch of applied mathematics reverses direction and provides guidance to pure mathematics. In this
work, we focus on the role of the generalized singular value decomposition (GSVD) from numerical linear algebra.'*"”

From an applied viewpoint, the Jacobi ensembles are elegantly generated in software with commands such as svdvals
(randn(p,s) ,randn(q,s)) in languages such as Julia, which is computed by taking the GSVD of two i.i.d. normal matrices with the
same number of columns.””*" From a pure viewpoint, this is a pushforward of the uniform measure on the Grassmannian manifold onto a
maximal Abelian subgroup A (with a fixed Weyl chamber) along the generalized Cartan (K;AK;) decomposition (Fig. 3).”**

For example, take a Grassmannian point with any = 1,2,4 from O(n)/(O(n —s) x O(s)) (respectively, with complex or quaternionic
unitary groups) and represent it by the #n x s orthogonal (respectively, complex or quaternionic unitary) matrix X. [More precisely, we treat
the Grassmannian manifold as the quotient Vs(R")/O(s) where V;(R") is the Stiefel manifold. We are allowed to multiply any O € O(s) on
the right side of X.] For any p,q > s satisfying p + q = , we have the following coordinate system of X arising from the GSVD** of the first
p rows and the last g rows of X (for an alternative viewpoint, see Ref. 25):

3

X = = , (1.2)
VIS VS
Grassmannian point Cartan’s GSVD
O(n)/(O(n — s) x O(s)) Coordinates Coordinates

o| UC
lue I

n X

sl VS a| VS

S

FIG. 3. Cartan’s coordinate system (KAK) and GSVD coordinate systems (K;AKz) on the Grassmannian manifold O(n)/(O(n —s) x O(s)).
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where U, V are p x s, g x s orthogonal (respectively, complex or quaternionic unitary) matrices and C, S are s x s diagonal matrices with cosine
and sine values. Deduced joint probability densities’’ (p,q > s) are the following (up to constant):

S ﬁ(q* +1) Bp—s+1) s+l)
K;AK; decomposition (GSVD) : [ ]l|x; — x| ﬁH X; (1 - X)) i
j<k j=1

where the case q = s represents the usual KAK decomposition case (1.1).

As can be seen, the classical Jacobi parameters are quantized as they are integer multiples of /2. Random matrix models that remove
this quantization, thereby going beyond the classical, appear in Refs. 20, 26, and 27. In Sec. VII, we also illustrate that some Jacobi ensembles
can arise from symmetric spaces that are outside the traditional quantization (Fig. 6).

C. Contributions of this paper

This work shows that a symmetric space can be associated with multiple random matrix theories (Fig. 4). Letting go of the arbitrariness of
the choice of the KAK decomposition coordinate system allows us to choose other coordinate systems on symmetric spaces, thereby leading
us to the complete list of classical random matrix ensembles (Secs. V, VI, VIII, and IX). Many of these coordinate systems are sometimes
better known as matrix factorizations, used widely in matrix models of the classical ensembles.'”'"****” However, in Sec. VI, we compute
new families of the Jacobi ensemble parameters from coordinate systems that have not been known before.

This work also endeavors to make the Lie theory more widely accessible by simplifying and modernizing key ideas and proofs in Ref. 28.
Cartan’s theory”” " as developed by Helgason”*"” is a crowning mathematical achievement, and it is our hope to open up this theory for the
benefit of all. Indeed, in Ref. 34 (p. 428), Helgason writes about the difficulty of understanding Cartan’s writings:

[Cartan] was one of the great mathematicians of the period, but his papers were quite a challenge. Hermann Weyl, in reviewing a
book by Cartan from 1937 writes: “Cartan is undoubtedly the greatest living master in differential geometry. .. I must admit that I
found the book like most of Cartan’s papers, hard reading.”

c()f?ocz NH|33J_xk| Hx (1—z;)*

i<k

Complex Grassmannian

U(7)/(U(5) x U(2))

Real Grassmannian

0(8)/(0(6) x O(2))

2

FIG. 4. Examples illustrating the lack of a one-to-one relationship between symmetric spaces and classical random matrix theories: A complex Grassmannian (top) obtains
three Jacobi ensembles. A real Grassmannian (bottom) obtains four Jacobi ensembles. In particular, the § = 1 Jacobi ensemble Jé;)'z can be obtained from both symmetric
spaces. Interestingly, a complex Grassmannian can lead to (top purple) a real RMT in the sense that 3 = 1. Similarly, a real Grassmannian obtains § = 2 RMT (bottom
purple).
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In the same vein, while we are admirers of Helgason’s extensive work, we authors must admit that we, in turn, found Refs. 28 and 33
hard reading as well, and this paper attempts to introduce the theory by couching the ideas in terms of what we call ping pong operators.
Summarizing our work, we have the following:

e We use the coordinate systems of the K;AK, decomposition that connects a single symmetric space to multiple random matrices
(Fig. 4), completing the list of associated classical random matrix ensembles.

e We translate some of the key concepts in Cartan’s theory of symmetric spaces into easier to follow linear algebra (Sec. I1I).

e We provide coordinate systems (matrix factorizations) of symmetric spaces that have not been discussed in random matrix context,
obtaining new parameter families of the Jacobi ensemble (Sec. VII).

Il. BACKGROUND

A. Joint densities of classical random matrix ensembles

Dyson introduced the 8 = 1,2, 4 circular ensembles“tir} 1962. Earlier expositions on circular ensembles could be found on Hurwitz* and
Weyl.’* Hermite ensembles were introduced by Wigner.” " Laguerre and Jacobi ensembles could be found as early as 1939 in the statistics
literature by Fisher," Roy,"" or Hsu.”” The physics literature first touches upon the idea of Laguerre and Jacobi with the 1963 thesis of Leff."’
The following list is the joint probability densities (without normalization constants) of classical random matrix ensembles (8 = 1,2,4):

e Circular: H|ei6f - eiek\ﬁ, (61,...,6,) €[0,2m)"

j<k

22

e Hermite: [|}; —)tk|ﬁe_Z B Ay An) € RY

j<k

. Bt e ~T 4 m,
e Laguerre: [T| - 4" TTAfe™ =2 (A1, .o Am) €[0,00)"™;

Jj<k j=1

m
o Jacobi: TT|xj — xx[PTT %™ (1 - %) (1, ..., xm) € [0,1]™.
j<k j=1 7

In particular, the parameters «, a1, &z > —1 are quantized as integer multiples of g, ie, g(N +1) - 1 for some non-negative integer N.

B. Symmetric space and the generalized Cartan decomposition

In this section, we introduce the theory related to the generalized Cartan decomposition. For readers without preliminary knowledge in
Lie theory, we recommend skipping to Sec. [11, which follows a more modern linear algebra approach.

Let G/K, be a Riemannian symmetric space with a real reductive noncompact Lie group G and its maximal compact subgroup K.
Let o be the Cartan involution on g := Lie(G). Then, g = €, + p, is the Cartan decomposition. Let 7 be another involution on g such that
70 = o7, and let g = £ + p; be the 1 eigenspace decomposition by 7. Denote by K the analytic subgroup of G with tangent space £;. Let a be
a maximal Abelian subalgebra of pr N ps and define A := exp(a). We introduce the (noncompact) generalized Cartan decomposition (Ref. 22,
Theorem 4.1).

Theorem 2.1 (generalized Cartan decomposition, KiAKy decomposition). With the above setting, we have the following
decomposition of G:
G = K:AK,. 2.1)

That is, for any g € G, we have ky € K¢, k; € Ky and a € A such that g = kyak,.

We often use the equivalent name “K; AK, decomposition” for simplicity. Note that if 7 = o (i.e., K = K, = K;), we recover the usual
KAK decomposition, G = KAK. The generalized Cartan decomposition in the work of Flensted-Jensen”” is originally intended for the case
where G is noncompact. The compact analog is developed by Hoogenboom?”* [Theorem 3.6].

