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Abstract

We propose a reinforcement learning approach with function approximation for

maximizing the power output of wind turbines (WTs). The optimal control of

wind turbines majorly uses the maximum power point tracking (MPPT) strategy

for sequential decision-making that can be modeled as a Markov decision process

(MDP). In the literature, the continuous control variables are typically discretized

to cope with the curse of dimensionality in traditional dynamic programming meth-

ods. To provide a more accurate prediction, we formulate the problem into an MDP

with continuous state and action spaces by utilizing the function approximation

in reinforcement learning. The commonly used pitch angle is selected as a control

variable we are concerned with, which is regarded as the system state along with

some other controllable and uncontrollable variables proven to affect the power

output. Computational studies of real data are conducted to demonstrate that the

proposed method outperforms the existing methods in the literature in obtaining

the optimal power output.

Keywords: Markov decision process; reinforcement learning; function approxi-

mation; optimal control, wind turbines.

1. Introduction

Wind energy is considered one of the promising alternative energy sources because it is

renewable, cost-effective, and environmentally friendly [1]. To effectively utilize wind energy
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under the ever-changing wind profile, it is imperative to optimally control the operations of

wind turbines [2, 3]. In this research, we propose to use a Markov decision process (MDP)

to model the optimal control problem of wind turbines, in which a reinforcement learning

(RL) algorithm with function approximation is applied to maximize the power output under

the stochastic wind profile.

As a competitive energy source, the growth of wind power capability is evidenced by its

drastic increase from 24GW to 591GW worldwide since 2001 [4]. According to the Global

Wind Energy Council [4], more than 50GW wind capacity has been installed annually since

2014. Along with the rapid growth of wind energy capacity, there is also an increase in the

size and power output of wind turbines, resulting from the economic advantages of large

wind turbines. The utility-scale wind turbines, starting from a height of 24 meters and an

output of 50kW, have become as large as 114-meter high with 5GW of power output [5].

The growing size of wind turbines makes this industry highly capital-sensitive, in which a

small fraction of the decrease in power output and operation time can lead to a significant

monetary loss. With the average price of electricity assumed to be around $0.1 per kWh [6],

even 1% energy loss on a 100MW wind turbine is estimated to reduce the annual revenue

by $307,500 [5]. In such a capital-intensive industry, owners of large wind turbines can

benefit greatly by optimizing the operation and maintenance of wind turbines. The active

optimal control is imperative for the cost-effective operation of wind turbines. For example,

megawatt-scale wind turbines with a variable speed become particularly attractive as their

operation can be actively controlled [7].

The optimal control of wind turbines can be majorly achieved by using the maximum

power point tracking (MPPT), which maximizes the power output when the wind profile

deviates within the operating range of the wind turbines [7]. In most optimization models

used in existing data-driven techniques, however, the power output is maximized at a single

time point, which is less practical due to the time lag between the observation of signals

and the implementation of optimal decisions. Moreover, such models fail to take into ac-

count the correlation between consecutive control decisions, making it difficult to satisfy the
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constraint on the maximum changing rate of control variables. As a sequential decision-

making procedure, the MPPT of wind turbines can naturally fit into the model of Markov

decision processes (MDPs). In this paper, we model the MPPT problem as an MDP where

the decision made at the current epoch is evaluated in the environment state at the next

epoch, capturing the correlation between consecutive control decisions over time (instead of

optimizing for a single time point).

Reinforcement learning is a modern MDP-solving process that approaches large MDPs

when exact methods become infeasible. Equipped with a set of modern approaches high-

lighted by techniques including temporal difference (TD) learning and function approxima-

tion, reinforcement learning can solve MDP problems where the underlying state-transition

dynamics is unknown or the state and action spaces are extremely large [8]. In our study, we

formulate the MPPT of WTs as an MDP problem that is solved using RL with function ap-

proximation, and then validate our approach on a real operational dataset. By utilizing the

function approximation technique, the state values or state-action values are approximated

using a function, and then we bootstrap from the previously approximated value functions to

carry out DP iterations. To train the model with historical data, a fitted Q-iteration is used

to solve the problem offline, which is important for online applications. Our proposed algo-

rithm is guaranteed to converge, while the existing ANN-based algorithms cannot guarantee

convergence.

