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Abstract

We study scheduling mechanisms that explore the trade-off between containing the spread
of COVID-19 and performing in-person activity in organizations. Our mechanisms, referred
to as group scheduling, are based on partitioning the population randomly into groups and
scheduling each group on appropriate days with possible gaps (when no one is working and
all are quarantined). Each group interacts with no other group and, importantly, any person
who is symptomatic in a group is quarantined. We show that our mechanisms effectively
trade-off in-person activity for more effective control of the COVID-19 virus spread. In partic-
ular, we show that a mechanism which partitions the population into two groups that alterna-
tively work in-person for five days each, flatlines the number of COVID-19 cases quite
effectively, while still maintaining in-person activity at 70% of pre-COVID-19 level. Other
mechanisms that partitions into two groups with less continuous work days or more spacing
or three groups achieve even more aggressive control of the virus at the cost of a somewhat
lower in-person activity (about 50%). We demonstrate the efficacy of our mechanisms by
theoretical analysis and extensive experimental simulations on various epidemiological
models based on real-world data.

1 Introduction

The COVID-19 pandemic that is currently sweeping the world has already spread to a large
number of people. In many parts of the world it has already infected a significant fraction of
the population. For example, in New York City, as early as June 2020, antibody testing suggests
that as many as quarter of the population might be infected [1]. However, this is still nowhere
near the fraction required for “herd immunity”. Many large and medium sized organizations
like schools, universities, factories, and businesses have (at least partially) reopened (or soon
planning to open) their businesses. In some instances, there have been closures of schools and
universities and businesses after reopening due to spike in cases (possibly due to the emer-
gence of new virus strains) leading again to lockdowns and closures and the cycle keeps repeat-
ing. Thus one needs effective strategies to reopen and to keep opened organizations
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functioning safely for a longer time, by keeping the virus under check. It is therefore important
to study effective non-pharmaceutical intervention mechanisms that can safely reopen human
society. Such mechanisms may significantly help in containing, controlling, and slowing the
spread of COVID-19, even though it may not fully eliminate it. Moreover, since organizations,
cities, and communities have differing levels of disease spread, it is crucial that policymakers
weigh in the trade off between containing the spread of the disease versus the impact on
productivity.

Our main contribution is the study of a class of intervention mechanisms called group
scheduling. The inspiration for group scheduling comes from COVID-19 characteristics
whereby individuals remain asymptomatic and less infectious for around 4-5 days (the incuba-
tion period) from contraction. Subsequently, they either become symptomatic (and can there-
fore be quarantined) or remain asymptomatic (and still spread the disease). Group scheduling
(randomly) partitions the population (e.g. the students in a university or the work force in a
company) and schedules them to work in-person on different days with possible gaps (i.e.,
when no group is scheduled). A group is considered quarantined (at home, say) when it is not
scheduled to work. Any individual who is symptomatic is quarantined as soon as symptoms
are exhibited. Henceforth, when “work” refers to working in-person or in a face-to-face set-
ting. This contrasts with working or performing activities via other mechanisms, e.g., remotely
or online.

The key intuition that inspires group scheduling is that individuals can be grouped in a ran-
dom fashion—reducing the average number of contacts than without grouping—and sched-
uled to work predominantly with other less infectious individuals. Effective group schedules
work in such a way that most infected individuals turn symptomatic (though a significant per-
centage, about 40%, may remain asymptomatic [2]) and contagious during their break—
thereby facilitating quarantining before spreading the infection. Contrary to a full lockdown,
our scheduling allows for significant and sustained in-person activity. In fact, we showcase spe-
cific group schedules that operate at 70% of a typical five-day (in-person) work week and that
can simultaneously dampen the spread of COVID-19 quite effectively.

The main contributions of this paper are summarized as follows:

1. We posit and study group scheduling mechanisms that provide trade-offs between in-per-
son activity and controlling disease spread (these notions are explained in Section 2.1). We
show that our mechanisms effectively trade off in-person activity for more effective control
of the COVID-19 virus. This interpolates between two extremes: full lockdowns where
there is very little in-person activity but with stronger control of the virus verses almost full
activity (as in pre-Covid days) but with very little control of the virus.

2. We analyze various mechanisms both theoretically and by simulation. Our theoretical anal-

ysis demonstrates the ways in which group scheduling mechanisms help in controlling
COVID-19. Our simulations validate the theory and yield insights into the performance of
specific mechanisms. Our results show that both the peak number of cases per day as well
as the total number of infections can be significantly controlled by following appropriate
mechanisms.

3. Our results indicate three specific categories of mechanisms—corresponding to high,

medium, and low in-person activity—and their performance in controlling COVID-19
spread. The lower the in-person activity of the mechanism, the higher the control of disease.
For specific mechanisms we refer to Ta++ble 3.

