
Productivity meets Performance: Julia on A64FX
1st Mosè Giordano

Advanced Research Computing
UCL

London, United Kingdom
m.giordano@ucl.ac.uk

2nd Milan Klöwer
Atmospheric, Oceanic and Planetary Physics

University of Oxford
Oxford, United Kingdom

milan.kloewer@physics.ox.ac.uk

3rd Valentin Churavy
CSAIL, EECS

Massachusetts Institute of Technology
Cambridge, United States of America

vchuravy@mit.edu

Abstract—The Fujitsu A64FX ARM-based processor is used
in supercomputers such as Fugaku in Japan and Isambard 2
in the UK and provides an interesting combination of hardware
features such as Scalable Vector Extension (SVE), and native
support for reduced-precision floating-point arithmetic. The goal
of this paper is to explore performance of the Julia programming
language on the A64FX processor, with a particular focus on
reduced precision. Here, we present a performance study on
axpy to verify the compilation pipeline, demonstrating that
Julia can match the performance of tuned libraries. Additionally,
we investigate Message Passing Interface (MPI) scalability and
throughput analysis on Fugaku showing next to no significant
overheads of Julia of its MPI interface. To explore the usability
of Julia to target various floating-point precisions, we present
results of ShallowWaters.jl, a shallow water model that can
be executed a various levels of precision. Even for such complex
applications, Julia’s type-flexible programming paradigm offers
both, productivity and performance.

Index Terms—Julia, A64FX, BLAS, MPI, floating-point num-
bers, reduced precision

I. INTRODUCTION

The Julia programming language [1] is a dynamic program-
ming language, with a focus on productivity and performance.
It has found increased adoption in numerical and scientific
computing, data processing and analytics, differentiable pro-
gramming and scientific machine learning. Julia uses LLVM [2]
as a compiler backend and supports multiple CPU architectures
(x86, PPC, ARM) which includes Fujitsu’s A64FX that powers
the Fugaku supercomputer. Based at the RIKEN Center for
Computational Science (R-CCS) in Kobe, Japan, Fugaku is
currently number 2 in the TOP500 ranking of the fastest
supercomputers in the world. It has topped the list from its
induction in June 2020 to June 2022 [3]. It is composed of
158 976 Fujitsu A64FX FX1000 CPUs, making it the first
ARM supercomputer to claim the highest position in TOP500.
Inter-node communication is powered by Tofu Interconnect D
(TofuD), a proprietary technology developed by Fujitsu [4].

While 16-bit arithmetic are increasingly supported on modern
hardware, 64-bit double-precision floating-point numbers (here
called Float64, other formats likewise, referring respectively
to the IEEE-754 standard formats [5]) are still widely used
in scientific computing as they largely remove the necessity
of a detailed numerical analysis of rounding errors in most
applications. Smaller rounding errors and lower risk of under
and overflows come at a cost of computational performance
as low-precision arithmetic is executed significantly faster on

supporting hardware. Also Float32 is widely supported on
various CPU architectures, and many GPUs support different
16-bit formats (Float16, BFloat16), but A64FX is the
first modern CPU for high-performance computing (HPC) that
supports Float16 arithmetic. Many mantissa bits in high-
precision formats contain little to no information in applications
with large uncertainties, such as deep learning [6], [7] or
climates models [8]. In these examples, a higher performance
from low-precision arithmetic could be exchanged for larger
networks or higher resolution to increase the complexity of
these models. In theory, A64FX promises 4x performance
increase of Float16 over Float64 in both memory and
compute-bound applications through its 512-bit SVE vector-
ization unit [9].

This article is an experience report with Julia on Fujitsu
A64FX, a processor architecture primarily used by super-
computers [10], [11]. We focus on the performance of low-
precision float arithmetic and evaluate the overheads of using
Julia for MPI programs on Fugaku. It follows a section on
ShallowWaters.jl, a shallow water model, that makes use of
Julia’s type-flexibility to be executable at various levels of
precision.