When the state or action space is high-dimensional or continuous, it is difficult or im-

possible to evaluate a function at every possible state or state-action pair. To avoid this

problem, function approximation is a method to approximate the value or action value func-

tion with a parametric or nonparametric function [9]. In this paper, we explore different

function approximations such as the K nearest neighborhood regression, Gaussian process

regression, and kernel regression on the state-action value function, or the Q-function, to

find the optimal control rule with the undiscounted reward and an infinite horizon. A fitted

Q-iteration algorithm is implemented in the framework of off-policy reinforcement learning.

A case study on real operational data of wind turbines is conducted to show the capability of

3



the proposed method to maximize the power output. We also develop an evaluation model

to assess the results obtained from different function approximations and to show the supe-

riority of the obtained optimal control policy compared with the originally employed control

policy.

In summary, the main contributions of this paper are as follows:

• The MPPT problem is modeled as an MDP that captures the correlation between

consecutive control decisions over time (instead of optimizing for a single time point).

• The MDP problem with continuous state and action spaces is solved using reinforcement

learning with function approximation.

• We introduce a new model-free, offline fitted Q-iteration algorithm to solve the MDP

problem, which is guaranteed to converge.

• An evaluation model is developed to assess the results obtained from different function

approximations including the K nearest neighborhood regression, Gaussian process re-

gression, and kernel regression.

• We demonstrate the superiority of the proposed method to the current operating policy

using real operational data of wind turbines.

The remainder of the paper is arranged as follows. In Section 2, we extensively review the

literature on the existing approaches to MPPT followed by the elaboration of the research

gap we address. In Section 3, we start with the introduction of the physical mechanisms of

the wind turbines and then propose our RL-based MPPT model which maximizes the long-

term power output by adjusting the pitch angle. Section 4 contains the results we obtained

from analyzing the real operational data of wind turbines. In Section 5, we conclude our

research and discuss possible extensions and future studies.
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2. Literature Review

Different models and algorithms have been developed to optimize the power output in

the MPPT with various control variables, such as the linear regression with polynomial

features, and time-series models (e.g., Kalman filter) [10]. Before the implementation of the

supervisory control and data acquisition (SCADA) system, the maximization of the power

output is achieved by adjusting the rotor speed based on the power signal feedback [11].

With the recent deployment of the SCADA system [12], modern data-driven techniques

(e.g., ANN, support vector machine and Gaussian process) have been well utilized to model

and optimize the power output at each time point, along with other variables that are

continuously monitored [10, 13, 14]. However, existing methods fail to consider the time lag

between the observation of signals and the time of implementing the decision in controlling

turbines, which is critical especially when the elapsed time between the decision epochs is not

negligible. In addition, existing studies ignore the ever-changing stochastic wind profile that

crucially influences the operation of turbines. In this research, we address these limitations

by using a Markov decision process (MDP) to model the optimal control problem of wind

turbines, in which a reinforcement learning (RL) algorithm with function approximation is

applied to maximize the power output under the stochastic wind profile.

Existing literature has used the MDP to model the MPPT of wind turbines in which

the dynamic programming (DP) approach was applied with the discretization of the control

variables [15]. Dynamic programming has been developed as a solution to MDP problems

with discrete and finite state and action spaces [16], which use a table to represent all

state values (or state-action values) and are thus called tabular methods. DP methods can

also be applied to some extensions of the original MDPs, such as semi-MDPs and partially

observable MDPs [8]. Despite their higher efficiency than the exhaustive search over the

policy space, DP methods cannot handle large, high-dimensional or continuous state and

action spaces due to the “curse of dimensionality”. The drawback is not alleviated until the

recent introduction of reinforcement learning for solving the MDPs [9], which is also adopted
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in this research.

There is already existing research that approaches the MPPT problem under the context

of reinforcement learning [15, 17, 18]. To maximize the power output, Wei et al. used a

tabular Q-learning algorithm to control the tip speed ratio of the turbine by discretizing

the control variables [15], which inevitably introduces the discretization error. Wei et al.

further approached the problem with continuous input and output variables using an ANN

model-based Q-learning [17], which was later applied to yaw controlling by Saenz et al. [18].

The advanced actor-critic algorithm has been used for online pitch angle control [19, 20].

