W) Check for updates

Manuscript

EPB: Urban Analytics and City Science
2022, Vol. 0(0) 1-19

Anomalous human activity © The Author(s) 2022

Article reuse guidelines:

fluctuations from digital trace  gspocnioumspemision

DOI: 10.1177/23998083211069990
journals.sagepub.com/home/epb

data signal flood inundation ©SAGE
status

Hamed Farahmand
Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, USA

Wanqiu Wang

Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA

Ali Mostafavi
Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, USA

Mikel Maron

Community Team, Mapbox, Washington, DC, USA

Abstract

The emergence of mobile platforms equipped with Global Positioning System technology enables
real-time data collection affording opportunities for mining data applicable to rapid flood inundation
assessment. The collected data can be employed to complement existing methods for rapid flood
inundation assessment, such as remote sensing, to enhance situational awareness. In particular,
telemetry-based digital trace data related to human activity have intrinsic advantages to be used for
inundation assessment. In this study, we investigate the use of Mapbox telemetry data, which
provides human activity indices with high spatial and temporal resolutions, for application in rapid
flood inundation assessment. Using data from Hurricane Harvey in 2017 in Harris County, Texas,
we (1) study anomalous fluctuations in human activities and analyze the differences in activity level
between inundated and non-inundated areas and (2) investigate changes in the concentration of
human activity, to explore the disruption of human activity as an indicator of flood inundation.
Results show that both analyses can provide valuable rapid insights regarding flood inundation
status. Anomalous activities can be significantly higher/lower in flooded areas compared with non-
flooded areas. Also, the concentration of human activity during the flood propagation period across
affected watersheds can be observed. This study contributes to the state of knowledge in smart
flood resilience by investigating the application of ubiquitous telemetry-based digital trace data to
enhance rapid flood inundation assessment. Accordingly, the use of such digital trace data could
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provide emergency managers and public officials with valuable insights to inform impact evaluation
and response actions.
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big data, flooding, participatory sensing, statistical analysis, crowdsourcing

Introduction

An effective, rapid flood response requires timely assessment of flood propagation and recession,
which enables community response to the rapidly evolving situation (Miguez and Verol, 2017;
Rexiline Ragini et al., 2018). The information used for rapid flood inundation assessment is
primarily gathered from flood gauges and networks of sensors that collect hydrological data.
Although flood gauges and hydrological sensors provide important information of streamflow and
the intensity of rainfall on the gauge locations, such information is not adequate for situational
awareness of the population or of community actors. To address this limitation, other sources of data
that can provide indications of the evolving situation of inundations during a flood event have been
examined as a complement to the information collected from flood gauges (Assumpgéo et al., 2018;
Fan etal., 2020; Hao and Wang, 2020). In particular, the emergence of mobile platforms, such as cell
phones, equipped with Global Positioning System (GPS) technology enables the rapid data col-
lection from social media and crowdsourced platforms (Chatzimilioudis et al., 2012; Erdelj et al.,
2017; Greenwood et al., 2020; Jiménez-Jiménez et al., 2020). Studies of the application of social
media and crowdsourced data for improving rapid flood inundation assessment (Li et al., 2018)
often integrate user-generated social media data with standard flood-mapping techniques, such as
aerial imagery, to provide flood maps for decision-makers, responders, and residents (Kryvasheyeu
et al., 2016; Landwehr et al., 2016; Middleton et al., 2014; Pogrebnyakov and Maldonado, 2018;
Rosser et al., 2017; Yuan and Liu, 2018). Nevertheless, social media and crowdsourced data have
shortcomings, such as limitations related to geo-tagging of posts, which make these data inadequate
for rapid flood impact assessment. Digital trace data obtained from cellphones provide geo-tagged
data about human activity that shows the potential to complement the information gathered from
residents during floods (Stier et al., 2020). The key premise of using digital trace data is that
fluctuations in human activities could signal protective actions (e.g., evacuation) and damages to the
built environment indicating flood inundation. In addition, digital trace data can provide evidence of
human activity at high spatial and temporal resolutions. These characteristics of digital trace data
overcome the main limitations of social media and crowdsourced data (such as the need to associate
content with locations, limitation of the amount of geo-tagged data, and content validity) (Stieglitz
et al., 2018; Yang et al., 2019; Zhang et al., 2019).