II. SUPPORT FOR LOW-PRECISION FLOATING-POINT
ARITHMETIC IN JULIA

Julia uses multiple dispatch which as a programming
paradigm makes it easier to support new number formats. In
the code snippet below we reproduces the type hierarchy of
floating-point numbers, starting with the abstract type Number
and ending at the primitive type Float16.� �

abstract type Number end
abstract type Real <: Number end
abstract type AbstractFloat <: Number end
primitive type Float64 <: AbstractFloat 64 end
primitive type Float32 <: AbstractFloat 32 end
primitive type Float16 <: AbstractFloat 16 end� �
This type-hierarchy comes into play when we look at the

implementation of math routines, like the cube root function
cbrt.� �

julia> methods(cbrt)
7 methods for generic function "cbrt":
[1] cbrt(x::Union{Float32, Float64}) in Base.Math at

special/cbrt.jl:142

ar
X

iv
:2

20
7.

12
76

2v
1

 [c
s.D

C
]

26
 Ju

l 2
02

2

[2] cbrt(a::Float16) in Base.Math at special/cbrt.jl:
150

[3] cbrt(x::BigFloat) in Base.MPFR at mpfr.jl:626
[4] cbrt(x::AbstractFloat) in Base.Math at special/cbrt

.jl:34
[5] cbrt(x::Real) in Base.Math at math.jl:1352� �
Julia provides for cbrt several implementations that range

from the specialized to the generic. Float32 and Float64
share an implementation and Float16 is separated. Julia then
dynamically dispatches to the most specific method available
for a given type at runtime. This allows Julia to both provide
general implementations and fast implementations that take
advantage of the structure of the types.

Early versions of Julia supported Float16 only as a
storage format. Mathematical functions immediately promoted
to Float32 and no rounding was performed. This changed
in Julia v0.61, and since then operations converted their output
back to Float16. Yet this was fully done in software and no
hardware support (even if available) was used. Since Julia v1.62

the compiler lowers the Float16 type to LLVM’s half type.
The default behavior of LLVM on x86 chips was to

extend the precision of half operations to float, which
is unsuitable for numerical implementations that need to return
consistent results on software and hardware implementations.
GCC recognized this problem as well in version 12 [12]:
“The default behavior for FLT_EVAL_METHOD is to keep the
intermediate result of the operation as 32-bit precision. This
may lead to inconsistent behavior between software emulation
and AVX512-FP16 instructions”. In Julia we generally require
that operations are numerically stable across different hardware
platforms, and thus for software Float16 we insert rounding
operations. On hardware that support Float16 natively we
could use LLVM to directly lower to hardware instructions.
There is ongoing work detailed in section IV-C to improve com-
piler support for detecting hardware that supports Float16.
For the experiments in section III-B we explicitly turn on this
support3.

III. TYPE-FLEXIBILITY AND PERFORMANCE

A. Performance and Scalability on Fugaku

We run benchmarks of Julia code on Fugaku to evaluate the
efficiency of the code generated by LLVM for simple Julia
functions, and the overhead of using the MPI.jl package for
communications on a world-class supercomputer. The results
of all these benchmarks are publicly available at https://github.
com/giordano/julia-on-fugaku, including the job scripts used
to run the benchmarks and the code to produce the plots
reported in the present section, along with the Julia package
environments used, for full reproducibility.

1) Level 1 BLAS routine: The Basic Linear Algebra Sub-
programs (BLAS) is a prescription of low-level routines for
performing common linear algebra operations, such as matrix
and vector operations [13]. BLAS routines are classified in

1https://github.com/JuliaLang/julia/pull/17297.
2https://github.com/JuliaLang/julia/pull/37510.
3https://github.com/JuliaLang/julia/issues/40216.

three levels: Level 1 includes vector and vector operations,
Level 2 includes vector-matrix operations, Level 3 includes
matrix-matrix operations. There are several high-performance
implementations of BLAS routines, with hardware vendors
often providing highly optimised BLAS implementations for
their own systems. One of the most common Level 1 routines
is axpy which represents the mathematical operations of
multiplying a vector xxx by a scalar a, adding it to a vector
yyy and storing the result back into yyy (“a times x plus y”):

yyy ← axxx+ yyy. (1)

We implemented in Julia a generic single-threaded axpy
function, which can take in input vectors of any arbitrary
numerical Julia type:� �

function axpy!(a::T, x::Vector{T}, y::Vector{T}) where
{T<:Number}
@simd for i in eachindex(x, y)

@inbounds y[i] = muladd(a, x[i], y[i])
end
return y

end� �
The @simd macro suggests the compiler to enable Single
Instruction Multiple Data (SIMD) instructions, and the macro
@inbounds informs the compiler it is safe to skip bounds
checks, as we automatically iterate over the existing indices
of the vectors x and y with the eachindex function. In
section II we note that Julia is currently supposed to widen
Float16 numbers to Float32 numbers, but due to a bug
in the LLVM pass4 vectors of Float16 are not widened
to vectors of Float32, thus this implementation of axpy
retains hardware performance for 16-bit floating-point numbers
as desired.