Theorem 2.2 (generalized Cartan decomposition; compact case). Let G/Kq and G/K; be two compact Riemannian symmetric spaces. Let
g =t + po and g = €, + p: be the corresponding eigenspace decompositions of g = Lie(G). Then, for a maximal Abelian subalgebra a of ps N pr
and A = exp(a), we have

G = K;AK,.
From the space of linear functionals a”, we collect eigenvalues of an adjoint representation (the commutator) of a on g and call these

eigenvalues the roots of the K;AK, decomposition. By fixing the Weyl chamber, we obtain a set of positive roots *. Details of the theory
of the K;AK; decomposition and its root system can be found in Flensted—]ensen,zl“ Hoogenboom,”* Matsuki, 547 and Kobayashi.”* The
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K1 AK, decomposition is also studied in the context of spherical harmonics and intertwining functions.””” Refine the root space gq of a root

a by +1 eigenspaces of o7. Let the two dimensions be m;.
Let dk,, dk: be the Haar measures of K,, K, respectively. Let dH be the Euclidean measure on a. The Jacobian of the K;AK;
decomposition is the following:

3,44

Theorem 2.3 (Jacobian of the KiAK, decomposz‘tionl ). Let dg be the Haar measure on G, and let H € a. We have the Jacobian and the
integral formula corresponding to the change of variables associated with the K1 AK, decomposition,

fcf(g)dg: fK : fK : fa [ (ko exp(H)k:)du(H)dkodkr,

where for noncompact G,

du(H) o< ] (sinh a(H))™ (cosh a(H))™ dH, 2.2)
aext
and for compact G,
du(H) o< ] (sin a(H))™ (cos a(H))" dH. (2.3)
aeXt

Similar results on the KAK decomposition and the restricted roots of symmetric spaces can be found in standard Lie group

textbooks.”>”' 7’ In the KAK case, the Jacobian (2.2) reduces down to [] (sinh a(H))™ as we do not have —1 eigenspace of o1 so that
+ 33,54,55
Mg = my.

Theorems 2.1-2.3 are decompositions of the group G. These decompositions can also be applied to the symmetric space G/K,. The
following map @ is the K; AK, decomposition of the Riemannian symmetric space G/K,. The map @ is also called the Hermann action,”*”’
nonstandard polar coordinates,” and non-Cartan parameterization.”” In the KAK case (K = K, = K7), Helgason called this the polar coordi-
nate decomposition®” and credits Cartan® for this map. Since the G-invariant measure of G/K inherits the Haar measure of G, the identical
Jacobian is obtained for the decomposition of a symmetric space.”’

Theorem 2.4 (K;AK, decomposition of G/Ks). Given a K1 AK, decomposition G = KoAK; with the Riemannian symmetric space G/Ko,
we have the map @,

®:K; xA—> G/K; (kr,a) ~ kraK. (2.4)

Suppose H € a, a = exp(H). For the G-invariant measure dx of G/K,, dk; = Haar(K-), and the Euclidean measure dH on a, dx = dk.du(H)
holds where the Jacobian du(H) is given in (2.2) if G is noncompact and (2.3) if G is compact.

Remark 2.5 [representing G/K = P: gK (coset) or p € P?]. In the standard KAK decomposition, the Jacobian (2.2) [respectively, (2.3)]
only has sinh (respectively, sin) terms as we discussed above. This result could be found in many literature, where some authors™****>"'
use [] sinh «(H) as the Jacobian, whereas other authors'*”*“” use [] sinh(a(H)/2). This gap is due to the difference in the realization of a
symmetric space G/K as a subset P c G. The former uses the right coset representative, i.e., G/K — P as gK — p, where g = pk is its group level
Cartan decomposition. Then, the action of G on G/K is given as (g1, g2K) — g142K. The latter authors use the map G/K — P such that gK
— g(og)™", where ¢ is the group level involution. The G-action is (g1,£2) ~ g182(0g1)”", g1 € G, € P. In terms of Theorem 2.4, the latter
gives the map @ such that (k,a) — ka’k™" since

g(0g) ™" = pka(pk)™" = pk(p~'k) ™" = pkk~'p = p* = kak 'kak™" = ka’k”",

which explains the extra factor } applied to H where a = exp(H). Moreover, these two identifications define the map @ : K x A — P with the
same k, a as
®:(ka)~kaK or @:(ka)wka’k ', (2.5)

depending on the author’s notational choice explained above. This coordinate system @ is sometimes called the polar coordinate
decomposition, e.g., see Ref. 33 (p. 402).

Example 2.6 (G/K vs P: a symmetric positive definite matrix). Let us take a look at the two realizations in Remark 2.5 for G/K = GL
(n,R)/O(n), where P is the set of all symmetric positive definite matrices. Let S be a fixed positive definite symmetric matrix, with its eigen-
decomposition S = QAQ”, with Q € O(n). The coset representation of Sis QA - O(n) € G/K as QA = (QAQ")Q is the polar decomposition.
With the realization of P = G/K, the point in G/K is represented by the matrix § = QAQ.

J. Math. Phys. 63, 061705 (2022); doi 10.1063/5.0087010 63, 0617056
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Finally, we have the Lie algebra counterpart of Theorem 2.4 when K = K, = K.

Theorem 2.7. For a noncompact Riemannian symmetric space G/K with the Cartan decomposition g = € + p, let a be a maximal Abelian
subalgebra of p. We have

VY:Kxa-p; (kH) > kHkK™, (2.6)
equivalently the decomposition p = Uycckak™" with the Jacobian du given as

du(H) o< [T |a(H)[™, 2.7)

aext

where H € a and X is the restricted root system with dimensions ma. The measure on p is the Euclidean measure.

C. A symmetric space: one RMT or many RMTs?

The answer to the title question of this section is that both one and many can be construed as correct. To explain how this is possible
requires teasing apart the assumptions behind the words “associated with.” Certainly,”””"” associate one random matrix with one symmetric
space. However, the example of the GSVD coordinate systems discussed in Sec. I B associates multiple Jacobi densities with one symmetric
space, the Grassmannian manifold. In Ref. 59, another example is illustrated as the “non-Cartan parameterization” for the special case of
(G,Kq,Kz) = (U(n),0(n),U(p) x U(q)). (A similar approach may be found in Ref. 63.) This is discussed in Sec. V1I B.

The reconciliation is that indeed it is true that the required maps (2.4) when K = K, = K, i.e., ®(k,a) = kaK = kak™! (compact) or the
map (2.6) w(k, H) = kHk™" (noncompact) lead to a unique random matrix theory associated with a given symmetric space G/K. This is unique
in a sense that any geodesic on the symmetric space G/K could be transformed to the geodesic on A with the above maps.

However, if we relax the condition so that we are allowed to choose K, under the generalized Cartan decomposition framework, we
can associate multiple random matrix theories to one symmetric space. The GSVD coordinate systems in Sec. I B illustrate this view-
point. The real Grassmannian manifold G/K = O(n)/(O(n - s) x O(s)) has the map @ : (k,a) — kaK for K = K, = K, explicitly written as

X= [U v] [Z] -O(s), where U, V are (r —s) x s,s x s orthogonal matrices. On the other hand, if we let K: = O(p) x O(q), we have multiple

maps @ : (kr,a) — kraK written as X = [U ][f] -O(s), where U, V are p x s,q x s orthogonal matrices.

14

Starting from Sec. V, we discuss (i) random matrices arising from the K; AK, decompositions of compact symmetric spaces (Theorem 2.4
or 2.2) and (ii) random matrices arising from the Lie algebra decomposition of noncompact symmetric spaces (Theorem 2.7). The associated
decompositions are well explained by matrix factorizations in numerical linear algebra. As we pointed out, the resulting Jacobi ensembles
cover the full parameter set of the classical Jacobi densities, thereby completing the classification from the classical RMT point of view.

lll. CARTAN'S IDEA: A MODERNIZED APPROACH

The Jacobian of the KAK (K;AK;) decomposition, equivalently the determinant of the differential of the map ® :KxA —P
(in Theorem 2.4 and Remark 2.5), is computed in several references.”*”*” The proof of (2.2) is can also be found in Refs. 23 and 44. However,
the proof can be inaccessible to some audiences. Meanwhile, individual cases of the KAK decomposition, recognized as matrix factorizations,
show up in many areas of mathematics, and some were discovered in various formats by specialists in numerical linear algebra. Motivated
by random matrix theory (and sometimes perturbation theory in numerical analysis), Jacobians of these factorizations were often computed
case-by-case using the matrix differentials and wedging of independent elements.'”*"*%%*"*

In this section, we provide a generalization of such individual Jacobian computations and compare it to the general technique Helgason
proposed. With appropriate translation of terminologies and maps in Lie theory into linear algebra, we observe the both methods are indeed
the same process but have been illustrated in different languages for a long time. We start out by introducing some important concepts in Lie
theory accessible to an audience with a good background in linear algebra and perhaps some basic geometry. Then, in Table 11, we present a
line-by-line correspondence between Helgason’s derivation and the proof by matrix differentials.

