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ABSTRACT

We study distributed algorithms for large-scale graphs, focusing
on the fundamental problems of connectivity and minimum span-
ning tree (MST). We consider the k-machine model, a well-studied
model for distributed computing for large-scale graph computa-
tions, where k > 2 machines jointly perform computations on
graphs with n nodes (typically, n > k). The input graph is as-
sumed to be initially randomly partitioned among the k machines,
a common implementation in many real-world systems. Communi-
cation is point-to-point, and the goal is to minimize the number of
communication rounds (denoted T;) of the computation.

While communication is a significant factor that affects the time
needed for large-scale computations, the computation cost incurred
by the individual machines also contributes to the overall time
complexity of the distributed algorithm. We posit a complexity
measure called the local computation cost (denoted T;) that measures
the worst-case local computation cost among the machines. A lower
bound for T; in our model is Q((m+n)/k+ A + k), while a lower
bound on T, is Q(n/k?) [Klauck et al., SODA 2015], where m is the
number of edges and A is the maximum degree. Prior algorithms for
connectivity and MST in the k-machine model [Klauck et al., SODA
2015, Pandurangan et al., SPAA 2016] do not take into account
local computation; a straightforward local implementation of these
algorithms is not optimal with respect to local computation.

In this paper, we study several distributed algorithms for connec-
tivity and MST and analyze their performance with respect to both
the computation and communication cost. In particular, we analyze
a well-studied flooding algorithm for connectivity and connected
components that takes (j(n/k + D) rounds and (j(m/k + A +k)
local computation time.! We then present a deterministic filtering
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algorithm that has an improved round complexity of O (n/k) but
local computation complexity of O (m/k + n). Next, we present two
deterministic algorithms which are increasingly sophisticated imple-
mentations of the classical Bortivka’s algorithm, the last of which
has round complexity O(n/k) and local computation complexity
(j((m +n)/k+A+k). We finally present a randomized algorithm to
find connected components with round complexity O(n/k?) and
local computation complexity é((m +n)/k + A + k) that are both
essentially optimal (up to polylogarithmic factors).
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1 INTRODUCTION

In the present day, the efficient computation of large-scale data has
become a necessity. In particular, various areas such as biological
networks, social networks, financial markets, energy grids, etc. give
rise to large-scale graph data. In order to develop faster algorithms
to process large-scale data (especially graph data), several large-
scale graph processing systems such as Pregel [25], Giraph [11],
and Spark’s GraphX [12] have been designed based on the message-
passing distributed computing model [24, 31]. In these systems, the
input graph, which is simply too large to fit into a single machine, is
distributed across a group of machines that are connected via a com-
munication network and the machines jointly perform computation
in a distributed fashion by sending/receiving messages.

The focus of this paper is the k-machine model, introduced
in [21], which is a message-passing distributed computing model
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for large-scale computations (see Section 1.1). Several papers have
developed algorithms in this model for various graph problems [2, 3,
14, 15, 21, 22, 29, 30]. The k-machine model is a distributed complete
network of k machines (nodes) that communicate through message
passing over bandwidth-restricted links. The input is some set of
data, usually a graph, distributed across the machines, typically
in a balanced fashion. The machines are synchronous, i.e., they
proceed in a sequence of rounds, wherein each machine performs
some local computation and can send and receive messages. The
goal is to minimize the round complexity, i.e., the number of com-
munication rounds; in particular, to obtain bounds that scale well
with k. Hence, algorithms proposed for the k-machine model are
evaluated solely on the basis of their round complexity. The moti-
vation behind this is that in large-scale distributed data processing,
communication is significantly more time-consuming than local
computation [21, 29, 32]. Thus, analysis in this model assumes local
computation (within a machine) is “free”

The above assumption, that we can simply ignore local computa-
tion cost and focus only on the communication cost, can be a good
approximation to the overall time complexity where computation
cost of individual machines is significantly smaller than communica-
tion cost. This could be true when processor speeds are significantly
faster than network speeds and for very large-scale data commu-
nication. However, modern networks have become much faster,
resulting in the need to evaluate algorithms in a more nuanced
manner. As network speeds approach that of processor speeds, it
is not necessarily the case that the bottleneck for computation lies
only in how many communication rounds of message passing are
required. Moreover, for moderately-sized data, the communication
cost may not be significantly higher than the computation cost. This
all means that, in general, computation cost should also be taken
into account. This is typically seen in practical implementations of
k-machine model algorithms, where wall-clock time speed up is
upper bounded by 1/«, i.e., one cannot expect to see more than a
linear speed up. To give an example, we implemented an efficient,
distributed k-machine algorithm (using MPI) for computing PageR-
ank from [21]. This algorithm has a round complexity of O(n/k).
Figure 1 shows how the execution time (wall clock time) scales with
respect to the number of machines. The scaling is proportional to
(approximately) O(1/k%) and is less than the linear scaling (i.e.,
O(1/k)) predicted by the analysis. We also implemented a more
sophisticated algorithm for PageRank from [30] that has round
complexity O (n/k?) (which is optimal up to polylogarithmic fac-
tors). Note that this round complexity scales super-linearly (i.e.,
quadratically) with the number of machines. However, the execu-
tion time of this algorithm also has less than linear scaling, since
local computation still has a significant cost.

Hence it is necessary to augment the k-machine model with a
means to capture the local computation performed on each machine.
In this paper, we propose such an augmented k-machine model
where, in addition to the communication round complexity that is
traditionally measured, we also measure the local computation per-
formed by the machines over all rounds. We utilize this framework
to analyze solutions to two fundamental graph problems, connectiv-
ity (more generally, finding connected components) and minimum
spanning tree (MST) of undirected graphs. Connected components
can be used as a fundamental subroutine in several other graph
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Figure 1: Performance of the distributed PageRank Algorithm of [21] on two graphs
from Stanford Network Analysis Project (snap.stanford.edu): Google Web graph (875713
nodes) and Autonomous System by Skitter (1.69M nodes). The algorithm was implemented
using MPI and run on a cluster of machines interconnected by a high speed network. The
graph shows that the execution time is proportional (approximately) to 1/x*s.

algorithms, such as testing st-connectivity, bipartiteness checking,
approximate min-cut, and several graph verification problems (see
e.g. [29]) and graph clustering (see e.g. [20]), which in turn are
fundamental tools that can be applied to solve practical problems in
machine learning, social network analysis, pattern recognition, and
information retrieval. The MST is useful for a variety of tasks in-
cluding information dissemination and has been studied in various
models due to its importance (see e.g. [1, 13, 21]).

1.1 Model and Complexity measures

We generalize the k-machine model by incorporating an additional
metric to evaluate the efficiency of algorithms. We first introduce
the basic model (e.g. [21]) and subsequently introduce our metric.