This study investigates the application of high-resolution spatial and temporal digital trace data
as a source of situational information for the examination of human activity fluctuations for fa-
cilitating flood inundation assessment. The promise of this study is that the records of human
activities can be a valuable source of information for decision-makers in emergency response;
however, there is a need for investigation of the potential applications since (1) human activities are
complex and dynamic behaviors that cannot be simply associated to certain parameters and (2) the
available data has certain specification such as temporal and spatial aggregation, which might
impact its application. More specifically, we investigated the changes in human activity from digital
trace data. We used metrics of telemetry-based activity provided by Mapbox for rapid assessment of
flood inundation. The data contains two distinct metrics, namely, driving and non-driving activity
indexes. The data of human activities are collected by Mapbox and traces are classified based on



Farahmand et al. 3

users’ behavior recognized by Mapbox into activities that occurred while users are driving and
activities that are not representing driving users. The data of these classes of traces are aggregated
and normalized distinctly, and thus, cannot be compared. We used data related to Harris County,
Texas, in the context of Hurricane Harvey in August 2017 to examine anomalous changes in human
activities, as well as changes in the concentration of human activities to evaluate the association
between anomalous fluctuations in human activity and flood inundation status.

Background

This section briefly reviews the state of the literature and recent advancements in using crowd-
sourced data for flood inundation assessment and the application of telemetry-based digital trace
data for disaster response.

Crowdsourced data for flood inundation assessment

Flood inundation assessment refers to associated impacts across an affected area and the degree of
flooding. Hydrodynamic modeling methods and data-driven methods are the most widely used for
flood propagation modeling and further inundation assessment (Mustafa et al., 2020; Teng et al.,
2017). Using the equations from physical laws, hydrodynamic models simulate the water prop-
agation and overflow using input variables, such as the topography of the region, rainfall, and
surface characteristics. (Balekelayi and Tesfamariam, 2019). On the other hand, data-driven
methods use data collected in real-time or near real-time to map the extent of flooding. The
data might be gathered through satellite imaging, flood gauges and sensors, and surveys, among
other sources (Dong et al., 2020b; Ogie et al., 2017).

While hydrodynamic and data-driven techniques can generate effective and relatively accurate
flood inundation maps, they present some limitations related to the timeliness of data, spatial
coverage, and resolution of data. For example, running a hydrodynamic model to achieve an
effective flood inundation map requires high computational power and a wide range of up-to-date
data, which might not be feasible to acquire. Moreover, data-driven methods often encounter
challenges in the data collection process, such as the spatial-resolution of satellite data, which makes
detecting smaller inundated areas difficult; the unavailability of imagery in areas with heavy cloud
coverage; and difficulties in the detection of inundation from the photographs taken during night
time (McDougall, 2011). Compounding these restrictions (Zhong et al., 2016) is the fact that these
techniques often fail to provide timely information required for crucial emergency response de-
cisions (Hao and Wang, 2020).

To complement these methods for flood inundation mapping, various types of crowdsourced and
social media data (such as Twitter posts) have been used to enhance the speed and spatial coverage
of flood inundation estimation and to reduce the time lag between actual flood propagation and
inundation estimation. Several recent studies mined content-based social media data, notably
Twitter and Facebook posts, to extract information for flood inundation assessment. By analyzing
crowdsourced data, information indicating flood inundation in the vicinity of the geo-location is
extracted from user posts (Apel et al., 2004; Brouwer et al., 2017; De Moel et al., 2015; Deng et al.,
2016; Fan et al., 2020; Hammond et al., 2015; Hao and Wang, 2020; Li, 2012; Nicklin et al., 2019).
For example, in a comprehensive study, a web application has been developed to collect different
citizen reports and social media content, analyze, and integrate the information gathered from each
data stream into an interface to connect residents with emergency responders to inform each other
regarding the dynamically changing situation during a flood event (Urbanrisklab, 2017). Natural
language processing (NLP) methods are used for content analysis; for example, NLP has been used
to extract the quantifier that indicates the water depth of a location in a Twitter post (Wang et al.,