Mechanisms such as (2,3,2) and (3,3,0) achieve even more aggressive control of the virus at
the cost of a somewhat lower in-person activity (about 50%); these could be applicable in

PLOS ONE | https://doi.org/10.1371/journal.pone.0272739 September 15, 2022

2/18


https://doi.org/10.1371/journal.pone.0272739

PLOS ONE

Scheduling mechanisms to control the spread of COVID-19

situations when the disease spread is more rampant in the population. Depending on the
disease spread, one can use an appropriate mechanism that achieves a desired control of the
virus at a certain level of in-person activity.

4. A main takeaway from our results is that group scheduling mechanisms help in signifi-
cantly controlling the spread of COVID-19—reducing the peak number of cases per day as
well as the total number of infections. Depending on the rate of infection in a population,
different mechanisms are applicable that control the disease spread while maintaining an
appropriate level of in-person activity. Our mechanisms provide a basis for safely reopening
in-person activity of large organizations such as universities and schools where such mecha-
nisms can be effectively implemented.

5. While our study is specific to COVID-19, our approach and techniques can be modified in
a straightforward manner to study the spread of other diseases, including COVID-19 vari-
ants (e.g. by modifying the incubation period, the rate of asymptomatic infection).

2 Results and discussion
2.1 Scheduling mechanisms

We begin with some simple mechanisms that serve as baselines. The basic mechanism is one in
which there is no intervention or control mechanism of any sort. The disease spreads in the
population according to an underlying disease propagation model. (We consider various epi-
demic models as described in Section 2.2.) Another baseline mechanism is symptomatic
quarantining, a widely practised mechanism wherein individuals are quarantined if they
exhibit any symptom of the disease. As mentioned in Section 2.2.2, we assume that only a cer-
tain proportion of infected individuals are symptomatic. According to current CDC estimates
[2], about 60% of infected individuals are symptomatic and the rest are asymptomatic. We also
consider other percentages to validate the robustness of our results.

We assume a 5 day mean incubation period (in our experiments, we consider a distribution
based incubation period model for COVID-19 with mean incubation period of 5 days [3]).
Individuals who exhibit symptoms are removed (quarantined) from the group. In this model,
an individual will be asymptomatic with probability 0.4 (independently of others) and thus
will not be removed until recovery time (assumed to be 14 days after infection); such an indi-
vidual will remain contagious until they are recovered.

2.1.1 Proposed group scheduling mechanisms. We study a family of group scheduling
mechanisms and highlight specific mechanisms within the family—one, in particular, that
epitomizes the optimal trade off between dampening COVID-19 spread and increasing in-per-
son activity. Group scheduling partitions the population into different randomly chosen
groups and schedules each group on different days with possible gaps between the schedules.
A gap is when no group is scheduled. More precisely, a group scheduling mechanism is char-
acterized by three parameters g, d, and ¢, where g is the number of groups, d is number of days
a group is continuously scheduled, and ¢ is the gap between the schedules. We call this a (g, d,
t) schedule. The normal five day work week schedule is (1, 5, 2), where the entire workforce is
just one group scheduled continuously for five days with two days off. A quintessential group
schedule example that we highlight is the (2, 5, 0) schedule ((2, 4, 0) also has quite similar per-
formance—see below). This schedule partitions individuals into two groups scheduled alterna-
tively for five days each without any break between cycles. Thus, individuals cycle between five
days of work and five days (quarantined) at home.

We evaluate our mechanisms in two main aspects:
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1. How disease spreads under the mechanism and comparing it with simple baseline mecha-
nisms. In particular, we posit the so-called flattening ratio which is the ratio of the peak
number of cases (during the course of the epidemic simulation) under our mechanism
compared to the peak number of cases under a baseline mechanism, e.g., the normal 5-day
work week.

2. The in-person activity of the mechanism characterized by what we call the in-person work
ratio or simply work ratio defined as the ratio of the average number of in-person working
hours of an individual under our mechanism to the average number of working hours
under the standard (pre-Covid) five-day working week (i.e., the (1, 5, 2) schedule). We
assume that an individual works for a fixed number of in-person hours (say, 8) on each day
they are working. For a mechanism with parameters (g, d, t), the work ratio is computed by
the formula (see S1 Appendix for a derivation):

7 d

5\gd+t
The work ratio for a normal work week, i.e., the (1, 5, 2) schedule, is 100%, whereas for the
(2,4, 0) (and (2, 5, 0)) schedule it is 70%.

There are two advantages in group scheduling: (1) the average number of contacts per
group is reduced by a factor of 1/g (compared to a single group) which means that fewer indi-
viduals are infected by an infected person on average per day; (2) since infected symptomatic
individuals in a group are quarantined when they are not scheduled, the number of days a per-
son is infectious is reduced. Thus even when the number of groups is relatively small (say 2, 3,
or 4) and even for small d and ¢ values, the spread of disease is significantly reduced, while still
maintaining a reasonable work ratio.

We demonstrate the efficacy of our mechanisms both theoretically (cf. Section 2.3.1) and
experimentally (cf. Section 2.3.2). For our theoretical analysis, we consider a simple branching
process model and analyze how the disease spreads as a function of the mechanism parameters
(g d, and t) and the COVID-19 disease parameters. Our analysis is fruitful in determining
which mechanisms are likely to work well and also provides insight into our simulation results
on various epidemiological models, which we discuss next.