The standard k-machine model has k machines My, My, . .., M
connected together in a clique using bidirectional communication
links. The machines operate in synchronous rounds. The input to
this system is a graph G = (V,E) with |V| = n nodes, |[E| = m
edges, maximum degree A, and diameter D. We assume that n > k,
and we focus on the sublinear regime for k, i.e., k = O(n®), where
0 < € < 1isaconstant.? We assume that each link of the k-machine
clique has a bandwidth of B bits per round; we assume B is small
compared to the input (graph) size, say, B = ©(log n) (although one
can easily write all bounds in terms of a general B).

Initially, the entire graph G is not known by any single machine,
but rather partitioned among the k machines in a “balanced” fashion,
i.e., the nodes and/or edges of G are partitioned approximately
evenly among the machines. We assume a vertex-partition model,
whereby vertices, along with information of their incident edges,
are partitioned across machines. Specifically, the type of partition
that we will assume throughout is the random vertex partition (RVP),
that is, each vertex of the input graph is assigned randomly to one
machine.? (This is the typical way used by many real systems, such
as Pregel [25], to initially distribute the input graph among the
machines. See also [7, 34].)

More formally, in the random vertex partition variant, each ver-
tex of G is assigned independently and uniformly at random to

This is also the assumption in other Big Data parallel computation models such as
the MapReduce and MPC models[4, 18].

3There is an alternate partitioning model, the random edge partition (REP) model, where
each edge of G is assigned independently and randomly to one of the k machines. One
can relate the results between the two models [21].
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one of the k machines. If a vertex v is assigned to machine M;, we
say that M; is the home machine of v and, with a slight abuse of
notation, write v € M;. When a vertex is assigned to a machine,
all of its incident edges are assigned to that machine as well; i.e.,
the home machine knows the degree of the vertex, the IDs of the
neighbors of that vertex, and the identities of the home machines
of the neighboring vertices (and the weights of the corresponding
edges in case G is weighted). Note that an immediate property of
the RVP model is that the number of vertices at each machine is
balanced, i.e., each machine is the home machine of ©(»/x) vertices
with high probability (see Mapping Lemma).* It is assumed that if
a machine knows a vertex ID, it also knows which machine that
vertex is mapped to [21].

Eventually, each machine M; must set a designated local output
variable o; (which need not depend on the set of vertices assigned
to M;), and the output configuration o = (o1, ..., 0r) must satisfy
the feasibility conditions of the problem at hand. For example, for
the minimum spanning tree problem, each o; corresponds to a set
of edges, and the edges in the union of such sets must form an MST
of the input graph.

Consider an algorithm A run on these machines and let R; (A),
1 < i < k, denote the total number of communication rounds
needed by machine M; when running algorithm A. We define the
communication complexity of algorithm A, T.(A), as T.(A) =
maX;e[q k] Ri(A).

Let#;(A), 1 < i < k denote the total (sequential) time complexity
for machine M; to run A across all rounds. Note that the time
complexity of a machine is in the sense of the usual RAM model,
i.e., the total time taken by the machine for its (local) computations.
We define the local computation complexity of algorithm A, T, (A),
by Te(A) = max;e[q ] ti(A), ie., the worst-case total local time
complexity of a machine. We would like to minimize Tp(A) as
much as possible; this also is desirable in terms of load balancing
(local) computation load among machines (in addition to keeping
the number of communication rounds low). Note that, in general,
if t(A) is the running time of algorithm A on one machine, i.e.,
the sequential run time, then the best T; (A) we can hope for in k
machines is t(A)/k (by Amdahl’s Law). We note that the overall
(wall clock) time needed to solve a problem by an algorithm A
depends on both T, (A) and T;(A); we specify both individually,
since the time costs for the two measures may differ (typically, a
communication “round” can take longer than a local computation
“step”).

Local computation includes the computation time needed by a
machine to perform all local operations, including local computa-
tion, reading/writing in (local) machine’s memory, and communi-
cation operations, but excludes the time for actual communication
between machines (transmitting/receiving messages). For example,
if a machine wants to broadcast an O(log n)-sized message to the
rest of the machines, then the local computation cost is O(k) (how-
ever, the round complexity for a single broadcast is 1 round and is

“Throughout, “with high probability", refers to a probability of 1 — O(1/n).

>We note that in practice, the actual wall clock time might depend on other factors,
e.g. the cost of synchronization. In this paper, we focus on local computation time as
an additional important measure that influences the overall time, besides the tradi-
tional communication round complexity measure used to analyze k-machine model
algorithms.
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counted as part of T). Hence, strictly speaking, since a machine
might send or receive a message to all other machines over the
course of the algorithm, local computation cost is at least Q(k).
We also assume that the local computation cost of a machine is
at least the cost to read the input assigned to the machine. In the
RVP model, as shown in the Mapping Lemma. the number of nodes
and edges assigned to a machine is @(n/k) and Q(m/k + A), re-
spectively, where n is the number of nodes, m is the number of
edges and A is the maximum degree of the input graph. Thus in
our model, the lower bound for T; is Q((m + n)/k + A + k).

In this paper, we utilize algorithms and theorems related to the
synchronous CoNGEST model and the CONGESTED CLIQUE model.
The synchronous CoNGEST model is the standard message passing
model used to analyze distributed algorithms. Consider a graph
G = (V,E) with |V| nodes and |E| edges. Each node has knowledge
of only the edges in E incident to it but not the complete graph. Each
node u € V executes a given distributed algorithm in rounds, where
each round consists of: (i) receiving messages, if any, sent to it in
the previous round; (ii) performing some local computation; (iii)
sending messages, if any, to its neighbors. Each edge can support
messages of size O(log n) bits sent across them in a given round.

The CoNGESTED CLIQUE model, as defined in [21], acts as an
intermediate between the k-machine model and the standard syn-
chronous CONGEST model. In addition to the graph G = (V,E) as
defined above, we also consider that nodes in V are connected in
a clique (in a sense, it is the k-machine model with k = n). Each
node runs a distributed algorithm in rounds as defined above, but
can now send and receive messages across all edges in the clique.
The bandwidth of each edge is O (log n) bits of communication per
round. As it is, the CONGESTED CLIQUE model is unrealistic for large
computations, since k = n.

