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ABSTRACT
We study distributed algorithms for large-scale graphs, focusing

on the fundamental problems of connectivity and minimum span-

ning tree (MST). We consider the 𝑘-machine model, a well-studied

model for distributed computing for large-scale graph computa-

tions, where 𝑘 ≥ 2 machines jointly perform computations on

graphs with 𝑛 nodes (typically, 𝑛 ≫ 𝑘). The input graph is as-

sumed to be initially randomly partitioned among the 𝑘 machines,

a common implementation in many real-world systems. Communi-

cation is point-to-point, and the goal is to minimize the number of

communication rounds (denoted 𝑇𝑐 ) of the computation.

While communication is a significant factor that affects the time

needed for large-scale computations, the computation cost incurred

by the individual machines also contributes to the overall time

complexity of the distributed algorithm. We posit a complexity

measure called the local computation cost (denoted𝑇ℓ ) that measures

the worst-case local computation cost among the machines. A lower

bound for 𝑇ℓ in our model is Ω( (𝑚 +𝑛)/𝑘 + Δ + 𝑘), while a lower

bound on𝑇𝑐 is Ω(𝑛/𝑘2) [Klauck et al., SODA 2015], where𝑚 is the

number of edges and Δ is the maximum degree. Prior algorithms for

connectivity and MST in the 𝑘-machine model [Klauck et al., SODA

2015, Pandurangan et al., SPAA 2016] do not take into account

local computation; a straightforward local implementation of these

algorithms is not optimal with respect to local computation.

In this paper, we study several distributed algorithms for connec-

tivity and MST and analyze their performance with respect to both

the computation and communication cost. In particular, we analyze

a well-studied flooding algorithm for connectivity and connected

components that takes
˜O(𝑛/𝑘 + 𝐷) rounds and ˜O(𝑚/𝑘 + Δ + 𝑘)

local computation time.
1
We then present a deterministic filtering
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algorithm that has an improved round complexity of
˜O(𝑛/𝑘) but

local computation complexity of
˜O(𝑚/𝑘 +𝑛). Next, we present two

deterministic algorithms which are increasingly sophisticated imple-

mentations of the classical Borůvka’s algorithm, the last of which

has round complexity
˜O(𝑛/𝑘) and local computation complexity

˜O((𝑚 +𝑛)/𝑘 +Δ+𝑘). We finally present a randomized algorithm to

find connected components with round complexity
˜O(𝑛/𝑘2) and

local computation complexity
˜O((𝑚 + 𝑛)/𝑘 + Δ + 𝑘) that are both

essentially optimal (up to polylogarithmic factors).
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1 INTRODUCTION
In the present day, the efficient computation of large-scale data has

become a necessity. In particular, various areas such as biological

networks, social networks, financial markets, energy grids, etc. give

rise to large-scale graph data. In order to develop faster algorithms

to process large-scale data (especially graph data), several large-

scale graph processing systems such as Pregel [25], Giraph [11],

and Spark’s GraphX [12] have been designed based on themessage-

passing distributed computing model [24, 31]. In these systems, the

input graph, which is simply too large to fit into a single machine, is

distributed across a group of machines that are connected via a com-

munication network and the machines jointly perform computation

in a distributed fashion by sending/receiving messages.

The focus of this paper is the 𝑘-machine model, introduced

in [21], which is a message-passing distributed computing model
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for large-scale computations (see Section 1.1). Several papers have

developed algorithms in this model for various graph problems [2, 3,

14, 15, 21, 22, 29, 30]. The 𝑘-machine model is a distributed complete

network of 𝑘 machines (nodes) that communicate through message

passing over bandwidth-restricted links. The input is some set of

data, usually a graph, distributed across the machines, typically

in a balanced fashion. The machines are synchronous, i.e., they

proceed in a sequence of rounds, wherein each machine performs

some local computation and can send and receive messages. The

goal is to minimize the round complexity, i.e., the number of com-

munication rounds; in particular, to obtain bounds that scale well

with 𝑘 . Hence, algorithms proposed for the 𝑘-machine model are

evaluated solely on the basis of their round complexity. The moti-

vation behind this is that in large-scale distributed data processing,

communication is significantly more time-consuming than local

computation [21, 29, 32]. Thus, analysis in this model assumes local

computation (within a machine) is “free.”

The above assumption, that we can simply ignore local computa-

tion cost and focus only on the communication cost, can be a good

approximation to the overall time complexity where computation

cost of individual machines is significantly smaller than communica-

tion cost. This could be true when processor speeds are significantly

faster than network speeds and for very large-scale data commu-

nication. However, modern networks have become much faster,

resulting in the need to evaluate algorithms in a more nuanced

manner. As network speeds approach that of processor speeds, it

is not necessarily the case that the bottleneck for computation lies

only in how many communication rounds of message passing are

required. Moreover, for moderately-sized data, the communication

cost may not be significantly higher than the computation cost. This

all means that, in general, computation cost should also be taken

into account. This is typically seen in practical implementations of

𝑘-machine model algorithms, where wall-clock time speed up is

upper bounded by 1/𝑘, i.e., one cannot expect to see more than a

linear speed up. To give an example, we implemented an efficient,

distributed 𝑘-machine algorithm (using MPI) for computing PageR-

ank from [21]. This algorithm has a round complexity of O(𝑛/𝑘).
Figure 1 shows how the execution time (wall clock time) scales with

respect to the number of machines. The scaling is proportional to

(approximately) O
(
1/𝑘0.8

)
and is less than the linear scaling (i.e.,

O(1/𝑘)) predicted by the analysis. We also implemented a more

sophisticated algorithm for PageRank from [30] that has round

complexity O
(
𝑛/𝑘2

)
(which is optimal up to polylogarithmic fac-

tors). Note that this round complexity scales super-linearly (i.e.,

quadratically) with the number of machines. However, the execu-

tion time of this algorithm also has less than linear scaling, since

local computation still has a significant cost.

Hence it is necessary to augment the 𝑘-machine model with a

means to capture the local computation performed on eachmachine.

In this paper, we propose such an augmented 𝑘-machine model

where, in addition to the communication round complexity that is

traditionally measured, we also measure the local computation per-

formed by the machines over all rounds. We utilize this framework

to analyze solutions to two fundamental graph problems, connectiv-

ity (more generally, finding connected components) and minimum

spanning tree (MST) of undirected graphs. Connected components

can be used as a fundamental subroutine in several other graph
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Figure 1: Performance of the distributed PageRank Algorithm of [21] on two graphs
from Stanford Network Analysis Project (snap.stanford.edu): Google Web graph (875713
nodes) and Autonomous System by Skitter (1.69M nodes). The algorithm was implemented
using MPI and run on a cluster of machines interconnected by a high speed network. The
graph shows that the execution time is proportional (approximately) to 1/𝑘0.8 .

algorithms, such as testing 𝑠𝑡-connectivity, bipartiteness checking,

approximate min-cut, and several graph verification problems (see

e.g. [29]) and graph clustering (see e.g. [20]), which in turn are

fundamental tools that can be applied to solve practical problems in

machine learning, social network analysis, pattern recognition, and

information retrieval. The MST is useful for a variety of tasks in-

cluding information dissemination and has been studied in various

models due to its importance (see e.g. [1, 13, 21]).

1.1 Model and Complexity measures
We generalize the 𝑘-machine model by incorporating an additional

metric to evaluate the efficiency of algorithms. We first introduce

the basic model (e.g. [21]) and subsequently introduce our metric.

The standard 𝑘-machine model has 𝑘 machines𝑀1, 𝑀2, . . . , 𝑀𝑘

connected together in a clique using bidirectional communication

links. The machines operate in synchronous rounds. The input to

this system is a graph 𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛 nodes, |𝐸 | = 𝑚

edges, maximum degree Δ, and diameter 𝐷 . We assume that 𝑛 ≫ 𝑘 ,

and we focus on the sublinear regime for 𝑘 , i.e., 𝑘 = O(𝑛𝜖 ), where
0 < 𝜖 < 1 is a constant.

2
We assume that each link of the 𝑘-machine

clique has a bandwidth of 𝐵 bits per round; we assume 𝐵 is small

compared to the input (graph) size, say, 𝐵 = Θ(log𝑛) (although one

can easily write all bounds in terms of a general 𝐵).