A. The ping pong operator, ping pong vectors, and ping pong subspaces

We will start with a concrete 2 x 2 linear operator so as to establish the notions of the ping pong operator, ping pong vectors, ping pong
subspaces, and the relationship to eigenvectors. Then, we will define a “bigger” linear operator ady that acts on 2 x 2 spaces exactly in the
manner we are about to describe.

We introduce the 2 x 2 matrix
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which we will call a 2 x 2 ping pong operator, and we will call [;] and [T] the ping pong vectors of M, in that M bounces these two vectors into
« times the other,
1 0 0 1
M =a| |, M =a| |
0 1 1 0

Furthermore, M has eigenvectors [i], [_11], with eigenvalues &, —a. We will call the eigenvalue a root of M.

Also worth pointing out are the matrix exponential and matrix sinh of M,

cosh & sinh « 1 _ 0 1
M= and  sinh M=~ (" +e™) =sinh a- ,
sinh « cosh « 2 1 0

and thus, we see that sinh M is another ping pong operator with scaling sinh a. Figure 5 plots the action of a ping pong matrix and its
exponential, with notations that we will use in Secs. III D and III L, i.e., the ping pong operator is denoted ady, pj and k; are the ping pong
vectors, and x; and 0x; are the eigenvectors. The right side of Fig. 5 shows the action of ¢ and portrays sinh(M) as a projection of ¢ on the
pj direction.

We now go beyond 2 x 2 matrices and suggest the more general 2N x 2N ping pong matrix My, with N roots, a1, . . ., an, N pairs of ping
pong vectors (ki,p1),. .., (kn, pn) along with eigenvectors (x1,y1),. .., (xn, ¥n),

[ 0 (44} 1
ar 0
My = ,
0 an
| an 0
11101 1 )
ki pj» xj yj = 1 LI ,  j=12,...,N,
of 1 f1][-1

where the 2j — 1 and 2j positions are 0 or +1 and all other entries of these vectors are 0. The matrices exp(My) and sinh My are block versions
of the 2 x 2 case.

R
adH .’:
fﬁjk J € ‘.’.
(cosh (Lj)kjjt-(';inh a;)p;
4 A o
k; k;
Ox; Zj Ox; 7 i
P ajp; ,‘ b
Prnnnnn > Peorenep
Eq (3.5) Eq (3.6) (sinha;)p;

FIG. 5. The eigenmatrices x;, 6; and ping pong matrices k;, p; (3.4) in the tangent space g. The operators are illustrated in blue lines. The operator ady and ping pong
relationship (left) and the operator &% on k; to p; (right). The left map shows the factor of a;, which is a building block of the Jacobian IT; |a;(H)| (2.7). The factor of
sinh o; in the right map builds the Jacobian [T ; | sinh o; (H)] (2.2).
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«_ »

We may define the subspaces € and p (using the “mathfrak” Fraktur letters “k” and “p”) to be the span of the kj and p;, respectively. Note
that £ and p are orthogonal complements as subspaces. A key “ping pong” relationship between these subspaces is that
Mnkepifket,
Mnp e tifpep.
Thus, if we consider Myg, the restriction of My to ¢, we have an operator from € to p. Evidently, My|¢ as a matrix may be obtained by

taking the even rows and odd columns of My. The result is a diagonal matrix with the «; on the diagonal. Similarly, sinh(Mxy )¢ is a diagonal
matrix with sinh(a;) on the diagonal. We then get the important result that

N
det(sinh(My)le) = [ | sinh oy,
=1

the product of the hyperbolic sines of the roots.
Given a linear operator £ on a vector space with nonzero eigenvalues +A, the following lemma constructs a pair of ping pong vectors
from L:

Lemma 3.1. For a linear operator L defined on any vector space, assume that +A are both nonzero eigenvalues of L. Let x and y be the
corresponding eigenvectors, i.e., Lx = Ax and Ly = —Ay. Define two vectors k := x + y,p := x — y. Then, k, p are ping pong vectors. Furthermore,
we have for the operator exp(L),

e“ k= cosh Ak +sinh Ap, € p = sinh Ak + cosh Ap.

The proof is a straightforward extension of the discussion in previous paragraphs.

Remark 3.2. For the reader who wants to know the upcoming significance of this fact for Jacobians of matrix factorizations, it turns out
0 «a
(or maybe as the reader already observed in Sec. IT) that the Jacobian will be the product of sinh «’s. Just as the matrix sinh([ ]) takes
«

one of the ping pong vectors to sinh « times the other, the key piece of the differential map will consist of multiple ping pong relationships,
each one sending one ping pong vector to another.

B. The Kronecker product, linear operator ady, and its exponential

Lie theory picks out operators £ that exactly have the properties in Sec. 111 A. Our vector spaces are now matrix spaces, and our operators
are linear operators on a matrix space. We introduce the Lie bracket, denoted by [X, Y], defined as [X, Y] = XY — YX (the commutator). The
Kronecker product notation is very helpful in this context. We define the Kronecker product notation as a linear operator on a matrix space.
[Many authors would write vec(BXA") = (A ® B)vec(X), but we omit the “vec” as we believe it is always clear from context. In a computer
language such as Julia, one would write kron(A,B) * vec(X) = vec (BxX#*A")1,

(A®B)X = BXA". (3.1)
With this, we can express the Lie bracket with Kronecker products,
(IeX-X"®I)Y = XY - YX.
Consider the Lie bracket as a linear operator (determined by X) applied to Y, and call this operator adx (abbreviation for “adjoint”),

ady=I®X-X'®I,
adx(Y) = [X, Y]

This will be the important ping pong operator £. The operator exponential of adx (equivalently, the matrix exponential of I ® X — X" ® I) is
given in the following lemma:

Lemma 3.3. For the linear operator adx, the following holds for &% := ¥ @O nd sinh ady = (& + e /2;

j=0"n!
= expIoX-X"®I)=(eX) ®e, (3.2)
Y =¥ ve™  and  (sinhad,)Y = (fve ¥ - e FyeY))2. (3.3)
J. Math. Phys. 63, 061705 (2022); doi: 10.1063/5.0087010 63, 061705-9

© Author(s) 2022


https://scitation.org/journal/jmp

Journal of
ARTICLE scitation.org/journal/jmp

Mathematical Physics

Proof. The proof is straightforward by identity (3.1). eXYe™ = ((e_X YVe eX)Y and %Y = exp(I ® X - X' ®I)Y. It is left to prove
(e ®@e* =exp(I® X - X" ®1). Since I ® X commutes with X" ® I, we have

T
expIoX-X' @) = ¥ -Ie)(e™) 0l = (™) o,

proving the result. The sinh result follows trivially. O

C. Antisymmetric and symmetric matrices: An important first example of symmetric space as ping pong spaces

In our first example, our vector space is n x n real matrices. Consider

t = {Antisymmetric matrices},
p = {Symmetric matrices}.

The ping pong operator that will bounce € and p around willbe ady =I® H - H T ® I, where H is the diagonal matrix

Note that the operator ady sends an antisymmetric matrix to a symmetric matrix and a symmetric matrix to an antisymmetric matrix.

What does this have to do with Jacobians of matrix factorizations, such as the symmetric positive definite eigenvalue factorization? Con-
sider a perturbation of Q when forming S = QAQ”. An infinitesimal antisymmetric perturbation Q" dQ is mapped into a dS, an infinitesimal
symmetric perturbation. This is the very linear map from the tangent space of Q to that of S that we wish to understand, so perhaps it is not
surprising we would want to restrict our ping pong operator from € to p. We invite the reader to check that the corresponding eigenmatrices
and ping pong matrices of ady may be found in the first column of Table 1.

D. General ¢ and p arise from an involution 6

We proceed to construct more important general operators £ that have the property in the assumption of Lemma 3.1. This is where the
theory of Lie groups and symmetric spaces need to be brought in. Upon doing so, we will obtain two linear spaces of matrices ¢, p, and also a
space a.