1.2 Our Contributions

We posit a complexity measure called the local computation cost
(denoted Tp) that measures the worst-case local computation cost
among the machines and design and analyze k-machine algorithms
for two fundamental graph problems, namely connectivity and MST
that perform well under both Ty and T, measures. In our model, a
natural lower bound on Ty is Q((m + n)/k + A + k) as discussed in
Section 1.1. It is known that a lower bound on the round complexity
T is Q(n/k?) [21]. Prior algorithms for connectivity and MST in
the k-machine model ([21] and [29]; see also the recent algorithm
of [14]) do not take into account local computation; straightforward
local implementations of them are not optimal with respect to local
computation. In particular, the algorithm of [29] is (essentially)
optimal in terms of round complexity (i.e., O(n/k?)), but its local
computation complexity (which was not analyzed in [29]) is O (n?)
which is significantly higher than the lower bound of Q((m+n)/).
In this paper, we study several distributed algorithms for con-
nectivity and MST and analyze their performance with respect to
both the computation and communication cost for connectivity and
MST. The results are summarized in the table on the next page.
We first analyze a well-studied and simple flooding algorithm
for connectivity and connected components that takes (j(n /k + D)
rounds and (j(m/k + A) local computation time. Flooding algo-
rithms (sometimes called label propagation algorithms) have been
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studied extensively for finding connected components in a dis-
tributed/parallel setting (see e.g., [35] and [16]). However, these
algorithms are generally deterministic and are message-intensive.
On the other hand, our algorithm is randomized and is message-
efficient. Still, the flooding algorithm has an inherent bottleneck of
taking at least D rounds, where D is the graph diameter.

We next present a natural deterministic filtering algorithm for
MST (note that an MST algorithm can be readily used to find con-
nected components by an easy reduction) that has an improved
round complexity of O(n /k) (no dependence on diameter) but has
local computation complexity (j(m/k +n), i.e., it is linear in n.
We then present two deterministic MST algorithms which are in-
creasingly sophisticated implementations of the classical Boriivka’s
algorithm, the second of which has round complexity é(n /k) and
local computation complexity (j((m +n)/k+A+k).

We finally present a randomized algorithm to find connected
components with round complexity 0 (n/ kz) and local computation
complexity (j((m +n)/k + A + k) that are both essentially optimal.
(Note that in this algorithm, it is only required that each MST edge
is output (known) by some machine.) This algorithm is a better
local implementation of the round-optimal algorithm of [30]. This
algorithm is somewhat more involved than the prior algorithms
discussed in the paper. The algorithm, as specified in [30], takes at
least O(n?) local computation time. Our results are summarized in
Table 1. Hence our k-machine model algorithms attempt to optimize
not only the traditional (communication) round complexity, but also
local computation complexity. As mentioned earlier, both determine
the overall performance of an algorithm.

As abyproduct of our analysis, we also present results that can be
useful in analyzing k-machine algorithms in general. In particular,
we present a Node Distribution Lemma (Lemma 2.1) that is helpful
in analyzing local computation complexity in the k-machine model.
This lemma can be used to analyze the local computation cost of
CoNGEST model algorithms that are ported in a straightforward
way to the k-machine model with a simple abstraction: if u sends a
message to v in the CONGEST model, then the machine containing
u sends a message to the machine containing v in the k-machine
model (see Conversion Theorem in [21]).

We also present a Mapping Lemma (Lemma 2.2) which gives the
distribution of the vertices, edges, and edges per link of the input
graph G with respect to the k-clique.

Finally, we mention that the algorithms and analysis presented
in the paper will be useful in efficient implementation in practice.
This is left for future work (discussed in Section 7).

2 PRELIMINARIES

2.1 Node Distribution Lemma

The Node Distribution Lemma (proof in Appendix A) gives a way
to bound the parameters associated with the vertices of an input
graph G when it is mapped to the k-machine model via the random
vertex partition (RVP) model, where each vertex of the input graph
G is assigned independently and uniformly at random among the k
machines. The parameter of interest can be the degree associated
with a vertex or the local computation cost of a vertex (in the
standard CONGEST model).
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LEMMA 2.1 (NoDE DISTRIBUTION LEMMA). Consider a graph G of
nodesvi, vy, . . ., Up With associated non-negative real-valued “weights”
w(v) for each node v. Given a uniform, random distribution of the n
nodes to k machines, as in the k-machine model, then, with probability
at least 1 — 1/ne for any a > 0, the total weight of nodes at every
machine is bounded above byO(Tavg +logn - wmax), where Tpyg =

% 2y w(vi) and wmax = max{w(v;)}.

2.2 A More Accurate Mapping Lemma &
Conversion Theorem

In this section, we reanalyze the Mapping Lemma from [21] (Lemma 4.1
in the reference) in order to develop more exact bounds. The Map-
ping Lemma gives a bound on the number of vertices and edges of
the input graph G that are mapped to the k machines, assuming
the RVP model. It also gives a bound on the number of edges of
G assigned to a link in the k-clique. While the first two bounds
(the number of vertices and number of edges assigned) is the same
as in [21], the bound on the number of edges per link as stated
and analyzed in [21] is not fully correct (there the bound was
O(m/k? + A/k), whereas here we show O(m/k? + n/k)). The anal-
ysis in [21] also yielded values with hidden polylog terms. We show
that a more careful analysis results in no polylog terms. We present
the lemma below. The proof uses a powerful (and not well-known)
concentration inequality due to Rodl and Rucinski [33] (as used in
[30]) which can be of independent interest.

LEMMA 2.2 (MAPPING LEMMA). Let an n-node, m-edge graph G
be partitioned among the k machines as N = {p1, ..., pr}, according
to the random vertex partition model (assume k = o(n)). Then with
probability at least 1 — 1/n%*, where a > 1 is an arbitrary fixed
constant, the following bounds hold:

(1) The number of vertices mapped to any machine is O (n/k).

(2) The number of edges mapped to any machine is O(m/k +
Alogn).

(3) The number of edges mapped to any link of the network is
O(m/k? +n/k).

Proor. To prove the first bound, recall that nodes are distributed
uniformly at random over the machines. Therefore, on expectation,
each machine has n/k nodes. Since k = O(n€), where 0 < € < lisa
constant, n/k = O(nQ(l)). Thus, we can directly apply a Chernoff
bound (the third inequality of Theorem 4.4. from [27]) to see that
each machine gets no more than 6n/k = O(n/k) vertices with the
desired probability.

To prove the second bound, we look back at Lemma 2.1 and its
proof in this paper. If we consider the weights associated with each
node to be the local degree of each node, the proof follows directly
and we get the desired bound.

To prove the third bound, we utilize the following proposition
from [30], itself a more accurate version of a proposition from [33].

PROPOSITION 2.3 (PROPOSITION 2 IN [30]). Let G be a graph with
m < nn? and let R be a random subset of V of size |R| = t such that
t > 1/3n. Let e(G[R]) denote the number of edges in the subgraph
induced by R. Then, P(e(G[R]) > 377t2) <t-e~° for somec > 0.