Initially, the entire graph𝐺 is not known by any single machine,

but rather partitioned among the𝑘 machines in a “balanced” fashion,

i.e., the nodes and/or edges of 𝐺 are partitioned approximately

evenly among the machines. We assume a vertex-partition model,

whereby vertices, along with information of their incident edges,

are partitioned across machines. Specifically, the type of partition

that we will assume throughout is the random vertex partition (RVP),

that is, each vertex of the input graph is assigned randomly to one

machine.
3
(This is the typical way used by many real systems, such

as Pregel [25], to initially distribute the input graph among the

machines. See also [7, 34].)

More formally, in the random vertex partition variant, each ver-

tex of 𝐺 is assigned independently and uniformly at random to

2
This is also the assumption in other Big Data parallel computation models such as

the MapReduce and MPC models[4, 18].

3
There is an alternate partitioning model, the random edge partition (REP)model, where

each edge of𝐺 is assigned independently and randomly to one of the 𝑘 machines. One

can relate the results between the two models [21].

snap.stanford.edu
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one of the 𝑘 machines. If a vertex 𝑣 is assigned to machine𝑀𝑖 , we

say that 𝑀𝑖 is the home machine of 𝑣 and, with a slight abuse of

notation, write 𝑣 ∈ 𝑀𝑖 . When a vertex is assigned to a machine,

all of its incident edges are assigned to that machine as well; i.e.,

the home machine knows the degree of the vertex, the IDs of the

neighbors of that vertex, and the identities of the home machines

of the neighboring vertices (and the weights of the corresponding

edges in case 𝐺 is weighted). Note that an immediate property of

the RVP model is that the number of vertices at each machine is

balanced, i.e., each machine is the home machine of Θ̃(𝑛/𝑘) vertices
with high probability (see Mapping Lemma).

4
It is assumed that if

a machine knows a vertex ID, it also knows which machine that

vertex is mapped to [21].

Eventually, each machine𝑀𝑖 must set a designated local output

variable 𝑜𝑖 (which need not depend on the set of vertices assigned

to 𝑀𝑖 ), and the output configuration 𝑜 = ⟨𝑜1, . . . , 𝑜𝑘 ⟩ must satisfy

the feasibility conditions of the problem at hand. For example, for

the minimum spanning tree problem, each 𝑜𝑖 corresponds to a set

of edges, and the edges in the union of such sets must form an MST

of the input graph.

Consider an algorithm A run on these machines and let 𝑅𝑖 (A),
1 ≤ 𝑖 ≤ 𝑘 , denote the total number of communication rounds

needed by machine𝑀𝑖 when running algorithm A. We define the

communication complexity of algorithm A, 𝑇𝑐 (A), as 𝑇𝑐 (A) =

max𝑖∈[1,𝑘 ] 𝑅𝑖 (A) .
Let 𝑡𝑖 (A), 1 ≤ 𝑖 ≤ 𝑘 denote the total (sequential) time complexity

for machine 𝑀𝑖 to run A across all rounds. Note that the time

complexity of a machine is in the sense of the usual RAM model,

i.e., the total time taken by the machine for its (local) computations.

We define the local computation complexity of algorithm A, 𝑇ℓ (A),
by 𝑇ℓ (A) = max𝑖∈[1,𝑘 ] 𝑡𝑖 (A), i.e., the worst-case total local time

complexity of a machine. We would like to minimize 𝑇ℓ (A) as
much as possible; this also is desirable in terms of load balancing

(local) computation load among machines (in addition to keeping

the number of communication rounds low). Note that, in general,

if 𝑡 (A) is the running time of algorithm A on one machine, i.e.,

the sequential run time, then the best 𝑇ℓ (A) we can hope for in 𝑘

machines is 𝑡 (A)/𝑘 (by Amdahl’s Law). We note that the overall

(wall clock) time needed to solve a problem by an algorithm A
depends on both 𝑇𝑐 (A) and 𝑇ℓ (A); we specify both individually,

since the time costs for the two measures may differ (typically, a

communication “round” can take longer than a local computation

“step”).
5

Local computation includes the computation time needed by a

machine to perform all local operations, including local computa-

tion, reading/writing in (local) machine’s memory, and communi-

cation operations, but excludes the time for actual communication

between machines (transmitting/receiving messages). For example,

if a machine wants to broadcast an O(log𝑛)-sized message to the

rest of the machines, then the local computation cost is O(𝑘) (how-
ever, the round complexity for a single broadcast is 1 round and is

4
Throughout, “with high probability", refers to a probability of 1 − O(1/𝑛) .
5
We note that in practice, the actual wall clock time might depend on other factors,

e.g. the cost of synchronization. In this paper, we focus on local computation time as

an additional important measure that influences the overall time, besides the tradi-

tional communication round complexity measure used to analyze 𝑘-machine model

algorithms.

counted as part of 𝑇𝑐 ). Hence, strictly speaking, since a machine

might send or receive a message to all other machines over the

course of the algorithm, local computation cost is at least Ω(𝑘).
We also assume that the local computation cost of a machine is

at least the cost to read the input assigned to the machine. In the

RVP model, as shown in the Mapping Lemma. the number of nodes

and edges assigned to a machine is Θ(𝑛/𝑘) and Ω(𝑚/𝑘 + Δ), re-
spectively, where 𝑛 is the number of nodes, 𝑚 is the number of

edges and Δ is the maximum degree of the input graph. Thus in

our model, the lower bound for 𝑇ℓ is Ω((𝑚 + 𝑛)/𝑘 + Δ + 𝑘).
In this paper, we utilize algorithms and theorems related to the

synchronous Congest model and the Congested Cliqe model.

The synchronous Congest model is the standard message passing

model used to analyze distributed algorithms. Consider a graph

𝐺 = (𝑉 , 𝐸) with |𝑉 | nodes and |𝐸 | edges. Each node has knowledge

of only the edges in 𝐸 incident to it but not the complete graph. Each

node𝑢 ∈ 𝑉 executes a given distributed algorithm in rounds, where

each round consists of: (i) receiving messages, if any, sent to it in

the previous round; (ii) performing some local computation; (iii)

sending messages, if any, to its neighbors. Each edge can support

messages of size O(log𝑛) bits sent across them in a given round.

The Congested Cliqe model, as defined in [21], acts as an

intermediate between the 𝑘-machine model and the standard syn-

chronous Congest model. In addition to the graph 𝐺 = (𝑉 , 𝐸) as
defined above, we also consider that nodes in 𝑉 are connected in

a clique (in a sense, it is the 𝑘-machine model with 𝑘 = 𝑛). Each

node runs a distributed algorithm in rounds as defined above, but

can now send and receive messages across all edges in the clique.

The bandwidth of each edge is O(log𝑛) bits of communication per

round. As it is, the Congested Cliqemodel is unrealistic for large

computations, since 𝑘 = 𝑛.

1.2 Our Contributions
We posit a complexity measure called the local computation cost

(denoted 𝑇ℓ ) that measures the worst-case local computation cost

among the machines and design and analyze 𝑘-machine algorithms

for two fundamental graph problems, namely connectivity andMST

that perform well under both 𝑇ℓ and 𝑇𝑐 measures. In our model, a

natural lower bound on 𝑇ℓ is Ω((𝑚 + 𝑛)/𝑘 + Δ + 𝑘) as discussed in

Section 1.1. It is known that a lower bound on the round complexity

𝑇𝑐 is Ω
(
𝑛/𝑘2

)
[21]. Prior algorithms for connectivity and MST in

the 𝑘-machine model ([21] and [29]; see also the recent algorithm

of [14]) do not take into account local computation; straightforward

local implementations of them are not optimal with respect to local

computation. In particular, the algorithm of [29] is (essentially)

optimal in terms of round complexity (i.e., 𝑂̃ (𝑛/𝑘2)), but its local
computation complexity (which was not analyzed in [29]) is O

(
𝑛2

)
which is significantly higher than the lower bound of Ω( (𝑚 +𝑛)/𝑘).

In this paper, we study several distributed algorithms for con-

nectivity and MST and analyze their performance with respect to

both the computation and communication cost for connectivity and

MST. The results are summarized in the table on the next page.

We first analyze a well-studied and simple flooding algorithm

for connectivity and connected components that takes
˜O(𝑛/𝑘 + 𝐷)

rounds and
˜O(𝑚/𝑘 + Δ) local computation time. Flooding algo-

rithms (sometimes called label propagation algorithms) have been
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studied extensively for finding connected components in a dis-

tributed/parallel setting (see e.g., [35] and [16]). However, these

algorithms are generally deterministic and are message-intensive.