4 EPB: Urban Analytics and City Science 0(0)

2018). Moreover, given the location and the time that the post is created, the spatial-temporal pattern
of tweets can be integrated with other data sources to develop flood inundation status maps. For
example, a framework has been proposed by Huang et al. (2018b) that integrates Twitter data into
data gathered by remote sensing techniques and river water gauges to improve near real-time flood
inundation maps. The Twitter activity data has also been shown to expedite the detection of flood
inundation and flood-related events when combined with satellite flood signals (Jongman et al.,
2015). Crowdsourced images during floods have been analyzed using deep convolutional neural
networks to detect inundation estimate flood severity (Pereira et al., 2020). Volunteer-reported flash
floods and geo-located tweets were integrated for real-time flood maps by generating probability
index distribution layers and digital elevation models and assigning weights using image-extracted
land surface showing the wetness of the area (Huang et al., 2018a). Another stream of research deals
with identifying the regions affected by the flood and detecting emergency situations caused by
flood inundation (Sarica et al., 2021; Wang and Taylor, 2019; Yin et al., 2020). Another topic of
interest is the enhancement of credibility of information extracted from social media data regarding
reported disruption events and damage. Some studies (such as (Fan et al., 2019)) have developed a
graph-based method for credible disruption event detection from social media data, which can boost
the situational awareness regarding disruption and damage in the community (Fan et al., 2019).
Using social media data and remote sensing (Ahmad et al., 2019), researchers have developed a
framework to estimate the passability of roads, taking into consideration disruptions and inun-
dations that occur during floods.

Despite their growing use, there are limitations in social media data analysis. First, social media
data might be biased by factors, such as distance to impacted areas, the popularity of the user, and
demographic characteristics of users. Moreover, reliable analysis of social media content requires
well-established and standard ontologies which are difficult to develop to classify posts, compare
results, and validate findings. Finally, the number of geo-tagged social media posts is often limited
compared to the digital trace data, which limits a comprehensive spatial and temporal coverage for
disaster situational awareness applications. Due to the limitations of crowdsourced and social media
data, there is a need for studies to evaluate the usefulness of digital trace data and other emerging
data.

Digital trace data for improving disaster response

Digital trace information of locations and activities of cellphone users is obtained from telemetry-
based data gathered from cell phones using GPS technology (Lopez and Ferreira, 2021; Ma et al.,
2019). These data have been used to understand phenomena related to human activities. Digital
trace data can reveal changes in human activity patterns. This characteristic is particularly useful
in studying crises. Perturbations in communities cause fluctuations in human activities which in
turn could signal hazard exposure and impacts. Digital trace data has also been used for in-
vestigating voters’ behavior (Bach et al., 2019) and migration patterns (Marquez et al., 2019). In
another study, human activity captured by human digital trace data was considered an early
indication of the COVID-19 spread risk across the United States (Gao et al., 2020). Previous
studies have relied upon digital trace data for investigating aspects of disaster response (Cumbane
and Gidofalvi, 2019). For example, human mobility data recorded by GPS devices have been used
to study human behavior during large-scale disasters, which shows that emergency behavior can
be correlated with the mobility pattern extracted from digital trace data (Song et al., 2014). Digital
trace data has also been used for near real-time investigation of population movement dynamics
following earthquakes (Wilson et al., 2016); the study examined mobility patterns captured by
mobile phones to estimate the population displacement triggered by hazard events (Wilson et al.,
2016). Moreover, community-scale digital trace data has been used for quantifying the impacts of
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a winter storm in Texas to analyze disparities in storm-related impacts on different sub-
populations (Lee et al., 2021).