Although the ANN model-based Q-learning and the actor-critical algorithm performed well

in the simulation study, they heavily rely on the online training process that is not practical

in real-time applications. Consequently, these methods have not been applied to address

the issues with real data, where online training is not available and the system dynamics is

more complicated than the simulated environment. In this research, we propose to use the

model-free reinforcement learning that can be trained offline on existing operational data.

3. Methodology

The optimal control of wind turbines concerns periodically adjusting the controllable

variables (e.g., pitch angle, generator torque) according to the aerodynamic conditions (e.g.,

wind speed and direction) and the conditions of turbines monitored in real-time. It can be

approached by using reinforcement learning techniques, where the problem is formulated as a

Markov decision process. We first briefly introduce the physical mechanisms of wind turbines,

and then describe our methodology including the preliminaries of MDP and reinforcement

learning approaches with function approximation for maximizing the power output.

3.1 Physical Mechanisms of Wind Turbines

Wind turbines operate by capturing the kinetic energy in wind and transforming it into

mechanical power, which is then used to generate electric energy by spinning a generator.
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Wind turbines commonly consist of several main components including a rotor, a nacelle,

a yaw system, a pitch system and a tower. The rotor and the nacelle are mounted on top

of the tower, and the nacelle houses a set of gears and a generator [21]. The gears lie in

the gearbox which connects to the rotor and the generator by the low-speed shaft and the

high-speed shaft. The yaw system and the pitch system adjust the angles of the nacelle as

well as the rotor blades, respectively, to align with the changes in wind direction.

The rotor, the gearbox, the low-speed shaft, the high-speed shaft and the generator

together make up the drive train of the wind turbine. The drive train is the core component

of the wind turbine as it is involved in the whole process of converting the wind power to

the electric power. The rotor is made of the hub and the blades connected to it. When the

wind passes through the rotor, it drives the rotor blades and the low-speed shaft connected

to it to rotate. Then in the gearbox, the rotation of the low-speed shaft is converted to the

rotation of the high-speed shaft, which directly drives the generator and generates electricity

as it spins. To maximize the proportion of the wind power converted to the electric power,

we usually need to change the rotational speed of the rotor according to the wind speed and

adjust the pitch angle of the nacelle.

Figure 1: The power curve [22]

The relation between the power output of the WT and the wind speed can be briefly

represented by the power curve in Figure 1. When the wind speed is below the cut-in speed,
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vcut in, the wind turbine does not spin and generates no power. When the wind speed is larger

than vcut in, the generated power increases with the wind speed. When the wind speed is

between the rated wind speed, vrated, and the cut-off wind speed, vcut off , the power output

stays at the standard power output point, Prated. The wind turbine stops working when the

wind speed is higher than vcut off . An accurate formula describing the power output of a

wind turbine is [23, 5, 13, 2, 24]

P = PwindCp(λ, β) =
1

2
ρπR2v3Cp(λ, β) (1)

where Pwind is the theoretical wind power available to a turbine, ρ is the air density, R is the

rotor radius, and v is the wind speed before passing the rotor. Cp(λ, β) is the power coefficient

that evaluates the proportion of available wind power captured by the wind turbine, which

is a nonlinear function of the blade pitch angle β and the tip-speed ratio λ = ωrR/v with ωr

being the rotational speed of the rotor [13, 23, 24, 25, 1]. An empirical expression of Cp(λ, β)

proposed in the literature is [26, 24, 25]

Cp(λ, β) =
1

2
(λ− 0.022β2 − 5.6)e−0.17λ (2)

which is theoretically bounded by the Betz limit Cp,max = 0.593 [24]. Eq. (2) implies that we

can control the power output by controlling the pitch angle, β and the tip-speed ratio, λ. In

practice, the pitch angle can be changed directly for variable pitch wind turbines [1], while

the tip-speed ratio cannot be controlled directly and is often adjusted through the generator

torque [27]. As the generator torque control is often carried out by electrical-mechanical

feedback systems, we only investigate the control of pitch angle using the RL model in this

research [3].
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3.2 MDP and Reinforcement Learning

A stationary MDP is characterized by a quintuple {T ,S,As, p(·|s, a), r(s, a)} consisting

of a set of decision epochs T , a state space S, an action space As under state s, a stochastic

transition function p, and a reward function r [28]. At each decision epoch, an action available

for the current state s is selected and an instant reward r(s, a) is received. The probability

distribution of the next state p(·|s, a) completely depends on the current state and action,

which is a core assumption of MDPs.