We compare performance of the above generic Julia
function, using Julia v1.7.2 (based on LLVM 12) hav-
ing set the environment variable JULIA_LLVM_ARGS to
-aarch64-sve-vector-bits-min=512, with the fol-
lowing binary libraries:

• vendor’s Fujitsu BLAS, from module
lang/tcsds-1.2.35 on Fugaku, library called
libfjlapackexsve_ilp64.so, with ILP64 and
support for SVE instructions,

• BLIS version 0.9.0,
• OpenBLAS version 0.3.20, built with the Spack

package manager version 0.19, using the speci-
fication openblas@0.3.20 %gcc@8.5.0 +ilp64
symbol_suffix=64_ (building OpenBLAS with the
Fujitsu compiler resulted in multiple compilation errors5),

• ARM Performance Libraries (ARMPL) version
22.0.2 for RHEL 8 with GCC 8.2, library called
libarmpl_ilp64.so, single-threaded, with ILP64.

4https://github.com/JuliaLang/julia/issues/45881.
5See https://github.com/xianyi/OpenBLAS/issues/3692 and https://github.

com/spack/spack/issues/31675.

https://github.com/giordano/julia-on-fugaku
https://github.com/giordano/julia-on-fugaku
https://github.com/JuliaLang/julia/pull/17297
https://github.com/JuliaLang/julia/pull/37510
https://github.com/JuliaLang/julia/issues/40216
https://github.com/JuliaLang/julia/issues/45881
https://github.com/xianyi/OpenBLAS/issues/3692
https://github.com/spack/spack/issues/31675
https://github.com/spack/spack/issues/31675

Fig. 1. Performance comparison of axpy implementations in Julia versus
Fujitsu BLAS, BLIS, OpenBLAS, and ARMPL on Fugaku, using half precision
(top panel, Float16), single precision (middle, Float32) and double
precision (bottom, Flaot64). A single thread is used in all benchmarks.
The vector size refers to the length of the vectors xxx and yyy in eq. (1). GFLOPS
are gigaFLOPS, the number floating-point operations per second executed
by each program. The panel for half precision shows performance only for
Julia, because half-precision implementations of axpy are not available for
the other binary libraries (Fujitsu BLAS, BLIS, OpenBLAS, ARMPL).

For these benchmarks we use libblastrampoline6, a
library which uses Procedure Linkage Table (PLT) trampolines
to forward BLAS calls to a chosen library (e.g., Fujitsu BLAS
or BLIS) at runtime with near-zero overhead compared to the
complexity of the routines invoked, without having to recompile
an application to link to a different BLAS library. Figure 1
shows the results of these benchmarks. Both OpenBLAS
and ARMPL show poor performance for this routine, likely
because it is not taking full advantage of A64FX vectorization
capabilities. We note that there are no implementations of axpy
for half-precision floating-point numbers in Fujitsu BLAS,
BLIS, OpenBLAS, and ARMP, whereas Julia is able to generate
code for the type-generic function axpy! with half-precision
Float16 numbers. Also, Julia’s implementation consistently
outperforms BLIS, OpenBLAS and ARMPL implementations
of axpy in both single and double precision, it is competitive
with Fujitsu BLAS across all sizes, and it achieves the best
peak performance in all cases.

Thanks to contribution of ARM engineers, auto-vectorization
in LLVM 14 is able to target SVE/SVE2 by default
when available [14]. Preliminary benchmarks performed
with the development version of Julia v1.9, based on
LLVM 14.0.2, showed similar results to those reported
in Figure 1 and the generated LLVM IR for the axpy!
function uses llvm.vscale instrinsics, but without hav-
ing to set the environment variable JULIA_LLVM_ARGS
to -aarch64-sve-vector-bits-min=512, which im-
proves the ability of writing high-performance code in Julia.

2) Distributed computing with MPI.jl: MPI is a communi-
cation protocol for distributed programs which run on multiple
cores and is a staple in the HPC field: it is the de-facto standard
for communication in highly parallel applications. MPI.jl is a
Julia package to interface with this protocol [15]. Studies about
MPI communications with MPI.jl on x86 architecture were
conducted by [16], [17], who found relatively little overhead
on AMD and Intel CPUs.

