
MIT Open Access Articles

On the Cartan decomposition for 
classical random matrix ensembles

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Edelman, Alan and Jeong, Sungwoo. 2022. "On the Cartan decomposition for classical 
random matrix ensembles." Journal of Mathematical Physics, 63 (6).

As Published: 10.1063/5.0087010

Publisher: AIP Publishing

Persistent URL: https://hdl.handle.net/1721.1/145495

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/145495
https://creativecommons.org/licenses/by/4.0/


J. Math. Phys. 63, 061705 (2022); https://doi.org/10.1063/5.0087010 63, 061705

© 2022 Author(s).

On the Cartan decomposition for classical
random matrix ensembles
Cite as: J. Math. Phys. 63, 061705 (2022); https://doi.org/10.1063/5.0087010
Submitted: 31 January 2022 • Accepted: 13 May 2022 • Published Online: 15 June 2022

 Alan Edelman and  Sungwoo Jeong

COLLECTIONS

Paper published as part of the special topic on Special collection in honor of Freeman Dyson

ARTICLES YOU MAY BE INTERESTED IN

Coulomb and Riesz gases: The known and the unknown
Journal of Mathematical Physics 63, 061101 (2022); https://doi.org/10.1063/5.0086835

Large deviations, central limit, and dynamical phase transitions in the atom maser
Journal of Mathematical Physics 63, 062202 (2022); https://doi.org/10.1063/5.0078916

Low-energy spectrum and dynamics of the weakly interacting Bose gas
Journal of Mathematical Physics 63, 061102 (2022); https://doi.org/10.1063/5.0089983

https://images.scitation.org/redirect.spark?MID=176720&plid=1779088&setID=406887&channelID=0&CID=653488&banID=520661581&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=1ed07a4d501c7ae4ca2baa8a1a3ca3ee9a21824f&location=
https://doi.org/10.1063/5.0087010
https://doi.org/10.1063/5.0087010
https://orcid.org/0000-0001-7676-3133
https://aip.scitation.org/author/Edelman%2C+Alan
https://orcid.org/0000-0002-6201-0517
https://aip.scitation.org/author/Jeong%2C+Sungwoo
/topic/special-collections/dyson2021?SeriesKey=jmp
https://doi.org/10.1063/5.0087010
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0087010
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0087010&domain=aip.scitation.org&date_stamp=2022-06-15
https://aip.scitation.org/doi/10.1063/5.0086835
https://doi.org/10.1063/5.0086835
https://aip.scitation.org/doi/10.1063/5.0078916
https://doi.org/10.1063/5.0078916
https://aip.scitation.org/doi/10.1063/5.0089983
https://doi.org/10.1063/5.0089983


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

On the Cartan decomposition for classical
random matrix ensembles

Cite as: J. Math. Phys. 63, 061705 (2022); doi: 10.1063/5.0087010
Submitted: 31 January 2022 • Accepted: 13 May 2022 •
Published Online: 15 June 2022

Alan Edelman1 and Sungwoo Jeong2,a)

AFFILIATIONS
1Department of Mathematics and Computer Science & AI Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA

2Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Note: This paper is part of the Special Collection in Honor of Freeman Dyson.
a)Author to whom correspondence should be addressed: sw2030@mit.edu

ABSTRACT
We complete Dyson’s dream by cementing the links between symmetric spaces and classical random matrix ensembles. Previous work has
focused on a one-to-one correspondence between symmetric spaces and many but not all of the classical random matrix ensembles. This
work shows that we can completely capture all of the classical random matrix ensembles from Cartan’s symmetric spaces through the use
of alternative coordinate systems. In the end, we have to let go of the notion of a one-to-one correspondence. We emphasize that the KAK
decomposition traditionally favored by mathematicians is merely one coordinate system on the symmetric space, albeit a beautiful one. How-
ever, other matrix factorizations, especially the generalized singular value decomposition from numerical linear algebra, reveal themselves to
be perfectly valid coordinate systems that one symmetric space can lead to many classical random matrix theories. We establish the connec-
tion between this numerical linear algebra viewpoint and the theory of generalized Cartan decompositions. This, in turn, allows us to produce
yet more random matrix theories from a single symmetric space. Yet, again, these random matrix theories arise from matrix factorizations,
though ones that we are not aware have appeared in the literature.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0087010

I. INTRODUCTION
Random matrix theory (RMT) is a big subject touching so many fields of mathematics, science, and engineering. For such a subject, it is

helpful to have a means of cataloging the objects to be studied and a theory that covers the objects in the catalog. In 1962, Dyson1–4 was the
first to propose a systematic approach to RMT. In the beginning of Ref. 4, he states his noble intent:

To bring together and unify three trends of thought which have grown up independently during the last thirty years.

which he enumerates as (i) group representations including time-inversion, (ii) Weyl’s theory of matrix algebras, and (iii) RMT.
Around a decade later, Dyson hit upon the idea that symmetric spaces should play a key role (Ref. 5, Sec. V). Dyson’s suggestion was

taken up in famous papers by Zirnbauer et al.6,7 and others.8,9 These papers mainly focus on the noncompact cases. On the mathematical side,
inspired by Katz and Sarnak,10,11 Dueñez detailed connections to RMT for the compact symmetric spaces.12,13

Nonetheless, we felt there was a gap. When one juxtaposes (i) the well-established theory of classical random matrix ensembles with (ii)
the RMTs associated with symmetric spaces, ensembles are missing. In particular, only very special Jacobi ensembles (the left side of Fig. 2)
seem to be making the symmetric space list. More precisely, if one starts with a symmetric space, one has to make what we call a coordinate
system choice, what others might call a matrix factorization choice. This choice has been the mapΦ : K × A→ G/K; (k, a)↦ kaK of Cartan,
which we could call the KAK decomposition. (Although it is often called Cartan’s KAK decomposition, Cartan was not aware of G = KAK.)
See Fig. 1.
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FIG. 1. Families of matrix factorizations associated with a symmetric space, its tangent space, and its isometry group: Shown above are the skeleton of five factorizations
associated with noncompact (left) and compact (right) symmetric spaces. Each serves as coordinate systems on the respective manifolds. Previous approaches (manifold,
coordinate system, and measure) are shown in magenta. Examples of the linked factorizations/coordinate systems are shown.

We show that coordinate systems from the generalized Cartan (K1AK2) decomposition associate a single symmetric space to multiple
RMTs. Letting go of the historical bias of the KAK decomposition, the full set of Jacobi ensembles (the right side of Fig. 2) emerges, thereby
leading to the complete list of classical random matrix ensembles. Of course, there is much mathematical precedent in differential geometry
to letting go of any one special coordinate system.

A. Classical random matrix ensembles
The objects that we are interested in are the classical random matrix ensembles. Well-established conventions in random matrix theory

agree that the ensembles in this class consist of the Hermite, Laguerre, Jacobi, and circular ensembles built from matrices of integer sizes and
involve entries that are real, complex, or quaternion. (Dyson denoted β = 1, 2, 4, and other authors in mathematics denote α = 2/β = 2, 1, 1/2.)

FIG. 2. The parameter space (α1,α2) ∈ (−1,∞)2 of the β = 2 Jacobi ensemble obtained from Cartan’s coordinates (KAK) (left) and the generalized singular value
decomposition coordinates (K1AK2) (right).
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The term “classical random matrix ensembles” may be found in the following well-known references:

● Chapter 1 of Forrester’s paper14 has the title “Classical Random Matrix Ensembles,” and the even sections (1.2, 1.4, 1.6, and 1.8) are
explicitly Hermite, circular, Laguerre, and Jacobi in that order. (Odd sections have discussions related to these ensembles.) Forrester’s
comprehensive book15 deals exclusively Hermite, Laguerre, Jacobi and circular ensembles in Chaps. 1–3 where the preface states:
“eigenvalue p.d.f. of the various classical β-ensembles given in Chaps. 1–3.” Then, later in Chap. 5.4, he further justifies the terminology
by pointing out the four weights from classical orthogonal polynomial theory.

● In Ref. 16, Chap. 4.1 is entitled “Joint distribution of eigenvalues in the classical matrix ensembles” and specifically covers exactly the
Hermite, Laguerre, Jacobi, and circular ensembles.

● The first author’s 2005 Acta Numerica article (Ref. 17, Sec. 4).

If one starts with the list of ten infinite families of Cartan’s symmetric spaces (we will not discuss finite families of the exceptional types)
and asks to characterize which classical random matrix ensembles are covered, answers could be found in Ref. 8 (Table 1), Ref. 9 (Table 1)
(noncompact cases), and Ref. 13 (Table 1) (compact cases). However, turning the question around, if one starts with the classical random
matrix ensembles and asks whether symmetric spaces are adequate to explain all of them, we find that the answer is a big “almost,” as the
Jacobi ensembles are not adequately covered. To be precise, the Jacobi densities associated with compact symmetric spaces BDI, AIII, and
CII from the previous attempts by the KAK decomposition are the following joint probability densities with β = 1, 2, 4 (up to constant) and
integers p ≥ q,

KAKdecomposition : ∏
j<k
∣xj − xk∣ β

q

∏
j=1

x
β
2−1
j (1 − xj)

β(p−q+1)
2 −1, (1.1)

where we observe the powers of xj’s restricted to β
2 − 1. The possible parameters of (1.1) are described in the left side of Fig. 2. Additional four

compact symmetric spaces DIII, BD, C, and CI add four more Jacobi ensembles,13 but they are not sufficient to cover the two dimensional
parameter set of the Jacobi ensembles.

