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Undergraduate students in upper levels of physics or engineering programs learn the theory of
Fourier series and integral transform method from mathematics courses. Nevertheless, they rarely
see the application of such a method to solving problems in calculus-based physics courses that deal
with topics such as electrostatics or magnetism. In this work, we illustrate the utility of the Fourier
transform method by considering and solving via such a technique a representative problem that
arises in electrostatics. The chosen case study is that of a spherical surface with uniform surface
charge density and the calculation of its electrostatic Coulomb self-energy. By solving this problem
by using the Fourier transform technique we also draw attention to the pedagogical aspects of the
treatment. In particular, we stress the point that the Fourier transform method should be treated
at more depth in calculus-based physics courses for undergraduate students.
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I. INTRODUCTION

Fourier series and integral transforms are important
examples of transformations that have been very use-
ful in mathematical analysis and physical applications1,2.
Applications of Fourier transform method may be found
in many diverse theoretical and applied sciences areas3.
Therefore, it is desirable for undergraduate students in
physics and engineering to first encounter the Fourier
method when dealing with physical systems and not
when they learn solving differential equations in mathe-
matics courses. Beside its practical use in mathematical
physics, the Fourier transform is also of fundamental im-
portance in many other subjects4–7. However, despite its
relevance, the Fourier transform method is not covered in
typical calculus-based physics courses that deal with elec-
tricity and magnetism8–13. We believe that these courses,
in particular when dealing with the subject of electrostat-
ics, offer several good examples to illustrate the use of the
Fourier transform method to solve problems of relevance.
For example, one can consider the problem of the elec-
trostatic properties of a spherical surface with uniform
surface charge density and show a step by step imple-
mentation of the Fourier integral transform method to
obtain the Coulomb self-energy stored in the body.

In this work, we will explain the application of the
Fourier integral transform method in the context of one
particular example that arises in electrostatics. This is
the problem of a spherical surface with uniform surface
charge density, namely, a charged spherical counductor.
The idea is to calculate the Coulomb self-energy of the
selected object by means of such a method in such a way
that all the key mathematical steps are explained in a
clear pedagogical manner. This approach has the added
benefit of introducing the method as a powerful tool that
can be used to tackle even more challenging problems
that involve the calculation of multi-dimensional inte-
grals. While the case study chosen is meant to be simple,
the important message that we would like to transmit is

that of a very useful tool that can be applied to solve
much more complicated situations. In other words, we
hint that the Fourier transform method is the tool to
go in many problems of electrostatics where other ap-
proaches are not applicable14,15. For instance, problems
of such nature would be the calculation of the electro-
static potential or Coulomb self-energy of more compli-
cated charged bodies16–19 that are not uniformly charged
spherical surfaces or solid spheres.
The paper is organized as follows: In Section II we

show some basic theory and formulas of electrostatics.
This way the proper audience is quickly introduced to
the topic. In Section III we list some known results that
apply to the electrostatic properties of a spherical surface
with uniform surface charge density. In Section IV we in-
troduce the Fourier integral transform method formalism
and show its use to solve the problem under considera-
tion. In Section V we provide some concluding remarks
and highlight the useful features of the method in various
aspects.

II. BASIC THEORY OF ELECTROSTATICS

Let’s consider a discrete system of N point charges, qi
at positions, ~ri in space. The total electrostatic energy
of the system (the Coulomb self-energy) can be written
as:

U =
ke
2

N
∑

i=1

N
∑

j 6=i

qi qj
|~ri − ~rj |

, (1)

where ke is Coulomb’s electric constant and the factor
”2” is placed to avoid double-counting. The quantity in
Eq.(1) may be rewritten as:

U =
1

2

N
∑

i=1

qi V (~ri) , (2)
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where

V (~ri) = ke

N
∑

j 6=i

qj
|~ri − ~rj |

, (3)

represents the electrostatic potential created by all
charges j 6= i at the location, ~ri of charge, qi.
Let us now consider a body with continuous charge dis-

tribution over a given length, surface or volume domain,
D. Let’s assume that the total charge contained in that
region is Q. For the sake of full generality, the charge
distribution may be arbitrary. This means that, line,
surface or volume charge density (depending on the na-
ture of the charged body) may vary from point to point.
The continuum counterpart to the expression in Eq.(1)
becomes:

U =
ke
2

∫

D

dQ

∫

D

dQ′ 1

|~r − ~r ′| , (4)

where dQ and dQ ′ represent elementary charges located
around points ~r and ~r ′, respectively. The continuum
counterpart to the expression in Eq.(2) becomes:

U =
1

2

∫

D

dQV (~r) , (5)

where

V (~r) = ke

∫

D

dQ ′ 1

|~r − ~r ′| . (6)

At this point, let’s also avoid subtler discussions on why
the j = i terms that are tacitly implied when writing
the integrals in Eq.(4) and Eq.(5) do not cause trouble
since we want to keep the level of this presentation rather
basic.
One also needs to remember the relationship between

electrostatic potential, V (~r) and electrostatic field, ~E(~r):

~E(~r) = −~∇V (~r) . (7)

where ~∇ is the gradient operator. If we regard the elec-
trostatic field as a real physical entity, possessing energy,
we may want to rewrite the equation for U entirely in
terms of the electrostatic field produced by the charge
density. We skip the details and list below the resulting
expression:

U =
ε0
2

∫

All Space

d3r | ~E(~r)|2 , (8)

where now the integral is over all space (not confined to
the domain region, D where the charge is located). In
most cases the electrostatic potential is easier to calculate
than the electrostatic field. As a result, one typically
finds it easier to calculate the Coulomb self-energy from
Eq.(5) once it has obtained the potential especially if the
charged body is not simple20,21.

III. SPHERICAL SURFACE WITH UNIFORM

SURFACE CHARGE DENSITY

Let us consider a charged spherical surface, namely,
a spherical conductor with radius, R containing a total
charge, Q. The charge is spread uniformly on its surface.
Thus, the constant uniform surface charge density of the
body may be written as:

σ =
Q

4π R2
. (9)

For convenience, one chooses a spherical system of coor-
dinates with origin at the center of the spherical surface.
As a vector quantity, the electrostatic field created by
a uniformly charged spherical surface has only a radial

component, ~E(r). Its magnitude, E(r) = | ~E(r)| is writ-
ten as:

E(r) =







0 ; 0 ≤ r < R

ke Q
r2

; R ≤ r < ∞ ,
(10)

where r = |~r| ≥ 0 is the radial distance. The electro-
static field is not continous at r = R. The electrostatic
potential, V (r) is calculated from the electrostatic field
resulting in:

E(r) = −dV (r)

dr
; dV (r) = −E(r) dr . (11)

One has to integrate over E(r) to obtain V (r) while being
careful to enforce the continuity of the potential all over
space:

V (r) =







ke Q
R

; 0 ≤ r < R

ke Q
r

; R ≤ r < ∞ .

(12)

One can calculate the electrostatic Coulomb self-energy
of the uniformly charged spherical surface either from the
potential, or from the field. For example, if one wants to
calculate U from the electrostatic potential, then Eq.(5)
for a constant uniform surface charge density leads to:

U =
σ

2

∫∫

D

dS V (r) =
Q

2
V (r = R) =

1

2

ke Q
2

R
. (13)

The same result as in Eq.(13) will be obtained if one
calculates U from Eq.(8) with help from the expression
for the electrostatic field in Eq.(10).

U =
ε0
2

∫ ∞

R

dr 4π r2 E(r)2 =
1

2

ke Q
2

R
. (14)

Note that the integration in Eq.(14) starts from r = R
since the electrostatic field is zero for 0 ≤ r < R.
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IV. CALCULATION USING THE FOURIER

TRANSFORM METHOD

Let’s consider the elementary charges,

dQ = σ dS ; dQ ′ = σ dS ′ , (15)

located on the spherical surface at position ~r and ~r ′,
respectively, where the elementary surface areas on the
spherical surface are:

dS = R2 dθ sin θ dϕ ; dS ′ = R2 dθ ′ sin θ ′ dϕ ′ . (16)

The Coulom self-energy the uniformly charged spherical
surface can be written as:

U =
ke
2

σ2

∫∫

D

dS

∫∫

D

dS ′ 1

|~r − ~r ′| , (17)

where D is spherical surface (integration) domain con-
taing the charge. In spherical coordinates, such a domain
is:

D :
{

r = r ′ = R ; 0 ≤ (θ, θ ′) ≤ π ; 0 ≤ (ϕ,ϕ ′) < 2π
}

,

(18)
where θ, θ ′ are the polar angles, ϕ, ϕ ′ are the azimuthal
(longitudinal) angles and r=r ′ = R are the radial vari-
ables of respective vectors, ~r and ~r ′. On can write the
expression in Eq.(17) more explicitly as:

U =
ke
2

(

σ R2
)2

∫ π

0

dθ sin θ

∫ 2π

0

dϕ

∫ π

0

dθ ′ sin θ ′

∫ 2π

0

dϕ ′ 1

|~r − ~r ′| . (19)

Let us now illustrate how the Fourier integral trans-
form method can be used to calculate the integral above.
To this effect, let us define the pair of three-dimensional

(3D) Fourier integral transform functions, F (~k) and f(~r)
as follows:















F (~k) =
∫

d3r exp
(

i~k ~r
)

f(~r) ,

f(~r) =
∫

d3k
(2π)3 exp

(

−i~k ~r
)

F (~k) ,

(20)

where ~k and ~r are 3D vectors, i =
√
−1 is the imaginary

unit and the integration extends over all space. Based on

the result that:

∫

d3r exp
(

i~k ~r
) 1

r
=

4π

k2
, (21)

we can write

1

|~r − ~r ′| =
∫

d3k

(2π)3
exp

[

−i~k (~r − ~r ′)
] 4π

k2
, (22)

where r = |~r| ≥ 0 and k = |~k| ≥ 0. By substituting
Eq.(22) into Eq.(19), one obtains:

U =
ke
2

(

σ R2
)2

∫

d3k

(2π)3
4π

k2

∫ π

0

dθ sin θ

∫ 2π

0

dϕ exp
(

−i~k ~r
)

∫ π

0

dθ ′ sin θ ′

∫ 2π

0

dϕ ′ exp
(

+i~k ~r ′
)

. (23)

Sometimes, simple-looking integrals over angular vari-
ables are very challinging22, but in the present case the

calculation is straightforward:

∫ π

0

dθ sin θ

∫ 2π

0

dϕ exp
(

±i~k ~r
)

=

∫ π

0

dθ ′ sin θ ′

∫ 2π

0

dϕ ′ exp
(

±i~k ~r ′
)

= (4π)
sin(k R)

(k R)
, (24)

where one must remember that |~r| = |~r ′| = R. One substitutes the result from Eq.(24) into Eq.(23)
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and after a little of algebra obtains:

U =
ke
2

(

σ 4π R2
)2 2

π

∫ ∞

0

dk

[

sin(k R)

(k R)

]2

. (25)

One knows from Eq.(9) that,
(

σ 4π R2
)2

= Q2. There-
fore, after simple mathematical arrangements, one has:

U =
1

2

ke Q
2

R

2

π

∫ ∞

0

dx

(

sinx

x

)2

. (26)

At this juncture, one uses the formula:

∫ ∞

0

dx
( sinx

x

)2

=
π

2
. (27)

This leads to the final result for the Coulomb self-energy:

U =
1

2

ke Q
2

R
, (28)

in agreement with Eq.(13).

V. CONCLUSIONS

In this work, we calculated the Coulomb self-energy of
a charged spherical surface with uniform surface charge
density by using the Fourier integral transform method.
The Fourier series and integral transforms are known
to undergraduate students in various science, engineer-
ing and/or mathematics disciplines. However, the use of
the method to solve physics problems in physics under-
graduate courses is not widespread. For thir reason, we
chose a popular model found in virtually all physics text-
books and showed how to apply the Fourier transform

method to calculate the resulting electrostatic Coulomb
self-energy for such a model. The main message to trans-
mit is not that we solved a specific problem, but that the
implementation of the method is general. For this rea-
son, we explained all the steps involved in a pedagogical
way and provided all the necessary details in abundance.

The Fourier transform method, in particular when
used for the calculation of the Coulomb self-energy of
any given arbitrary charged body, enables one to simplify
the multi-dimentional integral of a two-particle Coulomb
term, 1/|~r − ~r ′| into a series of simpler integrals of one-
particle functions. This reduces the difficulty of the prob-
lem and may lead to exact analytical results even in com-
plicated cases of a regular charged body such as a uni-
formly charged elliptical plate23. Overall, the implemen-
tation of the Fourier transform method will result in a
mathematical simplication of the problem which is a wel-
comed help for those cases where numerical calculations
are necessary24,25. Furthermore, this work illustrates the
implementation of a sophisticated mathematical tool to
a receptive audience of students and teachers that should
find it useful. The solution of this example as well as few
similar cases can help one to enrich teaching and learning
of calculus-based physics at undergraduate level. This
means that the results reported here may be of inter-
est to a rather broad audience of students and teachers
working in the physical sciences.
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