R-CCS presented at the 7th meeting for application code
tuning on A64FX computer systems the results of performance
benchmarks of MPI communication on Fugaku [18]. These
benchmarks were run with the Intel MPI Benchmarks7 (IMB)
suite with the Fujitsu MPI library, based on Open MPI and
optimised for TofuD. In order to measure performance of MPI
communications on A64FX using MPI.jl, we developed
MPIBenchmarks.jl8, a package to run Julia benchmarks
comparable to some of those in the IMB suite.

Figure 2 shows the results of the benchmarks for a point-to-
point operation (ping-pong), and Figure 3 refers to collective
operations (Allreduce, Gatherv, Reduce). We ran the
benchmarks with Julia v1.7.2, using MPI.jl v0.20, which
was configured to use the Fujitsu MPI library available in the
system. Point-to-point benchmarks were run with two MPI
ranks on two nodes, collective benchmarks were run with 1536

6https://github.com/JuliaLinearAlgebra/libblastrampoline.
7https://github.com/intel/mpi-benchmarks.
8https://github.com/JuliaParallel/MPIBenchmarks.jl.

https://github.com/JuliaLinearAlgebra/libblastrampoline
https://github.com/intel/mpi-benchmarks
https://github.com/JuliaParallel/MPIBenchmarks.jl

Fig. 2. Comparison of latency (top panel) and throughput (bottom panel)
of inter-node point-to-point MPI communication between using MPI.jl in
Julia and IMB benchmarks in C (results provided by R-CCS in [18]). Fugaku
scheduler setup: -L "node=2" -mpi "max-proc-per-node=1".

MPI ranks across 384 nodes using the torus layout, to match the
scheduler configuration of the R-CCS benchmarks. MPI.jl
typically showed very small overhead for messages larger than
1-2 KiB—peak throughput of ping-pong communication with
MPI.jl is within 1% of that reported by R-CCS—, but slightly
larger overhead for messages of smaller sizes. We note that,
contrary to IMB, at the present time MPIBenchmarks.jl
does not implement a cache-avoidance mechanism, which may
explain why MPI.jl appears to show better latency than IMB
for messages with size up to 64 KiB, which corresponds to
the size of the L1 cache of the A64FX CPU. We also observe
that, contrary to [16], we did not find a significant performance
drop for the Allreduce operation for larger message sizes.

B. Type flexibility and reduced-precision with Float16

Developing complex applications using Float16 is not
easy. On A64FX, even the occasional occurrence of subnormals
of Float16 (6 ·10−8 to 6 ·10−5) causes a heavy performance
penalty but a compiler-flag is set to flush them to zero instead9

The available normal range of Float16, 6 · 10−5 to 65, 504,

9https://github.com/JuliaLang/julia/issues/40151.

Fig. 3. Comparison of latency of collective MPI operations
between using MPI.jl in Julia and IMB benchmarks in C (results
provided by R-CCS in [18]): MPI Allreduce (top panel), MPI
Gatherv (middle panel), MPI Reduce (bottom panel). Fugaku
scheduler setup: -L "node=4x6x16:torus:strict-io" -L
"rscgrp=small-torus" -mpi proc=1536.

https://github.com/JuliaLang/julia/issues/40151

is less than 10 orders of magnitude and scaling is often
required to guarantee no under or overflow. While developing
an application that is resilient to the limitations of Float16
it is therefore beneficial to retain compatibility to higher-
precision formats. In practice, many complex applications will
have parts that are performance-critical, other parts that are
precision or range-critical. An approach is therefore needed that
combines a flexibility with the number format for development
and performance when ported to various hardware without
sacrificing productivity. Many existing libraries hardcode
the number format and deliver performance by essentially
duplicating conceptually identical code, which harms produc-
tivity and portability to number formats available on modern
hardware. On the other hand, Julia’s multiple-dispatch allows
the development of fully type-flexible applications, such that
the number format, or combinations of different formats, can
be chosen at compile time as described in the previous section.
In the following we present one application that prototypes this
concept for weather and climate models and runs in Float16
on A64FX or in Float64 on x86 without changes.
ShallowWaters.jl, a fluid circulation model that solves