On the other hand, our algorithm is randomized and is message-

efficient. Still, the flooding algorithm has an inherent bottleneck of

taking at least 𝐷 rounds, where 𝐷 is the graph diameter.

We next present a natural deterministic filtering algorithm for

MST (note that an MST algorithm can be readily used to find con-

nected components by an easy reduction) that has an improved

round complexity of
˜O(𝑛/𝑘) (no dependence on diameter) but has

local computation complexity
˜O(𝑚/𝑘 + 𝑛), i.e., it is linear in 𝑛.

We then present two deterministic MST algorithms which are in-

creasingly sophisticated implementations of the classical Borůvka’s

algorithm, the second of which has round complexity
˜O(𝑛/𝑘) and

local computation complexity
˜O((𝑚 + 𝑛)/𝑘 + Δ + 𝑘).

We finally present a randomized algorithm to find connected

components with round complexity
˜O
(
𝑛/𝑘2

)
and local computation

complexity
˜O((𝑚 + 𝑛)/𝑘 + Δ + 𝑘) that are both essentially optimal.

(Note that in this algorithm, it is only required that each MST edge

is output (known) by some machine.) This algorithm is a better

local implementation of the round-optimal algorithm of [30]. This

algorithm is somewhat more involved than the prior algorithms

discussed in the paper. The algorithm, as specified in [30], takes at

least O
(
𝑛2

)
local computation time. Our results are summarized in

Table 1. Hence our𝑘-machine model algorithms attempt to optimize

not only the traditional (communication) round complexity, but also

local computation complexity. As mentioned earlier, both determine

the overall performance of an algorithm.

As a byproduct of our analysis, we also present results that can be

useful in analyzing 𝑘-machine algorithms in general. In particular,

we present a Node Distribution Lemma (Lemma 2.1) that is helpful

in analyzing local computation complexity in the 𝑘-machine model.

This lemma can be used to analyze the local computation cost of

Congest model algorithms that are ported in a straightforward

way to the 𝑘-machine model with a simple abstraction: if 𝑢 sends a

message to 𝑣 in the Congest model, then the machine containing

𝑢 sends a message to the machine containing 𝑣 in the 𝑘-machine

model (see Conversion Theorem in [21]).

We also present a Mapping Lemma (Lemma 2.2) which gives the

distribution of the vertices, edges, and edges per link of the input

graph 𝐺 with respect to the 𝑘-clique.

Finally, we mention that the algorithms and analysis presented

in the paper will be useful in efficient implementation in practice.

This is left for future work (discussed in Section 7).

2 PRELIMINARIES
2.1 Node Distribution Lemma
The Node Distribution Lemma (proof in Appendix A) gives a way

to bound the parameters associated with the vertices of an input

graph𝐺 when it is mapped to the 𝑘-machine model via the random

vertex partition (RVP) model, where each vertex of the input graph

𝐺 is assigned independently and uniformly at random among the 𝑘

machines. The parameter of interest can be the degree associated

with a vertex or the local computation cost of a vertex (in the

standard Congest model).

Lemma 2.1 (Node Distribution Lemma). Consider a graph𝐺 of

nodes 𝑣1, 𝑣2, . . . , 𝑣𝑛 with associated non-negative real-valued “weights”

𝑤 (𝑣) for each node 𝑣 . Given a uniform, random distribution of the 𝑛

nodes to𝑘 machines, as in the𝑘-machine model, then, with probability

at least 1 − 1/𝑛𝑎 for any 𝑎 > 0, the total weight of nodes at every

machine is bounded above by O
(
𝑇avg + log𝑛 ·𝑤max

)
, where 𝑇avg =

1

𝑘

∑𝑛
𝑖=1𝑤 (𝑣𝑖 ) and𝑤max = max{𝑤 (𝑣𝑖 )}.

2.2 A More Accurate Mapping Lemma &
Conversion Theorem

In this section, we reanalyze theMapping Lemma from [21] (Lemma 4.1

in the reference) in order to develop more exact bounds. The Map-

ping Lemma gives a bound on the number of vertices and edges of

the input graph 𝐺 that are mapped to the 𝑘 machines, assuming

the RVP model. It also gives a bound on the number of edges of

𝐺 assigned to a link in the 𝑘-clique. While the first two bounds

(the number of vertices and number of edges assigned) is the same

as in [21], the bound on the number of edges per link as stated

and analyzed in [21] is not fully correct (there the bound was

O
(
𝑚/𝑘2 + Δ/𝑘

)
, whereas here we show O

(
𝑚/𝑘2 + 𝑛/𝑘

)
). The anal-

ysis in [21] also yielded values with hidden polylog terms. We show

that a more careful analysis results in no polylog terms. We present

the lemma below. The proof uses a powerful (and not well-known)

concentration inequality due to Rodl and Rucinski [33] (as used in

[30]) which can be of independent interest.

Lemma 2.2 (Mapping Lemma). Let an 𝑛-node,𝑚-edge graph 𝐺

be partitioned among the 𝑘 machines as 𝑁 = {𝑝1, . . . , 𝑝𝑘 }, according
to the random vertex partition model (assume 𝑘 = 𝑜 (𝑛)). Then with

probability at least 1 − 1/𝑛𝛼 , where 𝛼 > 1 is an arbitrary fixed

constant, the following bounds hold:

(1) The number of vertices mapped to any machine is O(𝑛/𝑘).
(2) The number of edges mapped to any machine is O(𝑚/𝑘 +

Δ log𝑛).
(3) The number of edges mapped to any link of the network is

O
(
𝑚/𝑘2 + 𝑛/𝑘

)
.

Proof. To prove the first bound, recall that nodes are distributed

uniformly at random over the machines. Therefore, on expectation,

each machine has 𝑛/𝑘 nodes. Since 𝑘 = O(𝑛𝜖 ), where 0 < 𝜖 < 1 is a

constant, 𝑛/𝑘 = O(𝑛Ω (1) ). Thus, we can directly apply a Chernoff

bound (the third inequality of Theorem 4.4. from [27]) to see that

each machine gets no more than 6𝑛/𝑘 = O(𝑛/𝑘) vertices with the

desired probability.

To prove the second bound, we look back at Lemma 2.1 and its

proof in this paper. If we consider the weights associated with each

node to be the local degree of each node, the proof follows directly

and we get the desired bound.

To prove the third bound, we utilize the following proposition

from [30], itself a more accurate version of a proposition from [33].

Proposition 2.3 (Proposition 2 in [30]). Let𝐺 be a graph with

𝑚 < 𝜂𝑛2 and let 𝑅 be a random subset of 𝑉 of size |𝑅 | = 𝑡 such that

𝑡 ≥ 1/3𝜂. Let 𝑒 (𝐺 [𝑅]) denote the number of edges in the subgraph

induced by 𝑅. Then, P
(
𝑒 (𝐺 [𝑅]) > 3𝜂𝑡2

)
< 𝑡 · 𝑒−𝑐𝑡 for some 𝑐 > 0.

Setting 𝛼 = 2 in our first bound, we see that with probability

1 − 1/𝑛2, each machine gets a random subset of no more than 6𝑛/𝑘
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Algorithm Round complexity Local runtime

Flooding (Section 3)
˜O
(
𝑛
𝑘
+ 𝐷

)
˜O
(
𝑚
𝑘
+ Δ + 𝑘

)
Filtering (Section 4)

˜O
(
𝑛
𝑘

)
˜O
(
𝑚
𝑘
+ 𝑛

)
Improved Local Borůvka (Section 5)

˜O
(
𝑛
𝑘

)
˜O
(
𝑚+𝑛
𝑘

+ Δ + 𝑘
)

Randomized Connected Components (Section 6)
˜O
(
𝑛
𝑘2

)
˜O
(
𝑚+𝑛
𝑘

+ Δ + 𝑘
)

Table 1: Round Complexity and Local Runtime of Algorithms in the augmented 𝑘-machine model.
nodes. Now, it is easy to see that an upper bound on the number of

edges formed by a graph of 12𝑛/𝑘 nodes acts as an upper bound on

the number of edges mapped to a link between any two machines.

We first calculate this upper bound on one link and subsequently

extend that bound to all links. We can derive this upper bound by

using Proposition 2.3 with values 𝑡 = 12𝑛/𝑘 and 𝜂 = 𝑚/𝑛2 + 𝑘/𝑛.
Using the proposition, we see that P

(
𝑒 (𝐺 [𝑅]) > 𝑂 (𝑚/𝑘2 + 𝑛/𝑘)

)
<

1/𝑛𝛼+1 for a sufficiently large 𝑛.