Despite the growing attention to potential applications of digital trace data to enhance situational
awareness in disasters, there is a dearth of studies focusing on the correlation of fluctuations in
human activities obtained from digital trace data with hazard exposures and impacts. In particular, in
the context of rapid flood inundation assessment, the potential of digital trace data remains under-
investigated. There are very limited studies that focus on integrating the insight from the digital trace
data into existing models to investigate the flood impact assessment. For example, to investigate the
importance of different heterogeneous human activity features including human mobility, visits to
points of interest, and social media posts, various machine learning models have been developed
and fluctuation of feature importance in different flood phases have been analyzed (Yuan et al.,
2021). Results indicate that daily changes in digital traces of human activity often have large
importance for rapid flood impact assessment in the developed models. Therefore, the digital trace
data would have the potential for providing inundation signals in near real-time inundation pre-
diction and monitoring. It indicates that there is a need for further investigation that shows the
association between inundation and the temporal and spatial fluctuation in digital traces of human
activities. In this study, we investigate the potential use of temporal and spatial changes in human
activity patterns derived from digital trace data to enable rapid assessment of flood inundation. This
paper is organized as follows. In Study area and context, we introduce the characteristics of the
study area and the flood event investigated in this study. In Data collection and pre-processing, we
discuss data collection and processing steps. Data analysis and results presents the analysis
framework, metrics, and methods devised for data analysis as well as the results of the data analysis.
Conclusion presents study findings and conclusions and reviews limitations and future work
directions.

Study area and context

Harris County, home to Houston, Texas, the fourth largest city in the United States, has experienced
rapid population growth over the past decades (Qian, 2010). Harris County is among the most flood-
prone counties in the United States due to its location in a coastal area, burgeoning urban de-
velopment, and the lack of flood control infrastructure development in parallel with the urban
development and population growth (Dong et al., 2020b). Accordingly, the county has experienced
several severe flood events, including the Memorial Day Flood in 2015, the Tax Day Flood in 2016,
and Hurricane Harvey in 2017. Each event caused extensive flooding with losses ranging from
hundreds of millions to hundreds of billion dollars (Dong et al., 2019). Therefore, Harris County
was selected as the testbed for this study. Hurricane Harvey, which made landfall in 2017, caused
one of the most devastating floods experienced by Harris County. As a Category 4 storm landing on
the Texas Gulf Coast on August 25, 2017, and dissipating inland on August 30, 2017, Hurricane
Harvey caused extensive economic and social consequences (NOAA, 2017). In this study, we
focused on areas with extensive flooding whose flood maps contain sufficient human activity tiles so
that conclusions regarding potential associations between changes in human activity and flood
inundation are valid. Of 22 watersheds in the county, we selected 8 watersheds in which (1)
sufficient digital trace data for our analysis can be gathered and (2) flooding during Hurricane
Harvey had clear impacts and caused considerable damage and disruptions.

Data collection and pre-processing

We obtained digital trace telemetry data from August 1 through August 30, 2017, from
Mapbox. We chose Mapbox as the source of the telemetry data due to its ability to collect
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temporal and spatial telemetry-based human activity with a proper level of aggregation.
Moreover, Mapbox provides different indexes based on the type of activity (i.e., driving vs
non-driving), which allows better interpreting the activity level. The spatial unit of data
aggregation is tile. The partition of tiles is based on Mapbox data format, which enables
creating spatial-resolution grids. Human activity is collected, aggregated, and normalized by
Mapbox based on the geography information updates of locations of users’ devices (such as
their cell phones) from applications that use Mapbox Software Development Kit (SDK). The
more users located in a tile at time ¢, the greater the human activity index. Human Activity here
refers to the density of digital traces recorded from user devices drawn from users of Mapbox
SDK globally contributing to live location updates. The dataset captures significant driving
and non-driving mobile device activity aggregated into geographic tiles. Tiles represent
square geographic areas approximately 100 m per side, which varies depending on latitude.
Mapbox provided a 4-hour temporal resolution as raw data. Data might not exist for all the
spatial units, as data is derived from cell phone activity depends on the updates of the ge-
ography information of cell phone users. For example, for recreational facilities that are
closed nights and weekends, it is possible that no update is generated for human activity.
Moreover, due to privacy concerns and the data aggregation process, tiles with small numbers
of users, traces are excluded. Mapbox provides two activity indexes, namely, driving activity
index and, non-driving activity index. Each index is calculated for the aggregated traces for all
tiles across time. Then the raw indices are normalized. Normalization is compartmented
separately by month and type of the trace and yields a normalized activity index for each tile in
each 4-hour time step. The normalized values range between 0 and 1. We used the Mapbox
data for August 2017 to allow a comparison of activity levels during flood inundation with the
baseline activity level. Using the collected Mapbox data, we performed data pre-processing,
which consisted of normalization and aggregation of the human activity data into the time
steps and spatial units for the analysis (Figure 1). To estimate flood inundation in the study
area, we used estimated daily flood inundation maps. Estimated flood inundation maps were
created based on gauge points obtained from the National Weather Service (NOAA National
Weather Service, 2014). Water surface elevations were determined based on the stage
readings. After data processing, water surface elevations were used to generate a triangular
irregular networks (TIN) file that covers the affected area. The TIN file can be used to estimate
the flood depth, identify flooded areas, and identify the areas with a possibility of flooding. We
used the approximate flood extent maps for flood inundation estimation for this study.