In an MDP model, a controller or agent seeks to find a policy π : S → A, that maximizes

a certain value criterion related to the reward. A commonly used criterion is the expected

total discounted reward [28]

Jπ∞(s) = lim
h→∞

h∑
t=0

E
[
γtr(st, π(st))

∣∣s0 = s
]
, (3)

where γ is the discount factor. When the reward represents the revenue, it is proper to

choose γ as the reciprocal of the risk-free rate. Such a discounted reward is referred to as

the value function, or the V -function, of the state s under the policy π, denoted by vπ. The

goal of MDP is to find an optimal policy π∗ such that

vπ∗(s) ≥ vπ(s) ∀s ∈ S, π.

In most cases, we write vπ∗(s) as v∗(s) for brevity. The value function under the optimal

policy should satisfy the Bellman optimality equation, a central property of MDPs [9]:

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)].

In general, the optimization problem using the V -function is computationally intractable,

unless an explicit model is assumed. The machine learning approach usually does not make

any assumption about models. Instead, the problem is typically tackled using the state-
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action value function, or the Q-function defined as

qπ(s, a) = lim
h→∞

h∑
t=0

Eπ[γtr(st, π(st))|s0 = s, a0 = a].

The Bellman optimality equation characterizes the optimal q∗ when an optimal control

policy π∗ is achieved [9]

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)], (4)

where q∗ is defined as the optimal Q-function achieved at π∗.

In this research, we maximize the long-term average power output without the existence

of the discount factor as the average power output is what we are concerned about, which is

equivalent to maximizing the long-term average reward defined as [9]

Rπ(s) = lim
h→∞

1

h

h∑
t=0

E [r(st, π(st))|s0 = s] . (5)

The relationship between the expected total discounted reward Jπ∞(s) in Eq. (3) and the

long-term average reward Rπ
∞(s) in Eq. (5) is given by [9]

Jπ∞(s) =
1

1− γ
Rπ(s). (6)

Therefore, the results from modeling the MPPT of wind turbines as an MDP with a

discounted reward can be readily used to obtain the optimal control policy and the optimal

long-term average reward or power output.

3.3 MDP for WT Optimal Control

In this section, we formulate the MDP for the operation control problem of wind turbines,

including the state space, action space, and reward function. In the MDP formulation of

MPPT, actions are determined at fixed decision epochs given the state at the epoch. The
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wind profile, power output and control variables in the previous decision epoch can be

taken as the state of the current decision epoch, which is then used to determine the control

variables at the current decision epoch. The overall MDP framework for MPPT is illustrated

in Figure 2.

Figure 2: The MDP framework for MPPT.

The information collected from the SCADA system covers a wide range of variables, such

as the rotation speed of shafts and bearings, the vibration measurements of components,

the electrical measurements, the component temperature, and the wind speed and direction,

among others [12]. Among these variables, some of them are the physical states that can

be measured and controlled (e.g., the rotation speed of shafts and bearings, the pitch angle,

the vibration measurements of components and the electrical measurements), and other

variables are called the exogenous states that can be measured but are uncontrollable (e.g.,

the component temperature, the wind speed and direction). For the state space in our MDP,

we choose the ones that are closely related to the power output, namely, the pitch angle

representing the physical state, and the wind profile as the exogenous state [12]. The pitch

angle is selected because it affects the power coefficient in Eq. (2), while the wind profile

is selected as the wind speed directly determines the power output as shown in Eq. (1)

[13]. The current power output is included in our state space, due to the autocorrelation in

consecutive power output records [13].

Therefore, the state space of our MDP model is s = (s1, s2, s3, s4, s5) where s1 denotes
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the pitch angle measured in degrees, s2 is the generator torque in Nm, s3 is the average

wind speed in m/s, s4 is the corrected absolute wind direction in degrees, and s5 is the

power output in the previous epoch. For the action space, we only consider the pitch angle

denoted by a1, which represents the pitch angle in the next step in degrees. To avoid the

discretization error, all the variables in the state and action spaces are kept continuous

as they are measured, instead of being discretized, which is achieved by applying function

approximation to the state-action value function.