Setting & = 2 in our first bound, we see that with probability
1—1/n?, each machine gets a random subset of no more than 6n/k
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Algorithm

Round complexity Local runtime

Flooding (Section 3)
Filtering (Section 4)

Improved Local Boraivka (Section 5)

Randomized Connected Components (Section 6) (j(k—"z)

(?(%+D) (?(%+A+k)
o) O(f 1)
O(%) O(’”T“’+A+k)

(j(mT*"+A+k)

Table 1: Round Complexity and Local Runtime of Algorithms in the augmented k-machine model.

nodes. Now, it is easy to see that an upper bound on the number of
edges formed by a graph of 12n/k nodes acts as an upper bound on
the number of edges mapped to a link between any two machines.
We first calculate this upper bound on one link and subsequently
extend that bound to all links. We can derive this upper bound by
using Proposition 2.3 with values ¢t = 12n/k and 5 = m/n? + k/n.
Using the proposition, we see that P(e(G[R]) > o(m/k* + n/k)) <
1/n%*! for a sufficiently large n.

Now that we have the bound on the number of edges mapped
to one link with high probability, we use a simple union bound to
see that the number of edges mapped to any link is no more than
O(m/k? + n/k) with probability 1 — 1/n®. m]

We are also able to get a more accurate version of the Conversion
Theorem from [21] (Theorem 4.1 in the reference). As the only
changes in the proof are the addition of a log n factor to account
for when W = 1 and the direct utilization of the updated bounds
from Lemma 2.2, we omit the proof here.

THEOREM 2.4 (CONVERSION THEOREM). Suppose that there is an
e-error algorithm Ac that solves problem P in time Tc(n) € O(n)
in the CONGESTED CLIQUE model, for any n-node input graph. Then
there exists an e-error algorithm A that solves P in the k-machine
model with bandwidth W satisfying the following time complexity
bounds with high probability:

(1) If Ac uses point-to-point communication with message com-

plexity M, then A runs in O((% + Te(n) [#]) log n) time.

(2) If Ac is a broadcast algorithm with broadcast complexity B,

then A takes O((% + Tc(n)) flov%,n]) time.

3 A PARALLEL FLOODING ALGORITHM FOR
GRAPH CONNECTIVITY

In this section we look at a parallel flooding algorithm to detect
whether the input graph is connected and also detect the number
of connected components.

We first describe the algorithm from the point of view of individ-
ual nodes in a network (as implemented in the standard CONGEST
model) in order to give the intuition behind the process. We subse-
quently explain how the k machines can simulate this algorithm.

Initially, each node chooses an ID in [1, n*] uniformly at random.
For any node u, denote the ID of the largest ID u has seen so far as
ID-max(u) and initialize this to «’s ID. Each node initiates flooding
ofits ID, in parallel. Subsequently, if u receives a message containing
a higher ID, then u updates its ID-max(u) and floods the new ID.

The above process can be simulated by k machines as follows.
Each machine M maintains an ordered list of each node located
on the machine, sorted in descending order of ID. M then goes

through this list and simulates each node, one by one, as described
previously. For a given node u located on M, if u has a neighbor v
located in machine M’, then M sends the appropriate message to
M’ to be processed.

Let NR refer to the number of rounds it takes for the above
process to end with high probability. Set NR = O(nlogn/k + D).
After NR rounds, each machine M aggregates IDs in ID-max(u)
for all u located on M into a list £(M). The number of IDs in
L(M) indicates the number of distinct components in machine M.
Each machine then sends £ (M) to the machine with the lowest
ID in the system, M;. Machine M; aggregates all such lists and
and counts the number of unique IDs, which is equivalent to the
total number of connected components in the input graph. Mjgwest
subsequently broadcasts this number to all other machines.” The
following theorem captures the properties of this algorithm.

THEOREM 3.1. With high probability, the above algorithm correctly
counts the number of connected components with
Tp = O((m/k + Alogn)logn+k) and T, = O(nlogn/k + D).

Proor. We first calculate Ty and T, and subsequently argue about
the correctness of the algorithm.

In order to calculate T, and Ty, we first prove the following lemma,
which will be used for both calculations.

LEMMA 3.2. Consider n nodes with IDs chosen uniformly at ran-
dom from |1, n4]. For any given node u, in the CONGEST model, the
number of times it broadcasts (locally to its neighbors) is O(log n)
with probability at least 1 — 1/n?.

Proor. For a given node, the probability that at least one other
node chooses the same ID as it is 1— (1—1/n*)" < 1/n3. By a union
bound over all nodes, the probability that at least two nodes have
the same ID is < 1/n%. Thus, with high probability, all chosen IDs
are unique.

Assume, for the sake of analysis, that a node u sees each new ID
one at a time (since if it sees many IDs in one round only the largest
ID of them will matter). Since the IDs are chosen uniformly at
random, the IDs can be assumed to come in a random permutation
order® Let X;,1 < i < n — 1, be the indicator random variable
denoting whether the i*# ID that u sees (not including its own)
causes it to initiate a new local broadcast (this will happen when it

%In the course of the proof of Lemma 3.4, we derive this value. Furthermore, a careful
analysis will give us exact values.

"While the above algorithm is Monte Carlo in nature, it can be converted into a Las
Vegas style algorithm.

8To visualize this, imagine a path of nodes with u at one end where u receives the
ID from node at distance j from it in round j + 1. Let S be the set of IDs chosen by
the other nodes. Because each node chooses its ID uniformly at random from S, the
order in which u receives the other IDs can be seen as a random permutation of the
list formed by the elements of S.
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sees an ID that is higher than the highest one it has seen till now).
Observe that P(X; = 1) = 1/i and P(X; = 0) = 1 — 1/i. Therefore,
E[X;] = 1/i. Let X = X' X;. Now E[ 215 Xi| = P E[X] <
4log n. Notice that the X;’s are negatively associated[10]. Thus,
we can apply a Chernoff bound[10] and get that P(X > 6 E[X]) <
1/n?.

Thus with probability 1 — 1/ n® fora given node u, the number
of times it broadcasts is O(log n). O

We are now ready to calculate Ty and T¢.

LEMMA 3.3. The local computation complexity of the algorithm is
O((m/k + Alogn) log n + k) with high probability.

Proor. We utilize Lemma 2.1 to bound the local computation
complexity. As such, let us first consider running the algorithm on
the input graph in the synchronous CoNGEST model. Consider a
single node v; with degree d(v;). For each value it hears through one
of its edges, it must compare that value with the current maximum
ID it has seen in O(1) steps of local computation. By Lemma 3.2,
each of its d(v;) neighbors sends it at most O(log n) values. Thus,
v; performs O(d(v;) log n) steps of local computation to process all
these messages.