Now that we have the bound on the number of edges mapped

to one link with high probability, we use a simple union bound to

see that the number of edges mapped to any link is no more than

O
(
𝑚/𝑘2 + 𝑛/𝑘

)
with probability 1 − 1/𝑛𝛼 . □

We are also able to get a more accurate version of the Conversion

Theorem from [21] (Theorem 4.1 in the reference). As the only

changes in the proof are the addition of a log𝑛 factor to account

for when𝑊 = 1 and the direct utilization of the updated bounds

from Lemma 2.2, we omit the proof here.

Theorem 2.4 (Conversion Theorem). Suppose that there is an

𝜖-error algorithm 𝐴𝐶 that solves problem 𝑃 in time 𝑇𝐶 (𝑛) ∈ ˜O(𝑛)
in the Congested Clique model, for any 𝑛-node input graph. Then

there exists an 𝜖-error algorithm 𝐴 that solves 𝑃 in the 𝑘-machine

model with bandwidth𝑊 satisfying the following time complexity

bounds with high probability:

(1) If 𝐴𝐶 uses point-to-point communication with message com-

plexity𝑀 , then𝐴 runs inO
((

𝑀
𝑘2𝑊

+𝑇𝐶 (𝑛) ⌈ 𝑛
𝑘𝑊

⌉
)
log𝑛

)
time.

(2) If 𝐴𝐶 is a broadcast algorithm with broadcast complexity 𝐵,

then 𝐴 takes O
((

𝐵
𝑘
+𝑇𝐶 (𝑛)

)
⌈ log𝑛

𝑊
⌉
)
time.

3 A PARALLEL FLOODING ALGORITHM FOR
GRAPH CONNECTIVITY

In this section we look at a parallel flooding algorithm to detect

whether the input graph is connected and also detect the number

of connected components.

We first describe the algorithm from the point of view of individ-

ual nodes in a network (as implemented in the standard Congest

model) in order to give the intuition behind the process. We subse-

quently explain how the 𝑘 machines can simulate this algorithm.

Initially, each node chooses an ID in [1, 𝑛4] uniformly at random.

For any node 𝑢, denote the ID of the largest ID 𝑢 has seen so far as

ID-max(u) and initialize this to 𝑢’s ID. Each node initiates flooding

of its ID, in parallel. Subsequently, if𝑢 receives amessage containing

a higher ID, then 𝑢 updates its ID-max(u) and floods the new ID.

The above process can be simulated by 𝑘 machines as follows.

Each machine 𝑀 maintains an ordered list of each node located

on the machine, sorted in descending order of ID. 𝑀 then goes

through this list and simulates each node, one by one, as described

previously. For a given node 𝑢 located on𝑀 , if 𝑢 has a neighbor 𝑣

located in machine𝑀′
, then𝑀 sends the appropriate message to

𝑀′
to be processed.

Let 𝑁𝑅 refer to the number of rounds it takes for the above

process to end with high probability. Set 𝑁𝑅 = O(𝑛 log𝑛/𝑘 + 𝐷).6
After 𝑁𝑅 rounds, each machine 𝑀 aggregates IDs in ID-max(u)

for all 𝑢 located on 𝑀 into a list L(𝑀). The number of IDs in

L(𝑀) indicates the number of distinct components in machine𝑀 .

Each machine then sends L(𝑀) to the machine with the lowest

ID in the system, 𝑀1. Machine 𝑀1 aggregates all such lists and

and counts the number of unique IDs, which is equivalent to the

total number of connected components in the input graph.𝑀
lowest

subsequently broadcasts this number to all other machines.
7
The

following theorem captures the properties of this algorithm.

Theorem 3.1. With high probability, the above algorithm correctly

counts the number of connected components with

𝑇ℓ = O((𝑚/𝑘 + Δ log𝑛) log𝑛 + 𝑘) and 𝑇𝑐 = O(𝑛 log𝑛/𝑘 + 𝐷).

Proof. Wefirst calculate𝑇ℓ and𝑇𝑐 and subsequently argue about

the correctness of the algorithm.

In order to calculate𝑇𝑐 and𝑇ℓ , we first prove the following lemma,

which will be used for both calculations.

Lemma 3.2. Consider 𝑛 nodes with IDs chosen uniformly at ran-

dom from [1, 𝑛4]. For any given node 𝑢, in the Congest model, the

number of times it broadcasts (locally to its neighbors) is O(log𝑛)
with probability at least 1 − 1/𝑛2.

Proof. For a given node, the probability that at least one other

node chooses the same ID as it is 1− (1−1/𝑛4)𝑛 ≤ 1/𝑛3. By a union
bound over all nodes, the probability that at least two nodes have

the same ID is ≤ 1/𝑛2. Thus, with high probability, all chosen IDs

are unique.

Assume, for the sake of analysis, that a node 𝑢 sees each new ID

one at a time (since if it sees many IDs in one round only the largest

ID of them will matter). Since the IDs are chosen uniformly at

random, the IDs can be assumed to come in a random permutation

order.
8
Let 𝑋𝑖 , 1 ≤ 𝑖 ≤ 𝑛 − 1, be the indicator random variable

denoting whether the 𝑖𝑡ℎ ID that 𝑢 sees (not including its own)

causes it to initiate a new local broadcast (this will happen when it

6
In the course of the proof of Lemma 3.4, we derive this value. Furthermore, a careful

analysis will give us exact values.

7
While the above algorithm is Monte Carlo in nature, it can be converted into a Las

Vegas style algorithm.

8
To visualize this, imagine a path of nodes with 𝑢 at one end where 𝑢 receives the

ID from node at distance 𝑗 from it in round 𝑗 + 1. Let 𝑆 be the set of IDs chosen by

the other nodes. Because each node chooses its ID uniformly at random from 𝑆 , the

order in which 𝑢 receives the other IDs can be seen as a random permutation of the

list formed by the elements of 𝑆 .
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sees an ID that is higher than the highest one it has seen till now).

Observe that P(𝑋𝑖 = 1) = 1/𝑖 and P(𝑋𝑖 = 0) = 1 − 1/𝑖 . Therefore,
E[𝑋𝑖 ] = 1/𝑖 . Let 𝑋 =

∑𝑛−1
𝑖=1 𝑋𝑖 . Now E

[∑𝑛−1
𝑖=1 𝑋𝑖

]
=

∑𝑛−1
𝑖=1 E[𝑋𝑖 ] ≤

4 log𝑛. Notice that the 𝑋𝑖 ’s are negatively associated[10]. Thus,

we can apply a Chernoff bound[10] and get that P(𝑋 > 6 E[𝑋 ]) ≤
1/𝑛2.

Thus with probability 1 − 1/𝑛2, for a given node 𝑢, the number

of times it broadcasts is O(log𝑛). □

We are now ready to calculate 𝑇ℓ and 𝑇𝑐 .

Lemma 3.3. The local computation complexity of the algorithm is

O((𝑚/𝑘 + Δ log𝑛) log𝑛 + 𝑘) with high probability.

Proof. We utilize Lemma 2.1 to bound the local computation

complexity. As such, let us first consider running the algorithm on

the input graph in the synchronous Congest model. Consider a

single node 𝑣𝑖 with degree𝑑 (𝑣𝑖 ). For each value it hears through one
of its edges, it must compare that value with the current maximum

ID it has seen in 𝑂 (1) steps of local computation. By Lemma 3.2,

each of its 𝑑 (𝑣𝑖 ) neighbors sends it at most 𝑂 (log𝑛) values. Thus,
𝑣𝑖 performs O(𝑑 (𝑣𝑖 ) log𝑛) steps of local computation to process all

these messages.

Now, once a value is processed, if the value is higher than 𝑣𝑖 ’s

current maximum ID, 𝑣𝑖 updates its ID-max and broadcasts this

value to its 𝑑 (𝑣𝑖 ) neighbors using O(𝑑 (𝑣𝑖 )) steps of local compu-

tation. By Lemma 3.2, there are at most O(log𝑛) values with high

probability that 𝑣𝑖 will have to broadcast and thus 𝑣𝑖 takes an addi-

tional O(𝑑 (𝑣𝑖 ) log𝑛) steps of local computation to complete these

broadcasts.

The maximum run time of any node is thus O(Δ log𝑛) with high

probability. Therefore, by using Lemma 2.1 where the weights asso-

ciated with each node correspond to the maximum run time on that

node, with high probability, the local computation of anymachine is

O
(
1

𝑘

(∑𝑛
𝑖=1 (𝑑 (𝑣𝑖 ) log𝑛)

)
+ log𝑛 · Δ log𝑛

)
= O((𝑚/𝑘 + Δ log𝑛) log𝑛).