TABLE I. Examples of eigenmatrices x;, 6x, and ping pong matrices k;, p;. k; = x; + 6x; and p; = x; — 0x; as defined in (3.4). k;, p; are normalized to have +1 entries. A block
structure on row/columns j, k and j* := p +j and k’ := p + k are filled up with 0 and +1.

G GL(nR) U(n) O(p:q) O(n)
K O(n) O(n) O(p)»0(q) O(p)x0(q)
J
ik k
j [0 1 i’
X E |0 o E
;
ik k
j [0 0 J’
0x E |-1 o0 k'
J J
ik J k k
Jj [0 1 Jj [0 1 g’ J’
k; k |-1 0 kE |-1 0 k' k'
J 1 J
j ok ik k 1 k
7 |0 1 Jj |0 4 3’ 1 3’
P E |1 o k |i E L1 K
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For the reader not familiar with Lie groups, one need only imagine a continuous set of matrices that are a subgroup of real, complex,
or quaternion matrices. The tangent space g is just a vector space of matrix differentials at the identity. One key example is the compact Lie
group O(n) (the group of square orthogonal matrices) and its tangent space at the identity go(,): the set of antisymmetric matrices. Another
key example is all # x » invertible matrices GL(#,R) (a noncompact Lie group) and its tangent space gy (,r) consisting of all  x n matrices.

Cartan noticed that important matrix factorizations start with two ingredients: the tangent space g (at the identity) of a Lie group G and
an involution 8 on g (i.e., 8 = Id and 0 X, Y] = [6X,0Y]) An example of 8 is (X) = X" on g for G = GL(n,R). Among matrices in g, we
select two kinds of matrices. The ones fixed by the involution 8, and the ones negated by 0. Denote each set by £ and p,

ti={geg:0(g) =g} pi={geg:0(g) =g}

[For GL(n,R), these are the antisymmetric and symmetric matrices respectively.]

The next important player is a ¢ p. Readers familiar with the singular value decomposition know the special role of diagonal matrices in
the SVD as they list the very important “singular values.” Diagonal matrices have the nice property that linear combinations are still diagonal,
they commute (the Lie bracket of any two are zero), and they are symmetric (the p of our first example). The generalization of this is to take a
p and find a maximal subalgebra where every matrix commutes. This is the maximal subspace a ¢ p such that for all a1, a; € a, [a1,a2] = 0.

IfH € a,thenS = QAQT is a symmetric positive definite eigendecomposition, with A = . In the rest of the section, we will be focusing
on factorizations of the form QAQ ™", where A is a matrix exponential of H € a. (These will be more general than eigendecompositions, as Q
may not be orthogonal, and A may not be diagonal.) In particular, we will compute the Jacobian of perturbations with respect to Q, holding
H constant, and thus, necessarily the Jacobian will be defined in terms of H.

From here, we assume that the Lie group G is noncompact. The compact case will be discussed after completing the noncompact case.
Pick H € a, and recall that ady is a linear operator on g. The operator ady will play the role of £, the ping pong operator. We decompose
g into the eigenspaces of ady. For any eigenpair (), x;) of ady, i.e., adu(xj) = [H, x;] = ajx;j, we observe (for a;j # 0)

adH(ij) = [H, QX]'] = —[—H, Gx,-] = —[QH, Gx,-] = —9([H,Xj]) = —oc,-@x,-,

which implies that the eigenvalues +a; always exist in pairs, with the corresponding eigenmatrices x; and 0x;. This satisfies the assumption of
Lemma 3.1, from which we can now construct our ping pong matrices,

ki := xj + Ox;, pj = xj — Ox;, (3.4)
with the ping pong relationship by the operator ady,

adg kj = a;pj, adg pj = ajk;. (3.5)
In addition, the relationship by the operator ¢** follows:

¢ k; = cosh a;k; + sinh a;p;, (3.6)

ady

e 'p; = sinh ajk; + cosh ap;. 3.7)

The ping pong matrices k;, p;, eigenmatrices x;, 0x; and the relationships (3.5), (3.6) are illustrated in Fig. 5.

As we mentioned in Remark 3.2 and Sec. 111 C, the role of ping pong matrices kj, p; is crucial. The map *¥ (particularly, sinh ady) is
the main ingredient constructing the differential map d® of the factorization @ : (Q, A) ~ QAQ . The operator ¢* is applied to kj and
then projected to the span of p; as in Fig. 5 (right), leaving only the sinh ; factor.

We now compute the full basis of £ and p. The collection U;j{x;, x;} is a full basis for the union of eigenspaces with nonzero eigenvalues.
Since span({xj, 0x;}) = span({kj, p;}) for any j, U;j{k;j, pj} is another full basis for the eigenspaces with nonzero eigenvalues. Interestingly, we
observe 6k;j = kj and 6p; = —pj, which identifies Uj{k;} and U;j{p;} as subsets of the basis of ¢ and p, respectively. The remaining case is the zero
eigenspace. When «; = 0, there are two possibilities. First, if x; and 6x; are independent of each other, we can still obtain k; and p; as before
and add them to U;{k;} and uj{p;}. Second, if x; and 0x; are colinear, Ox; is either x; or —x;. If 6x; = x;j, we collect such x; and name the set
K. Similarly, if 0x; = —x;, then we put them in P,. Since we analyzed both nonzero and zero eigenspaces, we have obtained a full basis of g,
which is (Uj{kj, pj}) U K; U P.. Refining once more, span((U;j{k;}) U K;) = ¢ and span((Uj{p;}) U P;) = p.

E. The operators ady, e, and the subspaces ¢, p

In Sec. 111 D, we obtained the basis of £ and p, in terms of ping pong matrices, by linearly combining eigenmatrices of the operator ady.
We now illustrate the relationship of the basis of £ and p under g , just like we illustrated the operator My in Sec. III A. In the ki, . .., ky and
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P1> - .., pn basis, we have the following:

—kl ] -cosh a1 sinhag 1 —kl ]
P sinha; coshay I
I EEE : (3.8)
kn coshay sinhay kn
LPN | i sinhay  coshay | | PN |

We are now ready to carefully investigate the map d® using (3.8).

Remark 3.4. Results in Lie theory imply that the eigenmatrices xj and 0x; of ady are independent of the choice of H € a. In other words,
the complete basis of g and &, p obtained above does not care about a specific choice of H. Furthermore, the eigenvalues +a; are functions of
H, and these eigenvalue assigning functions &; : H — «; € R are more properly called the restricted roots. It can be inferred from the separation
of the basis that €, p together form the whole tangent space g,

g=t+p 3.9

F. Symmetric spaces

The reader may have noticed that our discussions have focused on the Lie algebras rather than the Lie groups themselves. It is a point of
fact that Lie groups are mostly useful to define the factorizations of our interest, but Lie algebras are where the Jacobian “lives,” and hence,
this is the most important place to concentrate. For the interested reader, the subgroup K of G is picked such that its tangent space is exactly
£ [one easy way to imagine such a subgroup is to define K := exp(£)], and we now obtain a symmetric space G/K.

It can be proven that for the noncompact Lie group, there exists a unique involution 8 such that the subgroup K is the maximal compact
subgroup of G. We call 0 the Cartan involution, and (3.9) is called the Cartan decomposition. Furthermore, the subset P := exp(p) plays an
important role as its elements serve as representatives of the cosets in G/K. Regarding the identification of G/K as elements in P, refer to
Remark 2.5, where we point out as an example, taking G/K = GL(n,R)/O(n) that an element of G/K has the form of a coset gK, then gg”
may be a representative of the coset in p. While some authors use (gg’)"/%, the key point being each choice is well defined independent of
choice of representative.

G. When G is a compact Lie group

Upon considering the compact cases, it is helpful to make use of a certain duality between compact and noncompact symmetric spaces.

We again start with a noncompact Lie group G and the Cartan involution 6. Let g = £ + p be the Cartan decomposition. Then, define a new
space,

gc = E+ip, (3.10)

where i is the imaginary unit. The result in Lie theory implies that the new vector space gc is the tangent space of a compact Lie group, say, Gc.
In Table I, the first and third columns labeled GL(#,R)/O(n) and O(p,q)/(O(p) x O(q)) are noncompact tangent spaces. Their compact
duals are, respectively, the second and fourth columns labeled U(#n)/O(n) and O(n)/(O(p) x O(q)).