B. Coordinate systems on the Grassmannian manifold
It is always interesting when a branch of applied mathematics reverses direction and provides guidance to pure mathematics. In this

work, we focus on the role of the generalized singular value decomposition (GSVD) from numerical linear algebra.18,19

From an applied viewpoint, the Jacobi ensembles are elegantly generated in software with commands such as svdvals
(randn(p,s),randn(q,s)) in languages such as Julia, which is computed by taking the GSVD of two i.i.d. normal matrices with the
same number of columns.20,21 From a pure viewpoint, this is a pushforward of the uniform measure on the Grassmannian manifold onto a
maximal Abelian subgroup A (with a fixed Weyl chamber) along the generalized Cartan (K1AK2) decomposition (Fig. 3).22,23

For example, take a Grassmannian point with any β = 1, 2, 4 from O(n)/(O(n − s) ×O(s)) (respectively, with complex or quaternionic
unitary groups) and represent it by the n × s orthogonal (respectively, complex or quaternionic unitary) matrix X. [More precisely, we treat
the Grassmannian manifold as the quotient Vs(Rn)/O(s) where Vs(Rn) is the Stiefel manifold. We are allowed to multiply any O ∈ O(s) on
the right side of X.] For any p, q ≥ s satisfying p + q = n, we have the following coordinate system of X arising from the GSVD24 of the first
p rows and the last q rows of X (for an alternative viewpoint, see Ref. 25):

X =
⎡⎢⎢⎢⎢⎢⎣

U

V

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

C

S

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

UC

VS

⎤⎥⎥⎥⎥⎥⎦
, (1.2)

FIG. 3. Cartan’s coordinate system (KAK) and GSVD coordinate systems (K1AK2) on the Grassmannian manifold O(n)/(O(n − s) × O(s)).
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whereU,V are p × s, q × s orthogonal (respectively, complex or quaternionic unitary) matrices and C, S are s × s diagonal matrices with cosine
and sine values. Deduced joint probability densities21 (p, q ≥ s) are the following (up to constant):

K1AK2 decomposition (GSVD) : ∏
j<k
∣xj − xk∣ β

s

∏
j=1

x
β(q−s+1)

2 −1
j (1 − xj)

β(p−s+1)
2 −1,

where the case q = s represents the usual KAK decomposition case (1.1).
As can be seen, the classical Jacobi parameters are quantized as they are integer multiples of β/2. Random matrix models that remove

this quantization, thereby going beyond the classical, appear in Refs. 20, 26, and 27. In Sec. VII, we also illustrate that some Jacobi ensembles
can arise from symmetric spaces that are outside the traditional quantization (Fig. 6).

C. Contributions of this paper
This work shows that a symmetric space can be associated with multiple randommatrix theories (Fig. 4). Letting go of the arbitrariness of

the choice of the KAK decomposition coordinate system allows us to choose other coordinate systems on symmetric spaces, thereby leading
us to the complete list of classical random matrix ensembles (Secs. V, VI, VIII, and IX). Many of these coordinate systems are sometimes
better known as matrix factorizations, used widely in matrix models of the classical ensembles.15,17,20,26,27 However, in Sec. VII, we compute
new families of the Jacobi ensemble parameters from coordinate systems that have not been known before.

This work also endeavors to make the Lie theory more widely accessible by simplifying and modernizing key ideas and proofs in Ref. 28.
Cartan’s theory29–32 as developed by Helgason28,33 is a crowning mathematical achievement, and it is our hope to open up this theory for the
benefit of all. Indeed, in Ref. 34 (p. 428), Helgason writes about the difficulty of understanding Cartan’s writings:

[Cartan] was one of the great mathematicians of the period, but his papers were quite a challenge. Hermann Weyl, in reviewing a
book by Cartan from 1937 writes: “Cartan is undoubtedly the greatest living master in differential geometry. . . I must admit that I
found the book like most of Cartan’s papers, hard reading.”

FIG. 4. Examples illustrating the lack of a one-to-one relationship between symmetric spaces and classical random matrix theories: A complex Grassmannian (top) obtains
three Jacobi ensembles. A real Grassmannian (bottom) obtains four Jacobi ensembles. In particular, the β = 1 Jacobi ensemble J(1),2

0,1 can be obtained from both symmetric
spaces. Interestingly, a complex Grassmannian can lead to (top purple) a real RMT in the sense that β = 1. Similarly, a real Grassmannian obtains β = 2 RMT (bottom
purple).
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In the same vein, while we are admirers of Helgason’s extensive work, we authors must admit that we, in turn, found Refs. 28 and 33
hard reading as well, and this paper attempts to introduce the theory by couching the ideas in terms of what we call ping pong operators.

Summarizing our work, we have the following:

● We use the coordinate systems of the K1AK2 decomposition that connects a single symmetric space to multiple random matrices
(Fig. 4), completing the list of associated classical random matrix ensembles.

● We translate some of the key concepts in Cartan’s theory of symmetric spaces into easier to follow linear algebra (Sec. III).
● We provide coordinate systems (matrix factorizations) of symmetric spaces that have not been discussed in random matrix context,

obtaining new parameter families of the Jacobi ensemble (Sec. VII).

II. BACKGROUND

A. Joint densities of classical random matrix ensembles
Dyson introduced the β = 1, 2, 4 circular ensembles1,4 in 1962. Earlier expositions on circular ensembles could be found onHurwitz35 and

Weyl.36 Hermite ensembles were introduced by Wigner.37–39 Laguerre and Jacobi ensembles could be found as early as 1939 in the statistics
literature by Fisher,40 Roy,41 or Hsu.42 The physics literature first touches upon the idea of Laguerre and Jacobi with the 1963 thesis of Leff.43
The following list is the joint probability densities (without normalization constants) of classical random matrix ensembles (β = 1, 2, 4):

● Circular:∏
j<k
∣eiθj − eiθk ∣β, (θ1, . . . , θn) ∈ [0, 2π)n;

● Hermite:∏
j<k
∣λj − λk∣βe−∑

λ2j
2 (λ1, . . . , λn) ∈ Rn;

● Laguerre:∏
j<k
∣λj − λk∣β

m
∏
j=1
λαj e−∑

λj
2 (λ1, . . . , λm) ∈ [0,∞)m;

● Jacobi:∏
j<k
∣xj − xk∣β

m
∏
j=1

xα1j (1 − xj)
α2 (x1, . . . , xm) ∈ [0, 1]m.

In particular, the parameters α,α1,α2 > −1 are quantized as integer multiples of β
2 , i.e.,

β
2 (N + 1) − 1 for some non-negative integer N.

B. Symmetric space and the generalized Cartan decomposition
In this section, we introduce the theory related to the generalized Cartan decomposition. For readers without preliminary knowledge in

Lie theory, we recommend skipping to Sec. III, which follows a more modern linear algebra approach.
Let G/Kσ be a Riemannian symmetric space with a real reductive noncompact Lie group G and its maximal compact subgroup Kσ .

Let σ be the Cartan involution on g ∶= Lie(G). Then, g = kσ + pσ is the Cartan decomposition. Let τ be another involution on g such that
τσ = στ, and let g = kτ + pτ be the ±1 eigenspace decomposition by τ. Denote by Kτ the analytic subgroup of G with tangent space kτ . Let a be
a maximal Abelian subalgebra of pτ ∩ pσ and define A ∶= exp(a). We introduce the (noncompact) generalized Cartan decomposition (Ref. 22,
Theorem 4.1).

Theorem 2.1 (generalized Cartan decomposition, K1AK2 decomposition). With the above setting, we have the following
decomposition of G:

G = KτAKσ. (2.1)

That is, for any g ∈ G, we have k1 ∈ Kτ , k2 ∈ Kσ and a ∈ A such that g = k1ak2.

We often use the equivalent name “K1AK2 decomposition” for simplicity. Note that if τ = σ (i.e., K = Kσ = Kτ), we recover the usual
KAK decomposition, G = KAK. The generalized Cartan decomposition in the work of Flensted-Jensen22 is originally intended for the case
where G is noncompact. The compact analog is developed by Hoogenboom23 [Theorem 3.6].

Theorem 2.2 (generalized Cartan decomposition; compact case). Let G/Kσ and G/Kτ be two compact Riemannian symmetric spaces. Let
g = kσ + pσ and g = kτ + pτ be the corresponding eigenspace decompositions of g = Lie(G). Then, for a maximal Abelian subalgebra a of pσ ∩ pτ
and A = exp(a), we have

G = KτAKσ.

From the space of linear functionals a∗, we collect eigenvalues of an adjoint representation (the commutator) of a on g and call these
eigenvalues the roots of the K1AK2 decomposition. By fixing the Weyl chamber, we obtain a set of positive roots Σ+. Details of the theory
of the K1AK2 decomposition and its root system can be found in Flensted-Jensen,22,44 Hoogenboom,23 Matsuki,45–47 and Kobayashi.48 The
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K1AK2 decomposition is also studied in the context of spherical harmonics and intertwining functions.49,50 Refine the root space gα of a root
α by ±1 eigenspaces of στ. Let the two dimensions bem±α .

Let dkσ , dkτ be the Haar measures of Kσ , Kτ , respectively. Let dH be the Euclidean measure on a. The Jacobian of the K1AK2
decomposition is the following:

Theorem 2.3 (Jacobian of the K1AK2 decomposition23,44). Let dg be the Haar measure on G, and let H ∈ a. We have the Jacobian and the
integral formula corresponding to the change of variables associated with the K1AK2 decomposition,

∫
G
f (g)dg = ∫

Kτ
∫
Kσ
∫
a+

f (kσ exp(H)kτ)dμ(H)dkσdkτ ,

where for noncompact G,

dμ(H)∝ ∏
α∈Σ+
(sinh α(H))m

+

α (cosh α(H))m
−

α dH, (2.2)

and for compact G,

dμ(H)∝ ∏
α∈Σ+
(sin α(H))m

+

α (cos α(H))m
−

α dH. (2.3)

Similar results on the KAK decomposition and the restricted roots of symmetric spaces can be found in standard Lie group
textbooks.28,33,51–53 In the KAK case, the Jacobian (2.2) reduces down to ∏ (sinh α(H))mα as we do not have −1 eigenspace of στ so that
mα = m+α .33,54,55

Theorems 2.1–2.3 are decompositions of the group G. These decompositions can also be applied to the symmetric space G/Kσ . The
following map Φ is the K1AK2 decomposition of the Riemannian symmetric space G/Kσ . The map Φ is also called the Hermann action,56,57

nonstandard polar coordinates,58 and non-Cartan parameterization.59 In the KAK case (K = Kσ = Kτ), Helgason called this the polar coordi-
nate decomposition33 and credits Cartan30 for this map. Since the G-invariant measure of G/K inherits the Haar measure of G, the identical
Jacobian is obtained for the decomposition of a symmetric space.60

Theorem 2.4 (K1AK2 decomposition of G/Kσ). Given a K1AK2 decomposition G = KσAKτ with the Riemannian symmetric space G/Kσ ,
we have the map Φ,

Φ : Kτ × A→ G/K; (kτ , a)↦ kτaK. (2.4)

Suppose H ∈ a, a = exp(H). For the G-invariant measure dx of G/Kσ , dkτ = Haar(Kτ), and the Euclidean measure dH on a, dx = dkτdμ(H)
holds where the Jacobian dμ(H) is given in (2.2) if G is noncompact and (2.3) if G is compact.