2.2 Transmission model and disease parameters

Infectious diseases such as COVID-19 spread by contact between people. While various factors
influence the spread of diseases, including COVID-19, we focus on a key ingredient that con-
tributes to the spread of disease: the number of contacts between people and the distribution
of the number of contacts (some people may have significantly more contacts than average).
We simulate our mechanisms under two different types of standard epidemiological models:
network-based, random-mixing based [4]. We use real-world data in our epidemiological
models. Network-based models use an underlying fixed graph structure that determines the
disease propagation, while random mixing models such as the traditional differential equa-
tions-based SIR (or SEIR) allow contacts between random individuals in the population
(though the average number of contacts might be the same in both models). We show that our
mechanisms gives qualitatively similar benefits regardless of the specific models used in our simu-
lations as well as the specific choice of parameters of the respective models. These are discussed
in detail in Section 2.3.2.

2.2.1 Network-based contact models. We use a simple graph-based model that is based
on contact distribution from real-world data (Mossong et al. [5]). The work of Mossong et al.
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[5] was a fairly large-scale (involving 7290 individuals and 92,904 contacts), population- based
survey of “epidemiologically relevant” social contact patterns.

We define a contact graph where nodes consist of individuals and edges (assumed to be
undirected) denote contacts between them. To model spatial distribution, we assume that
nodes are distributed randomly in a unit square. This is a variant of the random geometric
graph model that has been extensively studied [6]. In this random geometric graph model that
we call the G(n, k) model, we have n nodes uniformly distributed in a unit area and each node
has an edge with its k closest neighbors. Note that this model has two key features: (1) spatial
locality—edges are between nodes that are in proximity (2) the small-world property—neigh-
bors of a node are themselves likely to be connected.

One might point out that having a uniform distribution of nodes (people) is not really
reflective of the real world. While true, we posit that this is of lesser importance, especially
when restricted to modelling densely populated areas such as Manhattan or Dharavi (Mum-
bai), or a university or a industrial workplace. However, more important is the modelling of
the contacts between people. (In any case, as mentioned earlier, it is important to point out that
the efficacy of the mechanisms are qualitatively similar regardless of the models, in particular
whether it is contact-graph based or random mixing-based. Even in contact-based model, we
consider models where geometry is less important, as discussed later. We also get similar
results when modelling based on real-world contact data from Kissler et al. [13], see 2.2.4.)
Hence, instead of adding an edge between a node and its k closest contacts, where k is fixed for
all nodes, we use the well-studied real-world data for contact distribution due to Mossong
et al. [5] to sample the number of contacts k(v) for each node v. For a node v, k(v) is its degree
in the contact graph and its neighbors constitute the set of individuals that v can infect directly.
The work of Mossong et al. [5] studied the number of contacts for over 7000 people across
eight countries in Europe. This data gives a contact distribution for the number of contacts of
each node per day. The mean number of contacts for a person per day, according to this distri-
bution, is 13.4, which we denote by C. We note that this contact distribution is for “normal”
human behavior (i.e., no social distancing, quarantining, etc.).

We also consider an alternative contact graph model that is based solely on the contact dis-
tribution and ignores the underlying geometry. We call this G'(n, D) model. It is a variant of a
well-studied random graph model called the Chung-Lu model that is based on degree distribu-
tion [7]. Formally, the G'(n, D) model (which is also undirected) is defined as follows. For each
node v, we sample the (expected) degree of v, d(v), from the contact distribution D. We then
construct a random graph as follows. For each pair of nodes u and v, an edge is added between
u and v independently with probability d(u)d(v)/%,, d(u). Note that, under this model, the
expected degree of v is equal to d(v). We note that one important difference between the ran-
dom geometric graph model and the random graph model is that the diameter of the Chung-
Lu model is substantially smaller (about logarithmic in the size of the graph) than the random
geometric graph. This means that the disease can potentially spread faster among the popula-
tion, since there are shorter paths between nodes.

Finally, we also consider a parameterized hybrid model that interpolates between the ran-
dom geometric model and the Chung-Lu random graph model, depending on a parameter p.
In this model, each node has a degree (say d) randomly chosen from a distribution. The d
neighbors are then chosen as follows—with probability p, the next closest neighbor (in the geo-
metric sense) is chosen as a neighbor of the node. With probability 1-p, the neighbor is chosen
randomly from all nodes in a weighted distribution with weights proportional to the degree of
each node (in the Chung-Lu sense).