Matrixwise, the ping pong matrices k; € &, pj € p of g are brought back to a new set of ping pong matrices k; € £c, ip; € pc in gc. Let
us denote them by l~cj := kj and p; := ipj. The role of the subspace a is now played by ia replacing ady by adiz. We deduce a set of similar
relationships for I~c-, pj under ad;g,

adin (k) = o, adin (y) = —ajk;
In matrix form,
k; 0 o |k
adi| | = 7 (3.11)
i % 0|p

which leads to the compact version of (3.6) and (3.7),

I~cj cosaj sina; l~<j
exp(adim)| | = o (3.12)

b —sina; cosa; || pj
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At the group level, the symmetric spaces G/K and G¢/K are called the duals of each other, and they appear in the same row of standard
symmetric space charts. An example of eigenmatrices x;, 0x; and ping pong matrices for some symmetric spaces and their duals are presented
in Table I.

H. Jacobian of the map @

We provide a generalized algorithm for finding a Jacobian of the decomposition ®(Q,A) = QAQ™' [as we defined in (2.5)], where
A€ A:=exp(a),QeK.tandp from Sec. I1] D are the tangent spaces of K and P, respectively. As mentioned, we follow Helgason’s derivation
(Ref. 28, Theorem 5.8 of Chap. I) and start by directly translating his proof into simple linear algebra terms. In Table II, we have Helgason’s
derivation (left) compared in the same row with linear algebra (Right). Table II is using the noncompact symmetric space G/K but the compact
case is identical with replacing sin &; by sinh a;.

From the last line of Table II, we can finish the story with two different directions, depending on the choice of the volume measure.
First, if we use a G-invariant measure (the “canonical measure”) of P, the measure is invariant under the map dt or d7 (by definition of the
invariant measure). Thus, we can disregard di‘(QA%) [or d7(ka)] so that the Jacobian of d® (or d®) only depends on the differential map
kj — (sinh o;)p;. Since Uj{k;} and U;j{p;} are both orthonormal bases, we obtain the Jacobian (2.2),

[ sinh a(H).

aex’t

Note that eigenvalues +a; belong to x; and 0x; have the same corresponding k;. [see (3.4) and above.] Thus, we only take the positive roots =*
above.
The second choice of measure is the Euclidean measure, which is a wedge product of independent entrywise differentials. In this case,

the procedure is identical up to the factor sinh a;, but the map d7( QA%) [equivalently d7(ka)] cannot be ignored. One needs to carefully

compute the differential map d%(QA% i = QA% ijé Q! under the Euclidean measure. We can further use the fact that conjugation by the
matrix Q always preserves the Euclidean measure, since the subgroup K is always a set of matrices with an orthogonal/unitary type of property.

Thus, one needs to compute the map p; — A2 ij% and multiply its Jacobian by [] s+ sinh a(H).

TABLE II. Line-by-line translation of the classical proof to linear algebra proof.

Classical notation

(Ref. 28, p. 187, Proof of Theorem 5.8, Chap. I) Linear algebra notation (matrix factorizations)
Definitions

O:KxA - G[K O:KxA—P

®: (k,a) > kaK ®: (QA) = QAQ (AT =a,Q=k)

dr(g0) : (G/K)a — (G/K)gyo di(go) : X > goX(6g0)”"

drn:g— (G/K), (Bk=kkeK,0p=p',peP)

Atk € K, fix a tangent vector dz(k) T} At Q € K, fix a tangent vector dQ

At Id, basis element T} € £ At Id, basis element Q_ldQ =kjet
Derivations

240 (dr(k)TY,0)* dd(dQ,0) = d(QAQ™") (with dA = 0)

= dn(2kT%a) =dQAQ™" + QAdQ™!

= dr(ka)dn(2Ad(a™)T%)" = d7(QA? )[A*% (Q'dQA + AdQ*lQ)A*%] ‘

= dr(ka)dn(Ad(a™")T* - Ad(a)T) = d#(QA? )[A-%ij% —AkGAT

[Let H be such that exp(H) = a = A?] [Note that d#(QA? )X = QAZXA: Q]

= dr(ka)dn(e A TE - 2 TY) = d1(QA7)[exp(H' ®I-18 H)k;j

—exp(I®eH-H' ®I)kj] [by (3.3)]
= dr(ka)dn(-a(H)'[H, T*]2 sinh a(H)) = d#(QA>)[(~2 sinha;)p;] [by (3.9)]

Agince A = a, we have 2d® = dd.
b This is (dr(ka) o dr)(Ad(a™")TY).
“Both dQAQ ™! and QAdQ ™" are at QAQ ™! and should be brought back to identity (inside bracket).
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Remark 3.5. For the compact Lie group G, we have sinh o; replaced by sin a; everywhere. Moreover, the last Jacobian computation

step pj ~ Az ij% can be omitted for the compact cases, since A2 isan orthogonal/unitary matrix for the compact cases. The map d%(A%)
preserves the Euclidean measure as d7(Q).

I. Extension to the generalized Cartan decomposition

In the previous paragraphs, we studied the Jacobian of the usual Cartan decomposition. We now proceed to consider the generalized
Cartan decomposition (Theorems 2.1 and 2.2), its Jacobian (2.2), (2.3), and the extension of Table I1. The derivations are analogous, analyzing
subspaces of g, but one should now proceed with four tangent subspaces, &: N &, & N po, Pr N €5, and p- N p,. Earlier work on these Jacobian
related derivations may be found in Refs. 23 and 44. The maximal subspace a is now defined inside p. N p,. We start with the same strategy:
the tangent space g is decomposed into the eigenspaces of the linear operator ady with H € a. The eigenvalues +q; still come in pairs, but we
have two eigenmatrices x;, Tox; for eigenvalue «; and two eigenmatrices 7x;, 0x; for eigenvalue —a;. We define four vectors v1, vz, w1, w2 with
the same roles as k; and p; played before,

V1 1= Xj + X + 0Xj + Tox; € €Nk, V2 1= Xj — TX — 0Xj + TOXj € Pr N Po,

Wy = Xj — TXj + 0Xj — T0Xj € pr N &g, wy 1= Xj + TXj — 0Xj — T0Xj € £ N Pg,
and these have similar ping pong relationships by ady like kj and p;,

adH(1)1) = QjU2, adH(’Uz) = QjV1,

ady (wr) = ajws, ady(w2) = ajwi.

We can similarly extend (3.8) and other relationships and proceed as in Table II to obtain (2.2) and (2.3).

IV. RANDOM MATRIX ENSEMBLES: COMPACT AND NONCOMPACT

A. Compact symmetric spaces

In compact cases, the random matrices could be simply determined from the Haar measure of the compact Lie group G,'”'"” since the
compactness of G turns the Haar measure into a probability measure. In Secs. V, VI, VII, we discuss random matrix ensembles based on ten
types of Riemannian symmetric space classification by Cartan. For the triple (G, K, K ), we start with the cases where G/K, and G/K; are of
the same types in Secs. V and V1. Then, in Sec. V11, we will discuss the “mixed types” where G/K, and G/K are different types under Cartan’s
classification.

B. Noncompact symmetric spaces

Sections VIII and X discuss classical random matrix ensembles associated with noncompact symmetric spaces. Hermite and Laguerre
eigenvalue joint densities arise as result of (2.2) using Theorem 2.4 on noncompact symmetric spaces. As opposed to compact Lie groups
and symmetric spaces where the Haar measure or G-invariant measure can be normalized by a constant to a probability measure, invariant
measures on noncompact manifolds cannot be normalized to one by constants. A normalizing factor S should be introduced to complete
the construction of a probability measure. Therefore, random matrices on a noncompact manifold face an innate problem if we proceed
analogous to Secs. V and V1I:

o The choice of the probability measure on noncompact G/K is not unique.

In Ref. 13, Dueiiez also addressed this problem along the noncompact duals.