Now, once a value is processed, if the value is higher than v;’s
current maximum ID, v; updates its ID-max and broadcasts this
value to its d(v;) neighbors using O(d(v;)) steps of local compu-
tation. By Lemma 3.2, there are at most O (log n) values with high
probability that v; will have to broadcast and thus v; takes an addi-
tional O(d(v;) logn) steps of local computation to complete these
broadcasts.

The maximum run time of any node is thus O(A log n) with high
probability. Therefore, by using Lemma 2.1 where the weights asso-
ciated with each node correspond to the maximum run time on that
node, with high probability, the local computation of any machine is

0(% (21, (d(0;) logn)) +logn - Alog n) = O((m/k + Alog n) log n).

Finally, there is an additional k due to a machine possibly having to
send/read inputs from all other machines resulting in a final local
computation complexity of O((m/k + Alogn)logn + k). ]

LEMMA 3.4. The communication complexity of the algorithm is
O(nlogn/k + D) with high probability.

ProoF. We bound the total number of broadcasts by B. In the
CoNGESTED CLIQUE model, a broadcast will take O(D) rounds to
propagate over the edges of the input graph, where D is the diameter
of the input graph. By Theorem 2.4, we see that the total number
of rounds in the k-machine model is O((B/k + D) logn/W) with
high probability, where W is the bandwidth of each link in the
k-machine model. As mentioned in Section 1.1, we assume that the
bandwidth of each link is ©(log n), i.e., W = ©(logn).

We show that B = O(n log n) with high probability. By Lemma 3.2,
the number of broadcasts originating at each node is at most O (log n)
with probability 1 — 1/n?. Taking a union bound over all nodes,
we see that with probability 1 — 1/n, every node initiates at most
O(log n) broadcasts. Thus, at most O(nlog n) broadcasts are initi-
ated with high probability.

Additionally, every machine M communicates an additional
at most O(n/k) labels with high probability, due to transmitting
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L(M), to machine Mjqyest- This is because, initially, each machine
receives O (n/k) nodes with high probability, which acts as an upper
bound on the number of labels eventually transmitted to Mjgyest-
Thus, we get our desired value of T,. O

From the construction of the algorithm, it is clear to see that each
node u floods any ID it encounters which is higher than the current
value of ID-max. For each connected component f, let us be the
node with the largest ID in f. For each component f, after NR
rounds, uy will be flooded to every machine with high probability.
It is simple to see that once this has occurred, Mjqyest Will be able
to correctly compute the number of connected components by
counting the number of unique IDs from all £L(M) seen. O

4 FILTERING-BASED MST ALGORITHM

In this subsection, we analyze an algorithm to find a minimum
spanning tree (MST) using a filtering technique to eliminate edges
(which was also used in [23]).

We use three procedures in the course of this algorithm. The
first procedure is the well known Kruskal’s algorithm (refer to [9]),
which when run on a graph with m edges outputs a minimum
spanning tree in O(mlog m) rounds.

The second procedure is used to perform matching and is run
locally on a machine. It takes a clique of n nodes with unique IDs
and outputs a maximal matching in O(nlogn) local computation
time. First, sort IDs in ascending order using the commonly used
MergeSort [9]. Then for i = 1 to |»/2], match the (2i — l)th and
(2i)™" nodes in the sorted list.

The third is the following distributed routing on a clique with n
nodes. If each node u wants to send f messages to some other node
7(u) such that for all u # v, 7(u) # n(v), then all messages from
node u can be sent to 7(u) in O(f/(n — 1)) rounds. The procedure
takes two phases. In the first phase, each node u divides its messages
into groups of f/(n — 1) messages (and appends the destination ID
of 7(u) to each message) and sends these groups of messages across
each of its edges, one group per edge, in O(f/(n — 1)) rounds. In the
second phase, each node forwards whatever messages it received
in phase one to the target node in another O(f/(n — 1)) rounds.’

Each machine M maintains graph Gy initially comprising the
subgraph induced by edges in M, as well as an ordered list Hyy ini-
tially comprising the IDs of all machines. Each machine M executes
at most 2[log k1 phases of the following steps until termination:

(1) If M received information about new edges in the previous
phase, it updates Gy accordingly. Run Kruskal’s algorithm
on Gy to remove cycles, if any.

(2) If |Hpg| = 1, terminate. Use the matching procedure on Hy,
to match with another machine M’. If M matches with M’
and the ID of M is greater than the ID of M’, use the routing
procedure to send Gy to M.

The reason we are able to avoid more complicated routing procedures is because (i)
each node u sends all its messages to exactly one 77 (u) and (ii) for all u # v, 7 (u) #
7(v). As a result, for each edge in the graph, the messages in phase one can be
attributed to initial sources and the messages in phase two can be attributed to final
destinations. Since each node of an edge can be a source or a destination for exactly
one set of O(f/(n — 1)) messages, the total number of messages flowing through
that edge in either phase is O(f/(n —1)).
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(3) For all machines M"" € Hjy; where M’ matched with another
machine having a lower ID, remove M”” from Hyy. If M was
one such M”’, then terminate.

At the end of algorithm, the machine M;,;, with the lowest ID
will have the full MST stored in its Gpy,,,,, . The following theorem

captures the properties of this algorithm.

THEOREM 4.1. The above algorithm results in the machine with
the lowest ID My, having the full MST stored in its graph Gy,
with Ty = O(plogp +nlognlogk) with high probability, where
p=m/k+ Alogn, and T, = O(nlogk/k).

Proor. We first argue the correctness of the algorithm. In par-
ticular, we show that, eventually, information about every edge
in the MST of the input graph will be sent to machine My, be-
fore all phases end. Once My, knows of all these edges, Kruskal’s
algorithm guarantees that the correct MST will be computed.

Consider some edge, e, of the graph that belongs to the MST.
Let e reside on some machine M. Because e is an edge of the MST
of G, e will also be an edge of the MST of any subgraph of G
that contains e. As a result, e will never be removed by M or any
subsequent machine it is located on when Kruskal’s algorithm is
run. Furthermore, by the matching algorithm, we see that regardless
of the initial machine e is located on, after 2[log k] phases, it will
eventually make its way to machine Mp;,. Thus the algorithm
works as intended.