MPPT aims to maximize the power output in the long term. Therefore, for each action,

the reward is measured by the average power output generated in the next epoch. For the

control of wind turbines, it is not practical to change the pitch angle constantly in time,

since it can cause the machine subject to unnecessary stress. Therefore, we consider that

control actions are taken at discrete times, e.g., every hour, every day. In this study, the

decision epoch is chosen to be one hour to balance between timely adjusting control variables

and preventing excessive stress on equipment. Our RL model is a model-free method, which

means we do not rely on the transition function p(·|s, a) and the reward function r(s, a, s′)

to carry out the optimization. Instead, we use sample transitions in the dataset and the

instant reward is defined as the power output at the next decision epoch r(t) = s5(t+ 1).

3.4 Reinforcement Learning with Function Approximation

As both state space and action space are continuous, we consider using function approx-

imation in reinforcement learning, where the Q-function is approximated. The method we

introduce is also an offline learning method, which is important for capital intensive indus-

tries such as wind turbines because online training will be too expensive. In this approach,

the state-action function, or Q-function Q(s, a) receives continuous state and action values,

instead of a table of values on finite state-action pairs. This setting allows us to keep the con-

tinuous sensor data and avoid the discretization error when estimating Q(s, a) from existing

samples.

One of the most straightforward algorithms to handle the approximated Q-function is

12



the fitted Q-iteration algorithm [29]. In the fitted Q-iteration, the approximation function

can be in any form that approximates the state-action value function Q̂ : S × A → R. The

algorithm assumes a greedy policy, given a training set (si, ai, ri, s
′
i) for i = 1, . . . , N . In

each iteration, we first estimate the Q-function for each training quadruple from the current

approximation according to the Bellman equation

qi ← ri + γmax
a∈A

Q̂(s′i, a), (7)

where γ is the discount factor. Then we update the function approximation with the new

estimated Q-function value qi for the training set. This process can be viewed as an operator

Ĥ imposed on the function approximation Q̂:

Q̂n+1 = ĤQ̂n. (8)

When Q̂ is in the form of a kernel regression described in Table 1 with the same kernel in

each iteration, Ĥ is a contraction on the Banach space defined over S×A and the supremum

norm, which guarantees Q̂ to converge to a unique fixed point of Ĥ [29]. The whole algorithm

is described in Algorithm 1.

Algorithm 1: Fitted Q Iteration Algorithm [29]

Input The observation set D = {(si, ai, ri, s′i)}Ni=1, and the maximum number of iterations MaxIter.

Initialization: n← 0, Q̂0(s, a) ≡ 0.
while n < MaxIter and Q̂n(s, a) does not converge, do

n← n+ 1.
qi ← ri + γmax

a∈A
Q̂n(s′i, a) for i = 1, . . . , N .

Obtain Q̂n+1(si, a) according to qi, for i = 1, . . . n.

Output The optimal Q-function Q̂(s, a|θ∗).

Since qi in Eq. (7) is essentially the Bellman optimality equation in Eq. (4) at the sample

transition (si, ai, ri, s
′
i), the unique fixed point for Ĥ is also the unique solution to the Bellman

optimality equation in (4). Therefore, the algorithm can find the policy that maximizes Jπ∞(s)

[29]. In the discounted case with an infinite horizon, the algorithm converges to the optimal
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policy that is a stationary point of the Bellman equation for qualified models. The detailed

conditions are described in [9]. We can do the fitted Q-iteration according to Eq. (6) to

reach the optimal policy and calculate the optimal long-term average reward. The choice of

the discounted factor γ is validated in our numerical experiment.

3.5 Kernel Regression Function Approximation

The crucial element of the aforementioned fitted Q-iteration algorithm is the function

approximation Q̂. Without other restrictions, Q̂ can take any parametric or non-parametric

form, ranging from regression, and kernel models, to neural networks. However, when we

switch from a tabular Q to function approximation Q̂, the convergence property is no longer

guaranteed for most forms of Q̂ and their performances vary in terms of speed, stability

and optimality. In our case, a kernel regression is adopted for its guaranteed convergence

property, which is essential for estimating Q̂ [30]. Theoretically, we can prove that the

algorithm converges to Q̂(s, a; θ∗) if it satisfies [30, 29]

Q(s, a) =

∑N
i=1 k((s, a), (si, ai))Q(si, ai)∑N

i=1 k((s, a), (si, ai))
.