Finally, there is an additional 𝑘 due to a machine possibly having to

send/read inputs from all other machines resulting in a final local

computation complexity of O((𝑚/𝑘 + Δ log𝑛) log𝑛 + 𝑘). □

Lemma 3.4. The communication complexity of the algorithm is

O(𝑛 log𝑛/𝑘 + 𝐷) with high probability.

Proof. We bound the total number of broadcasts by 𝐵. In the

Congested Cliqe model, a broadcast will take O(𝐷) rounds to
propagate over the edges of the input graph, where 𝐷 is the diameter

of the input graph. By Theorem 2.4, we see that the total number

of rounds in the 𝑘-machine model is O((𝐵/𝑘 + 𝐷) log𝑛/𝑊 ) with
high probability, where𝑊 is the bandwidth of each link in the

𝑘-machine model. As mentioned in Section 1.1, we assume that the

bandwidth of each link is Θ(log𝑛), i.e.,𝑊 = Θ(log𝑛).
We show that𝐵 = O(𝑛 log𝑛)with high probability. By Lemma 3.2,

the number of broadcasts originating at each node is atmostO(log𝑛)
with probability 1 − 1/𝑛2. Taking a union bound over all nodes,

we see that with probability 1 − 1/𝑛, every node initiates at most

O(log𝑛) broadcasts. Thus, at most O(𝑛 log𝑛) broadcasts are initi-
ated with high probability.

Additionally, every machine 𝑀 communicates an additional

at most O(𝑛/𝑘) labels with high probability, due to transmitting

L(𝑀), to machine𝑀
lowest

. This is because, initially, each machine

receivesO(𝑛/𝑘) nodes with high probability, which acts as an upper
bound on the number of labels eventually transmitted to𝑀

lowest
.

Thus, we get our desired value of 𝑇𝑐 . □

From the construction of the algorithm, it is clear to see that each

node 𝑢 floods any ID it encounters which is higher than the current

value of ID-max. For each connected component 𝑓 , let 𝑢𝑓 be the

node with the largest ID in 𝑓 . For each component 𝑓 , after 𝑁𝑅

rounds, 𝑢𝑓 will be flooded to every machine with high probability.

It is simple to see that once this has occurred,𝑀
lowest

will be able

to correctly compute the number of connected components by

counting the number of unique IDs from all L(𝑀) seen. □

4 FILTERING-BASED MST ALGORITHM
In this subsection, we analyze an algorithm to find a minimum

spanning tree (MST) using a filtering technique to eliminate edges

(which was also used in [23]).

We use three procedures in the course of this algorithm. The

first procedure is the well known Kruskal’s algorithm (refer to [9]),

which when run on a graph with 𝑚 edges outputs a minimum

spanning tree in O(𝑚 log𝑚) rounds.
The second procedure is used to perform matching and is run

locally on a machine. It takes a clique of 𝑛 nodes with unique IDs

and outputs a maximal matching in O(𝑛 log𝑛) local computation

time. First, sort IDs in ascending order using the commonly used

MergeSort [9]. Then for 𝑖 = 1 to ⌊𝑛/2⌋, match the (2𝑖 − 1)𝑡ℎ and

(2𝑖)𝑡ℎ nodes in the sorted list.

The third is the following distributed routing on a clique with 𝑛

nodes. If each node 𝑢 wants to send 𝑓 messages to some other node

𝜋 (𝑢) such that for all 𝑢 ≠ 𝑣, 𝜋 (𝑢) ≠ 𝜋 (𝑣), then all messages from

node 𝑢 can be sent to 𝜋 (𝑢) in O(𝑓 /(𝑛 − 1)) rounds. The procedure
takes two phases. In the first phase, each node𝑢 divides its messages

into groups of 𝑓 /(𝑛 − 1) messages (and appends the destination ID

of 𝜋 (𝑢) to each message) and sends these groups of messages across

each of its edges, one group per edge, inO(𝑓 /(𝑛 − 1)) rounds. In the
second phase, each node forwards whatever messages it received

in phase one to the target node in another O(𝑓 /(𝑛 − 1)) rounds.9
Each machine𝑀 maintains graph 𝐺𝑀 initially comprising the

subgraph induced by edges in𝑀 , as well as an ordered list 𝐻𝑀 ini-

tially comprising the IDs of all machines. Each machine𝑀 executes

at most 2⌈log𝑘⌉ phases of the following steps until termination:

(1) If𝑀 received information about new edges in the previous

phase, it updates 𝐺𝑀 accordingly. Run Kruskal’s algorithm

on 𝐺𝑀 to remove cycles, if any.

(2) If |𝐻𝑀 | = 1, terminate. Use the matching procedure on 𝐻𝑀

to match with another machine𝑀′
. If𝑀 matches with𝑀′

and the ID of𝑀 is greater than the ID of𝑀′
, use the routing

procedure to send 𝐺𝑀 to𝑀′
.

9
The reason we are able to avoid more complicated routing procedures is because (i)

each node 𝑢 sends all its messages to exactly one 𝜋 (𝑢 ) and (ii) for all 𝑢 ≠ 𝑣, 𝜋 (𝑢 ) ≠
𝜋 (𝑣) . As a result, for each edge in the graph, the messages in phase one can be

attributed to initial sources and the messages in phase two can be attributed to final

destinations. Since each node of an edge can be a source or a destination for exactly

one set of O(𝑓 /(𝑛 − 1) ) messages, the total number of messages flowing through

that edge in either phase is O(𝑓 /(𝑛 − 1) ) .
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(3) For all machines𝑀′′ ∈ 𝐻𝑀 where𝑀′′
matched with another

machine having a lower ID, remove𝑀′′
from 𝐻𝑀 . If𝑀 was

one such𝑀′′
, then terminate.

At the end of algorithm, the machine𝑀𝑚𝑖𝑛 with the lowest ID

will have the full MST stored in its 𝐺𝑀𝑚𝑖𝑛
. The following theorem

captures the properties of this algorithm.

Theorem 4.1. The above algorithm results in the machine with

the lowest ID 𝑀min having the full MST stored in its graph 𝐺𝑀min

with 𝑇ℓ = O(𝜌 log 𝜌 + 𝑛 log𝑛 log𝑘) with high probability, where

𝜌 =𝑚/𝑘 + Δ log𝑛, and 𝑇𝑐 = 𝑂 (𝑛 log𝑘/𝑘).

Proof. We first argue the correctness of the algorithm. In par-

ticular, we show that, eventually, information about every edge

in the MST of the input graph will be sent to machine 𝑀min be-

fore all phases end. Once𝑀min knows of all these edges, Kruskal’s

algorithm guarantees that the correct MST will be computed.

Consider some edge, 𝑒 , of the graph that belongs to the MST.

Let 𝑒 reside on some machine𝑀 . Because 𝑒 is an edge of the MST

of 𝐺 , 𝑒 will also be an edge of the MST of any subgraph of 𝐺

that contains 𝑒 . As a result, 𝑒 will never be removed by 𝑀 or any

subsequent machine it is located on when Kruskal’s algorithm is

run. Furthermore, by the matching algorithm, we see that regardless

of the initial machine 𝑒 is located on, after 2⌈log𝑘⌉ phases, it will
eventually make its way to machine 𝑀min. Thus the algorithm

works as intended.

To bound the local computation complexity, observe that any

machine𝑀 runs for at most O(log𝑘) phases. In any phase,𝑀 per-

forms Kruskal’s algorithm on graph 𝐺𝑀 . In the 𝑘-machine model,

by Lemma 2.2, each machine initially receives O(𝑚/𝑘 + Δ log𝑛) =
O(𝜌) edgeswith high probability resulting in a run time ofO(𝜌 log 𝜌)
in the first phase. Subsequently, since there are 𝑛 nodes in the

input graph, there can be at most 𝑛 − 1 edges chosen by 𝑀 (or

any other machine) to be sent over in that phase. Thus, 𝑀 pro-

cesses at most 2𝑛 − 2 edges spanning at most 𝑛 nodes in each

subsequent phase resulting in an additional run time of O(𝑛 log𝑛)
per phase. Also in each phase, 𝑀 runs the matching procedure

on 𝐻𝑀 resulting in at most O(𝑘 log𝑘) steps of local computation.