As we push the measure forward to the subgroup A, the resulting measure should be a symmetric function of independent generators of
A. Hence, the probability measure Z(g) of the random matrix ensemble is the Haar or G-invariant measure on G or G/K, multiplied by some
symmetric function S on A,

I(g) = S(a)u(g),

where g = kyak, or g = kak™" and p(g) is an invariant measure. Using (2.2), the measure on A is induced,

I(g) = dk- S(a)( I sinh oc(H))dHl <+ dHgim(a)»

aext

which means that even though the measure Z changes, the measure on A still differs only by a normalization function. The traditional choice
of Shas been made such that Z(g) can be constructed from independent Gaussian distributions endowed on matrix entries. In fact, one could
also endow a Gaussian distribution on the Riemannian manifold (symmetric space) itself.”
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An alternative approach that appears in Ref. 6 is to put a probability measure on the tangent space of the symmetric space, p. In particular,
independent Gaussian distribution endowed on the elements of p give rise to Hermite and Laguerre ensembles by Theorem 2.7. We will follow
this alternative approach.

C. Non-probability measure of noncompact groups

As discussed in Sec. IV B, the Haar measure of a noncompact group G or a noncompact symmetric space G/K is not a probability
measure. However, we can force an analog of a random matrix theory. Imagine, for example, a noncompact K; AK; decomposition G = K,AK:
with (G, K5, Kr) = (GL(n,R),0(n),0(p,q)). This is called the hyperbolic SVD® where any real invertible matrix M is factored into the
product of an orthogonal matrix O, a positive diagonal matrix A, and an indefinite orthogonal matrix V. From the Haar measure and (2.2) of
GL(n,R), one obtains the Jacobian,

2n+1

n
[T W= [T +A[ TN dhi.. . dhs,
1<j<k<p 1<j<p j=1
p<j<k<n p<jsn

where J; is the squared diagonal entries of A for all j's.
One can impose a Gaussian-like density function (although not a probability density) on the group GL(n,R), such as
exp(~tr(glpqag”)/2) 1 dgix, where I 4 = diag(Ip, —I;). In terms of independent entries of g, this is

[T e%* I & []dge (4.1)

first p columns last g columns
Since the Haar measure of GL(#,R) is [det(g)|™" IT dgj, (4.1) becomes [after integrating out O(n) and O(p, q)]

TTW - AT F e =42an, . dha,
j<k j=1

where Ay,...,A, > 0 are the first p squared diagonal values of A and Ap41,...,A, < 0 are the last g squared diagonal values of A, multiplied by
—1. Extending this approach to find a proper random matrix probability measure on noncompact Lie groups and symmetric spaces with joint
probability densities on the subgroup A is still an open problem.

V. COMPACT Al A, and All: CIRCULAR ENSEMBLES
The joint probability density of the circular ensemble is (= 1,2,4)
EP (0) o< [l - ™.
j<k

Circular ensembles = 1,2,and 4 (COE, CUE, and CSE) arise as the eigenvalues of special unitary matrices. As we discuss in the Introduction,
circular ensembles are completely classified by (compact) symmetric spaces of the types Al A, and AlI, respectively.”” The K;AK, decom-
position associated with each symmetric space recovers the KAK decomposition. The restricted root system (and dimensions) of A, A, and
AlI are given as the following (1 <j < k < n):

a(H) | £(h; — hy)

- 3 (5.1)

Since we have compact symmetric spaces, we use (2.3) from either Theorem 2.2 or 2.4 with these root systems.

A. Compact Al, =1 COE

The compact symmetric space Al is G/K = U(n)/O(n). The involution on U(#) has no free parameter and the K; AK, decomposition is
equivalent to the KAK decomposition of U(n)/O(#). (In other words, we only have Cartan’s coordinate system.) The maximal Abelian torus
Ais

A = {Diagonal matrices with entries ™, where hj e R}.

From the KAK decomposition, we obtain U = O1DO;, a factorization of a unitary matrix U into the product of two orthogonal matri-
ces 01,0, € O(n) and a unit complex diagonal matrix D € A. This decomposition first appears in Ref. 67, and we will call this the ODO
decomposition. The corresponding Jacobian (up to constant) from (2.3) using (5.1), f = 1 is (with the change of variables 0; = 2h;)

[Tsin(hi - i) |dhi ...dh, o< T|e% - &™|d6; ... d6,.
j<k j<k
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This is the joint density of the COE. In other words, doubled angles in the diagonal of D from the ODO decomposition of a Haar distributed
unitary matrix is the COE distribution. Moreover, if we identify G/K as the set of unitary symmetric matrices P, the map (2.5) is the factor-

ization § = OAO”, the eigendecomposition of a unitary symmetric matrix S with real eigenvectors O. In terms of Remark 2.5, U = 0; DO,
becomes S = UUT = 0,D? OIT, where A = D?. To obtain the COE, we can utilize both factorizations:

e Two times the angles of the unit diagonal values of D from the ODO decomposition of U € Haar(U(n)).
o The angles of the (unit) eigenvalues of a unitary symmetric matrix obtained from UU”, U € Haar(U(n)).

Remark 5.1. The second algorithm above would be obvious since the days of Dyson,"* while we are not aware of the first algorithm
appearing in the literature.

B. Compact A, =2 CUE

The symmetric space of compact type A is G/K = U(n) x U(n)/U(n). The restricted root system returns to the usual root system A, of
the classical semisimple Lie algebra. A maximal torus of U(n) is a Cartan subalgebra of U(n). Weyl’s integration formula agrees with (2.3)
obtaining the CUE, which is the eigenvalues of a Haar distributed unitary matrix. The derivation of the CUE can be found in many random
matrix textbooks. "

C. Compact All, 8 =4 CSE

0 I
The involution X — —J' X"J,, where J,, := ! ] on the tangent space of U(2n), results in the symmetric space U(2n)/Sp(n), where

n

Sp(n) = Sp(2n,C) nU(2n). A choice of maximal Abelian torus A is
A = {diag(D,D): D = diag(eih‘, e ,eih”), hj e R}.

Again from the KAK decomposition, we obtain U = Q1 DQa, a factorization of a 2x x 2n unitary matrix U into the product of two unitary
symplectic matrices Qi,Q: € Sp(n) and a unit complex diagonal matrix D € A. We call this the QDQ decomposition. The corresponding
Jacobian from (2.3) using (5.1) (B = 4) is

[Tsin*(h; — by) |dhi ... dhy o< T]le% - €™ d6; ... d6,,
Jj<k Jj<k

with the change of variables 0; = 2h;. This is the CSE distribution. Similarly, as in Sec. V A, the eigendecomposition of the unitary skew-
Hamiltonian matrix obtained by UJ,U"J!, U € Haar(2n) is equivalent to the map (2.5). Two numerical algorithms for sampling the CSE are
as follows:

e Two times the angles of the first n unit diagonal values of D from the QDQ decomposition of U € Haar(U(2n)).
e The angles of the first n (unit) eigenvalues of a unitary skew-Hamiltonian matrix obtained by UJ,U"J} with U € Haar(U(2n)).

VI. COMPACT BDI, Alll, and Cll: JACOBI ENSEMBLES
The joint probability density of the Jacobi ensemble is (8 = 1,2,4),

m
w () o< [Th = TT " (1= )™

j<k j=1
In Refs. 12 and 13, Jacobi ensembles 8 = 1,2, 4 arise from the KAK decompositions of seven compact symmetric spaces, BDI, AIIl, CII, DIII,
BD, C, and CI. In particular, types BDI, AIII, and CII give multiple Jacobi densities as follows (for integers p > q):

9 B Blr=a+1) _
[T -l Tl (1-x%) =
=1

Jj<k

and the powers of x;’s are fixed to g — 1. The remaining four cases add four more parameter points, which could be found in Refs. 12 and 13.
In this paper, we omit these four cases as these do not have any further results, as they only have Cartan’s coordinates (no free parameter for
the Cartan involution).
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The K;AK, decomposition G = K;AK, of the compact types BDI-I, AIII-III, CII-II are exactly the CS decomposition (CSD)*"" of
orthogonal, unitary, and unitary symplectic matrices, respectively. The decomposition ® of the symmetric space (Theorem 2.4) is the GSVD
coordinate systems we discussed in Secs. I B and II C. Assume r > p > g > s and n = p + g = r + s throughout this section. We note that with
the KAK decomposition, only the cases p = 1, g = s are obtained for the CSD. The root system associated with the K; AK; decomposition is the
following (1 <j <k <s):

mg B Blp—s) | B-1] (6.1)
my 0 [Bla-9] 0

For all three 8, we have the identical maximal Abelian subgroup A,

C S
A = {n x n matrices with the block structure Ir—q =
) C
where C,S € are diagonal matrices with cosine, sine values of 61, . . ., 6; on diagonal entries, respectively.
here C, S € R are diagonal matri ith cosine, si 1 fo 0 on diagonal entri pectively