Remark 2.5 [representing G/K ≅ P: gK (coset) or p ∈ P?]. In the standard KAK decomposition, the Jacobian (2.2) [respectively, (2.3)]
only has sinh (respectively, sin) terms as we discussed above. This result could be found in many literature, where some authors28,44,55,61

use∏ sinh α(H) as the Jacobian, whereas other authors13,54,62 use∏ sinh(α(H)/2). This gap is due to the difference in the realization of a
symmetric spaceG/K as a subset P ⊂ G. The former uses the right coset representative, i.e.,G/K → P as gK ↦ p, where g = pk is its group level
Cartan decomposition. Then, the action of G on G/K is given as (g1, g2K) ↦ g1g2K. The latter authors use the map G/K → P such that gK
↦ g(σg)−1, where σ is the group level involution. The G-action is (g1, g2)↦ g1g2(σg1)−1, g1 ∈ G, g2 ∈ P. In terms of Theorem 2.4, the latter
gives the map Φ such that (k, a)↦ ka2k−1 since

g(σg)−1 = pkσ(pk)−1 = pk(p−1k)−1 = pkk−1p = p2 = kak−1kak−1 = ka2k−1,

which explains the extra factor 1
2 applied toH where a = exp(H). Moreover, these two identifications define the mapΦ : K × A→ P with the

same k, a as
Φ : (k, a)↦ kaK or Φ : (k, a)↦ ka2k−1, (2.5)

depending on the author’s notational choice explained above. This coordinate system Φ is sometimes called the polar coordinate
decomposition, e.g., see Ref. 33 (p. 402).

Example 2.6 (G/K vs P: a symmetric positive definite matrix). Let us take a look at the two realizations in Remark 2.5 for G/K = GL
(n,R)/O(n), where P is the set of all symmetric positive definite matrices. Let S be a fixed positive definite symmetric matrix, with its eigen-
decomposition S = QΛQT , with Q ∈ O(n). The coset representation of S is QΛ ⋅ O(n) ∈ G/K as QΛ = (QΛQT)Q is the polar decomposition.
With the realization of P ≅ G/K, the point in G/K is represented by the matrix S = QΛQT .
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Finally, we have the Lie algebra counterpart of Theorem 2.4 when K = Kσ = Kτ .

Theorem 2.7. For a noncompact Riemannian symmetric space G/K with the Cartan decomposition g = k + p, let a be a maximal Abelian
subalgebra of p. We have

Ψ : K × a→ p; (k,H)↦ kHk−1, (2.6)

equivalently the decomposition p = ∪k∈Kkak−1 with the Jacobian dμ given as

dμ(H)∝ ∏
α∈Σ+
∣α(H)∣mα , (2.7)

where H ∈ a and Σ is the restricted root system with dimensions mα. The measure on p is the Euclidean measure.

C. A symmetric space: one RMT or many RMTs?
The answer to the title question of this section is that both one and many can be construed as correct. To explain how this is possible

requires teasing apart the assumptions behind the words “associated with.” Certainly,6,8,9,13 associate one random matrix with one symmetric
space. However, the example of the GSVD coordinate systems discussed in Sec. I B associates multiple Jacobi densities with one symmetric
space, the Grassmannian manifold. In Ref. 59, another example is illustrated as the “non-Cartan parameterization” for the special case of
(G,Kσ ,Kτ) = (U(n), O(n), U(p) ×U(q)). (A similar approach may be found in Ref. 63.) This is discussed in Sec. VII B.

The reconciliation is that indeed it is true that the required maps (2.4) when K = Kσ = Kτ , i.e., Φ(k, a) = kaK = kak−1 (compact) or the
map (2.6) ψ(k,H) = kHk−1 (noncompact) lead to a unique randommatrix theory associated with a given symmetric spaceG/K. This is unique
in a sense that any geodesic on the symmetric space G/K could be transformed to the geodesic on A with the above maps.

However, if we relax the condition so that we are allowed to choose Kτ under the generalized Cartan decomposition framework, we
can associate multiple random matrix theories to one symmetric space. The GSVD coordinate systems in Sec. I B illustrate this view-
point. The real Grassmannian manifold G/K = O(n)/(O(n − s) ×O(s)) has the map Φ : (k, a)↦ kaK for K = Kσ = Kτ explicitly written as

X = [U
V
][C

S
] ⋅O(s), where U,V are (r − s) × s, s × s orthogonal matrices. On the other hand, if we let Kτ = O(p) ×O(q), we have multiple

maps Φ : (kτ , a)↦ kτaK written as X = [U
V
][C

S
] ⋅O(s), where U,V are p × s, q × s orthogonal matrices.

Starting from Sec. V, we discuss (i) randommatrices arising from the K1AK2 decompositions of compact symmetric spaces (Theorem 2.4
or 2.2) and (ii) random matrices arising from the Lie algebra decomposition of noncompact symmetric spaces (Theorem 2.7). The associated
decompositions are well explained by matrix factorizations in numerical linear algebra. As we pointed out, the resulting Jacobi ensembles
cover the full parameter set of the classical Jacobi densities, thereby completing the classification from the classical RMT point of view.

III. CARTAN’S IDEA: A MODERNIZED APPROACH
The Jacobian of the KAK (K1AK2) decomposition, equivalently the determinant of the differential of the map Φ : K × A→ P

(in Theorem 2.4 and Remark 2.5), is computed in several references.28,54,55 The proof of (2.2) is can also be found in Refs. 23 and 44. However,
the proof can be inaccessible to some audiences. Meanwhile, individual cases of the KAK decomposition, recognized as matrix factorizations,
show up in many areas of mathematics, and some were discovered in various formats by specialists in numerical linear algebra. Motivated
by random matrix theory (and sometimes perturbation theory in numerical analysis), Jacobians of these factorizations were often computed
case-by-case using the matrix differentials and wedging of independent elements.15,21,26,64,73

In this section, we provide a generalization of such individual Jacobian computations and compare it to the general technique Helgason
proposed. With appropriate translation of terminologies and maps in Lie theory into linear algebra, we observe the both methods are indeed
the same process but have been illustrated in different languages for a long time. We start out by introducing some important concepts in Lie
theory accessible to an audience with a good background in linear algebra and perhaps some basic geometry. Then, in Table II, we present a
line-by-line correspondence between Helgason’s derivation and the proof by matrix differentials.

A. The ping pong operator, ping pong vectors, and ping pong subspaces
We will start with a concrete 2 × 2 linear operator so as to establish the notions of the ping pong operator, ping pong vectors, ping pong

subspaces, and the relationship to eigenvectors. Then, we will define a “bigger” linear operator adH that acts on 2 × 2 spaces exactly in the
manner we are about to describe.

We introduce the 2 × 2 matrix

M ∶=
⎡⎢⎢⎢⎢⎣

0 α
α 0

⎤⎥⎥⎥⎥⎦
= α
⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦
,
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which we will call a 2 × 2 ping pong operator, and we will call [1
0
] and [0

1
] the ping pong vectors ofM, in thatM bounces these two vectors into

α times the other,

M
⎡⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎦
= α
⎡⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎦
, M

⎡⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎦
= α
⎡⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎦
.

Furthermore,M has eigenvectors [1
1
], [ 1

−1], with eigenvalues α,−α. We will call the eigenvalue a root ofM.

Also worth pointing out are the matrix exponential and matrix sinh ofM,

eM =
⎡⎢⎢⎢⎢⎢⎣

cosh α sinh α

sinh α cosh α

⎤⎥⎥⎥⎥⎥⎦
and sinh M = 1

2
(eM + e−M) = sinh α ⋅

⎡⎢⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎥⎦
,

and thus, we see that sinhM is another ping pong operator with scaling sinh α. Figure 5 plots the action of a ping pong matrix and its
exponential, with notations that we will use in Secs. III D and III E, i.e., the ping pong operator is denoted adH , pj and kj are the ping pong
vectors, and xj and θxj are the eigenvectors. The right side of Fig. 5 shows the action of eM and portrays sinh(M) as a projection of eM on the
pj direction.

We now go beyond 2 × 2 matrices and suggest the more general 2N × 2N ping pong matrixMN , withN roots, α1, . . . ,αN ,N pairs of ping
pong vectors (k1, p1), . . . , (kN , pN) along with eigenvectors (x1, y1), . . . , (xN , yN),

MN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 α1
α1 0

. . .

0 αN
αN 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

kj, pj, xj, yj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋮
1

0

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋮
0

1

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋮
1

1

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋮
1

−1
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, j = 1, 2, . . . ,N,

where the 2j − 1 and 2j positions are 0 or ±1 and all other entries of these vectors are 0. The matrices exp(MN) and sinhMN are block versions
of the 2 × 2 case.

FIG. 5. The eigenmatrices xj , θxj and ping pong matrices k j , pj (3.4) in the tangent space g. The operators are illustrated in blue lines. The operator adH and ping pong
relationship (left) and the operator eadH on k j to pj (right). The left map shows the factor of αj , which is a building block of the Jacobian ∏ j ∣αj(H)∣ (2.7). The factor of
sinh αj in the right map builds the Jacobian∏ j ∣ sinh αj(H)∣ (2.2).
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Wemay define the subspaces k and p (using the “mathfrak” Fraktur letters “k” and “p”) to be the span of the kj and pj, respectively. Note
that k and p are orthogonal complements as subspaces. A key “ping pong” relationship between these subspaces is that

MNk ∈ p if k ∈ k,
MNp ∈ k if p ∈ p.