Totally, each machine takes O(𝜌 log 𝜌 + (𝑛 log𝑛 + 𝑘 log𝑘) log𝑘) =
O(𝜌 log 𝜌 + 𝑛 log𝑛 log𝑘) steps of local computation with high prob-

ability. Note that there is an additive 𝑘 that comes due to a machine

possibly having to send/read inputs from all other machines, but

this is subsumed by the larger terms in the complexity.

For the communication complexity, notice as described in the

previous paragraph that each machine only needs to send at most

𝑛 − 1 edges to another machine it matches with in any give phase.

From the matching procedure, this takes O(𝑛/𝑘) rounds per phase.
Furthermore, there are at most O(log𝑘) phases, resulting in a com-

munication complexity of O(𝑛 log𝑘/𝑘). □

5 DETERMINISTIC BORŮVKA-STYLE
ALGORITHMS FOR MST

In this section, we present two deterministic distributed algorithms

for MST that both have (communication) round complexity of

˜O(𝑛/𝑘) and have increasingly better local computation complex-

ity.
10

The first algorithm (Simple Local Borůvka) takes
˜O(𝑚/𝑘 + 𝑛)

local computation time while the second algorithm (Improved Local

Borůvka) takes
˜O(𝑚/𝑘 + Δ + 𝑘). Note that ˜O(𝑛/𝑘) is the best possi-

ble round complexity if each machine is required to know the MST

edges incident on the vertices assigned to it [21].
11

The algorithms

are based on a distributed implementation of Borůvka’s algorithm

[5, 28], but implemented specifically for the𝑘-machine model. (Note

that the classical GHS algorithm [13] is a distributed implementa-

tion of Borůvka in the standard Congest model.) Both algorithms

follow a Borůvka-style strategy [5], i.e., repeatedly merge adjacent

components of the input graph𝐺 , which are connected subgraphs

of 𝐺 , to form larger (connected) components (e.g., [28]).

A Borůvka-style algorithm proceeds in phases. In the first phase,

the algorithm starts with each individual node as a fragment by

itself. In subsequent phases, fragments are merged until there is

only one remaining — the MST. That is, at the beginning, there

are 𝑛 = |𝑉 | fragments, and at the end of the final phase, a single

fragment which is the MST. Throughout, we assume without loss

of generality that all edge weights are distinct (if there are duplicate

weights, ties can be broken by using the IDs of the endpoints). At a

high level, both algorithms do the following in each phase:

(1) For every fragment, its minimum outgoing edge (MOE) is

found. An outgoing edge of a fragment is an edge that con-

nects a node of the fragment to a node of a different fragment

and an MOE is an outgoing edge of the least weight. By the

cut property, all MOE edges are in the MST.

(2) Fragments are merged along their MOE edges.

The phases are repeated until all nodes belong to the same fragment.

From the Mapping Lemma, we note that each machine initially

has 𝑛/𝑘 nodes distributed randomly (the RVP model), as well as

their adjacency lists, and that the number of edges assigned to each

machine is O(𝑚/𝑘 + Δ log𝑛).

Simple Local Borůvka Algorithm. Initially, each machine sorts

the adjacency list of each node by edge weight, then creates a

disjoint-set (or union-find) data structure [9],M, of fragments, with

each of the 𝑛 nodes initially belonging to its own fragment. The

disjoint-set admits the following operations: (1) MakeSet - adds an

element to the set in O(1) time. (2) Find - determines which disjoint

set an element belongs to in O(𝛼 (𝑛)) amortized time (where 𝛼 (𝑛)
is the inverse Ackermann function). (3) Union - combines disjoint

sets in O(𝛼 (𝑛)) amortized time.

We note that each machine can easily determine the identities

of all 𝑛 nodes in O(𝑛/𝑘) rounds (by executing 𝑛/𝑘 broadcasts).

Each phase consists of the following two steps:

Step 1: For each vertex 𝑣 in machine 𝑀 , 𝑀 iterates through the

adjacency list of 𝑣 and performs Find on each of its neighbors, in

increasing order of edge-weight, to determine if the incident edge

belongs to a different fragment. Once such an edge is found, 𝑀

stops searching and broadcasts this edge to all machines. Note that

10
If the graph is connected, the algorithms in this section find an MST. If the graph is

disconnected, the algorithms produce a minimum spanning forest (MSF). Note that in

an MSF, the number of edges𝑚 may be less than the number of nodes 𝑛.
11
However, if any machine can output any of the MST edges, then the lower bound is

Ω̃
(
𝑛/𝑘2

)
, also shown in [21].
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this search is amortized O(deg 𝑣) local time, as an edge never needs

to be checked twice.

Machine𝑀 now has a list of candidates for MOE for each frag-

ment. Next,𝑀 notes the minimum candidate for each fragment by

iterating through all candidates for each fragment, which it has

received from the broadcast mentioned above.

Step 2:𝑀 merges fragments: if (𝑢, 𝑣) is some minimum outgoing

edge between two fragments,𝑀 updates M with Union(𝑢, 𝑣).
At the end of this algorithm, each machine has a local copy of

the complete MST.

Theorem 5.1. The above algorithm ends with M as the MST

and, with high probability (with respect to the RVP model), we have

𝑇ℓ = ˜O(𝑚/𝑘 + 𝑛) and 𝑇𝑐 = ˜O(𝑛/𝑘).

Proof. First, note that correctness of this algorithm follows

directly from the correctness of Borůvka’s algorithm.

Next, note that at the end of each phase, every fragment will

merge with at least one other fragment. In the worst case, the

number of fragments is halved, hence there are O(log𝑛) phases,
and each phase requires at most O(𝑛/𝑘) rounds, for a total of 𝑇𝑐 =

O(𝑛/𝑘 log𝑛) = ˜O(𝑛/𝑘).
Finally, we show the local computation bound. Fix

a machine 𝑀 and note that pre-processing requires

O(deg 𝑣 log deg 𝑣) = O(deg 𝑣 logΔ) per node 𝑣 in 𝑀 to sort

the adjacency lists. Moreover, to createM requires O(𝑛). In total,

this is O((𝑚/𝑘 + Δ log𝑛) logΔ + 𝑛) with high probability. The local

computation involved in finding the local MOE from Step 1 is

amortized O(𝛼 (𝑛) deg 𝑣) per node, which (by the Mapping Lemma)

is O((𝑚/𝑘 + Δ log𝑛)𝛼 (𝑛)) in total. Finding the MOE per fragment

is an additional O(𝑛) operations. A single instance of Step 2 in a

single phase requires O(𝛼 (𝑛)) and there can be at most 𝑛− 1merge

operations. Finally, we may have an additive 𝑘 from a machine

possibly having to send/read inputs from all other machines.

Thus, we have 𝑇ℓ = O(𝑚/𝑘 logΔ + Δ logΔ log𝑛 + 𝑛 + (𝑚𝛼 (𝑛)/𝑘)
+ Δ𝛼 (𝑛) log𝑛 + 𝑛 + 𝑛𝛼 (𝑛) + 𝑘) = ˜O(𝑚/𝑘 + 𝑛). □

Improved Local Borůvka Algorithm. We can improve the local

computation complexity of the Simple Local Borůvka algorithm

(which is linear in𝑛) by using a different implementation of Borůvka

where instead of broadcast, we simulate the “unicast" version of

Borůvka — as in the GHS algorithm in the standard Congestmodel,

where messages are sent through the edges of the graph. We then

use the Conversion Theorem to compute the round complexity.

However, to get a
˜O
(
𝑛
𝑘

)
bound (independent of𝑚), we first apply

filtering to reduce the number of edges in each machine to O(𝑛)
(i.e., O(𝑛𝑘) edges overall) which can be done as follows.

The machines begin by creating a minimum spanning forest

(MSF) of their subgraphs using, for example, Kruskal’s Algorithm,

and essentially discarding edges that are not part of their local MSFs.

The edges remaining (of which there are at most 𝑘 (𝑛 − 1) = O(𝑛𝑘)
with high probability by the Mapping Lemma) are then the only

candidates for the MST of the original graph. Moreover, each link

between machines corresponds to at most O(𝑛/𝑘) graph edges. The

algorithm then continues on these remaining subgraphs.

Like Simple Local Borůvka, we proceed in phases. Fix a machine

𝑀 . To determine the MOE for a fragment 𝑓 , we first determine

the local minimum outgoing edge (LOE) using the following steps.