the shallow water equations for idealized weather and climate
simulations, has been developed with a focus on number
format-flexibility [19]. It runs in Float64, Float32, or
Float16 alike and in general supports any (custom) number
format as long as a standard set of arithmetic operations
are implemented. Functions are written for element types
T<:AbstractFloat and Julia dynamically dispatches an
arithmetic operations like addition to +(x::T,y::T), i.e.
the respective method defined for the number format T. While
this method can be defined in Julia’s Base library (as is the
case for floats) any custom number format can be defined
by implementing a standard set of arithmetic operations.
What this set of operations needs to contain depends on the
application. ShallowWaters.jl, for example, only uses
transcendental functions like log,exp,sin,cos etc. for
precalculating constants and not in the performance-critical
main loop. To optimize the range of numbers occurring
ShallowWaters.jl, we developed the analysis-number
format Sherlogs.jl, which records a histogram of num-
bers during the simulation that allowed us to monitor, for
example, how a multiplicative scaling s of the equations
avoids Float16 subnormals. For development purposes we
therefore run ShallowWaters.jl with T=Sherlog32
(Sherlogs.jl’s equivalent of Float32), and, after choos-
ing s, we execute the same code with T=Float16,s=s
for performance. For more details see [19]. Type-flexibility
therefore is not just important for performance code, but can
also greatly assist in the development of low precision-resilient
code and retains compatibility with higher precision formats.

The ShallowWaters.jl simulations with Float16 are
qualitatively indistinguishable from simulations with Float64
(Figure 4) and rounding errors remain smaller than model or
discretization errors. The precision-critical part is the time
integration for which we include a compensated summation
that compensates for the rounding error of the previous time

Fig. 4. Geophysical turbulence simulated by ShallowWaters.jl using
Float16 arithmetic on A64FX and a spatial resolution of 3000x1500 grid
points. ShallowWaters.jl uses an identical code base that is dynamically
dispatched to any number format. To reduce rounding errors in the precision-
critical time integration, Float16 simulations includes a compensated
summation, which is not required for higher-precision formats. The equivalent
Float64 simulation is qualitatively indistinguishable but ran 3.6x slower
[19].

103 104 105 106 107

grid size Nx × Ny

1x

2x

3x

4x

fa
st

er
 th

an
 F

lo
at

64

L1 cache
@

 16 bit

@
 32 bit

@
 64 bit

L2 cache
@

 16 bit

@
 32 bit

@
 64 bit

Speedups with 16-bit arithmetic on A64FX
Float16, uncompensated
Float16
Float16/Float32 mixed
Float32
Float64

Fig. 5. Speedups of low-precision simulations on A64FX with
ShallowWaters.jl over Float64 with varying problem sizes. Float16
has by default a compensated time integration in ShallowWaters.jl, to
reduce rounding errors, which causes an about 5% overhead in runtime.
Float16/32 is a mixed-precision simulation that uses Float32 precision
for the time integration. Reproduced from [19].

step by adding a correction to the next time step. This
introduces a 5% overhead in runtime and therefore clearly
outperforms a mixed-precision approach whereby the precision-
critical time integration is computed using Float32 (Figure 5).
As ShallowWaters.jl is a memory-bound application it
benefits from Float16 on A64FX even without vectorization
and approaches 4x speedups over Float64 for large problems
(3000x1500 grid points, corresponding approximately to array
sizes). Float32 simulations are 2x faster than Float64
over a much wider range of problem sizes.

IV. OPPORTUNITIES FOR IMPROVEMENTS

A. General performance

An evaluation of performance portability of Julia code
across multiple architectures, including A64FX, was carried out
by [20], who showed that Julia could achieve on this platform
performance close to that of equivalent code written in C/C++.
The authors of this study noted that the performance improved
sensibly when moving from Julia v1.6, which is based on

LLVM 11, to Julia v1.7, based on LLVM 12. Analogously, we
found that the performance of a simple Julia implementation
of the BLAS axpy routine can be competitive with that of a
vendor implementation of BLAS (Fujitsu BLAS), or another
highly optimised library (BLIS). Furthermore we observed
that thanks to recent advancements in LLVM, Julia v1.9 will
be able to more easily vectorize the code, without requiring
users to manually set LLVM flags. Thus, owing to the fact it
relies on a compiler infrastructure which receives active support
from hardware vendors and HPC engineers, Julia can enjoy
improvements versions after versions also on very specialised
CPUs, despite the fact that to date Julia itself has not received
directly any specific optimisation for A64FX.