Thus, if we consider MN ∣k, the restriction of MN to k, we have an operator from k to p. Evidently, MN ∣k as a matrix may be obtained by
taking the even rows and odd columns ofMN . The result is a diagonal matrix with the αj on the diagonal. Similarly, sinh(MN)∣k is a diagonal
matrix with sinh(αj) on the diagonal. We then get the important result that

det(sinh(MN)∣k) =
N

∏
j=1

sinhαj,

the product of the hyperbolic sines of the roots.
Given a linear operator L on a vector space with nonzero eigenvalues ±λ, the following lemma constructs a pair of ping pong vectors

from L:
Lemma 3.1. For a linear operator L defined on any vector space, assume that ±λ are both nonzero eigenvalues of L. Let x and y be the

corresponding eigenvectors, i.e., Lx = λx and Ly = −λy. Define two vectors k ∶= x + y, p ∶= x − y. Then, k, p are ping pong vectors. Furthermore,
we have for the operator exp(L),

eL k = cosh λk + sinh λp, eL p = sinh λk + cosh λp.

The proof is a straightforward extension of the discussion in previous paragraphs.

Remark 3.2. For the reader who wants to know the upcoming significance of this fact for Jacobians of matrix factorizations, it turns out

(or maybe as the reader already observed in Sec. II) that the Jacobian will be the product of sinh α’s. Just as the matrix sinh
⎛
⎝

⎡⎢⎢⎢⎢⎣

0 α
α 0

⎤⎥⎥⎥⎥⎦

⎞
⎠
takes

one of the ping pong vectors to sinh α times the other, the key piece of the differential map will consist of multiple ping pong relationships,
each one sending one ping pong vector to another.

B. The Kronecker product, linear operator adX , and its exponential
Lie theory picks out operatorsL that exactly have the properties in Sec. III A. Our vector spaces are nowmatrix spaces, and our operators

are linear operators on a matrix space. We introduce the Lie bracket, denoted by [X,Y], defined as [X,Y] = XY − YX (the commutator). The
Kronecker product notation is very helpful in this context. We define the Kronecker product notation as a linear operator on a matrix space.
[Many authors would write vec(BXAT) = (A⊗ B)vec(X), but we omit the “vec” as we believe it is always clear from context. In a computer
language such as Julia, one would write kron(A,B) ∗ vec(X) = vec(B∗X∗A′)],

(A⊗ B)X = BXAT. (3.1)

With this, we can express the Lie bracket with Kronecker products,

(I ⊗ X − XT ⊗ I)Y = XY − YX.

Consider the Lie bracket as a linear operator (determined by X) applied to Y , and call this operator adX (abbreviation for “adjoint”),

adX = I ⊗ X − XT ⊗ I,
adX(Y) = [X,Y].

This will be the important ping pong operator L. The operator exponential of adX (equivalently, the matrix exponential of I ⊗ X − XT ⊗ I) is
given in the following lemma:

Lemma 3.3. For the linear operator adX , the following holds for eadX ∶= ∑∞j=0 (adX)
n

n! and sinh adx = (eadX + e−adX)/2:

eadX = exp(I ⊗ X − XT ⊗ I) = (e−X)T ⊗ eX , (3.2)

eadXY = eXYe−X and (sinh adx)Y = (eXYe−X − e−XYeX)/2. (3.3)
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Proof. The proof is straightforward by identity (3.1). eXYe−X = ((e−X)T ⊗ eX)Y and eadXY = exp(I ⊗ X − XT ⊗ I)Y . It is left to prove
(e−X)T ⊗ eX = exp(I ⊗ X − XT ⊗ I). Since I ⊗ X commutes with XT ⊗ I, we have

exp(I ⊗ X − XT ⊗ I) = eI⊗Xe−X
T⊗I = (I ⊗ eX)((e−X)T ⊗ I) = (e−X)T ⊗ eX ,

proving the result. The sinh result follows trivially. ◻

C. Antisymmetric and symmetric matrices: An important first example of symmetric space as ping pong spaces
In our first example, our vector space is n × n real matrices. Consider

k = {Antisymmetricmatrices},
p = {Symmetricmatrices}.

The ping pong operator that will bounce k and p around will be adH = I ⊗H −HT ⊗ I, where H is the diagonal matrix

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1
. . .

hn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that the operator adH sends an antisymmetric matrix to a symmetric matrix and a symmetric matrix to an antisymmetric matrix.
What does this have to do with Jacobians of matrix factorizations, such as the symmetric positive definite eigenvalue factorization? Con-

sider a perturbation of Q when forming S = QΛQT . An infinitesimal antisymmetric perturbation QTdQ is mapped into a dS, an infinitesimal
symmetric perturbation. This is the very linear map from the tangent space of Q to that of S that we wish to understand, so perhaps it is not
surprising we would want to restrict our ping pong operator from k to p. We invite the reader to check that the corresponding eigenmatrices
and ping pong matrices of adH may be found in the first column of Table I.

D. General k and p arise from an involution θ

We proceed to construct more important general operators L that have the property in the assumption of Lemma 3.1. This is where the
theory of Lie groups and symmetric spaces need to be brought in. Upon doing so, we will obtain two linear spaces of matrices k, p, and also a
space a.

TABLE I. Examples of eigenmatrices xl , θxl and ping pong matrices k l , pl . k l = xl + θxl and pl = xl − θxl as defined in (3.4). k l , pl are normalized to have ±1 entries. A block
structure on row/columns j, k and j′ ∶= p + j and k′ ∶= p + k are filled up with 0 and ±1.

G
K

GL(n,R)
O(n)

U(n)
O(n)

O(p,q)
O(p)×O(q)

O(n)
O(p)×O(q)

xl ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

θxl ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

kl

pl
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For the reader not familiar with Lie groups, one need only imagine a continuous set of matrices that are a subgroup of real, complex,
or quaternion matrices. The tangent space g is just a vector space of matrix differentials at the identity. One key example is the compact Lie
group O(n) (the group of square orthogonal matrices) and its tangent space at the identity gO(n): the set of antisymmetric matrices. Another
key example is all n × n invertible matrices GL(n,R) (a noncompact Lie group) and its tangent space gGL(n,R), consisting of all n × nmatrices.

Cartan noticed that important matrix factorizations start with two ingredients: the tangent space g (at the identity) of a Lie group G and
an involution θ on g (i.e., θ2 = Id and θ[X,Y] = [θX, θY]) An example of θ is θ(X) = −XT on g for G = GL(n,R). Among matrices in g, we
select two kinds of matrices. The ones fixed by the involution θ, and the ones negated by θ. Denote each set by k and p,

k ∶= {g ∈ g : θ(g) = g}, p ∶= {g ∈ g : θ(g) = −g}.

[For GL(n,R), these are the antisymmetric and symmetric matrices respectively.]
The next important player is a ⊂ p. Readers familiar with the singular value decomposition know the special role of diagonal matrices in

the SVD as they list the very important “singular values.” Diagonal matrices have the nice property that linear combinations are still diagonal,
they commute (the Lie bracket of any two are zero), and they are symmetric (the p of our first example). The generalization of this is to take a
p and find a maximal subalgebra where every matrix commutes. This is the maximal subspace a ⊂ p such that for all a1, a2 ∈ a, [a1, a2] = 0.

If H ∈ a, then S = QΛQT is a symmetric positive definite eigendecomposition, with Λ = eH . In the rest of the section, we will be focusing
on factorizations of the form QΛQ−1, where Λ is a matrix exponential of H ∈ a. (These will be more general than eigendecompositions, as Q
may not be orthogonal, and Λ may not be diagonal.) In particular, we will compute the Jacobian of perturbations with respect to Q, holding
H constant, and thus, necessarily the Jacobian will be defined in terms of H.

From here, we assume that the Lie group G is noncompact. The compact case will be discussed after completing the noncompact case.
Pick H ∈ a, and recall that adH is a linear operator on g. The operator adH will play the role of L, the ping pong operator. We decompose
g into the eigenspaces of adH . For any eigenpair (αj, xj) of adH , i.e., adH(xj) = [H, xj] = αjxj, we observe (for αj ≠ 0)

adH(θxj) = [H, θxj] = −[−H, θxj] = −[θH, θxj] = −θ([H, xj]) = −αjθxj,

which implies that the eigenvalues ±αj always exist in pairs, with the corresponding eigenmatrices xj and θxj. This satisfies the assumption of
Lemma 3.1, from which we can now construct our ping pong matrices,

kj ∶= xj + θxj, pj ∶= xj − θxj, (3.4)

with the ping pong relationship by the operator adH ,

adH kj = αjpj, adH pj = αjkj. (3.5)

In addition, the relationship by the operator eadH follows:

eadHkj = coshαjkj + sinhαjpj, (3.6)

eadHpj = sinhαjkj + coshαjpj. (3.7)

The ping pong matrices kj, pj, eigenmatrices xj, θxj and the relationships (3.5), (3.6) are illustrated in Fig. 5.
As we mentioned in Remark 3.2 and Sec. III C, the role of ping pong matrices kj, pj is crucial. The map eadH (particularly, sinh adH) is

the main ingredient constructing the differential map dΦ of the factorization Φ : (Q,Λ)↦ QΛQ−1. The operator eadH is applied to kj and
then projected to the span of pj as in Fig. 5 (right), leaving only the sinh αj factor.