Start with LOE = ∞, then:

Step 1: Iterate through the edges in 𝑓 . For an edge (𝑢, 𝑣) with 𝑢 in

𝑀 , send a message to the machine containing 𝑣 with the IDs of 𝑢

and 𝑣 and the fragment ID of 𝑓 .

Step 2: For each received message (𝑢, 𝑣, 𝑓 ), if the fragment ID of 𝑣

is different than the received fragment ID, respond with the original

fragment ID and the fragment ID of 𝑣 .

Step 3: Update LOE = min(LOE,𝑤) for each message received

corresponding to fragment 𝑓 , where𝑤 is the weight of the outgoing

edge.

Step 4: Broadcast the LOE and fragment ID.

From the broadcast of the LOEs, each machine locally determines

the global MOE for any fragments it contains.

The machine then merges fragments as follows. Note that one

cannot merge all fragments, since that takes time proportional

to the length of the fragment chain. To address this, we use a

technique that is similar to (but simpler than) the controlled GHS

algorithm [28]. Create a rooted tree 𝐹 where each node is a fragment

and there exists an edge between two fragments if there is an MOE

between them. Construct a maximal matching (using e.g., Cole-

Vishkin [8]) and merge all matched edges and any edge where

exactly one endpoint is matched.

Theorem 5.2. With high probability, the above algorithm satisfies

𝑇ℓ = ˜O( (𝑚 +𝑛)/𝑘 + Δ + 𝑘) and 𝑇𝑐 = ˜O(𝑛/𝑘).

Proof. For local computation, the filtering will requireO((𝑚/𝑘+
Δ) log 𝑛/𝑘). We note that the Cole-Vishkin algorithm (per phase)

takes O(log∗ 𝑛) rounds in the standard Congest model which can

be simulated in the 𝑘-machine model in O((𝑛/𝑘) log∗ 𝑛) rounds
since each machine simulates the algorithm for each of the O(𝑛/𝑘)
vertices assigned to it (apply the broadcast version of the Conver-

sion Theorem). Its local computation cost is O((𝑛/𝑘) log∗ 𝑛) since
the simulation is done on the MOE edges only, which is O(𝑛/𝑘)
per machine. Additionally, we have an additive 𝑘 that comes due

to a machine possibly having to send/read inputs from all other

machines.

In order to bound the number of total phases, we prove the

following lemma.

Lemma 5.3. At any step in the given algorithm, the number of

sequential merges is at most 3, and the number of total fragments is

reduced by at least half after each merge.

Proof. To see that the number of sequential merges is at most

3, simply enumerate all possible labelings of edges (matched or

unmatched) on four fragments 𝑓1, 𝑓2, 𝑓3, 𝑓4, with edges from 𝑓1 to

𝑓2, 𝑓2 to 𝑓3, and 𝑓3 to 𝑓4, as well as with one “outgoing” edge from

each.

To see that the total number of fragments is reduced by at least

half, notice that every fragment is part of a merge, for if some

fragment 𝑓 is not part of a merge, then none of its incident edges are

part of the matching and none of the edges incident to its neighbors

are part of a merge. In that case, we can match an additional edge

between the fragment and one of its neighbors, contradicting the

maximality of our matching. □
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By the previous lemma, there are O(log𝑛) phases in total. Per

phase, the overall local computation is clearly
˜O( (𝑚 +𝑛)/𝑘 + Δ + 𝑘).

In total, this is
˜O( (𝑚 +𝑛)/𝑘 + Δ + 𝑘).

For round complexity, we note that all communication is either

via the graph edges (as simulated in the 𝑘-machine model) or by

doing 𝑂 (𝑛/𝑘) broadcasts per phase. Round complexity is now ob-

tained by using theMapping Lemma (where𝑚 = 𝑂 (𝑛𝑘) by filtering)
and the Conversion Theorem. □

6 AN ALMOST-OPTIMAL RANDOMIZED
ALGORITHM

In this section, we analyze the algorithm for finding connected

components presented in [29].
12

This algorithm is optimal (up

to polylogarithmic factors) with respect to the round complexity

(requiring
˜O
(
𝑛/𝑘2

)
rounds), but has

˜O
(
𝑛2

)
local computation com-

plexity. However, this algorithm is somewhat more involved than

the prior algorithms discussed. For self-containment, we give an

overview of the algorithm of [29] and point out why that algorithm

has high local computation cost and discuss themodification needed

to obtain the local computation complexity of
˜O( (𝑚 +𝑛)/𝑘 + Δ + 𝑘)

while keeping the same round complexity. Thus this modified al-

gorithms is essentially optimal (up to polylogarithmic factors) in

both 𝑇𝑐 and 𝑇ℓ .

Overview. The algorithm of [29] also follows a Borůvka-style

strategy [5], i.e., it repeatedly merges adjacent components of the

input graph𝐺 , which are connected subgraphs of𝐺 , to form larger

(connected) components. The output of each of these phases is a

labeling of the nodes of 𝐺 such that nodes that belong to the same

current component have the same label. At the beginning of the first

phase, each node is labeled with its own unique ID, forms a distinct

component, and is also the component proxy of its own component.

Note that a component proxy is a machine that is responsible for

handling the tasks associated with the component (finding MOE

and merging). To load balance communication and computation,

the component proxies for each component are chosen randomly

among the machines using a suitable hash function (see [29] for

details). Note that, in any phase, a component contains up to 𝑛

nodes, which might be spread across different machines; we use the

term component part to refer to all those nodes of the component

that are held by the same machine. Hence, in any phase, every

component is partitioned in to at most 𝑘 component parts. At the

end of the algorithm each vertex has a label such that any two

vertices have the same label if and only if they belong to the same

connected component of 𝐺 .

Crucially, the algorithm relies on linear graph sketches as a tool

to enable communication-efficient merging of multiple components.

Intuitively, a (random) linear sketch s𝑢 of a node 𝑢’s graph neigh-

borhood returns a sample chosen uniformly at random from 𝑢’s

incident edges. Interestingly, such a linear sketch can be repre-

sented as matrices using only O(polylog(𝑛)) bits [17, 26]. A crucial

property of these sketches is that they are linear: that is, given

sketches s𝑢 and s𝑣 , the combined sketch s𝑢 + s𝑣 (“+” refers to matrix

addition) has the property that, with high probability, it yields a

12
An extension of this algorithm gives an MST algorithm and can be similarly modified

as discussed here.

random sample of the edges incident to (𝑢, 𝑣) in a graph where we

have contracted the edge (𝑢, 𝑣) to a single node.

We now describe how to communicate these graph sketches in

an efficient manner
13
: consider a component 𝐶 that is split into

𝑗 parts 𝑃1, 𝑃2, . . . , 𝑃 𝑗 , the nodes of which are hosted at machines

𝑀1, 𝑀2, . . . , 𝑀 𝑗 . To find an outgoing edge for 𝐶 , we first instruct

each machine 𝑀𝑖 to construct a linear sketch of the graph neigh-

borhood of each of the nodes in part 𝑃𝑖 . Then, we sum up these

|𝑃𝑖 | sketches, yielding a sketch s𝑃𝑖 for the neighborhood of part 𝑃𝑖 .

To combine the sketches of the 𝑗 distinct parts, we now select a

random component proxy machine𝑀𝐶,𝑟 for the current component

𝐶 at round 𝑟 . Next, machine𝑀𝑖 sends s𝑃𝑖 to machine𝑀𝐶,𝑟 ; note that

this causes at most 𝑘 messages to be sent to the component proxy.
14

Finally, machine𝑀𝐶,𝑟 computes s𝐶 =
∑𝑗

𝑖=1
s𝑃𝑖 , and then uses s𝐶 to

sample an edge incident to some node in𝐶 , which, by construction,

is guaranteed to have its endpoint in a distinct component 𝐶′
.

At this point, each component proxy has sampled an inter-

component edge inducing the edges of a component graph C where

each vertex corresponds to a component. To enable the efficient

merging of components, the algorithm employs the distributed

random ranking technique of [6] to break up any long paths of C
into more manageable directed trees of depth O(log𝑛). To this end,
each component chooses a rank independently and uniformly at

random from [0, 1], and then (virtually) connects to its neighbor-

ing component (according to C) via a (conceptual) directed edge

if and only if the latter has a higher rank. This process results in

a collection of disjoint rooted trees, rooted at the node of highest

(local) rank.