l Analysis Framework I
— Data Collection — — Data Pre-pr ing — Data Processing & Analysis
0 ma pbOX Te"'jq.gfa-l r’lisﬁmaled flood inundation maps | | Aggregated baseline activities 7
normalization ¥ o
based on monthly activity r) Statistical analysis — proportion test I- Detecting anomalous activity liles ‘T
Activity indexes. vl
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Figure |. Analysis framework.
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Data analysis and results

Analysis framework

Figure 1 shows the analysis framework in this study, including objectives as well as methods used
for the analysis. Following the cleaning and pre-processing human activity data, we performed
anomaly detection to determine the tiles with anomalous activity compare to the baseline activity,
which is calculated based on the pre-Harvey human activity. Anomalous values in a dataset can be
identified employing different techniques for defining anomalies (Prasad et al., 2009). One approach
for defining anomalies is to associate them with the probability of occurrence. In this approach, a
threshold in the cumulative distribution of the data points can be defined as the cut-off to determine
the data points that have extreme values (Zhang et al., 2011). Many studies have considered 5
percentages of data at each tail as the set of data points with extreme values, which are identified as
anomalous (Sun et al., 2015; Zhai et al., 2005; Zhang et al., 2011). Similarly, we define two types of
anomalous activities based on the deviation of activity level in a spatial unit from the activity level in
the baseline period to capture tiles with considerably lower or higher activity compared to the pre-
Harvey activities. We considered activity levels lower than the 5th percentile (low anomaly) and
higher than the 95th percentile (high anomaly) as anomalous activities. Then, we performed
proportion tests to investigate the association between anomalous activities inside and outside
flooded areas at the watershed level. In addition to activity indices of each tile, we calculated the
Venables distance as a measure to quantify the agglomeration of human activity within each
watershed. Then, we explored the temporal and spatial changes of the Venables distance to in-
vestigate how the human activity digital trace data may provide interpretable information of the
flood inundation.

Flood inundation assessment using traces of human activity

To explore the use of telemetry-based digital trace data for rapid flood inundation assessment, we
investigated the relationship between the changes in human activity and flood inundation status of
the affected area. First, we selected the watersheds in which data availability and flood extent are
reasonable for the validity of the analysis. Of the 22 watersheds in Harris County, we selected 8 in
the west and southwest part of the county. These watersheds mostly fall inside the boundaries of
Harris County; they experienced considerable inundation during Hurricane Harvey. Figure 2 shows
the selected watersheds, as well as the 100-year and 500-year floodplains. The specifications of the
watersheds can be seen in Table 1.

Our central hypothesis is that the areas with inundation would signal more anomalous telemetry-
based human activities compared with the areas without inundation. To test this hypothesis, first we
developed a baseline activity level to allow comparison and determination if the activity in a tile ata
period is considered as an anomaly. We considered the activity of the tiles in each census tract during
the pre-Harvey portion of August 2017 (August 1 to August 26) as the baseline activity. For each
census tract, we batched all daytime (from 8:00 a.m., to 8:00 p.m.,) activities recorded from August
1 through August 26. We also distinguished between the weekdays and weekends for the calculation
of the baseline since the non-driving activity for weekdays and weekends are different. Then, we
considered the 5™ and 95" percentile as the threshold for detecting low and high anomalous
activities, respectively. In essence, a value of activity for tile a during time ¢ during Harvey is
considered as a high anomaly if its value is higher than the 95 percentiles of the values of the
activities recorded in similar days (i.e., weekdays or weekends) in the same census tract during the
pre-Harvey period in August 2017. Similarly, a low anomaly can be detected if its value is lower
than the 5™ percentile of the values of the activities recorded in similar days.
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Figure 2. Study area and selected watersheds for flood inundation assessment task.