A. Compact BDI-I, g = 1 Jacobi

With the involution X ~ I,, 4XI,, 4 on the tangent space of O(n), we obtain the symmetric space BDI, G/K = O(n)/(O(p) x O(q)), where
Iy 4 := diag(I, — I5). With two symmetric pairs [O(n),O(p) x O(q)] and [O(n), O(r) x O(s)], we obtain the K; AK; decomposition BDI-,

C S
n—-by-n O, L O,
= n—2s .
Orthogonal Oy Os
-S C

This is the real CSD. [Equivalently, one can imagine the GSVD of (1.2).] From (2.3) using (6.1) 8 = 1, we obtain the Jacobian

du(H) o< [](sin(6) - ) sin(6; + 6)) [T (sin )™ (c056)“) 6 ... de.
j<k j

1+cos(26;)

Using trigonometric identities with change of variables x; = cos’6; = 5

S L(g-s+1)-1 L(pestl)—
du(H) o< ryxj - xk|n le(q w (1- xj)l(‘D D gy dx,,
j< j=

which is the joint density of the 8 = 1 Jacobi ensemble ]éll?xj ifweletay = 3(g—s+1) = L, ay = 3(p — s+ 1) - 1. This result agrees with Ref. 20,
Theorem 1.5, where the squared CSD cosine values of a Haar distributed orthogonal matrix are distributed as 8 = 1 Jacobi ensemble. Moreover,
recall the fact that the QL decomposition G = QL (a lower triangular analog of the QR decomposition) of an # x n independent Gaussian
matrix G obtains a Haar distributed orthogonal matrix Q. Since the GSVD'*" is equivalent to the combination of the QL decomposition and
the CSD, one can take the GSVD of a real independent Gaussian matrix to obtain the same f3 = 1 Jacobi ensemble. Two associated numerical
algorithms are as follows (a = q—s,b=p—s):

e The squared CSD cosine values of a Haar distributed m x m orthogonal matrix (m =2s+a+b) with row/column partitions
(s+a,s+b)and (s,s+a+D).

e The squared cosine values, where the tangent values are the generalized singular values of real (s +a) x s and (s + b) x s Gaussian
matrices.

B. Compact Alll-lll, g = 2 Jacobi

Two symmetric pairs of compact AIII type are [U(n), U(p) x U(q)] and [U(n), U(r) x U(s)]. The K;AK, decomposition of the group
G is the CSD of unitary matrices and the decomposition of G/K, = U(n)/(U(r) x U(s)) are the complex GSVD described in Sec. | B and
Eq. (1.2). Using (2.3) with the root system (6.1), B = 2, and change of variables x; = cos” 0; as above, we obtain the Jacobian
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sin(6; — 6;) sin(6; + 6;))* sin 6,)27) (cos 6,)21) sin(26,))d6, . . . 6
j i j j j
j<k j

o< [l - x| qu (1-x)dxy ... dxs,
j<k

which is the § = 2 Jacobi density ],,,1 % with a1 = g —s,a = p — s. Numerically, the following could be utilized to obtain 8 = 2 Jacobi densities
(a=q-sb=p-s):

e The squared CSD cosine values of a Haar distributed m x m unitary matrix (m = 2s + a + b) with row/column partitions (s + a,s + b)
and (s,s+a+b).

o The squared cosine values, where the tangent values are the generalized singular values of complex (s + a) x sand (s + b) x s Gaussian
matrices.

C. Compact ClI-Il, = 4 Jacobi

Jacobi densities with 8 = 4 are similarly obtained from two symmetric spaces Sp(n)/(Sp(p) x Sp(q)) and Sp(n) /(Sp(r) x Sp(s)), where
both are compact type CII. We identify Sp(n) as the quaternionic unitary group, U(n, H) := {g € GL(n,H)|g"g = I, }. The K;AK, decom-
position is the CSD of a quaternlomc unitary matrix. Using (2.3) with the root system (6.1) 8 = 4, we obtain the following Jacobian with the
change of variables x; = cos” 0:

[ 1(sin(6; - 6;) sin(6; + 6;)) H((51n9)4(p S>(c056)4(q *) sin (26))d91 . db;
j<k

o< [Tlxj = xl sz(q (1= )20 iy L dx,,
Jj<k

which is the =4 Jacobi density ]o(f?xf with a1 =2(q—s) +1,a2 =2(p —s) + 1. The associated numerical algorithm is the following
(a=qg-sb=p-s):

o The squared cosine CS values of a Haar distributed m x m quaternionic unitary matrix (m = 2s + a + b) with row/column partitions
(s+a,s+b)and (s,s+a+Db).

Remark 6.1. Again, one can use the GSVD on quaternionic Gaussian matrices to obtain the classical f = 4 Jacobi ensemble.

VII. COMPACT MIXED TYPES: MORE CIRCULAR AND JACOBI

In this section, we show even more cases such that a single symmetric space leading to multiple random matrix theories. We introduce
KiAK; decompositions with two compact symmetric spaces, each from different Cartan types. The classification of such K; AK, decomposi-
tions is studied in Ref. 47, with the computation of corresponding root systems. As always the names of these decompositions are combinations
of two Cartan types, i.e., AI-Il represents (G, K,, K:) = (U(2n),0(2n),Sp(2n)).
A. Compact Al-ll

The two compact symmetric spaces are types Al and AIl, U(2n)/O(2n) and U(2n)/Usp(2n). A maximal Abelian subalgebra a c p, N p-
is the set of all matrices diag(if.,...,i0,,i01,...,i6,) for (61,...,0,) € R". The subgroup A is the following:

A ={diag(D,D):D = diag(eig‘, e ,eie")}.

The root system is given as

o(H) | £(6; — 6k)
m 2 : (7.1)
mg, 2

Using (2.3), we obtain the Jacobian (&; = 46;),
e — %P dE, .. dE,,

which is the joint probability density of the CUE. Hence, we obtain another sampling method for the CUE.
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B. Compact Al-liI, CI-ll

The two symmetric spaces in each case are the following:

G/Ke, G/Kz = U(m)[O(n), U(n)/(U(p) x U(q)),
G/Ke, G/ Kz = U(n, H) U (n), U(n, H)/(U(p, EI)  U(q, H))

The subgroup A is computed as follows:

C nS
A = {n x n matrices with the block structure I =
N C
where C, S are q x q diagonal matrices with cosine and sine values of q angles 61, . . ., §; on their diagonals. The imaginary unit # is i for AI-III

(B =1) and 5 = j, k for CI-II (B = 2). [If we select the subgroup K of U(n,H)/U(#) to be the unitary group with the imaginary unit j, we could
also obtain # = i.] The root system is the following (8 = 1,2):

mg 5 Bp—q) [ B-1] 7.2)
Mg B Bp—q)| B

Using (2.3) with the above root system above, we obtain the following Jacobian:

gl Beman po1
[Th-xlTlx > (1-x)7, (7.3)
i1

Jj<k

where x; = sin” 20 for all j. The 8 = 1 case of (7.3) can be obtained from the CS decomposition approach too, with (n + 1) x (1 + 1) orthogonal
matrix and partitions (p,q + 1) and (p + 1,q) [see Fig. 4]. The parameters of = 2 (7.3) cannot be obtained by the complex CSD and, thus,
fall outside of the classical parameters.
C. Compact DI-lil, All-11I
Another family of the K; AK, decomposition arise from the following pairs of compact symmetric spaces (8 = 2,4):
G/K:, G/Kq = O(2n)/U(n), O(2n)/(O(2p) x O(29)),
G/K:,G/Ky, = U(2n)/U(n,H),U(2n)/(U(2p) x U(29q)).