2.2.2 COVID-19 disease model. We now discuss how we model the spread of disease on
the underlying contact graph. We employ a parameter called the transmission probability, T,
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the probability that an infected node infects each of its uninfected contacts (neighbors in the
contact graph) on any given day. Note that the T, value is related to the commonly used repro-
ductive rate (or effective reproductive rate) R(t) which measures (on average) the number of
individuals an infected individual infects over the course of his/her infection (at any particular
time ¢ during the epidemic). For the contact-graph model, one can approximately relate T,
and R(t) as follows (See S1 Appendix for a derivation):

Rt)y=(1-(1-T,)")xC

where C, as defined earlier, is the average number of contacts per person (we assume this value
to be 13.4 throughout this paper based on Mossong et al. [5] data) and D is the average number
of days a person remains infectious (we assume in this paper that this number is 11 days for
COVID-19 [8]). Note that in the contact graph model, since the underlying graph structure is
fixed, R(#) generally cannot exceed C. For a random mixing model, the relationship between
T, and R(t) is somewhat different (cf. Section 2.2). For example, currently for Houston, the
reproductive rate is around 1 and thus the T, value under the above model is (approximately)
0.007. Generally, the reproductive rate of COVID-19 is estimated to be less than 3 [8] which
corresponds to T, = 0.022 (approximately) in the above contact graph model.

While the traditional approach in epidemiological modelling is to predict disease spread by
estimating T, or R(t) values and fitting these estimates in a model [9-11], we do not estimate
these values. Rather, we study our mechanisms under various possible values for T, and com-
pare the effectiveness of our mechanisms under different possible values with the baseline
mechanisms discussed earlier. A high T, value means that the disease is spreading rampantly,
while a low value means that the disease is spreading relatively slowly. We show that regardless
of the value of T, our specific group scheduling mechanisms significantly reduce the infection
spread compared to the baseline mechanisms. However, the efficacy increases even further as
the T, values decrease (cf. Section 2.3.2).

For modeling the disease progress, we adopt an SEIR model, where individuals can be in
four categories. Initially, all individuals are considered Susceptible to the disease. When a sus-
ceptible individual becomes infected, they first enter an Exposed state, wherein the individual
is not contagious. After a period of time, the individual then enters the Infected state. During
the infected state, an individual can transmit the disease with probability T}, per contact per
day. Then, after a certain period (called the recovery time), the individual becomes Removed
(i.e., either recovered or deceased). We assume that the percentage of “deceased” individuals is
very small compared to the population and does not affect the disease spread significantly;
hence we ignore this in our simulation and assume that all individuals eventually recover. A
removed individual cannot spread the infection to its neighbors.

We start with a set of randomly chosen individuals—called the index set—infected at the
beginning of the simulation. We assume that the size of the index set is proportional to the cur-
rent size of infected individuals in the population (e.g., in Harris County, Texas, it is about 3%
in August 2020 [12]).

The Incubation period is the time between becoming infected and the development of
symptoms. On average, it is estimated that, for COVID-19, it is 5.1 days, but can vary from 2-
14 days [3, 8]. For our simulations, we use a distribution-based model for incubation period
for COVID-19 [3]: we assume that the incubation period is given by a lognormal distribution
with mean (approximately) 5 (days).

We assume that an infected person becomes contagious 2 days before the incubation period
[8]. After a person becomes contagious, they can infect each of their contacts with probability
T, per day. We consider various values of T}, ranging from very high (say, 0.5) to relatively low
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(say, 0.01)—as mentioned earlier, one can directly relate T), to the reproductive rate. After 14
days recovery time, an individual is Removed (i.e., either recovered or deceased). A removed
individual is assumed to not be contagious.

It is known that asymptomatic carriers of COVID-19 play a significant role in the spread of
the disease. It is estimated that as many as 40% of infected individuals are asymptomatic, i.e.,
they do not show any symptoms, but continue to infect their contacts until they become
Removed. We assume a similar estimate in our analysis, i.e., we assume each infected individ-
ual is asymptomatic with probability 0.4 (independently of others). We assume that asymp-
tomatic carriers are as infectious as symptomatic carriers and become infectious in a similar
time frame (i.e., two days before the incubation period, though they do not show symptoms).

2.2.3 Random mixing model. To study the robustness of our mechanisms across different
models, besides the contact graph models and its variants described earlier, we also consider a
classical SEIR random mixing model. The SEIR model tracks stages of a disease—susceptible,
exposed, infected, and recovered—as the number of individuals in each stage. The evolution of
each compartment is regulated by standard differential equations (see e.g. Keeling et al. [4]).
We use a variation of the classical SEIR model with a lognormal distribution for the incubation
period. The random mixing model allow each individual to have contact with random individ-
uals which enables the possibility of larger values for the reproductive rate R(f), since any sus-
ceptible individual can become exposed. By contrast, the contact graph model limits the
susceptible population to the subset of nodes adjacent to infectious carriers. One can relate R
(t) and T, as: R(t) = T, x Cx D.

2.2.4 Real world data model. Finally, to provide some real-world evidence of the strength
of our mechanisms, we utilize the results from Kissler et al. [13], specifically the Haslemere
dataset of pairwise distances between volunteers over time. This dataset has already been used
in modeling COVID-19 [14].