A64FX is a non-general-purpose CPU, with strong focus
on vectorization. This results in poor performance in some
tasks, such as compilation of software. On Fugaku this issue
can be limited by cross-compiling static software optimised
for A64FX on the Intel login nodes. However, Julia is Just-In-
Time-compiled (JIT), thus paying the cost of longer compile
times in every session whenever a new method needs to be
compiled. Julia currently does not support cross-compilation
of code for a different architecture, but there are tools to
enable basic ahead-of-time compilation, to generate a system
image to reduce the need to compile methods at runtime10.
Improvements in this area of the Julia ecosystem can enhance
the ability to run large-scale applications on A64FX and other
similar non-general-purpose CPUs.

B. Custom reduction operators in MPI.jl

An issue that is limiting the ability to run some MPI
applications on ARM CPUs is the impossibility to use custom
MPI reduction operations on non-Intel architectures due to how
they are implemented in MPI.jl11. When this bug will be
resolved, it will be possible to run a larger class of Julia MPI
programs on ARM systems, including Fugaku.

C. Improved compiler support

As noted in section II compilers need be careful in how they
handle Float16 on platforms that have only software support
for it. If they allow for extending precision intermediately, this
can cause issues with code as simple as:� �

muladd(x, y, z) = x*y+z� �
which Julia lowers to the following LLVM Intermediate

Representation (IR):� �
define half @julia_muladd(half %0, half %1, half %2) {
top:
%3 = fmul half %0, %1
%4 = fadd half %3, %2
ret half %4

}� �
10https://github.com/JuliaLang/PackageCompiler.jl.
11https://github.com/JuliaParallel/MPI.jl/issues/404.

In order to ensure the consistency between hardware and
software, Julia inserts fpext and fptrunc operations ex-
plicitly:� �

define half @julia_muladd(half %0, half %1, half %2){
top:

%3 = fpext half %0 to float
%4 = fpext half %1 to float
%5 = fmul float %3, %4
%6 = fptrunc float %5 to half
%7 = fpext half %6 to float
%8 = fpext half %2 to float
%9 = fadd float %7, %8
%10 = fptrunc float %9 to half
ret half %10

}� �
On systems with full hardware support this is clearly sub-

optimal and there is ongoing work in LLVM and Julia to
address this issue. In particular we will need to extend Julia’s
multi-versioning support to detect full Float16 hardware
support and then selecting a copy of the cache code that was
compiled without inserting these extra conversion operations.

V. CONCLUSIONS

In this paper we evaluated the use of the Julia programming
language on A64FX, in particular with regards to the ability
to easily generate efficient code on a non-general purpose
CPU; the possibility of writing type-generic code which can
take advantage of hardware acceleration; and the overhead
of running distributed applications with MPI.jl on a large
supercomputer.

With the example of a simple Level 1 BLAS routine,
we found that, by leveraging the work done in the LLVM
compiler, Julia allows users to write high-level generic code
which is compiled down to native code for A64FX with
performance competitive with that of specialised libraries.
Recent improvements in LLVM will further enhance the
ability to automatically vectorize the code and fully use SVE
instructions, particularly important with the introduction of
more ARM CPUs supporting this extension, such as Neoverse
V1 and N2.

The MPI.jl package provides a natural interface to the MPI
protocol, which allows calling directly MPI libraries optimised
for the network of the current system. Communication bench-
marks of MPI.jl showed relatively little overhead compared
to the performance analysis carried out by R-CCS, especially
for sufficiently large messages, in line with the findings of [16],
[17]: peak throughput of point-to-point communications was
nearly identical to that measured using the IMB suite in C.

We then presented the case of the ShallowWaters.jl
package, a fully type-flexible fluid circulation solver for the
shallow water equations which, thanks to Julia’s multiple
dispatch and code generation, can run on different architectures
(e.g., x86 and ARM) and with different types (e.g., Float16
and Float64) by using different data types as input to the
program, without changing the code base for the different
situations. This showed that Julia is particularly well suited for
developing generic numerical code which can effortlessly use

https://github.com/JuliaLang/PackageCompiler.jl
https://github.com/JuliaParallel/MPI.jl/issues/404

different numerical data types without sacrificing performance,
boosting scientific productivity. We were also able to verify
that running simulations with Float16 on A64FX delivers a
nearly 4x speedup over Float64.