The function approximation Q(s, a) of this form is called kernel regression, and k(x, xi)

is the kernel function.

In general, consider samples {(xi, yi)}Ni=1, the kernel regression function mN(x) takes the

form [31]

mn(x) =

∑n
i=1 yik (x, xi)∑n
i=1 k (x, xi)

,

where k : Rd × Rd → [0,∞) is the kernel function we mentioned above. Common kernel

functions include the uniform kernel, Epanechnikov kernel [32], Gaussian kernel, quadratic

kernel [33] and tricube kernel [34]. In this research, we compare the performance of four

different kernel functions for the function approximation: linear kernel, Laplacian kernel,

Gaussian kernel, and quadratic kernel. The formulas of these kernels are given in Table
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2. For the Gaussian kernel in the table, the parameter u = ‖xi − xj‖2/h where h is the

bandwidth of the kernel. When it comes to a kernel that is a function of u, it requires such

a bandwidth that can be selected using Scott’s rule of thumb [35].

In addition to these four kernels, we also consider the K-nearest neighborhood regression

(KNN) and the linear regression as kernel regressions in the function approximation. Al-

though different model selection and bandwidth selection methods exist for kernel regressions

[36, 37], we can only compare our final fitted Q-iteration results because we have no sample

for the true value of Q(s, a).

Name Formula

Linear kernel k(xi, xj) = xTi xj

Laplacian kernel k(xi, xj) = − exp(‖xi − xj‖1)

Gaussian kernel k(xi, xj) = 1√
2π
e−

1
2u

2

Quadratic kernel k(xi, xj) = (γxTi xj + 1)2

Table 1: Kernels considered in function approximation [32, 33, 36, 37]

4. Case Studies

4.1 Data Description

In this research, we consider the Senvion MM82 2.05MW wind turbines that have large

turbines with a rotor diameter of 82m and a hub height of 80m [38]. The technical speci-

fications for this turbine indicate that the allowed wind speed lies between the cut-in wind

speed of 3.5 mph and the cut-off wind speed of 25 mph, i.e., s3 ∈ (3.5, 25) [38]. Although the

ranges for other variables are not provided in the technical specifications, they can be esti-

mated from historical data. The pitch angle ranges from -1 to 92.5 degrees in the dataset,

i.e., s1 ∈ [−1, 92.5]. The generator torque can be as low as zero when the wind speed is

low, and it usually does not go beyond 6,000Nm, i.e., s2 ∈ [0, 6000]. Finally, the wind can

come from any direction and we have s4 ∈ [0, 360]. As the power output should not exceed
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2,050kW, we have s5 ∈ [0, 2050]. The range of action a1 is specified according to the current

state to make sure that the next state lies in the normal range.

The SCADA data we analyzed in this research were collected by ENGIE at the La Haute

Borne wind farm located in Meuse, France for 25,000 hours [39]. Specifically, we selected four

turbines with the ID numbers R80711, R80721, R80736 and R80790. Due to the storage

and IO limit, we are only able to access the maximum, minimum, and average values of

the signals in a 10-minute interval, although the original data were collected at a higher

frequency.

During the operations of wind turbines, it is not practical to take real-time actions that

constantly change the control variables, due to machine stress induced by the adjustment.

Therefore, we use one hour as the decision epoch in this research and take the average value

in a one-hour interval as the observed value for each variable.

4.2 Preliminary Analysis

A preliminary analysis is conducted on the WT operation data to help select the training

data and the control variables. We first analyze and visualize some SCADA variables that

are related to the physical model including the power output, the power coefficient, and the

generator torque. According to Eq. (1), we can calculate the theoretical power available to

the turbine, Pwind, where the air density, ρ, is approximately 1.175kg/m3 at 411m above the

sea level. The power output P , the wind power Pwind and the power coefficient Cp(λ, β) are

plotted for a sample window of 450 hours in Figure 3. As shown in Figure 3, the power output

P is below the available wind power, Pwind, and the power coefficient lies in a reasonable

range below the Betz’s limit, which indicates the validity of the dataset.