We now compute the full basis of k and p. The collection ∪j{xj, θxj} is a full basis for the union of eigenspaces with nonzero eigenvalues.
Since span({xj, θxj}) = span({kj, pj}) for any j, ∪j{kj, pj} is another full basis for the eigenspaces with nonzero eigenvalues. Interestingly, we
observe θkj = kj and θpj = −pj, which identifies ∪j{kj} and ∪j{pj} as subsets of the basis of k and p, respectively. The remaining case is the zero
eigenspace. When αj = 0, there are two possibilities. First, if xj and θxj are independent of each other, we can still obtain kj and pj as before
and add them to ∪j{kj} and ∪j{pj}. Second, if xj and θxj are colinear, θxj is either xj or −xj. If θxj = xj, we collect such xj and name the set
Kz . Similarly, if θxj = −xj, then we put them in Pz . Since we analyzed both nonzero and zero eigenspaces, we have obtained a full basis of g,
which is (∪j{kj, pj}) ∪ Kz ∪ Pz . Refining once more, span((∪j{kj}) ∪ Kz) = k and span((∪j{pj}) ∪ Pz) = p.

E. The operators adH,eadH , and the subspaces k, p
In Sec. III D, we obtained the basis of k and p, in terms of ping pong matrices, by linearly combining eigenmatrices of the operator adH .

We now illustrate the relationship of the basis of k and p under eadH , just like we illustrated the operatorMN in Sec. III A. In the k1, . . . , kN and
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p1, . . . , pN basis, we have the following:

eadH

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1

p1

⋮
kN

pN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

coshα1 sinhα1

sinhα1 coshα1
. . .

coshαN sinhαN

sinhαN coshαN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1

p1

⋮
kN

pN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.8)

We are now ready to carefully investigate the map dΦ using (3.8).

Remark 3.4. Results in Lie theory imply that the eigenmatrices xj and θxj of adH are independent of the choice of H ∈ a. In other words,
the complete basis of g and k, p obtained above does not care about a specific choice of H. Furthermore, the eigenvalues ±αj are functions of
H, and these eigenvalue assigning functions α̃j : H ↦ αj ∈ R are more properly called the restricted roots. It can be inferred from the separation
of the basis that k, p together form the whole tangent space g,

g = k + p. (3.9)

F. Symmetric spaces
The reader may have noticed that our discussions have focused on the Lie algebras rather than the Lie groups themselves. It is a point of

fact that Lie groups are mostly useful to define the factorizations of our interest, but Lie algebras are where the Jacobian “lives,” and hence,
this is the most important place to concentrate. For the interested reader, the subgroup K of G is picked such that its tangent space is exactly
k [one easy way to imagine such a subgroup is to define K ∶= exp(k)], and we now obtain a symmetric space G/K.

It can be proven that for the noncompact Lie group, there exists a unique involution θ such that the subgroup K is the maximal compact
subgroup of G. We call θ the Cartan involution, and (3.9) is called the Cartan decomposition. Furthermore, the subset P ∶= exp(p) plays an
important role as its elements serve as representatives of the cosets in G/K. Regarding the identification of G/K as elements in P, refer to
Remark 2.5, where we point out as an example, taking G/K = GL(n,R)/O(n) that an element of G/K has the form of a coset gK, then ggT

may be a representative of the coset in p. While some authors use (ggT)1/2, the key point being each choice is well defined independent of
choice of representative.

G. When G is a compact Lie group
Upon considering the compact cases, it is helpful to make use of a certain duality between compact and noncompact symmetric spaces.

We again start with a noncompact Lie group G and the Cartan involution θ. Let g = k + p be the Cartan decomposition. Then, define a new
space,

gC ∶= k + ip, (3.10)

where i is the imaginary unit. The result in Lie theory implies that the new vector space gC is the tangent space of a compact Lie group, say,GC.
In Table I, the first and third columns labeled GL(n,R)/O(n) and O(p, q)/(O(p) ×O(q)) are noncompact tangent spaces. Their compact
duals are, respectively, the second and fourth columns labeled U(n)/O(n) and O(n)/(O(p) ×O(q)).

Matrixwise, the ping pong matrices kj ∈ k, pj ∈ p of g are brought back to a new set of ping pong matrices kj ∈ kC, ipj ∈ pC in gC. Let
us denote them by k̃j ∶= kj and p̃j ∶= ipj. The role of the subspace a is now played by ia replacing adH by adiH . We deduce a set of similar
relationships for k̃j, p̃j under adiH ,

adiH(k̃j) = αjp̃j, adiH(p̃j) = −αjk̃j.

In matrix form,

adiH

⎡⎢⎢⎢⎢⎢⎣

k̃j

p̃j

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 αj

−αj 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

k̃j

p̃j

⎤⎥⎥⎥⎥⎥⎦
, (3.11)

which leads to the compact version of (3.6) and (3.7),

exp(adiH)
⎡⎢⎢⎢⎢⎢⎣

k̃j

p̃j

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

cosαj sinαj

− sinαj cosαj

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

k̃j

p̃j

⎤⎥⎥⎥⎥⎥⎦
. (3.12)
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At the group level, the symmetric spaces G/K and GC/K are called the duals of each other, and they appear in the same row of standard
symmetric space charts. An example of eigenmatrices xj, θxj and ping pong matrices for some symmetric spaces and their duals are presented
in Table I.

H. Jacobian of the map Φ

We provide a generalized algorithm for finding a Jacobian of the decomposition Φ(Q,Λ) = QΛQ−1 [as we defined in (2.5)], where
Λ ∈ A ∶= exp(a),Q ∈ K. k and p from Sec. III D are the tangent spaces of K and P, respectively. As mentioned, we follow Helgason’s derivation
(Ref. 28, Theorem 5.8 of Chap. I) and start by directly translating his proof into simple linear algebra terms. In Table II, we have Helgason’s
derivation (left) compared in the same rowwith linear algebra (Right). Table II is using the noncompact symmetric spaceG/K but the compact
case is identical with replacing sin αj by sinh αj.

From the last line of Table II, we can finish the story with two different directions, depending on the choice of the volume measure.
First, if we use a G-invariant measure (the “canonical measure”) of P, the measure is invariant under the map dτ or dτ̃ (by definition of the
invariant measure). Thus, we can disregard dτ̃(QΛ 1

2 ) [or dτ(ka)] so that the Jacobian of dΦ̃ (or dΦ) only depends on the differential map
kj ↦ (sinh αj)pj. Since ∪j{kj} and ∪j{pj} are both orthonormal bases, we obtain the Jacobian (2.2),

∏
α∈Σ+

sinh α(H).

Note that eigenvalues ±αj belong to xj and θxj have the same corresponding kj. [see (3.4) and above.] Thus, we only take the positive roots Σ+
above.

The second choice of measure is the Euclidean measure, which is a wedge product of independent entrywise differentials. In this case,
the procedure is identical up to the factor sinh αj, but the map dτ̃(QΛ 1

2 ) [equivalently dτ(ka)] cannot be ignored. One needs to carefully
compute the differential map dτ̃(QΛ 1

2 )pj = QΛ
1
2 pjΛ

1
2 Q−1 under the Euclidean measure. We can further use the fact that conjugation by the

matrixQ always preserves the Euclideanmeasure, since the subgroupK is always a set of matrices with an orthogonal/unitary type of property.
Thus, one needs to compute the map pj ↦ Λ

1
2 pjΛ

1
2 and multiply its Jacobian by∏α∈Σ+ sinh α(H).

TABLE II. Line-by-line translation of the classical proof to linear algebra proof.

Classical notation
(Ref. 28, p. 187, Proof of Theorem 5.8, Chap. I) Linear algebra notation (matrix factorizations)

Definitions

Φ: K × A→ G/K Φ̃: K × A→ P
Φ: (k, a)↦ kaK Φ̃: (Q,Λ)↦ QΛQ−1 (Λ

1
2 = a, Q = k)

dτ(g0) : (G/K)o → (G/K)g0 ⋅o dτ̃(g0) : X ↦ g0X(θg0)−1
dπ : g→ (G/K)o (θk = k, k ∈ K, θp = p−1, p ∈ P)
At k ∈ K, fix a tangent vector dτ(k)Tα

i At Q ∈ K, fix a tangent vector dQ
At Id, basis element Tα

i ∈ k At Id, basis element Q−1dQ = kj ∈ k

Derivations

2dΦ(dτ(k)Tα
i , 0)a dΦ̃(dQ, 0) = d(QΛQ−1) (with dΛ = 0)

= dπ(2kTα
i a) = dQΛQ−1 +QΛdQ−1

= dτ(ka)dπ(2Ad(a−1)Tα
i )b = dτ̃(QΛ 1

2 )[Λ− 1
2 (Q−1dQΛ +ΛdQ−1Q)Λ− 1

2 ] c

= dτ(ka)dπ(Ad(a−1)Tα
i −Ad(a)Tα

i ) = dτ̃(QΛ 1
2 )[Λ− 1

2 kjΛ
1
2 −Λ 1

2 kjΛ−
1
2 ]

[Let H be such that exp(H) = a = Λ 1
2 ] [Note that dτ̃(QΛ 1

2 )X = QΛ 1
2 XΛ

1
2 Q−1]

= dτ(ka)dπ(e−adHTα
i − eadHTα

i ) = dτ̃(QΛ 1
2 )[exp(HT⊗I−I⊗H)kj
− exp(I⊗H−HT⊗I)kj] [by (3.3)]

= dτ(ka)dπ(−α(H)−1[H,Tα
i ]2 sinh α(H)) = dτ̃(QΛ 1

2 )[(−2 sinhαj)pj] [by (3.8)]

aSince Λ
1
2 = a, we have 2dΦ = dΦ̃.

bThis is (dτ(ka) ○ dπ)(Ad(a−1)Tα
i ).cBoth dQΛQ−1 and QΛdQ−1 are at QΛQ−1 and should be brought back to identity (inside bracket).
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Remark 3.5. For the compact Lie group G, we have sinh αj replaced by sin αj everywhere. Moreover, the last Jacobian computation
step pj ↦ Λ

1
2 pjΛ

1
2 can be omitted for the compact cases, since Λ

1
2 is an orthogonal/unitary matrix for the compact cases. The map dτ̃(Λ 1

2 )
preserves the Euclidean measure as dτ̃(Q).