To bound the local computation complexity, observe that any
machine M runs for at most O(log k) phases. In any phase, M per-
forms Kruskal’s algorithm on graph Gys. In the k-machine model,
by Lemma 2.2, each machine initially receives O(m/k + Alogn) =
O(p) edges with high probability resulting in a run time of O (p log p)
in the first phase. Subsequently, since there are n nodes in the
input graph, there can be at most n — 1 edges chosen by M (or
any other machine) to be sent over in that phase. Thus, M pro-
cesses at most 2n — 2 edges spanning at most n nodes in each
subsequent phase resulting in an additional run time of O(nlogn)
per phase. Also in each phase, M runs the matching procedure
on Hy, resulting in at most O (k log k) steps of local computation.
Totally, each machine takes O(plog p + (nlogn + klogk)logk) =
O(plog p + nlognlog k) steps of local computation with high prob-
ability. Note that there is an additive k that comes due to a machine
possibly having to send/read inputs from all other machines, but
this is subsumed by the larger terms in the complexity.

For the communication complexity, notice as described in the
previous paragraph that each machine only needs to send at most
n — 1 edges to another machine it matches with in any give phase.
From the matching procedure, this takes O(n/k) rounds per phase.
Furthermore, there are at most O (log k) phases, resulting in a com-
munication complexity of O(nlogk/k). O

5 DETERMINISTIC BORUVKA-STYLE
ALGORITHMS FOR MST

In this section, we present two deterministic distributed algorithms
for MST that both have (communication) round complexity of
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O(n/x) and have increasingly better local computation complex-
ity.1% The first algorithm (Simple Local Boriivka) takes (j(m/ k+n)
local computation time while the second algorithm (Improved Local
Boruvka) takes (j(m/k + A + k). Note that (j(n/k) is the best possi-
ble round complexity if each machine is required to know the MST
edges incident on the vertices assigned to it [21].!! The algorithms
are based on a distributed implementation of Boravka’s algorithm
[5, 28], but implemented specifically for the k-machine model. (Note
that the classical GHS algorithm [13] is a distributed implementa-
tion of Bortivka in the standard CoNGEST model.) Both algorithms
follow a Boruvka-style strategy [5], i.e., repeatedly merge adjacent
components of the input graph G, which are connected subgraphs
of G, to form larger (connected) components (e.g., [28]).

A Bortivka-style algorithm proceeds in phases. In the first phase,
the algorithm starts with each individual node as a fragment by
itself. In subsequent phases, fragments are merged until there is
only one remaining — the MST. That is, at the beginning, there
are n = |V| fragments, and at the end of the final phase, a single
fragment which is the MST. Throughout, we assume without loss
of generality that all edge weights are distinct (if there are duplicate
weights, ties can be broken by using the IDs of the endpoints). At a
high level, both algorithms do the following in each phase:

(1) For every fragment, its minimum outgoing edge (MOE) is
found. An outgoing edge of a fragment is an edge that con-
nects a node of the fragment to a node of a different fragment
and an MOE is an outgoing edge of the least weight. By the
cut property, all MOE edges are in the MST.

(2) Fragments are merged along their MOE edges.

The phases are repeated until all nodes belong to the same fragment.

From the Mapping Lemma, we note that each machine initially
has n/k nodes distributed randomly (the RVP model), as well as
their adjacency lists, and that the number of edges assigned to each
machine is O(m/k + Alogn).

Simple Local Boruvka Algorithm. Initially, each machine sorts
the adjacency list of each node by edge weight, then creates a
disjoint-set (or union-find) data structure [9], M, of fragments, with
each of the n nodes initially belonging to its own fragment. The
disjoint-set admits the following operations: (1) MakeSet - adds an
element to the set in O(1) time. (2) Find - determines which disjoint
set an element belongs to in O(a(n)) amortized time (where a(n)
is the inverse Ackermann function). (3) Union - combines disjoint
sets in O(a(n)) amortized time.

We note that each machine can easily determine the identities
of all n nodes in O(n/k) rounds (by executing n/k broadcasts).

Each phase consists of the following two steps:
Step 1: For each vertex v in machine M, M iterates through the
adjacency list of v and performs Find on each of its neighbors, in
increasing order of edge-weight, to determine if the incident edge
belongs to a different fragment. Once such an edge is found, M
stops searching and broadcasts this edge to all machines. Note that

101f the graph is connected, the algorithms in this section find an MST. If the graph is
disconnected, the algorithms produce a minimum spanning forest (MSF). Note that in
an MSF, the number of edges m may be less than the number of nodes n.
"However, if any machine can output any of the MST edges, then the lower bound is
Q(n/k?), also shown in [21].
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this search is amortized O (deg v) local time, as an edge never needs
to be checked twice.

Machine M now has a list of candidates for MOE for each frag-
ment. Next, M notes the minimum candidate for each fragment by
iterating through all candidates for each fragment, which it has
received from the broadcast mentioned above.

Step 2: M merges fragments: if (u,v) is some minimum outgoing
edge between two fragments, M updates M with Union(u, v).

At the end of this algorithm, each machine has a local copy of

the complete MST.

THEOREM 5.1. The above algorithm ends with M as the MST
and, with high probability (with respect to the RVP model), we have
Ty = O(m/k+n) and T, = O(n/k).

Proor. First, note that correctness of this algorithm follows
directly from the correctness of Boruvka’s algorithm.

Next, note that at the end of each phase, every fragment will
merge with at least one other fragment. In the worst case, the
number of fragments is halved, hence there are O(logn) phases,
and each phase requires at most O (n/k) rounds, for a total of T, =
O(n/klogn) = O(n/x).

Finally, we show the local computation bound. Fix
a machine M and note that pre-processing requires
O(degulogdegv) = O(degvlogA) per node v in M to sort
the adjacency lists. Moreover, to create M requires O(n). In total,
this is O((m/k + Alog n) log A + n) with high probability. The local
computation involved in finding the local MOE from Step 1 is
amortized O(a(n) degv) per node, which (by the Mapping Lemma)
is O((m/k + Alog n)a(n)) in total. Finding the MOE per fragment
is an additional O(n) operations. A single instance of Step 2 in a
single phase requires O(a(n)) and there can be at most n — 1 merge
operations. Finally, we may have an additive k from a machine
possibly having to send/read inputs from all other machines.
Thus, we have T; = O(m/klog A + Alog Alogn + n + (ma(n)/k)
+ Aa(n)logn +n+na(n) + k) :(j(m/k-f'n). O

Improved Local Boruvka Algorithm. We can improve the local
computation complexity of the Simple Local Bortivka algorithm
(which is linear in n) by using a different implementation of Bortivka
where instead of broadcast, we simulate the “unicast" version of
Bortivka — as in the GHS algorithm in the standard CONGEST model,
where messages are sent through the edges of the graph. We then
use the Conversion Theorem to compute the round complexity.

However, to get a é(%) bound (independent of m), we first apply

filtering to reduce the number of edges in each machine to O(n)
(i.e., O(nk) edges overall) which can be done as follows.