However, some challenges in the use of Julia on A64FX
remain. Prior to Julia v1.9, the now in-development ver-
sion which will be based on LLVM 14, SVE instructions
are enabled only when manually setting the LLVM flag
-aarch64-sve-vector-bits-min=512, which how-
ever also causes crashes in many situations12. Float16
numbers are promoted to Float32 numbers even when
hardware support for 16-bit numbers is available, although
it is possible to compile Julia with this mechanism disabled
(as done here in section III-B). Compilation latency on A64FX
can sometimes hinder runtime performance of Julia, more than
on general-purpose CPUs, in particular in short-running tasks.
MPI.jl does not currently support custom MPI reduction
operators on ARM CPUs, which poses a limitation on running
certain distributed application in Julia on these systems. While
more work is needed to fully unlock Julia’s potential on A64FX-
based clusters—and a large part of it is on-going both in LLVM
and Julia itself and its ecosystem, not limited to this CPU—,
we found that this is already an effective language for writing
generic and high-performance code for A64FX.

ACKNOWLEDGMENT

The authors thank Tim Besard, Jameson Nash and Simon
Byrne for their inputs and work on both Julia and MPI.jl.
This work used computational resources of the supercomputer
Fugaku provided by RIKEN through the HPCI System Re-
search Project (Project ID: ra000019). The ShallowWaters.jl
simulations were run on the Isambard UK National Tier-2 HPC
Service operated by GW4 and the UK Met Office, and funded
by the Engineering and Physical Sciences Research Council
EPSRC (EP/P020224/1). MK gratefully acknowledges funding
from the European Research Council under the European
Union’s Horizon 2020 research an innovation programme
(grant no. 741112). VC gratefully acknowledges funding from
NSF (grants OAC-1835443, OAC-2103804, AGS-1835860, and
AGS-1835881), DARPA under agreement number HR0011-
20-9-0016 (PaPPa). This research was made possible by the
generosity of Eric and Wendy Schmidt by recommendation
of the Schmidt Futures program, by the Paul G. Allen Family
Foundation, Charles Trimble, Audi Environmental Foundation.
This material is based upon work supported by the Department
of Energy, National Nuclear Security Administration under
Award Number DE-NA0003965. The views and opinions of
authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation herein.

12See for example https://github.com/JuliaLang/julia/issues/43069, https:
//github.com/JuliaLang/julia/issues/44263, https://github.com/JuliaLang/julia/
issues/44401.

REFERENCES

[1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Review, vol. 59, no. 1, pp.
65–98, Jan. 2017.

[2] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 2004.

[3] J. Dongarra, “Report on the Fujitsu Fugaku system,” Department
of Electrical Engineering and Computer Science, Innovative
Computing Laboratory, University of Tennesse, Tech. Rep. ICL-
UT-20-06, Jun. 2020. [Online]. Available: https://www.top500.org/news/
report-fujitsu-fugaku-system-jack-dongarra/

[4] Y. Ajima, T. Kawashima, T. Okamoto, N. Shida, K. Hirai, T. Shimizu,
S. Hiramoto, Y. Ikeda, T. Yoshikawa, K. Uchida, and T. Inoue, “The
tofu interconnect d,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER), 2018, pp. 646–654.

[5] “IEEE standard for Floating-Point arithmetic,” IEEE, Piscataway, NJ,
USA, Tech. Rep., 2019.

[6] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan,
“Training Deep Neural Networks with 8-bit Floating Point Numbers,”
arXiv:1812.08011 [cs, stat], Dec. 2018.

[7] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee,
S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen,
J. Yang, J. Park, A. Heinecke, E. Georganas, S. Srinivasan, A. Kundu,
M. Smelyanskiy, B. Kaul, and P. Dubey, “A Study of BFLOAT16 for
Deep Learning Training,” arXiv:1905.12322 [cs, stat], Jun. 2019.

[8] M. Klöwer, M. Razinger, J. J. Dominguez, P. D. Düben, and T. N. Palmer,
“Compressing Atmospheric Data into Its Real Information Content,”
Nature Computational Science, vol. 1, no. 11, pp. 713–724, Nov. 2021.

[9] FUJITSU, “FUJITSU Processor A64FX Datasheet,” 2020.
[Online]. Available: https://www.fujitsu.com/downloads/SUPER/a64fx/
a64fx_datasheet.pdf

[10] T. Odajima, Y. Kodama, M. Tsuji, M. Matsuda, Y. Maruyama, and
M. Sato, “Preliminary Performance Evaluation of the Fujitsu A64FX
Using HPC Applications,” in 2020 IEEE International Conference on
Cluster Computing (CLUSTER), Sep. 2020, pp. 523–530.