Under Cartan’s classification, they are types DI-III and AII-III, respectively. The subgroup A can be computed as

Ip—q
ColI S®
A = {2n x 2n matrices with the block structure 2 L 4 =
P—q
S® N CRI
0
where I is the 2 x 2 identity matrix, J; = ol and C, S are q x q diagonal matrices with cosines and sines of 61, . . ., 0; on their diagonals.
The root system is given as follows (8 = 2,4):
mg B Sp—q) | B-1} (7.4)
Mg B sp-q[5-1

Again, using (2.3) with the root system above, we obtain the following Jacobian, with the change of variables x; = sin” ; for all j:

9 B=g2) = 8
ot (=) [Tk -l (7.5)
=1 j<k

J
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FIG. 6. The parameter space (a1, a2) € (~1, 00)? of the 8 = 2 Jacobi ensemble covered by symmetric spaces. The GSVD coordinate systems on the complex Grassman-
nian manifold (Alll-Il) discussed in Sec. /| covers red dots. A new coordinate system on the quaternionic (respectively, real) Grassmannian manifold discussed in Sec. VIl B
(respectively, Sec. VVII C) of type CI-Il (respectively, DI-III) represent blue (respectively, green) dots.

They are 8 = 2,4 Jacobi ensembles. Both cases could not be obtained from the classical CSD approach, so they are all non-classical parameters
of the Jacobi ensemble. To see this at once, we compare three 3 = 2 Jacobi densities each from Secs. VI B, VII B and VII C. Figure 6 shows the
possible parameters a1, a; of the 3 = 2 Jacobi ensemble obtained from each approach.

Vill. NONCOMPACT Al, A, AND All: HERMITE ENSEMBLES

While Sec. VII contains essentially new random matrix theories, Secs. VIII and IX review the Hermite and Laguerre ensembles for
completeness.”
The joint probability density of the Hermite ensemble is (8 = 1,2,4),

HP (1) o< [T - M T
j=1

j<k

Hermite ensembles $ = 1,2,and 4 (GOE, GUE, and GSE) arise as the eigenvalues of symmetric, Hermitian, and self-dual Gaussian matrices.
Hermite ensembles can be thought as the Gaussian measure endowed on the tangent space of noncompact symmetric spaces of the types Al
A, and Al The connection between these symmetric spaces and Hermite ensembles are made by Theorem 2.7. The decomposition ¥ (2.6) in
Theorem 2.7 is the eigendecomposition of symmetric, Hermitian, and self-dual matrices. The maximal Abelian subalgebra a is the collection
of all real diagonal matrices, diag(h1, . . ., i, ). The restricted root system is the following (1 <j < k < n):

a(H) | £(h; — hy)

Ma B

(8.1)

A. Noncompact Al, =1 GOE

The dual of the compact symmetric space type Al, the noncompact symmetric space type Al is G/K = GL(n,R)/O(n), represented by
the set S, of all symmetric positive definite matrices. The tangent space at the identity of S,, p, is the set of all real symmetric matrices. The
Gaussian measure on p is, for p € p, exp(~tr(p’p)/2)dp ,where dp is the Euclidean measure on p. From (2.7) using (8.1) § = 1, we obtain
(integrate out dk)

n 2
exp(~tr(p”p)/2)dp oc [N - [T e /%dMs ... dA,
j<k j=1

for the eigenvalues of p, A; = h;. This is the joint density of the GOE.

J. Math. Phys. 63, 061705 (2022); doi 10.1063/5.0087010 63, 061705-20
© Author(s) 2022


https://scitation.org/journal/jmp

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

B. Noncompact A, =2 GUE

The noncompact symmetric space type A is G/K = GL(n,C)/U(n), represented by #,, the set of all Hermitian positive definite matri-
ces. The tangent space at the identity of H,, p, is the set of all complex Hermitian matrices. The Gaussian measure on p is, for p € p,
exp(—tr(pHp)/Z)dp, where dp is the (real) Euclidean measure on p. From (2.7) using (8.1) 8 = 2, we obtain

exp(~tr(p'"p)/2)dp o< [T~ Ml e 2dhs ... dA,
j<k j=1

for the eigenvalues of p, A; = h;. This is the joint density of the GUE.

C. Noncompact All, g = 4 GSE

The noncompact symmetric space type All is G/K = GL(n, H)/U(n,H). We use U(n, H) instead of Sp(n) to clearly indicate the quater-
nionic realization. G/K can be represented by the set of all quaternionic self-dual positive definite matrices, QH,. Again, the tangent space
at the identity p is the set of all quaternionic self-dual matrices. The Gaussian measure on p is, for p € p, exp(~tr(p”p)/2)dp, where dp is the
(real) Euclidean measure on p. From (2.7) using (8.1) § = 4, we obtain

n 2

exp(~tr(p"p)/2)dp o< [T - Mel* [T e Vs ... dhs
j<k j=1

for the eigenvalues of p, A; = h;. This is the joint density of the GSE.

IX. NONCOMPACT BDI, Alll, and CIl: LAGUERRE ENSEMBLES
The joint probability density of the Laguerre ensemble is (8 = 1,2,4)
m
L) o< TIN - M T Az
j<k i1

Laguerre ensembles f3 = 1,2, 4 arise from Theorem 2.7 applied to noncompact symmetric spaces BDI, AIlI, CII, DIII, BD, C, and CI. The last
four cases of types DIII, BD, C, and CI are well-studied in Ref. 6, and we again omit these cases as discussed in Sec. V1. In particular, the first
three symmetric spaces give the following Laguerre densities (8 = 1,2,4 and p > g):

4 plp—gtD) _
[T - AT e
j<k j=1

as these ; values are the squared singular values of p x q i.i.d. Gaussian matrices. Equivalently, the eigenvalues of the matrix ATA € F7*? are
frequently used for sampling purpose, where t is the conjugate transposition. The tangent spaces of noncompact symmetric spaces of the
types BDI, AIII, and CII are

0 X

: X is p x g matrix ¢, (9.1
xt

and a choice of maximal Abelian subalgebra a is the set with X being (nonsquare) diagonal matrix with diagonal elements hi,. .., h,. The
KAK decomposition G = KAK of the noncompact symmetric spaces BDI, AIIL, and CII is the hyperbolic CS decomposition (HCSD).”"’*
The decomposition p = Ugexkak™ is the p x g SVD on upper right p x q corner. The restricted roots are the following (8 = 1,2, 4):

Me B Blp—q) | B—1 ©2

A. Noncompact BDI, § =1 Laguerre

The noncompact symmetric space type BDI is G/K = O(p,q)/(O(p) x O(q))- The tangent space p (9.1) has the Gaussian measure as
i.i.d. Gaussian distribution endowed on the elements of X. For M € p, it is exp(—tr(M”M))dp. From (2.7) using (9.2) f = 1, we obtain

9 p=g-1
exp(~tr(M"M))dp o [Tl - [ [e4 ¢ dhi...dh,,
j<k j=1
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with the change of variables A; = hf . Thus, the values A, .. ., A4 are the squared singular values of the upper right corner of M. The obtained
measure is the joint density of the § = 1 Laguerre ensemble.
B. Noncompact Alll, § = 2 Laguerre

The noncompact symmetric space type Alll is G/K = U(p,q)/(U(p) x U(q)). The tangent space (9.1) has the Gaussian measure as i.i.d.
complex Gaussian distribution endowed on the elements of X. For M € p, that is exp(—tr(M”M))dp. From (2.7) and using (9.2) § = 2, we

obtain
q
exp(—tr(M"M))dp o< [T\ = AT e A7 dN, . A,
Jj<k j=1
with the change of variables A; = hf . Again, the values 11, . . ., A4 are the squared singular values of the upper right corner of M. The obtained

measure is the joint density of the § = 2 Laguerre ensemble.

C. Noncompact ClI, p = 4 Laguerre

The noncompact symmetric space CII is G/K = U(p, q, H)/(U(p, H) x U(g, H)). The tangent space (9.1) has the Gaussian measure as
i.i.d. quaternionic Gaussian distribution endowed on the elements of X. For M € p, that is exp(—tr(M”M))dp. From (2.7) and using (9.2)
B = 4, we obtain

q
exp(~tr(M"M))dp o< TN - LT VA7 an, . da,,
j<k j=1

with the change of variables A; = hf. The values A1, . . ., A4 are the squared singular values of the upper right corner of M. The obtained measure

is the joint density of the § = 4 Laguerre ensemble.
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