The machines begin by creating a minimum spanning forest
(MSF) of their subgraphs using, for example, Kruskal’s Algorithm,
and essentially discarding edges that are not part of their local MSFs.
The edges remaining (of which there are at most k(n — 1) = O(nk)
with high probability by the Mapping Lemma) are then the only
candidates for the MST of the original graph. Moreover, each link
between machines corresponds to at most O(»/k) graph edges. The
algorithm then continues on these remaining subgraphs.

Like Simple Local Borvka, we proceed in phases. Fix a machine
M. To determine the MOE for a fragment f, we first determine
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the local minimum outgoing edge (LOE) using the following steps.
Start with LOE = oo, then:

Step 1: Iterate through the edges in f. For an edge (u,v) with u in
M, send a message to the machine containing v with the IDs of u
and v and the fragment ID of f.

Step 2: For each received message (u, v, f), if the fragment ID of v
is different than the received fragment ID, respond with the original
fragment ID and the fragment ID of v.

Step 3: Update LOE = min(LOE, w) for each message received
corresponding to fragment f, where w is the weight of the outgoing
edge.

Step 4: Broadcast the LOE and fragment ID.

From the broadcast of the LOEs, each machine locally determines
the global MOE for any fragments it contains.

The machine then merges fragments as follows. Note that one
cannot merge all fragments, since that takes time proportional
to the length of the fragment chain. To address this, we use a
technique that is similar to (but simpler than) the controlled GHS
algorithm [28]. Create a rooted tree F where each node is a fragment
and there exists an edge between two fragments if there is an MOE
between them. Construct a maximal matching (using e.g., Cole-
Vishkin [8]) and merge all matched edges and any edge where
exactly one endpoint is matched.

THEOREM 5.2. With high probability, the above algorithm satisfies
Ty = O(m+nm)/k+ A+ k) and To = O(n/k).

Proor. For local computation, the filtering will require O ((m/x+
A) log n/k). We note that the Cole-Vishkin algorithm (per phase)
takes O(log" n) rounds in the standard CoNGEsT model which can
be simulated in the k-machine model in O((n/k)log* n) rounds
since each machine simulates the algorithm for each of the O(n/k)
vertices assigned to it (apply the broadcast version of the Conver-
sion Theorem). Its local computation cost is O((n/k) log™ n) since
the simulation is done on the MOE edges only, which is O (n/k)
per machine. Additionally, we have an additive k that comes due
to a machine possibly having to send/read inputs from all other
machines.

In order to bound the number of total phases, we prove the
following lemma.

LEMMA 5.3. At any step in the given algorithm, the number of
sequential merges is at most 3, and the number of total fragments is
reduced by at least half after each merge.

Proor. To see that the number of sequential merges is at most
3, simply enumerate all possible labelings of edges (matched or
unmatched) on four fragments fi, f2, f3, f4, with edges from f; to
f2, fo to f3, and f3 to f, as well as with one “outgoing” edge from
each.

To see that the total number of fragments is reduced by at least
half, notice that every fragment is part of a merge, for if some
fragment f is not part of a merge, then none of its incident edges are
part of the matching and none of the edges incident to its neighbors
are part of a merge. In that case, we can match an additional edge
between the fragment and one of its neighbors, contradicting the
maximality of our matching. O



Distributed Algorithms for Connectivity and MST in Large Graphs with Efficient Local Computation

By the previous lemma, there are O(log n) phases in total. Per
phase, the overall local computation is clearly (j((m+n)/k +A+k).
In total, this is (j((m+n)/k +A+k).

For round complexity, we note that all communication is either
via the graph edges (as simulated in the k-machine model) or by
doing O(n/k) broadcasts per phase. Round complexity is now ob-
tained by using the Mapping Lemma (where m = O(nk) by filtering)
and the Conversion Theorem. O

6 AN ALMOST-OPTIMAL RANDOMIZED
ALGORITHM

In this section, we analyze the algorithm for finding connected
components presented in [29].12 This algorithm is optimal (up
to polylogarithmic factors) with respect to the round complexity
(requiring O (n/k?) rounds), but has O (n?) local computation com-
plexity. However, this algorithm is somewhat more involved than
the prior algorithms discussed. For self-containment, we give an
overview of the algorithm of [29] and point out why that algorithm
has high local computation cost and discuss the modification needed
to obtain the local computation complexity of (j((m+ m/k+A+k)
while keeping the same round complexity. Thus this modified al-
gorithms is essentially optimal (up to polylogarithmic factors) in
both T, and T;.

Overview. The algorithm of [29] also follows a Boruvka-style
strategy [5], i.e., it repeatedly merges adjacent components of the
input graph G, which are connected subgraphs of G, to form larger
(connected) components. The output of each of these phases is a
labeling of the nodes of G such that nodes that belong to the same
current component have the same label. At the beginning of the first
phase, each node is labeled with its own unique ID, forms a distinct
component, and is also the component proxy of its own component.
Note that a component proxy is a machine that is responsible for
handling the tasks associated with the component (finding MOE
and merging). To load balance communication and computation,
the component proxies for each component are chosen randomly
among the machines using a suitable hash function (see [29] for
details). Note that, in any phase, a component contains up to n
nodes, which might be spread across different machines; we use the
term component part to refer to all those nodes of the component
that are held by the same machine. Hence, in any phase, every
component is partitioned in to at most k component parts. At the
end of the algorithm each vertex has a label such that any two
vertices have the same label if and only if they belong to the same
connected component of G.

Crucially, the algorithm relies on linear graph sketches as a tool
to enable communication-efficient merging of multiple components.
Intuitively, a (random) linear sketch s, of a node u’s graph neigh-
borhood returns a sample chosen uniformly at random from u’s
incident edges. Interestingly, such a linear sketch can be repre-
sented as matrices using only O(polylog(n)) bits [17, 26]. A crucial
property of these sketches is that they are linear: that is, given
sketches s, and s, the combined sketch s, + s, (“+” refers to matrix
addition) has the property that, with high probability, it yields a

12An extension of this algorithm gives an MST algorithm and can be similarly modified
as discussed here.
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random sample of the edges incident to (u,v) in a graph where we
have contracted the edge (u,v) to a single node.

We now describe how to communicate these graph sketches in
an efficient manner'®: consider a component C that is split into
Jj parts Py, Py, ..., Pj, the nodes of which are hosted at machines
M, Ms, ..., M;. To find an outgoing edge for C, we first instruct
each machine M; to construct a linear sketch of the graph neigh-
borhood of each of the nodes in part P;. Then, we sum up these
|P;| sketches, yielding a sketch sp, for the neighborhood of part P;.
To combine the sketches of the j distinct parts, we now select a
random component proxy machine Mc , for the current component
C at round r. Next, machine M; sends s p, to machine Mc ,; note that
this causes at most k messages to be sent to the component proxy.14
Finally, machine Mc , computes sc = Z{zl sp,» and then uses sc to
sample an edge incident to some node in C, which, by construction,
is guaranteed to have its endpoint in a distinct component C”.