The Haslemere dataset “consists of the pairwise distances of up to 1m resolution between
469 volunteers from Haslemere, England, at five-minute intervals over three consecutive days
(Thursday 12 Oct - Saturday 14 Oct, 2017)” [13]. We use this data set in our simulations to
construct a contact graph wherein an edge exists between two participants if, at any time, they
are a distance apart of 5 meters or less.

2.3 Analysis of scheduling mechanisms

2.3.1 Theoretical analysis of mechanisms. We present a theoretical analysis assuming a
simplified branching process model which is much easier to analyze than the contact graph
models defined earlier. The simplified model ignores the underlying graph model yet it gives
useful insights to the efficacy of various scheduling mechanisms which are also validated by
extensive experimental simulations on the various network models.

A main goal of our analysis is to study the efficacy of mechanisms with respect to disease
spread. In particular, given a value of transmission rate Tj,, we would like to discover mecha-
nisms (with good work ratio) that can effectively control the spread of disease. The evolution
of the disease depends on the transmission rate T}, (with greater values of T}, corresponding to
a greater rate of spread), the number of contacts per individual, the number of days a person is
infectious, and the asymptomatic rate. It is important to note that our mechanisms employ
symptomatic quarantine and hence symptomatic individuals contribute less to the spread
(since they are infectious for a short while before symptoms appear, after which they become
quarantined). However, asymptomatic carriers (who constitute about 40% of infected individ-
uals) play a major role in spreading the disease. We analyze how the disease spreads under a
given (g, d, t) mechanism.
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Our analysis uses the well-known Galton-Watson branching process (e.g., see Section 8.1
[15]) to study disease evolution. In a branching process, each (infected) individual indepen-
dently infects an X number of individuals, where X is a random variable (capturing the repro-
ductive rate) with a fixed distribution (with finite mean and variance).

In a branching process analysis, we start with an infected individual and study how the
number of infected individuals grow in each generation (see Fig 1). Table 1 lists the key param-
eters (and their typical values) used in our analysis.

Consider an infected individual, say node v. By our modeling assumptions, v will be symp-
tomatic with probability 0.6 and asymptomatic with probability 0.4. Let y; (resp. y,,) be the
expected number of people that are infected by a symptomatic (resp. asymptomatic) infected
individual. Essentially, y; and y, are the effective reproductive rates R(t) for the symptomatic
and asymptomatic patient respectively. Let X; be the random variable counting the number of
infected people at the i’ generation and E[X,] be the expected value of X;. Assuming X, = 1,
E[X,] = 0.6u, + 0.44,, and in general, E[X,] = (0.64, + 0.4x,)", which follows from the
branching process, See Fig 1 (a formal argument can be found in van Handel [15]).

Thus, the expected total number of infected individuals is $°:°, (0.6, + 0.44,)" is the sum
of a geometric series with geometric mean r = 0.6y + 0.4y,. Therefore, if (0.64, + 0.44,)<1,
i.e., each individual infects less than one person on average, then E[X,] — 0 as i — oc. In this
case, the disease dies out eventually. On the other hand, if 0.6y, + 0.4y, > 1 (i.e., each individ-
ual infects more than one person on average), then E[X,] grows exponentially. In this case, the
disease-spread explodes and ultimately infects the entire population. Thus, we have the follow-
ing theorem.

Theorem 1. If 0.6y, + 0.4y, < 1 then the branching process dies out eventually, i.e., the dis-
ease eventually stops spreading.

level 0
v eve > 1

N

level 1

0.6p5 0.4pq > (O.GMS + 0-4!1*0,)1

SN SN

0.6 - 0.4p161a0.4 - 0.6piapss  0.4252 ———— (0.6 + 0.44s)>

|
I
I
\ I
I
|
|
1

\
. level 2 v

T T 0.4%u%, = (0.6p5 + 0.4p4)"

Fig 1. Illustrating the branching process analysis. The right hand side displays the total expected number of infected people at each level.
https://doi.org/10.1371/journal.pone.0272739.g001
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Table 1. COVID-19 parameters used in our analysis.

Parameter Definition Value Used in our
Analysis
T, probability that a contagious person infects a single neighbor | {0.01, 0.1}
in a day
asymp probability that an infected person is asymptomatic 0.4
incubation number of days until symptoms develops from infection 5
period
C number of contacts per person 13.4
D number of days an infected person remains infectious 11

https://doi.org/10.1371/journal.pone.0272739.t1001

Below we calculate the value of effective reproductive rate 0.6y + 0.4, in general for a
mechanism with parameters (g, d, t). Then we analyze different specific mechanisms (i.e., with
specific values for g, d, and t) to check whether the disease dies out or not under the
mechanism.