I. Extension to the generalized Cartan decomposition
In the previous paragraphs, we studied the Jacobian of the usual Cartan decomposition. We now proceed to consider the generalized

Cartan decomposition (Theorems 2.1 and 2.2), its Jacobian (2.2), (2.3), and the extension of Table II. The derivations are analogous, analyzing
subspaces of g, but one should now proceed with four tangent subspaces, kτ ∩ kσ , kτ ∩ pσ , pτ ∩ kσ , and pτ ∩ pσ . Earlier work on these Jacobian
related derivations may be found in Refs. 23 and 44. The maximal subspace a is now defined inside pτ ∩ pσ . We start with the same strategy:
the tangent space g is decomposed into the eigenspaces of the linear operator adH with H ∈ a. The eigenvalues ±αj still come in pairs, but we
have two eigenmatrices xj, τσxj for eigenvalue αj and two eigenmatrices τxj, σxj for eigenvalue −αj. We define four vectors v1, v2,w1,w2 with
the same roles as kj and pj played before,

v1 ∶= xj + τxj + σxj + τσxj ∈ kτ ∩ kσ , v2 ∶= xj − τxj − σxj + τσxj ∈ pτ ∩ pσ ,
w1 ∶= xj − τxj + σxj − τσxj ∈ pτ ∩ kσ , w2 ∶= xj + τxj − σxj − τσxj ∈ kτ ∩ pσ ,

and these have similar ping pong relationships by adH like kj and pj,

adH(v1) = αjv2, adH(v2) = αjv1,
adH(w1) = αjw2, adH(w2) = αjw1.

We can similarly extend (3.8) and other relationships and proceed as in Table II to obtain (2.2) and (2.3).

IV. RANDOM MATRIX ENSEMBLES: COMPACT AND NONCOMPACT

A. Compact symmetric spaces
In compact cases, the random matrices could be simply determined from the Haar measure of the compact Lie group G,12,13 since the

compactness of G turns the Haar measure into a probability measure. In Secs. V, VI, VII, we discuss random matrix ensembles based on ten
types of Riemannian symmetric space classification by Cartan. For the triple (G,Kσ ,Kτ), we start with the cases where G/Kσ and G/Kτ are of
the same types in Secs. V and VI. Then, in Sec. VII, we will discuss the “mixed types” where G/Kσ and G/Kτ are different types under Cartan’s
classification.

B. Noncompact symmetric spaces
Sections VIII and IX discuss classical random matrix ensembles associated with noncompact symmetric spaces. Hermite and Laguerre

eigenvalue joint densities arise as result of (2.2) using Theorem 2.4 on noncompact symmetric spaces. As opposed to compact Lie groups
and symmetric spaces where the Haar measure or G-invariant measure can be normalized by a constant to a probability measure, invariant
measures on noncompact manifolds cannot be normalized to one by constants. A normalizing factor S should be introduced to complete
the construction of a probability measure. Therefore, random matrices on a noncompact manifold face an innate problem if we proceed
analogous to Secs. V and VI:

● The choice of the probability measure on noncompact G/K is not unique.

In Ref. 13, Dueñez also addressed this problem along the noncompact duals.
As we push the measure forward to the subgroup A, the resulting measure should be a symmetric function of independent generators of

A. Hence, the probability measure I(g) of the randommatrix ensemble is the Haar or G-invariant measure on G or G/K, multiplied by some
symmetric function S on A,

I(g) = S(a)μ(g),

where g = k1ak2 or g = kak−1 and μ(g) is an invariant measure. Using (2.2), the measure on A is induced,

I(g) = dk ⋅ S(a)(∏
α∈Σ+

sinh α(H))dH1 . . . dHdim(A),

which means that even though the measure I changes, the measure on A still differs only by a normalization function. The traditional choice
of S has been made such that I(g) can be constructed from independent Gaussian distributions endowed on matrix entries. In fact, one could
also endow a Gaussian distribution on the Riemannian manifold (symmetric space) itself.65

J. Math. Phys. 63, 061705 (2022); doi: 10.1063/5.0087010 63, 061705-14

© Author(s) 2022

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

An alternative approach that appears in Ref. 6 is to put a probability measure on the tangent space of the symmetric space, p. In particular,
independent Gaussian distribution endowed on the elements of p give rise to Hermite and Laguerre ensembles by Theorem 2.7.We will follow
this alternative approach.

C. Non-probability measure of noncompact groups
As discussed in Sec. IV B, the Haar measure of a noncompact group G or a noncompact symmetric space G/K is not a probability

measure. However, we can force an analog of a randommatrix theory. Imagine, for example, a noncompact K1AK2 decompositionG = KσAKτ
with (G,Kσ ,Kτ) = (GL(n,R), O(n), O(p, q)). This is called the hyperbolic SVD66 where any real invertible matrix M is factored into the
product of an orthogonal matrix O, a positive diagonal matrix Λ, and an indefinite orthogonal matrix V . From the Haar measure and (2.2) of
GL(n,R), one obtains the Jacobian,

∏
1≤j<k≤p
p<j<k≤n

∣λj − λk∣∏
1≤j≤p
p<j≤n

∣λj + λk∣
n

∏
j=1
∣λj∣−

2n+1
2 dλ1 . . . dλn,

where λj is the squared diagonal entries of Λ for all j’s.
One can impose a Gaussian-like density function (although not a probability density) on the group GL(n,R), such as

exp(−tr(gIp,qgT)/2)∏dg jk, where Ip,q = diag(Ip,−Iq). In terms of independent entries of g, this is

∏
first p columns

e−g
2
jk/2 ∏

last q columns
eg

2
jk/2∏dgjk. (4.1)

Since the Haar measure of GL(n,R) is ∣det(g)∣−n∏dg jk, (4.1) becomes [after integrating out O(n) and O(p, q)]

∏
j<k
∣λj − λk∣

n

∏
j=1
∣λ∣−

n+1
2 e−∑ λj/2dλ1 . . . dλn,

where λ1, . . . , λp ≥ 0 are the first p squared diagonal values of Λ and λp+1, . . . , λn ≤ 0 are the last q squared diagonal values of Λ, multiplied by
−1. Extending this approach to find a proper randommatrix probability measure on noncompact Lie groups and symmetric spaces with joint
probability densities on the subgroup A is still an open problem.

V. COMPACT AI, A, and AII: CIRCULAR ENSEMBLES
The joint probability density of the circular ensemble is (β = 1, 2, 4)

E(β)n (θ)∝∏
j<k
∣eiθj − eiθk ∣β.

Circular ensembles β = 1, 2, and 4 (COE, CUE, and CSE) arise as the eigenvalues of special unitary matrices. As we discuss in the Introduction,
circular ensembles are completely classified by (compact) symmetric spaces of the types AI, A, and AII, respectively.5,13 The K1AK2 decom-
position associated with each symmetric space recovers the KAK decomposition. The restricted root system (and dimensions) of AI, A, and
AII are given as the following (1 ≤ j < k ≤ n):

(5.1)

Since we have compact symmetric spaces, we use (2.3) from either Theorem 2.2 or 2.4 with these root systems.

A. Compact AI, β = 1 COE
The compact symmetric space AI is G/K = U(n)/O(n). The involution on U(n) has no free parameter and the K1AK2 decomposition is

equivalent to the KAK decomposition of U(n)/O(n). (In other words, we only have Cartan’s coordinate system.) The maximal Abelian torus
A is

A = {Diagonalmatrices with entries eihj , where hj ∈ R}.

From the KAK decomposition, we obtain U = O1DO2, a factorization of a unitary matrix U into the product of two orthogonal matri-
ces O1,O2 ∈ O(n) and a unit complex diagonal matrix D ∈ A. This decomposition first appears in Ref. 67, and we will call this the ODO
decomposition. The corresponding Jacobian (up to constant) from (2.3) using (5.1), β = 1 is (with the change of variables θj = 2hj)

⎛
⎝∏j<k

sin(hj − hk)
⎞
⎠
dh1 . . . dhn ∝ ∏

j<k
∣eiθj − eiθk ∣dθ1 . . . dθn.
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This is the joint density of the COE. In other words, doubled angles in the diagonal of D from the ODO decomposition of a Haar distributed
unitary matrix is the COE distribution. Moreover, if we identify G/K as the set of unitary symmetric matrices P, the map (2.5) is the factor-
ization S = OΛOT , the eigendecomposition of a unitary symmetric matrix S with real eigenvectors O. In terms of Remark 2.5, U = O1DO2

becomes S = UUT = O1D2OT
1 , where Λ = D2. To obtain the COE, we can utilize both factorizations:

● Two times the angles of the unit diagonal values of D from the ODO decomposition of U ∈ Haar(U(n)).
● The angles of the (unit) eigenvalues of a unitary symmetric matrix obtained from UUT , U ∈ Haar(U(n)).

Remark 5.1. The second algorithm above would be obvious since the days of Dyson,1,4 while we are not aware of the first algorithm
appearing in the literature.

B. Compact A, β = 2 CUE
The symmetric space of compact type A is G/K = U(n) ×U(n)/U(n). The restricted root system returns to the usual root system An of

the classical semisimple Lie algebra. A maximal torus of U(n) is a Cartan subalgebra of U(n). Weyl’s integration formula agrees with (2.3)
obtaining the CUE, which is the eigenvalues of a Haar distributed unitary matrix. The derivation of the CUE can be found in many random
matrix textbooks.15,64,68

C. Compact AII, β = 4 CSE

The involutionX ↦ −JTn XTJn, where Jn ∶=
⎡⎢⎢⎢⎢⎣

0 In
−In 0

⎤⎥⎥⎥⎥⎦
on the tangent space of U(2n), results in the symmetric space U(2n)/Sp(n), where

Sp(n) = Sp(2n,C) ∩U(2n). A choice of maximal Abelian torus A is

A = {diag(D̃, D̃) : D̃ = diag(eih1 , . . . , eihn), hj ∈ R}.