[11] M. Sato, Y. Ishikawa, H. Tomita, Y. Kodama, T. Odajima, M. Tsuji,
H. Yashiro, M. Aoki, N. Shida, I. Miyoshi, K. Hirai, A. Furuya, A. Asato,
K. Morita, and T. Shimizu, “Co-Design for A64FX Manycore Processor
and ”Fugaku”,” in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, Nov. 2020, pp. 1–15.

[12] “Half-Precision (using the GNU compiler collection (GCC)),” https:
//gcc.gnu.org/onlinedocs/gcc/Half-Precision.html, accessed: 2022-6-30.

[13] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic
Linear Algebra Subprograms for Fortran Usage,” ACM Trans. Math.
Softw., vol. 5, no. 3, p. 308–323, Sep. 1979. [Online]. Available:
https://doi.org/10.1145/355841.355847

[14] W. Lovett. (2022) LLVM 14 - what’s new and improved for Arm.
[Online]. Available: https://community.arm.com/arm-community-blogs/b/
tools-software-ides-blog/posts/llvm-14

[15] S. Byrne, L. C. Wilcox, and V. Churavy, “MPI.jl: Julia bindings
for the Message Passing Interface,” Proceedings of the JuliaCon
Conferences, vol. 1, no. 1, p. 68, 2021. [Online]. Available:
https://doi.org/10.21105/jcon.00068

[16] S. Hunold and S. Steiner, “Benchmarking Julia’s Communication
Performance: Is Julia HPC ready or Full HPC?” in 2020 IEEE/ACM Per-
formance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS), 2020, pp. 20–25.

[17] A. Rizvi and K. C. Hale, “A Look at Communication-Intensive
Performance in Julia,” arXiv e-prints, p. arXiv:2109.14072, Sep. 2021.

[18] Y. Nakamura, “Basic Performance of Fujitsu MPI on Fugaku,” Jan.
2022. [Online]. Available: https://www.hpci-office.jp/invite2/documents2/
meeting_A64FX_220127/A64FX-Tuning_2022-0127_Nakamura.pdf

[19] M. Klöwer, S. Hatfield, M. Croci, P. D. Düben, and T. N. Palmer,
“Fluid Simulations Accelerated With 16 Bits: Approaching 4x Speedup
on A64FX by Squeezing ShallowWaters.jl Into Float16,” Journal of
Advances in Modeling Earth Systems, vol. 14, no. 2, p. e2021MS002684,
2022.

[20] W. Lin and S. McIntosh-Smith, “Comparing Julia to Performance
Portable Parallel Programming Models for HPC,” in 2021 International
Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS), 2021, pp. 94–105.

https://github.com/JuliaLang/julia/issues/43069
https://github.com/JuliaLang/julia/issues/44263
https://github.com/JuliaLang/julia/issues/44263
https://github.com/JuliaLang/julia/issues/44401
https://github.com/JuliaLang/julia/issues/44401
https://www.top500.org/news/report-fujitsu-fugaku-system-jack-dongarra/
https://www.top500.org/news/report-fujitsu-fugaku-system-jack-dongarra/
https://www.fujitsu.com/downloads/SUPER/a64fx/a64fx_datasheet.pdf
https://www.fujitsu.com/downloads/SUPER/a64fx/a64fx_datasheet.pdf
https://gcc.gnu.org/onlinedocs/gcc/Half-Precision.html
https://gcc.gnu.org/onlinedocs/gcc/Half-Precision.html
https://doi.org/10.1145/355841.355847
https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/llvm-14
https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/llvm-14
https://doi.org/10.21105/jcon.00068
https://www.hpci-office.jp/invite2/documents2/meeting_A64FX_220127/A64FX-Tuning_2022-0127_Nakamura.pdf
https://www.hpci-office.jp/invite2/documents2/meeting_A64FX_220127/A64FX-Tuning_2022-0127_Nakamura.pdf

	I Introduction
	II Support for low-precision floating-point arithmetic in Julia
	III Type-flexibility and performance
	III-A Performance and Scalability on Fugaku
	III-A1 Level 1 BLAS routine
	III-A2 Distributed computing with MPI.jl

	III-B Type flexibility and reduced-precision with Float16

	IV Opportunities for improvements
	IV-A General performance
	IV-B Custom reduction operators in MPI.jl
	IV-C Improved compiler support

	V Conclusions
	References