In the random mixing model, the reproductive rate is R(t) = T,xDxC, where T, is the trans-
mission probability, D is number of days a person remains infectious and C is the number of
contacts per person. By considering a schedule (g, d, t), the above formula becomes:

R(t) =T, x D, x C,, (1)

where C, = C/g is the number of contacts in a random grouping of g groups and D, is the num-
ber of days a person is infectious as determined by the schedule (note that if a group is not
scheduled, then any person in that group is not considered infectious, even though they may
be infected). The following lemmas show how we can compute the symptomatic and asymp-
tomatic reproductive rates for a specific (g, d, t) mechanism. The proofs (see Appendix A.4 in
S1 Appendix) are derived from Eq 1 with appropriate calculation of D, and C,.

Lemma 1. Let d' = max{0, min{d — 2, 5}} and d, = max{0, min{5 — (gd + t)i, d} }. Then

the Symptomatic reproductive rate is given by: u, = % (d+Y.4)

Lemma 2. Let d’ = max{0, min{d — 2, 11}} and d/ = max{0, min{11 — (gd + t)i, d}}.

. . .. 13.4)T, " "
Then our Asymptomatic reproductive rate is given by: i, = % (@ +d)

Thus, one can calculate 0.6p,+ 0.44, from the above formulas. Table 2 demonstrates these
valuse for different mechanisms for two different T, values—0.1 (high) and 0.01 (low). If the
value of 0.6+ 0.44, < 1 for a mechanism and a T}, value, then the disease dies out; moreover,
the closer this value is to 0, the faster the disease dies out (and ends up infecting a smaller frac-
tion of the population). These predictions are validated by simulation results in the various
models described in Section 2.2—network-based, random mixing, and real-world network
(Section 2.3.2).

2.3.2 Simulation results. To study the efficacy of our mechanisms, we also conduct exten-

sive simulations across various models and parameters [16]. For example, given a particular

Table 2. Values of 0.6p, + 0.4, for different values of T, and schedules (g, d, ©).
Schedule
T, (1,5,2) (2,5,0) (3,3,0) (4,4,0)
0.01 0.616 0.228 0.080 0.067
0.10 6.164 2.278 0.804 0.670

A green box indicates that the process eventually dies out, whereas a red box indicates continued growth.

https://doi.org/10.1371/journal.pone.0272739.t1002
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mechanism, say (2, 4, 0), we simulate the disease spread under this mechanism under various
models (the contact graph model and its variants, the random mixing model, and the Hasle-
mere real-world data model). Under each model, we vary the following parameters to study
their effects. We vary transmission probability T, (which captures the rate of infection spread
in the population), the number of index patients (which captures the percentage of individuals
currently infected among the population), and the percentage of asymptomatic carriers (we
assume this to be 40% according to current estimates [2], but also simulate with other values).
We then compare the disease spread, under the same set of respective parameters, to three base-
line mechanisms—the basic model (where the disease spreads without any intervention),
symptomatic quarantine or the (1, 1, 0) schedule (where infected individuals are quarantined
after exhibiting symptoms), and the (1, 5, 2) schedule, which is the normal 5-day work week
with symptomatic quarantine (note that in the latter two mechanisms there is only one group).
The key metric of comparison is the flattening ratio—the ratio of the peak number of cases of
the mechanism under consideration (say (2, 4, 0)) to that of the baseline mechanisms. We also
compare the total number of infections.

We analyze a number of group scheduling mechanisms that showcase the trade off between
the work ratio (WR) and the disease spread. We categorize them into three broad groups as:

(i) high-WR mechanisms ( ~ 70% work ratio), (ii) mid-WR mechanisms (40 — 50%), and (iii)
low-WR mechanisms (about 30%).

Our results are summarized in Figs 2 to 4 and Table 3. (Figs 3 and 4 are placed in the
appendix). These particular results assume a population of 50,000 (the typical population in
a large university) and the number of index patients is 3% of the population (i.e., 3% of the
population is initially infected as estimated, say, in Harris County, TX in August 2020 [12]).
The simulation model is the random geometric model (Fig 2) with the contact distribution
as described in Section 2.2, for the random mixing model (Fig 3), and for the Real-World
Data model (Fig 4). We adopt the COVID-19 disease parameters as described in Section 2.2.
Our results are qualitatively similar across the various models including other variants of the
contact graph model, the random mixing model, and the real-world data model. We have sim-
ulated higher populations (up to 100,000 in the contact graph model, and up to million in
the random mixing model) and have varied the number of index patients. More impor-
tantly, we have analyzed a wide variety of T, values—here we consider two canonical T,
values—0.1 and 0.01—these capture high and low reproductive rates respectively (cf.
Section 2.2).