Then we investigate the relationship between the wind speed and the power output of the

whole dataset to verify the dataset for our study. As shown in Figure 4, at some time points

such as the range between around 20,000 hours and 24,500 hours, the power output keeps

zero where the wind speed is normal. It is reasonable to assume that the corresponding

turbine was not operating during those time points. Therefore, we exclude these data from
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Figure 3: The wind power, power output and power coefficient in a sample window of 450 hours

our analysis and modeling.

4.3 Evaluation Model

As different forms of function approximation in the fitted Q-iteration may give us different

results in terms of the optimal control policies and the power output, we need an approach

to evaluate the performance of different RL models developed with different function ap-

proximations. The power output can also serve as the reward function r(s, a, s′) in our MDP

model, which evaluates the instant reward based on the full state transition. Without access

to wind turbines, we decide to develop an independent model to evaluate their performance

which can be described as

f = f(s1, s3, s4, s5, a1, s
′
3, s
′
4).
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Figure 4: v3 and power output of the whole dataset

Rather than the Q function that only depends on the current state and action, our

evaluation model also takes into account the wind profiles at the next decision epoch which

is not available in a control model. The model for performance evaluation uses the wind

profile at time t to predict the power output at time t. According to [13], a good model can be

obtained with the aforementioned predictors with an artificial neural network (ANN) model.

Then with the evaluation model, we can evaluate the performance based on the existing

operational data without simulation on real turbines using our new control policy. We

considered linear regression, random forest, Gaussian process regression, KNN and multilayer

perceptron when selecting an evaluation model. The final evaluation model will be chosen

according to its out-of-sample predictive power.

After the preliminary analysis, we continue to develop a reliable model for evaluating our

results. We intend to select an appropriate evaluation model that has the best predictive

performance on the power output. Particularly, we use the first 80% sample data as our

training data, and the modeling performance is evaluated on the last 20% test data. We

consider four metrics of the test data to measure the predictive performance, namely, the

mean squared error (MSE), mean absolute error (mean AE), maximum absolute error (max

18



AE) and minimum absolute error (min AE). In order to predict P (t), the power output

at time t, the inputs of our model include the wind speed and direction at t and t − 1,

v(t), v(t− 1), αω(t), αω(t− 1), the pitch angle at t and t− 1, αp(t), αp(t− 1), and the power

output at t, P (t− 1). As given in Eq. (1), we also include v3(t) and v3(t− 1) in the analysis

which proves to improve the results significantly. The performance of linear regression (LR),

k-nearest neighborhood (KNN), random forest (RF), Gaussian process regression (GPR)

and multi-layer perceptron (MLP) is listed in Table 2. For Gaussian process regression,

we considered different basis functions and kernel functions. Among these models, the GPR

without the v3 feature achieves the best result in almost all metrics. It achieves the least MSE

which is half as much as that of the RF mode. It also obtains the least mean AE and Max

AE which indicates the high robustness of the model. The selected GPR model is a Gaussian

process over the predictors with a constant mean β = 672.56 and an radial basis function

kernel k(s, s′) = σ2
f exp (−‖s− s′‖2/(2σ2

l )), whose kernel parameters are σl = 3594.68 and

σf = 2089.41.

Predictors Model MSE Mean AE Max AE Min AE

No v3

LR 197.74 10.97 94.88 0.0057
KNN(k=4) 84.04 6.36 117.55 0.00043

GPR(constant basis, rbf ker) 22.19 3.21 39.90 0.0020
RF(n=93) 45.24 4.71 45.18 0.000002

3-hidden layer of size 100 MLP 574.96 14.56 166.06 0.0047

With v3

LR 197.543 11.01 91.62 0.0013
KNN(k=4) 87.13 6.32 117.55 0.0017

GPR(constant basis, matern52 ker) 23.12 3.25 48.77 0.00037
RF(n=12) 46.04 4.72 51.23 0.005

3-hidden layer of size 100 MLP 190.34 9.79 125.18 0.0099

Table 2: Out-of-sample performance of the evaluation models

4.4 Fitted Q-Iteration Results

To verify whether the linear model is appropriate for our function approximation, we

start with conducting fitted Q-iterations with different values of γ by using a linear model

in this experiment. As the sum of the absolute change in qi, the convergence threshold

does not exceed 1,000. When γ = 0.4, 0.6 and 0.8, the estimated long-term average rewards

obtained in Eq. (5) are 465.31 kW, 467.40 kW and 468.00 kW, respectively. The results are
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Figure 5: The optimal power output and optimal control (linear kernel)

about a few kilowatts higher than the observed average reward of 460.11kW. The optimal

action is to minimize the pitch angle (-1), which is a natural optimal condition for a linear

model. However, under this control policy, the mean average power output is smaller than

the original power output, which indicates that the linear model is not appropriate for our

function approximation.