Again from the KAK decomposition, we obtain U = Q1DQ2, a factorization of a 2n × 2n unitary matrix U into the product of two unitary
symplectic matrices Q1,Q2 ∈ Sp(n) and a unit complex diagonal matrix D ∈ A. We call this the QDQ decomposition. The corresponding
Jacobian from (2.3) using (5.1) (β = 4) is

⎛
⎝∏j<k

sin4(hj − hk)
⎞
⎠
dh1 . . . dhn ∝ ∏

j<k
∣eiθj − eiθk ∣4 dθ1 . . . dθn,

with the change of variables θj = 2hj. This is the CSE distribution. Similarly, as in Sec. V A, the eigendecomposition of the unitary skew-
Hamiltonian matrix obtained by UJnUTJTn , U ∈ Haar(2n) is equivalent to the map (2.5). Two numerical algorithms for sampling the CSE are
as follows:

● Two times the angles of the first n unit diagonal values of D from the QDQ decomposition of U ∈ Haar(U(2n)).
● The angles of the first n (unit) eigenvalues of a unitary skew-Hamiltonian matrix obtained by UJnUTJTn with U ∈ Haar(U(2n)).

VI. COMPACT BDI, AIII, and CII: JACOBI ENSEMBLES
The joint probability density of the Jacobi ensemble is (β = 1, 2, 4),

J(β),mα1 ,α2 (x)∝∏
j<k
∣xj − xk∣β

m

∏
j=1

xα1j (1 − xj)
α2.

In Refs. 12 and 13, Jacobi ensembles β = 1, 2, 4 arise from the KAK decompositions of seven compact symmetric spaces, BDI, AIII, CII, DIII,
BD, C, and CI. In particular, types BDI, AIII, and CII give multiple Jacobi densities as follows (for integers p ≥ q):

∏
j<k
∣xj − xk∣β

q

∏
j=1

x
β
2−1
j (1 − xj)

β(p−q+1)
2 −1,

and the powers of xj’s are fixed to β
2 − 1. The remaining four cases add four more parameter points, which could be found in Refs. 12 and 13.

In this paper, we omit these four cases as these do not have any further results, as they only have Cartan’s coordinates (no free parameter for
the Cartan involution).
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The K1AK2 decomposition G = KτAKσ of the compact types BDI-I, AIII-III, CII-II are exactly the CS decomposition (CSD)69,70 of
orthogonal, unitary, and unitary symplectic matrices, respectively. The decomposition Φ of the symmetric space (Theorem 2.4) is the GSVD
coordinate systems we discussed in Secs. I B and II C. Assume r ≥ p ≥ q ≥ s and n = p + q = r + s throughout this section. We note that with
the KAK decomposition, only the cases p = r, q = s are obtained for the CSD. The root system associated with the K1AK2 decomposition is the
following (1 ≤ j < k ≤ s):

(6.1)

For all three β, we have the identical maximal Abelian subgroup A,

A = {n × n matrices with the block structure

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C S
Ip−q

−S C

⎤⎥⎥⎥⎥⎥⎥⎥⎦

},

where C, S ∈ Rs×s are diagonal matrices with cosine, sine values of θ1, . . . , θs on diagonal entries, respectively.

A. Compact BDI-I, β = 1 Jacobi
With the involutionX↦ Ip,qXIp,q on the tangent space of O(n), we obtain the symmetric space BDI,G/K = O(n)/(O(p) ×O(q)), where

Ip,q ∶= diag(Ip − Iq). With two symmetric pairs [O(n), O(p) ×O(q)] and [O(n), O(r) ×O(s)], we obtain the K1AK2 decomposition BDI-I,

⎡⎢⎢⎢⎢⎢⎣

n − by − n
Orthogonal

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

Op

Oq

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C S

In−2s

−S C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

Or

Os

⎤⎥⎥⎥⎥⎥⎦
.

This is the real CSD. [Equivalently, one can imagine the GSVD of (1.2).] From (2.3) using (6.1) β = 1, we obtain the Jacobian

dμ(H)∝∏
j<k
(sin(θj − θk) sin(θj + θk))∏

j
((sin θj)(p−s)(cos θj)(q−s))dθ1 . . . dθs.

Using trigonometric identities with change of variables xj = cos2θj = 1+cos(2θj)
2 ,

dμ(H)∝∏
j<k
∣xj − xk∣

s

∏
j=1

x
1
2 (q−s+1)−1
j (1 − xj)

1
2 (p−s+1)−1 dx1 . . . dxs,

which is the joint density of the β = 1 Jacobi ensemble J(1),sα1 ,α2 if we let α1 = 1
2(q − s + 1) − 1, α2 =

1
2(p − s + 1) − 1. This result agrees with Ref. 20,

Theorem 1.5, where the squared CSD cosine values of aHaar distributed orthogonalmatrix are distributed as β = 1 Jacobi ensemble.Moreover,
recall the fact that the QL decomposition G = QL (a lower triangular analog of the QR decomposition) of an n × n independent Gaussian
matrix G obtains a Haar distributed orthogonal matrix Q. Since the GSVD18,19 is equivalent to the combination of the QL decomposition and
the CSD, one can take the GSVD of a real independent Gaussian matrix to obtain the same β = 1 Jacobi ensemble. Two associated numerical
algorithms are as follows (a = q − s, b = p − s):

● The squared CSD cosine values of a Haar distributed m ×m orthogonal matrix (m = 2s + a + b) with row/column partitions
(s + a, s + b) and (s, s + a + b).

● The squared cosine values, where the tangent values are the generalized singular values of real (s + a) × s and (s + b) × s Gaussian
matrices.

B. Compact AIII-III, β = 2 Jacobi
Two symmetric pairs of compact AIII type are [U(n), U(p) ×U(q)] and [U(n), U(r) ×U(s)]. The K1AK2 decomposition of the group

G is the CSD of unitary matrices and the decomposition of G/Kσ = U(n)/(U(r) ×U(s)) are the complex GSVD described in Sec. I B and
Eq. (1.2). Using (2.3) with the root system (6.1), β = 2, and change of variables xj = cos2 θj as above, we obtain the Jacobian
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∏
j<k
(sin(θj − θk) sin(θj + θk))2∏

j
((sin θj)2(p−s)(cos θj)2(q−s) sin(2θj))dθ1 . . . dθs

∝∏
j<k
∣xj − xk∣2∏

j
xq−sj (1 − xj)

p−sdx1 . . . dxs,

which is the β = 2 Jacobi density J(2),sα1 ,α2 with α1 = q − s,α2 = p − s. Numerically, the following could be utilized to obtain β = 2 Jacobi densities
(a = q − s, b = p − s):

● The squared CSD cosine values of a Haar distributedm ×m unitary matrix (m = 2s + a + b) with row/column partitions (s + a, s + b)
and (s, s + a + b).

● The squared cosine values, where the tangent values are the generalized singular values of complex (s + a) × s and (s + b) × sGaussian
matrices.

C. Compact CII-II, β = 4 Jacobi
Jacobi densities with β = 4 are similarly obtained from two symmetric spaces Sp(n)/(Sp(p) × Sp(q)) and Sp(n)/(Sp(r) × Sp(s)), where

both are compact type CII. We identify Sp(n) as the quaternionic unitary group, U(n,H) ∶= {g ∈ GL(n,H)∣gDg = In}. The K1AK2 decom-
position is the CSD of a quaternionic unitary matrix. Using (2.3) with the root system (6.1) β = 4, we obtain the following Jacobian with the
change of variables xj = cos2 θj:

∏
j<k
(sin(θj − θk) sin(θj + θk))4∏

j
((sin θj)4(p−s)(cos θj)4(q−s) sin3(2θj))dθ1 . . . dθs

∝∏
j<k
∣xj − xk∣4∏

j
x2(q−s)+1j (1 − xj)2(p−s)+1 dx1 . . . dxs,

which is the β = 4 Jacobi density J(4),sα1 ,α2 with α1 = 2(q − s) + 1,α2 = 2(p − s) + 1. The associated numerical algorithm is the following
(a = q − s, b = p − s):

● The squared cosine CS values of a Haar distributed m ×m quaternionic unitary matrix (m = 2s + a + b) with row/column partitions
(s + a, s + b) and (s, s + a + b).

Remark 6.1. Again, one can use the GSVD on quaternionic Gaussian matrices to obtain the classical β = 4 Jacobi ensemble.

VII. COMPACT MIXED TYPES: MORE CIRCULAR AND JACOBI
In this section, we show even more cases such that a single symmetric space leading to multiple random matrix theories. We introduce

K1AK2 decompositions with two compact symmetric spaces, each from different Cartan types. The classification of such K1AK2 decomposi-
tions is studied in Ref. 47, with the computation of corresponding root systems. As always the names of these decompositions are combinations
of two Cartan types, i.e., AI-II represents (G,Kσ ,Kτ) = (U(2n), O(2n), Sp(2n)).

A. Compact AI-II
The two compact symmetric spaces are types AI and AII, U(2n)/O(2n) and U(2n)/Usp(2n). A maximal Abelian subalgebra a ⊂ pσ ∩ pτ

is the set of all matrices diag(iθ1, . . . , iθn, iθ1, . . . , iθn) for (θ1, . . . , θn) ∈ Rn. The subgroup A is the following:

A = {diag(D̃, D̃) : D̃ = diag(eiθ1 , . . . , eiθn)}.

The root system is given as

(7.1)

Using (2.3), we obtain the Jacobian (ξj = 4θj),
∣eiξj − eiξk ∣2dξ1 . . . dξn,

which is the joint probability density of the CUE. Hence, we obtain another sampling method for the CUE.
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B. Compact AI-III, CI-II
The two symmetric spaces in each case are the following:

G/Kτ ,G/Kσ = U(n)/O(n), U(n)/(U(p) ×U(q)),
G/Kτ ,G/Kσ = U(n,H)/U(n), U(n,H)/(U(p,H) ×U(q,H)).