The merging of the components of each tree T proceeds from

the leaves upward (in parallel for each tree). In the first merging

phase, each leaf 𝐶 𝑗 of T merges with its parent 𝐶′
by relabeling

the component labels of all of their nodes with the label of𝐶′
. Note

that the proxy 𝑀𝐶 𝑗
knows the labeling of 𝐶′

, as it has computed

the outgoing edge from a vertex in 𝐶 𝑗 to a vertex in 𝐶′
. Therefore,

machine𝑀𝐶 𝑗
sends the label of 𝐶 𝑗 to all the machines that hold a

part of𝐶 𝑗 . This can be done in parallel (for all leaves of all trees) in

˜O
(
𝑛/𝑘2

)
rounds. Repeating this merging procedure O(log𝑛) times,

guarantees that each tree has been merged to a single component.

Finally, it can be shown that O(log𝑛) repetitions of the above
process suffice to ensure that the components at the end of the last

phase correspond to the connected components of the input graph

𝐺 .

High computation cost of above algorithm. The main reason

for the high computation cost of the algorithm of [29] is the way

the algorithm computes the sketches. It uses the sketches of [17, 26]

which defines a vector ®𝑎𝑣 of length
(𝑛
2

)
for each node 𝑣 and, with

the appropriate choice of O(log2 𝑛) ×
(𝑛
2

)
matrix𝑀 , can be used to

sample edges. However, doing so requires Ω̃
(
𝑛2

)
local computation

time in order to evaluate𝑀 ®𝑎𝑣 .
Modification to achieve ˜O( (𝑚 +𝑛)/𝑘 + Δ + 𝑘) computation com-
plexity. The main change needed is, rather than using the sketches

13
Linear graph sketches require only 𝑂̃ (1) bits of shared randomness which costs

only so much local computation cost and round complexity[29].

14
This requires Θ̃(𝑛/𝑘 ) bits of shared randomness, which can be achieved by having

one machine generate required bits and subsequently broadcast them. This adds

𝑂̃ (𝑛/𝑘 ) to the local computation and 𝑂̃ (𝑛/𝑘2 ) to the round complexity [29].
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of [17, 26], we use the sketch of [19] (in particular, their TestOut

procedure) which also guarantees the same property, i.e., finding

an MOE with small communication cost. The local computation

cost of this procedure is essentially linear in the size of the com-

ponent. Rather than storing vectors of length

(𝑛
2

)
, these sketches

utilize an odd hash function. In essence, one of the machines (say the

leader machine) determines a hash function ℎ : 𝐸 → {0, 1} which
is then broadcast to the rest of the machines. The hash function

is very simple and requires choosing only two random numbers

of 𝑂 (1) bits[19]. Next each component uses this hash function to

find an MOE as follows. Each node in a component part evaluates∑
incident edges 𝑒 ℎ(𝑒) mod 2 and this sum is first aggregated among

the nodes in a component part by the corresponding machine and

then the sums of each part of the component is aggregated to the

corresponding component proxy machine. If the sum is 1, we con-

clude with some constant probability 𝜀 that an outgoing edge exists

out of the component [19]. By restricting the edges considered to

be those within some range [𝑖, 𝑗], we can (via a routine similar to

binary search) determine a minimum weight outgoing edge with

constant probability. By repeating this process Ω(log𝑛) times, we

are able to determine the MOE with high probability for a compo-

nent and by a union bound (over all components) determine the

MOE of each component with high probability.

By this modification, the local computation cost is linear in the

number of edges assigned to a machine, i.e.,
˜O( (𝑚 +𝑛)/𝑘 + Δ + 𝑘).

7 CONCLUSION
In this paper, we introduced the notion of local computation com-

plexity into the 𝑘-machine model. This notion is important to ana-

lyze the performance of large-scale computations in a distributed

model, since local computation cost can be a significant factor in

determining the overall (wall-clock) time needed for the algorithm

to finish.

To illustrate the importance of studying such a metric, we ana-

lyzed several algorithms in the 𝑘-machine model and showed that

algorithms with similar communication complexities may have

vastly different local computation complexities. Thus, we believe

that the use of this metric will help the community to better under-

stand the performance of distributed algorithms in practice.

As part of future work, we plan to implement the algorithms

that we analyze in this paper and study their performance in prac-

tice. As mentioned in Section 1, we have implemented 𝑘-machine

algorithms for PageRank using the MPI framework. We plan to do

a similar implementation of these algorithms.

It will be interesting to analyze 𝑘-machine algorithms (as well

as MPC algorithms) using this metric for other problems.
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A NODE DISTRIBUTION LEMMA PROOF
Proof. Partition the nodes into buckets 𝛽𝑖 , 1 ≤ 𝑖 ≤ 𝐵 = ⌈log𝑤max⌉+

1 based on weight as follows:

𝛽𝑖 =
{
𝑣 | 2𝑖−1 ≤ 𝑤 (𝑣) < 2

𝑖
}

and set 𝛽0 = {𝑣 | 0 ≤ 𝑤 (𝑣) < 1}. Furthermore, define 𝑛𝑖 = |𝛽𝑖 | and
let 𝐵 = ⌈log𝑤max⌉ + 1 denote the number of buckets.

Fix a machine and let M denote the set of nodes mapped to

it. Furthermore, fix a bucket 𝛽𝑖 =
{
𝑢1, 𝑢2, . . . , 𝑢𝑛𝑖

}
and define the

random variable 𝑋𝑖, 𝑗 as

𝑋𝑖, 𝑗 =

{
1 if 𝑢 𝑗 ∈ M
0 otherwise

Set 𝑋𝑖 =
∑𝑛𝑖

𝑗=1
𝑋𝑖, 𝑗 and note that E

[
𝑋𝑖, 𝑗

]
= 1

𝑘
, hence E[𝑋𝑖 ] =

𝑛𝑖
𝑘
.

Now, define

𝑊𝑖 =

𝑛𝑖∑︁
𝑗=1

𝑋𝑖, 𝑗𝑤 (𝑢 𝑗 )

i.e.,𝑊𝑖 denotes the total weight of nodes in bucket 𝛽𝑖 from machine

𝑀 , and note that

P
(
𝑊𝑖 > 𝑡2𝑖

)
≤ P(𝑋𝑖 > 𝑡)

Thus, taking 𝑡 = 6 E[𝑋𝑖 ] + 𝑐 log𝑛, we have

P
(
𝑊𝑖 > (6 E[𝑋𝑖 ] + 𝑐 log𝑛)2𝑖

)
≤ P(𝑋𝑖 > 6 E[𝑋𝑖 ] + 𝑐 log𝑛)

≤ 2
−(6 E[𝑋𝑖 ]+𝑐 log𝑛)

[27]

≤ 2
−6 E[𝑋𝑖 ] 1

𝑛𝑐

Now, notice that

𝐵∑︁
𝑖=0

(6 E[𝑋𝑖 ] + 𝑐 log𝑛)2𝑖 =
𝐵∑︁
𝑖=0

6 · 2𝑖 𝑛𝑖
𝑘

+ 𝑐 log𝑛
𝐵∑︁
𝑖=0

2
𝑖

≤ 12

𝑛∑︁
𝑖=1

𝑤𝑖

𝑘
+ 4𝑐 log𝑛 ·𝑤max

= 12𝑇avg + 4𝑐 log𝑛 ·𝑤max

Taking a union bound across all buckets, we have

P

(
𝐵∑︁
𝑖=0

𝑊𝑖 > 12𝑇avg + 4𝑐 log𝑛 · ℓmax

)
≤ P

(
𝐵∑︁
𝑖=0

𝑊𝑖 >

𝐵∑︁
𝑖=0

(6 E[𝑋𝑖 ] + 𝑐 log𝑛)2𝑖
)

≤ P
(
𝐵∑︁
𝑖=0

𝑋𝑖 >

𝐵∑︁
𝑖=0

6 E[𝑋𝑖 ] + 𝑐 log𝑛
)

≤
𝐵∑︁
𝑖=0

2
−6 E[𝑋𝑖 ] 1

𝑛𝑐

≤ 1

𝑘𝑛𝑎
for sufficiently large 𝑐

Taking union bound again across all machines, the probability that

any machine has total weight greater than 12𝑇avg+4𝑐 log𝑛 ·𝑤max is

bounded above by

∑𝑘
𝑖=1

1

𝑘𝑛𝑎
= 1/𝑛𝑎

. Thus, with probability at least
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1− 1/𝑛𝑎
, every machine has a total weight less than 12𝑇avg+4𝑐 log𝑛 · 𝑤max, i.e., all machines have total weight O

(
𝑇avg + log𝑛 ·𝑤max

)
with high probability. □
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