We then carry out the fitted Q-iteration algorithm on the aforementioned function ap-

proximation in Table 1 including Gaussian kernel regression, Laplacian kernel regression,

linear kernel regression, quadratic kernel ridge regression (KRR) and KNN. A snapshot of

the optimal power output and optimal control is shown for each of the five kernels in Figure

5-9, respectively. In the figures, the x-axis denotes the time step in hours. The y-axis is the

angle in degrees for the pitch angle, and the original and the optimal power output given by

our evaluation model.

For comparison, the corresponding optimal average power outputs calculated using our

evaluation model are shown in Table 3, where the reference average power output is the

original average power output of 460.11 kW. The percentage of improvement is also provided

in the last column of Table 3. From the last column, we can see that the optimal policies
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Figure 6: The optimal power output and optimal control (Gaussian kernel)
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Figure 7: The optimal power output and optimal control (Laplacian kernel)
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Figure 8: The optimal power output and optimal control (Quadratic kernel)
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Figure 9: The optimal power output and optimal control (KNN regressor with k = 4)
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Predictor Optimal Average Power Output (kW) Improvement(%)
KRR with linear kernel 509.93 10.83

KRR with Gaussian kernel 460.12 0.002
KRR with Laplacian kernel 459.81 -0.065
KRR with Quadratic kernel 460.48 0.080

KNN when k=4 469.36 2.01
Reference 460.11 -

Table 3: Results from Different Predictors of Function Approximation

obtained by the fitted Q-iteration with most function approximation predictors have higher

average power output than the reference value of 460.11kW, except for the one from the KRR

with Laplacian kernel. Overall, KRR function approximations with Gaussian, Laplacian

and Quadratic kernels provide nearly the same results as the reference. This is due to

their tendency to make the same control decision as the training data that can be seen from

Figure 6-8. The KRR function approximation with a linear kernel shows the most significant

improvement in the optimal average power output, and the KNN function approximation

also improves the power output. Meanwhile, these two function approximation predictors

provide more radical optimal policies, judging from Figure 5 and Figure 9. The benefit of

KNN and KRR with linear kernel can be explained by their relatively simple structures,

which prevent them from the local optima during the optimization steps. In conclusion, a

linear kernel should be adopted in the MPPT problem.

5. Discussion and Conclusions

In this research, we maximize the power output of wind turbines under the stochastic

wind profile by formulating the problem as a Markov decision process with continuous state

and action spaces. As exact methods become infeasible for the large MDPs, we utilize the

function approximation in reinforcement learning to overcome the curse of dimensionality

of DP methods. In computational studies using real data, we derive the optimal control

policy of the pitch angle by applying the fitted Q-iteration algorithm to the MPPT task of

operating wind turbines with a linear kernel. We also use a GPR model for evaluating our

results of MDP using all available information, which achieves a high precision in predicting
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the power output compared with previous results using the ANN. The evaluation model

demonstrates the superiority of the optimal control policy obtained by our RL algorithm.

The proposed algorithms using the KNN function approximation and the KRR function

approximation with a linear kernel achieve 2% and 10% improvement on the optimal average

power output over the operational records, respectively, which is competitive compared with

the existing methods on power output [13, 14]. Considering that the existing methods do not

take account of the lag between the observation of signals and the time of implementing the

decision in controlling turbines, the performance of the proposed method has demonstrated

its practical benefits compared with previous methods.

One issue with the MDP formulation lies in the delay in the consecutive decision-making

and control embedded in the model, as the control variables in the next decision epoch are

determined based on the state at the current decision epoch. For future research, we can

generalize the reinforcement learning to the online version with policy gradient techniques,

if the experimental wind turbines are accessible or a system dynamics model is available [9].

Furthermore, instead of the linear model, more complex models can be used for function

approximation, such as non-linear models, supervised learning, or a neural network method.
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