The subgroup A is computed as follows:

A = {n × n matrices with the block structure

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C ηS
Ip−q

ηS C

⎤⎥⎥⎥⎥⎥⎥⎥⎦

},

where C, S are q × q diagonal matrices with cosine and sine values of q angles θ1, . . . , θq on their diagonals. The imaginary unit η is i for AI-III
(β = 1) and η = j, k for CI-II (β = 2). [If we select the subgroup K of U(n,H)/U(n) to be the unitary group with the imaginary unit j, we could
also obtain η = i.] The root system is the following (β = 1, 2):

(7.2)

Using (2.3) with the above root system above, we obtain the following Jacobian:

∏
j<k
∣xj − xk∣β

q

∏
j=1

x
β(p−q+1)

2 −1
j (1 − xj)

β−1
2 , (7.3)

where xj = sin2 2θj for all j. The β = 1 case of (7.3) can be obtained from the CS decomposition approach too, with (n + 1) × (n + 1) orthogonal
matrix and partitions (p, q + 1) and (p + 1, q) [see Fig. 4]. The parameters of β = 2 (7.3) cannot be obtained by the complex CSD and, thus,
fall outside of the classical parameters.

C. Compact DI-III, AII-III
Another family of the K1AK2 decomposition arise from the following pairs of compact symmetric spaces (β = 2, 4):

G/Kτ ,G/Kσ = O(2n)/U(n), O(2n)/(O(2p) ×O(2q)),
G/Kτ ,G/Kσ = U(2n)/U(n,H), U(2n)/(U(2p) ×U(2q)).

Under Cartan’s classification, they are types DI-III and AII-III, respectively. The subgroup A can be computed as

A = {2n × 2n matrices with the block structure

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ip−q
C ⊗ I2 S⊗ J1

Ip−q
S⊗ J1 C ⊗ I2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

},

where I2 is the 2 × 2 identity matrix, J1 =
⎡⎢⎢⎢⎢⎣

0 1

−1 0

⎤⎥⎥⎥⎥⎦
, and C, S are q × q diagonal matrices with cosines and sines of θ1, . . . , θq on their diagonals.

The root system is given as follows (β = 2, 4):

(7.4)

Again, using (2.3) with the root system above, we obtain the following Jacobian, with the change of variables xj = sin2 θj for all j:
q

∏
j=1

x
β(p−q+2)

4 −1
j (1 − xj)

β−4
4 ∏

j<k
∣xj − xk∣β. (7.5)
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FIG. 6. The parameter space (α1,α2) ∈ (−1,∞)2 of the β = 2 Jacobi ensemble covered by symmetric spaces. The GSVD coordinate systems on the complex Grassman-
nian manifold (AIII-III) discussed in Sec. VI covers red dots. A new coordinate system on the quaternionic (respectively, real) Grassmannian manifold discussed in Sec. VII B
(respectively, Sec. VII C) of type CI-II (respectively, DI-III) represent blue (respectively, green) dots.

They are β = 2, 4 Jacobi ensembles. Both cases could not be obtained from the classical CSD approach, so they are all non-classical parameters
of the Jacobi ensemble. To see this at once, we compare three β = 2 Jacobi densities each from Secs. VI B, VII B and VII C. Figure 6 shows the
possible parameters α1,α2 of the β = 2 Jacobi ensemble obtained from each approach.

VIII. NONCOMPACT AI, A, AND AII: HERMITE ENSEMBLES
While Sec. VII contains essentially new random matrix theories, Secs. VIII and IX review the Hermite and Laguerre ensembles for

completeness.6–9,59

The joint probability density of the Hermite ensemble is (β = 1, 2, 4),

H(β)n (λ)∝∏
j<k
∣λj − λk∣β

n

∏
j=1

e−λ
2
j /2.

Hermite ensembles β = 1, 2, and 4 (GOE, GUE, and GSE) arise as the eigenvalues of symmetric, Hermitian, and self-dual Gaussian matrices.
Hermite ensembles can be thought as the Gaussian measure endowed on the tangent space of noncompact symmetric spaces of the types AI,
A, and AII. The connection between these symmetric spaces and Hermite ensembles are made by Theorem 2.7. The decompositionΨ (2.6) in
Theorem 2.7 is the eigendecomposition of symmetric, Hermitian, and self-dual matrices. The maximal Abelian subalgebra a is the collection
of all real diagonal matrices, diag(h1, . . . ,hn). The restricted root system is the following (1 ≤ j < k ≤ n):

(8.1)

A. Noncompact AI, β = 1 GOE
The dual of the compact symmetric space type AI, the noncompact symmetric space type AI, is G/K = GL(n,R)/O(n), represented by

the set Sn of all symmetric positive definite matrices. The tangent space at the identity of Sn, p, is the set of all real symmetric matrices. The
Gaussian measure on p is, for p ∈ p, exp(−tr(pTp)/2)dp ,where dp is the Euclidean measure on p. From (2.7) using (8.1) β = 1, we obtain
(integrate out dk)

exp(−tr(pTp)/2)dp∝∏
j<k
∣λj − λk∣

n

∏
j=1

e−λ
2
j /2dλ1 . . . dλn

for the eigenvalues of p, λj = hj. This is the joint density of the GOE.
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B. Noncompact A, β = 2 GUE
The noncompact symmetric space type A is G/K = GL(n,C)/U(n), represented byHn, the set of all Hermitian positive definite matri-

ces. The tangent space at the identity of Hn, p, is the set of all complex Hermitian matrices. The Gaussian measure on p is, for p ∈ p,
exp(−tr(pHp)/2)dp, where dp is the (real) Euclidean measure on p. From (2.7) using (8.1) β = 2, we obtain

exp(−tr(pHp)/2)dp∝∏
j<k
∣λj − λk∣2

n

∏
j=1

e−λ
2
j /2dλ1 . . . dλn

for the eigenvalues of p, λj = hj. This is the joint density of the GUE.

C. Noncompact AII, β = 4 GSE
The noncompact symmetric space type AII is G/K = GL(n,H)/U(n,H). We use U(n,H) instead of Sp(n) to clearly indicate the quater-

nionic realization. G/K can be represented by the set of all quaternionic self-dual positive definite matrices, QHn. Again, the tangent space
at the identity p is the set of all quaternionic self-dual matrices. The Gaussian measure on p is, for p ∈ p, exp(−tr(pDp)/2)dp, where dp is the
(real) Euclidean measure on p. From (2.7) using (8.1) β = 4, we obtain

exp(−tr(pDp)/2)dp∝∏
j<k
∣λj − λk∣4

n

∏
j=1

e−λ
2
j /2dλ1 . . . dλn

for the eigenvalues of p, λj = hj. This is the joint density of the GSE.

IX. NONCOMPACT BDI, AIII, and CII: LAGUERRE ENSEMBLES
The joint probability density of the Laguerre ensemble is (β = 1, 2, 4)

L(β)α,m(λ)∝∏
j<k
∣λj − λk∣β

m

∏
j=1

λαj e
−λj/2.

Laguerre ensembles β = 1, 2, 4 arise from Theorem 2.7 applied to noncompact symmetric spaces BDI, AIII, CII, DIII, BD, C, and CI. The last
four cases of types DIII, BD, C, and CI are well-studied in Ref. 6, and we again omit these cases as discussed in Sec. VI. In particular, the first
three symmetric spaces give the following Laguerre densities (β = 1, 2, 4 and p ≥ q):

∏
j<k
∣λj − λk∣β

q

∏
j=1

λ
β(p−q+1)

2 −1
j e−λj/2,

as these λj values are the squared singular values of p × q i.i.d. Gaussian matrices. Equivalently, the eigenvalues of the matrix A†A ∈ Fq×q are
frequently used for sampling purpose, where † is the conjugate transposition. The tangent spaces of noncompact symmetric spaces of the
types BDI, AIII, and CII are

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

0 X

X† 0

⎤⎥⎥⎥⎥⎥⎦
: X is p × qmatrix

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (9.1)

and a choice of maximal Abelian subalgebra a is the set with X being (nonsquare) diagonal matrix with diagonal elements h1, . . . ,hq. The
KAK decomposition G = KAK of the noncompact symmetric spaces BDI, AIII, and CII is the hyperbolic CS decomposition (HCSD).71,72

The decomposition p = ∪k∈Kkak−1 is the p × q SVD on upper right p × q corner. The restricted roots are the following (β = 1, 2, 4):

(9.2)

A. Noncompact BDI, β = 1 Laguerre
The noncompact symmetric space type BDI is G/K = O(p, q)/(O(p) ×O(q)). The tangent space p (9.1) has the Gaussian measure as

i.i.d. Gaussian distribution endowed on the elements of X. ForM ∈ p, it is exp(−tr(MTM))dp. From (2.7) using (9.2) β = 1, we obtain

exp(−tr(MTM))dp∝∏
j<k
∣λj − λk∣

q

∏
j=1

e−λj/2λ
p−q−1

2
j dλ1 . . . dλq,
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with the change of variables λj = h2j . Thus, the values λ1, . . . , λq are the squared singular values of the upper right corner of M. The obtained
measure is the joint density of the β = 1 Laguerre ensemble.

B. Noncompact AIII, β = 2 Laguerre
The noncompact symmetric space type AIII is G/K = U(p, q)/(U(p) ×U(q)). The tangent space (9.1) has the Gaussian measure as i.i.d.

complex Gaussian distribution endowed on the elements of X. For M ∈ p, that is exp(−tr(MHM))dp. From (2.7) and using (9.2) β = 2, we
obtain

exp(−tr(MHM))dp∝∏
j<k
∣λj − λk∣2

q

∏
j=1

e−λj/2λp−qj dλ1 . . . dλq,

with the change of variables λj = h2j . Again, the values λ1, . . . , λq are the squared singular values of the upper right corner ofM. The obtained
measure is the joint density of the β = 2 Laguerre ensemble.

C. Noncompact CII, β = 4 Laguerre
The noncompact symmetric space CII is G/K = U(p, q,H)/(U(p,H) ×U(q,H)). The tangent space (9.1) has the Gaussian measure as

i.i.d. quaternionic Gaussian distribution endowed on the elements of X. For M ∈ p, that is exp(−tr(MDM))dp. From (2.7) and using (9.2)
β = 4, we obtain

exp(−tr(MDM))dp∝∏
j<k
∣λj − λk∣4

q

∏
j=1

e−λj/2λ2(p−q)+1j dλ1 . . . dλq,

with the change of variables λj = h2j . The values λ1, . . . , λq are the squared singular values of the upper right corner ofM. The obtainedmeasure
is the joint density of the β = 4 Laguerre ensemble.
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