Table 1. Specification of selected watersheds.

Watershed name Drainage area (sq. miles)  Open streams (miles) Population (2010 US Census)
Addicks Reservoir 138 159 259,694

Sims Bayou 94 121 284,727

Buffalo Bayou 102 106 444,602

Barker Reservoir 126 69 88,895

White Oak Bayou iy 146 433,250

Cypress Creek 267 250 347,334

Clear Creek 202 128 36,878

Brays Creek 197 154 164,172

In the next step, we overlaid the tiles on the daily flood inundation maps for August 27 to August
30,2017. Although Harvey affected Harris County in August and September, we focused on August
activities. The main reason is that the baseline that is used for detection of anomalies needed to be in
the same month as the event under study since Mapbox performs normalization process in a monthly
basis. In the study period, tiles with low or high anomalies were detected for each day. We then
counted the number of tiles with anomalous activities in each watershed for each day. Also, we
determined the flooding status of the tile using the daily flood inundation maps. By doing so, we
categorized tiles on a daily basis given their inundation status and whether they are signaling
anomalous activities. For example, for the low anomaly activity, we categorized tiles for specific
days during Hurricane Harvey as four categories (i.e., non-anomaly/non-flooded, non-anomaly/
flooded, anomaly/flooded, and anomaly/non-flooded). Figure 3 shows the distribution of the tiles
falling into four categories for August 27 to August 30.
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Figure 3. Distribution of human activity and status of inundation from August 27 through August 30.

In the next step, we used proportion tests for populations with different sample sizes. Given two
sets of observations that can have two possible outcomes (i.c., success and failure), the test examines
the null hypothesis, meaning the proportions of success in the two sets are the same. We used R
software and the Stats package (Wilson and Norden, 2015) to perform the proportion test. For each
day and each watershed, we divided tiles into two sets; inundated and non-inundated. Then we
defined success as anomalous activity and failure as non-anomalous activity. Doing so we can define
the null hypothesis (Hp) and the alternative hypothesis (H;) as follows:

Hj: two sets from which the human activity tiles were drawn have the same proportion of tiles with
anomalous activity.

H;: this proportion is different for two sets.
Once we state our null hypothesis and alternative hypothesis, we calculate test statistics using
equation (1) as follows:

.= (p1 — p2) (1)

\/p(l ~p) <ﬁ+$>

where p; and p; are proportions for set 1 and set 2, and n; and n, are sample sizes for set 1 and set 2,
respectively. p is the average of proportions and is calculated using equation (2) as follows:
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p= piny + pan; 2)
np + np

Then, using the z and the defined confidence interval, we can examine if we can reject the null
hypothesis (Chow et al., 2017). Indeed, proportion tests calculated whether the proportion of tiles
with anomalous activities was significantly different among the two groups using 10%, 1%, and
0.1% confidence intervals. The test was performed for anomalous high and anomalous low activities
separately. Results are shown in Table 2.

As shown in Table 2, the result of the proportion test is statistically significant for some days and
watersheds. For example, in Cypress Creek watershed, which is a heavily populated watershed and
which experienced extensive flooding during Hurricane Harvey, inundated areas had a significantly
lower proportion of tiles with anomalous activity levels from August 27 to August 30. In the Sims
Bayou watershed, however, where flooding has been less extensive, we cannot see significant
differences of the proportion of high anomalous activities. Similarly, we can see in Table 2 that there
are significant differences in the proportion of low anomalous non-driving activities between
inundated and non-inundated areas. In total, in 25 out of 64 cases, at least the proportion of tiles with
either high or low anomalous activities are significantly different for inundated and non-inundated
areas. This finding shows that the anomaly in tile activity can be a reliable signal for enhancing near
rapid identification of inundated areas during a flood event.