Our results can be summarized as follows (in particular, see Fig 2 and Table 3). The canoni-
cal example for the high-WR category is the (2, 5, 0) schedule, which achieves a (1, 5, 2) flatten-
ing ratio as low as 12% (i.e., the ratio of the peak number of cases is 12% compared to that of
the standard work week schedule) even when T, = 0.1. When T}, is lower, say around 0.01 the
flattening ratio becomes much lower. (In general, the lower the T, the better the flattening, in
general, for any given mechanism.) In fact, several mechanisms of the form (2, d, 0) yield the
same work ratio and essentially the same flattening ratio for d > 4. In the mid-WR category,
we get even better flattening ratios. The canonical example for this case is (3, 3, 0) yielding a
work ratio of 46%, but with the flattening ratio down to 4% even under T, = 0.1. For mecha-
nisms in low-WR category, such as (4, 4, 0) with still a reasonable work ratio of 35%, the flat-
tening is down to about 1%. The mid-WR and low-WR mechanisms are attractive when T,
values are high, as they not only lead to a low flattening ration, but also low number of peak
cases (in absolute numbers) with respect to the total population. Moreover, the total number
of infections is a small fraction of the total population.
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Fig 2. Plots displaying the performance of different mechanisms for Contact Graph Model.

https:/doi.org/10.1371/journal.pone.0272739.9002
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Table 3. Work and flattening ratios for various schedules against the basic, Symptomatic Quarantine, and (1, 5, 2) mechanisms for T, values of 0.01 and 0.1 in the

contact graph model.

WR Category Schedule
Full (1,5,2)
(1,1,0)
High (2,4,0)
(2,5,0)
Mid (2,3,2)
(2,3,3)
(3,3,0)
Low (4,4,0)

WR T, =0.01 T,=0.1
Basic Sympt. (1,5,2) Basic Sympt. (1,5,2)

100% 23% 80% 107% 127%

140% 29% 124% 84% 79%
70% 4% 14% 18% 14% 17% 13%
70% 4% 14% 18% 12% 15% 12%
53% 4% 15% 18% 11% 14% 11%

46.7% 4% 14% 18% 11% 13% 10%
46.7% 2% 7% 8% 4% 5% 4%

35%

1%

3%

4%

2%

2%

1%

A higher work ratio indicates more in-person activity, whereas a lower flattening ratio indicates a lower peak number of new cases per day.

https://doi.org/10.1371/journal.pone.0272739.t003

2.4 Related work
The results on epidemiological studies is vast and here we focus on the literature that is most
relevant to our work on Covid-19 and similar strategies.

Our work closely resembles several recent papers on cyclical strategies [17-19] and alternat-
ing strategies [20]. A typical cyclical strategy parameterized by 1 < k < 14 views 14 days as one
work cycle and stipulates that the population works for k days followed by 14 — k days of lock-
down. Our work is complementary to their works. The key difference is that group scheduling
mechanisms benefit significantly from the reduced number of contacts owing to the partition-
ing of the population whereas the cyclical mechanisms typically do not. Moreover, our
approach to modeling in-person activity is much simpler than the works by Alon et al. and Ely
etal. [18, 19], which model economic impact, and is quite likely to be more intuitive and easier
for policy makers to reason about and compare alternatives.

A number of works study specific mechanisms that resemble our work, but few provide the
trade off analysis between productivity and infection spread that is crucial for policymakers.
For example, Karin et al. [17] briefly discusses a staggered form of cyclical strategies. In
Maiden et al. [20], the authors focus their efforts on an alternating quarantine mechanism
whereby they partition the population into two groups and schedule activities alternating each

week between the two groups. Being primarily focused either on typical cyclical strategies [17]
or alternating quarantine [20], neither of these works analyze the trade off with respect to pro-
ductivity and the rate at which the disease spreads. Alon et al. [18] provides a detailed model
that studies the trade off between the effectiveness of typical cyclical strategies and the econ-
omy. However, we believe that group scheduling mechanisms can provide significantly better
trade off. There has been a flurry of recent works [21-23] that study other mechanisms like
social distancing and targeted lockdowns in the context of their related economic impact.

2.5 Discussion

We studied group scheduling mechanisms and demonstrated their efficacy both theoretically
and experimentally. To gain theoretical insight, we considered a simple branching process
model and analyzed how the disease spreads as a function of the mechanism parameters (g, d,
and t) and the COVID-19 disease parameters. Our analysis is helpful in determining what
mechanisms are likely to work well. We also conducted extensive simulations of our mecha-
nisms under various epidemiological models and compare their performance with baseline

mechanisms.
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We show that our mechanisms gives qualitatively similar benefits regardless of the specific
models used in our simulations as well as the specific choice of parameters of the respective mod-
els. For example, given a particular mechanism, say (2,4,0), we simulate the disease spread
under this mechanism under various epidemiological models. Under each model, we vary the
following parameters to study their effects. We vary transmission probability (which captures
the rate of infection spread in the population), the number of index patients (which captures
the percentage of individuals currently infected among the population), and the percentage of
asymptomatic carriers (we assume this to be 40% according to current estimates, but we also
try other values). We then compare the disease spread, under the same set of respective parame-
ters, to three baseline mechanisms—the basic model (where the disease spreads without any
intervention), symptomatic quarantine or the (1,1,0) schedule (where infected individuals are
quarantined after exhibiting symptoms), and the (1,5,2) schedule, which is the normal 5-day
work week with symptomatic quarantine (note that in the latter two mechanisms there is only
one group). The key metric of comparison is the flattening ratio—the ratio of the peak number
of cases of the mechanism under consideration (say (2,4,0)) to that of the baseline mecha-
nisms. We also compare the total number of infections as well.