At this point, each component proxy has sampled an inter-
component edge inducing the edges of a component graph C where
each vertex corresponds to a component. To enable the efficient
merging of components, the algorithm employs the distributed
random ranking technique of [6] to break up any long paths of C
into more manageable directed trees of depth O(log n). To this end,
each component chooses a rank independently and uniformly at
random from [0, 1], and then (virtually) connects to its neighbor-
ing component (according to C) via a (conceptual) directed edge
if and only if the latter has a higher rank. This process results in
a collection of disjoint rooted trees, rooted at the node of highest
(local) rank.

The merging of the components of each tree 7~ proceeds from
the leaves upward (in parallel for each tree). In the first merging
phase, each leaf C; of 7" merges with its parent C” by relabeling
the component labels of all of their nodes with the label of C’. Note
that the proxy Mc, knows the labeling of C’, as it has computed
the outgoing edge from a vertex in C; to a vertex in C’. Therefore,
machine Mc; sends the label of C; to all the machines that hold a
part of Cj. This can be done in parallel (for all leaves of all trees) in
é(n/kz) rounds. Repeating this merging procedure O(log n) times,
guarantees that each tree has been merged to a single component.

Finally, it can be shown that O(log n) repetitions of the above
process suffice to ensure that the components at the end of the last
phase correspond to the connected components of the input graph
G.

High computation cost of above algorithm. The main reason
for the high computation cost of the algorithm of [29] is the way
the algorithm computes the sketches. It uses the sketches of [17, 26]
which defines a vector @, of length (}) for each node v and, with
the appropriate choice of O(log? n) x () matrix M, can be used to
sample edges. However, doing so requires € (n?) local computation
time in order to evaluate Ma,.

Modification to achieve (j((m+n)/ k+ A + k) computation com-
plexity. The main change needed is, rather than using the sketches

3Linear graph sketches require only O(1) bits of shared randomness which costs
only so much local computation cost and round complexity[29].

This requires © (n/k) bits of shared randomness, which can be achieved by having
one machine generate required bits and subsequently broadcast them. This adds
O(n/k) to the local computation and O(n/k?) to the round complexity [29].
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of [17, 26], we use the sketch of [19] (in particular, their TESTOUT
procedure) which also guarantees the same property, i.e., finding
an MOE with small communication cost. The local computation
cost of this procedure is essentially linear in the size of the com-
ponent. Rather than storing vectors of length (}), these sketches
utilize an odd hash function. In essence, one of the machines (say the
leader machine) determines a hash function h : E — {0, 1} which
is then broadcast to the rest of the machines. The hash function
is very simple and requires choosing only two random numbers
of O(1) bits[19]. Next each component uses this hash function to
find an MOE as follows. Each node in a component part evaluates
Zincident edges e 11(€) mod 2 and this sum is first aggregated among
the nodes in a component part by the corresponding machine and
then the sums of each part of the component is aggregated to the
corresponding component proxy machine. If the sum is 1, we con-
clude with some constant probability ¢ that an outgoing edge exists
out of the component [19]. By restricting the edges considered to
be those within some range [, j], we can (via a routine similar to
binary search) determine a minimum weight outgoing edge with
constant probability. By repeating this process Q(log n) times, we
are able to determine the MOE with high probability for a compo-
nent and by a union bound (over all components) determine the
MOE of each component with high probability.

By this modification, the local computation cost is linear in the
number of edges assigned to a machine, i.e., O((m+m/k+A+k).

7 CONCLUSION

In this paper, we introduced the notion of local computation com-
plexity into the k-machine model. This notion is important to ana-
lyze the performance of large-scale computations in a distributed
model, since local computation cost can be a significant factor in
determining the overall (wall-clock) time needed for the algorithm
to finish.

To illustrate the importance of studying such a metric, we ana-
lyzed several algorithms in the k-machine model and showed that
algorithms with similar communication complexities may have
vastly different local computation complexities. Thus, we believe
that the use of this metric will help the community to better under-
stand the performance of distributed algorithms in practice.

As part of future work, we plan to implement the algorithms
that we analyze in this paper and study their performance in prac-
tice. As mentioned in Section 1, we have implemented k-machine
algorithms for PageRank using the MPI framework. We plan to do
a similar implementation of these algorithms.

It will be interesting to analyze k-machine algorithms (as well
as MPC algorithms) using this metric for other problems.
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A NODE DISTRIBUTION LEMMA PROOF

ProoF. Partition the nodes into buckets ;, 1 < i < B = [log Wmax |+

1 based on weight as follows:
Bi={o|2"7" < w(v) <2'}

and set fp = {v | 0 < w(v) < 1}. Furthermore, define n; =
let B = [log wmax | + 1 denote the number of buckets.

Fix a machine and let M denote the set of nodes mapped to
it. Furthermore, fix a bucket f; = {ul, U, ..., uni} and define the
random variable X; ; as

.
,] — 0

Set X; = Z 1 Xi,j and note that E[X”] = k’ hence E[X;] = Tl
Now, deﬁne

|Bi| and

ifuje M

otherwise

n;
W; = ZXi,jW(uj)
J=1
i.e., W; denotes the total weight of nodes in bucket f; from machine
M, and note that
]P’(Wi > tz") <P(X; > 1)
Thus, taking t = 6 E[X;] + clog n, we have
P(W,— > (6E[X;] + clog n)zi) < P(X; > 6E[X;] +clogn)
< 2—(6E[Xi]+clogn) [27]
< 9-6El] L
< p:
Now, notice that

B B B
Z(éE[Xf] +c10gn)2i = ZG . Zi% +clogn22i
i=0 i=0 i=0

n
Wi
< E L .
<12 2% +4clogn - wmax

= 12T,yg + 4clogn - wiyax

Taking a union bound across all buckets, we have

P(Z W; > 12Ty +4clogn - fmax)
i=0

P(ZW > Z(éE Xi] +clogn)2)

=0

o]

IN
o T

P

o

i= i=

B
Xi > 6 E[X;] +clogn)
0

B

Z 9~ 6E[X;] —

i=0

IN

IA

1
Tnd for sufficiently large c

Taking union bound again across all machines, the probability that
any machine has total weight greater than 12T,y +4clog n- wmax is

bounded above by Zf:l le = 1/ne. Thus, with probability at least
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1—1/n<, every machine has a total weight less than 12T,yg +4clogn- Wmax, 1.€., all machines have total weight O(Tavg +logn - wmax)
with high probability. O
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