Next, we explored the distribution of the tiles by focusing on the portion of tiles with anomalous
activities that are not inside the inundated areas. To do so, we focused on three watersheds (i.e.,
Buffalo Bayou, Brays Bayou, and Sims Bayou. In Figure 4, we compare the distribution of
anomalous activities versus the land use map in the study area. As we can see in box a, there is a
concentration of the anomalous activities that are in a non-inundated area that forms around a main
road in between a residential area. Also, comparing August 27th and August 28th, we can see that
the concentration of such tiles is increasing. It can show that the activity is increasing in these areas
significantly while people are using the road to move to safe zones as inundation starts. Also, in box
b, which encompasses a safe residential area (i.e., area without inundation), the concentration of
normal activity increases, which shows that there is no considerable disruption. Moreover, we can
see that the density of tiles in Sims Bayou is relatively lower than Brays Bayou and Buffalo Bayou.
On the other hand, we can see that there are few tiles in the floodplain in this watershed. Considering
that the area experienced flooding in this time period, the limited data points could lead to the lack of
significant results for proportion tests for this watershed (Table 2).

Table 2. Proportion tests for anomalous high activity and anomalous low activity.

Anomaly highs Anomaly lows

Watershed name
Aug 27 Aug28 Aug29 Aug30 Aug27 Aug28 Aug29 Aug30

Addicks Reservoir 717 .287 002 775 .002%* .358 .280 336
Buffalo Bayou .000%* 364 .012* .087* .000%  00]%** .000%=  050%*
Barker Reservoir .012* .598 402 .095* 760 .000%= 137 .965
Sims Bayou .908 .369 742 292 440 515 .060%* 932
White Oak Bayou  .524 .049* .500 235 .184 .070* .015* .00 |
Cypress Creek .000%F 006+* 0l12* .003** 212 .699 .188 112
Clear Creek .789 .395 537 431 .795 110 .060* .198
Brays Bayou 129 .528 .786 000 922 .507 002 .00 |k

*p <0.1,*% p <0.0l., ¥*p <000l
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Figure 4. Distribution of anomalous activities versus land use in three watersheds for 27-28 August.

Exploring changes in venables distance based on telemetry-based digital trace data

To explore the spatial-temporal pattern of human activity, we investigated the changes of the
Venables distance, D,, which captures the spatial structure of human activities and could be an
indicator of the concentration of human activities. The Venables distance captures the average
distance (i.e., concentration) of human activities across a city, county, or any spatial unit (Louail
et al., 2014). The D, is calculated as follows:

 ran e anedr

D, =
ZTX #1,0T - AT, 1

3)

where ar,, and ar,, capture the value of activity in tile x and tile y, respectively, and dr, 1, shows the
distance between the centroids of tile x and tile y (Gao et al., 2021). The Venables Distance captures the
intensity level of overall activities in a county or city. A higher value of D,, implies a lower concentration of
human activity and higher distance among people (Gao et al., 2021). Figure 5 schematically illustrates the
difference between a set of tiles with concentrated activity and a set of tiles with spatially distributed
activity, where both sets of tiles have an equal total activity (values in cells show activity level). As can be
seen, Venables distance can capture the difference in the extent to which activities are concentrated.
To study the temporal and spatial changes of D, during Hurricane Harvey, we first needed to lower the
computation cost of calculating D, at the tile level. We aggregated the activity levels at the census tract level.
We calculated the average activity level of each census tract in a watershed for 4-hour time periods.
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Figure 6. The percentage changes of the D, for the selected watershed from August 27 to August 30.

Moreover, we calculated the distance between the centroids of pairs of census tracts. Then, the D, was
calculated for August 2017. Similar to the anomaly detection, we considered the average of the non-zero
values of D,, between August 1 and August 26 as the baseline and also calculated the average of the D,
during the hurricane impact period of August 27 to August 30.

Figure 6 shows the percentage changes of the D, for the selected watershed during the considered
flooding period compared to the baseline. The Venables distance has seen considerable change in
different watersheds during the inundation period. In general, the Venables distance calculated
based on driving activity shows an increase, which implies a lower concentration of the driving
activities. This result can be attributed to the disruption of daily activities that led to a reduction in
driving activity in the areas that are points of concentration on normal days. Brays Bayou, Clear
Creek, and Buffalo Bayou, however, show a decrease of Venables distance and an increase in the
concentration of activities, which can be attributed to road inundation in a way that only specific
roads in the non-inundated are passable and driving activities are concentrated on such areas.
Moreover, the Venables distance for non-driving activity generally increased during the inundation
period. As we can see, the increase in the Venables distance is considerable for watersheds with
extensive inundation in the more populous areas such as Baker Reservoir, Cypress Creek, and Brays
Bayou. The increase in the Venables distance during the flood inundation period implies a lower
non-driving activity level, which shows that people have a lower presence in the areas of con-
centration during normal periods, possibly commercial areas.
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Figure 7. Changes of average daily activity and Venables distance for Brays Bayou from August | to August 30;
(a) non-driving, and (b) driving activity.