We analyze a number of group scheduling mechanisms that showcase the trade off between
in-person work ratio and the disease spread. We categorize them into three broad groups as: 1.
High-WR mechanisms (70% work ratio), 2. Mid-WR mechanisms (40-50%), and 3. Low-WR
mechanisms (about 30%). The canonical example for the high-WR category is the (2, 5, 0)
schedule, which achieves a (1,5,2) flattening ratio as low as 12%. The mid-WR and low-WR
mechanisms are attractive when the transmission rates are high, as they not only lead to a low
flattening ratio, but also low number of peak cases (in absolute numbers) with respect to the
total population. Moreover, the total number of infections is a small fraction of the total popu-
lation and the infection dies off quickly in the population.

Regarding the simulations, we point that the models that we use are to compare different
mechanisms. To show the robustness of our results, we consider several models (and several
settings of various parameters in each model) as well as a real-world network model (based on
face-to-face interactions in a group of people) and in all the models we compare group sched-
uling mechanisms with other baseline mechanisms and show the benefit of group scheduling.
For example, one of the models is the SEIR random mixing model, a standard model in epide-
miology. We believe that although the numbers that we predict such as the flattening ratio
may not exactly match in the real world, we believe that group scheduling will still yield signifi-
cant benefit.

Our mechanisms take a principled approach to disease control that interpolates between
extreme measures—lockdowns on one hand that severely cripple the economy and a “herd
immunity” approach that advocates normal behavior for most people (except the most vulner-
able). The latter approach, though it helps economic activity, has the danger that even younger
or middle-aged people who apparently are less vulnerable can still get the disease in severe
form (and even die), and this can happen in large numbers, overwhelming the health care
system.

We note that the group scheduling mechanisms assume that the population is randomly
partitioned into g groups. Random partitioning is important to justify that the average number
of contacts each person has will go down by a factor of g on average. This kind of partitioning
is more applicable to structured settings like schools and workplaces. Our focus is mainly on
such settings (even in our simulation we assume about 50,000 people, a typical population in a
large public university).

For convenience, we have categorized our mechanisms based on their work ratios. The low
end of this spectrum provides the best flattening ratio. So naturally, when cases surge
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(characterized by a higher transmission probability or reproductive rate) or when easing out of
complete lockdown, we may wish to opt for the low work ratio options that have an improved
flattening ratio. As case numbers decrease, we have a couple of strategies that we can choose
between. On the one hand, low case numbers afford us the ability to contact trace more effec-
tively and thereby stop the spread. On the other hand, we can also move to mechanisms with
improved work ratio.

An important point to note is that if the transmission probability (reproductive rate) is
reduced, then the efficacy of group scheduling is increased even further. Thus reducing the trans-
mission probability by following public health guidelines like wearing masks, social distancing,
and hand washing will be very beneficial. Moreover, following these guidelines can increases
the efficacy of the mechanisms, allowing deployment of high-WR mechanisms as well. More
recently, with increased availability of vaccines, most countries have initiated vaccination
drives and have managed to vaccinate significant fractions of their population. Unfortunately,
due to the slow production rate and other logistical issues, the extent of vaccination coverage
varies widely across countries and regions within countries. Policymakers can factor in the
reduced transmission rate based on the extent of vaccination coverage and consider operating
at a higher work-ratio mechanism.

3 Conclusion

We are guided by two main principles. Firstly, our mechanisms—by partitioning the population
into groups—reduce the number of contacts per person. Secondly, we schedule each group with
sufficient break time so that a large number of infected people become symptomatic (and there-
fore quarantined) during their breaks. We believe that policy makers can be guided by these
principles and adapt our mechanisms, taking their specific local considerations into account. In
general, a policy A (that builds on another policy B) that decreases the number of contacts fur-
ther or, improves the probability that people become symptomatic during their break, will dom-
inate over B, and lead to better flattening. This means that adding common work-breaks—e.g.,
Sundays off—is likely to improve the flattening ratio and unlikely to worsen it.

Policy makers can also use the above two principles to address scenarios that we have not
addressed directly. Shift workers, for example, may need to work on a more fine-grained
schedule. Consider a shift schedule that requires two shifts per day. We could consider four
groups, each alternating between four working days and four off days. The groups may be stag-
gered so that—on any given day—two groups are working and two are off. Of particular inter-
est is the application of this mechanism to health facilities and hospitals, where the mechanism
can be used in scheduling the shifts of health workers, thereby reducing the tranmission of the
virus [24].

Our model can be extended in many ways. We currently focus on social interactions at the
workplace, but we believe our results will qualitatively extend even when we consider social
interactions at home. Moreover, our current model does not explicitly consider age-related
factors in terms of transmission rate and death rates. It is now quite well-established that youn-
ger people fare better on both counts. Thus, including these details into our model and sched-
uling mechanisms may help to further improve the trade-off between productivity and disease
spread.
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