To evaluate the temporal changes of the D,,, we focused on a single watershed, Brays Bayou, since it
was impacted by Hurricane Harvey in terms of disruption of daily activities during the inundation period
and its extent of inundation was relatively high. We also focused on examining the changes of activity level
as they associated with the Venables distance. This approach promoted a better understanding of changes in
human activity since it revealed both the number of activities and their spatial concentration. Figure 7
shows the changes of non-driving and driving average daily activities as well as the Venables distance
calculated based on the daily activity levels deploying the same procedure as the previous section. As we
can see in Figure 7(a), the non-driving activity level showed less change during the inundation period when
compared to the baseline (August 1 to August 26). The Venables distances, however, show an increase
during the inundation period. An increase in the Venables distance is often interpreted as a decline in the
concentration of activities; therefore, the fact that the actual value of the activity has low variation, but the
Venables distance increases imply that the people are not leaving the area in substantial numbers, but daily
activity is disrupted. The disruption is reflected in the increase in the Venables distance. Figure 7(b) shows
changes in the average daily driving activity in the watershed, as well as the changes of the Venables
distance. From the results, it can be seen that the activity level experienced a considerable drop as a result of
the inundation in the watershed. The decline in the D, implies a disruption in driving activity. It can be also
attributed to the fact that the flood resulted in the inundation of a proportion of road segments and forced
driving to be concentrated where road segments are not inundated.

Conclusion

In this study, we evaluated the evidence of human activity derived from digital trace data for
purposes of assessing rapid flood inundation. The core idea of the study is that spatial and temporal
changes of human activity in a flood-impacted area can signal flood inundation. We examined
telemetry-based digital trace data as a suitable source of human activity information that can provide high-
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resolution digital trace data and address intrinsic shortcomings of crowdsourced and social media data for
flood situational awareness. In particular, we investigated the fluctuations in human activity indexes derived
from Mapbox data that can be collected in near real-time. We found that the proportion of anomalous
activities in flooded areas could be significantly higher/lower compared with non-flooded areas. Moreover,
we observed that changes of watershed-level human activity agglomeration provide credible insight about
flood inundation in the impacted area. The contributions of this study are twofold: first, this study reveals the
promise of the use of a ubiquitous data source of credible human activity for harnessing big data for rapid
flood inundation assessment. Second, it introduces and tests two different approaches for assessment of
changes in human activity—assessment of anomalous activities and evaluation of activity agglomeration—
to acquire interpretable information from digital trace data for flood inundation assessment. Hence, the
findings of this study show the potential of community-scale big data (such as digital traces from cellphone
activities) for enhancing situational awareness during urban flooding. These findings also have practical
implications primarily for emergency managers and responders (Dong et al., 2020a). Notably, considering
the importance of rapid flood inundation assessment for effective emergency response, our findings indicate
that the analysis of human activity data provides complementary information for rapid identification of area
of high inundation status. This study and its findings provide a basis for future studies to further investigate
the characteristics (e.g., spatial biases) of telemetry-based digital trace data for flood situation awareness.

Despite the insights that the study of digital trace data provided for flood inundation and impact
assessment, this study has limitations that need to be considered. First, the flood maps that are used for
flood extent estimation and categorization of tiles into inundated and non-inundated areas do not have
same shapes, and therefore, spatially comparing these two areas causes marginal errors, which can be
relaxed if the human activity data is available in smaller tiles. Moreover, the pre-processing of digital
trace data leads to removing tiles with small number of records, which may lead to missing pieces of
information regarding the areas with a significant drop of human activity. Finally, the spatial ag-
gregation used for reducing the computation cost of calculation of Venables distances might be relaxed
using high-performance computers. Future studies are needed to develop pipelines to effectively
collect and analyze digital trace data and evaluate human activity fluctuations for estimating inun-
dation status and informing response actions by emergency responders and public officials.
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