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Abstract

We propose a reinforcement learning approach with function approximation for
maximizing the power output of wind turbines (WTs). The optimal control of
wind turbines majorly uses the maximum power point tracking (MPPT) strategy
for sequential decision-making that can be modeled as a Markov decision process
(MDP). In the literature, the continuous control variables are typically discretized
to cope with the curse of dimensionality in traditional dynamic programming meth-
ods. To provide a more accurate prediction, we formulate the problem into an MDP
with continuous state and action spaces by utilizing the function approximation
in reinforcement learning. The commonly used pitch angle is selected as a control
variable we are concerned with, which is regarded as the system state along with
some other controllable and uncontrollable variables proven to affect the power
output. Computational studies of real data are conducted to demonstrate that the
proposed method outperforms the existing methods in the literature in obtaining

the optimal power output.
Keywords: Markov decision process; reinforcement learning; function approxi-

mation; optimal control, wind turbines.

1. Introduction

Wind energy is considered one of the promising alternative energy sources because it is

renewable, cost-effective, and environmentally friendly [1]. To effectively utilize wind energy
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under the ever-changing wind profile, it is imperative to optimally control the operations of
wind turbines [2, 3]. In this research, we propose to use a Markov decision process (MDP)
to model the optimal control problem of wind turbines, in which a reinforcement learning
(RL) algorithm with function approximation is applied to maximize the power output under
the stochastic wind profile.

As a competitive energy source, the growth of wind power capability is evidenced by its
drastic increase from 24GW to 591GW worldwide since 2001 [4]. According to the Global
Wind Energy Council [4], more than 50GW wind capacity has been installed annually since
2014. Along with the rapid growth of wind energy capacity, there is also an increase in the
size and power output of wind turbines, resulting from the economic advantages of large
wind turbines. The utility-scale wind turbines, starting from a height of 24 meters and an
output of 50kW, have become as large as 114-meter high with 5GW of power output [5].
The growing size of wind turbines makes this industry highly capital-sensitive, in which a
small fraction of the decrease in power output and operation time can lead to a significant
monetary loss. With the average price of electricity assumed to be around $0.1 per kWh [6],
even 1% energy loss on a 100MW wind turbine is estimated to reduce the annual revenue
by $307,500 [5]. In such a capital-intensive industry, owners of large wind turbines can
benefit greatly by optimizing the operation and maintenance of wind turbines. The active
optimal control is imperative for the cost-effective operation of wind turbines. For example,
megawatt-scale wind turbines with a variable speed become particularly attractive as their
operation can be actively controlled [7].

The optimal control of wind turbines can be majorly achieved by using the maximum
power point tracking (MPPT), which maximizes the power output when the wind profile
deviates within the operating range of the wind turbines [7]. In most optimization models
used in existing data-driven techniques, however, the power output is maximized at a single
time point, which is less practical due to the time lag between the observation of signals
and the implementation of optimal decisions. Moreover, such models fail to take into ac-

count the correlation between consecutive control decisions, making it difficult to satisfy the



constraint on the maximum changing rate of control variables. As a sequential decision-
making procedure, the MPPT of wind turbines can naturally fit into the model of Markov
decision processes (MDPs). In this paper, we model the MPPT problem as an MDP where
the decision made at the current epoch is evaluated in the environment state at the next
epoch, capturing the correlation between consecutive control decisions over time (instead of
optimizing for a single time point).

Reinforcement learning is a modern MDP-solving process that approaches large MDPs
when exact methods become infeasible. Equipped with a set of modern approaches high-
lighted by techniques including temporal difference (TD) learning and function approxima-
tion, reinforcement learning can solve MDP problems where the underlying state-transition
dynamics is unknown or the state and action spaces are extremely large [8]. In our study, we
formulate the MPPT of WTs as an MDP problem that is solved using RL with function ap-
proximation, and then validate our approach on a real operational dataset. By utilizing the
function approximation technique, the state values or state-action values are approximated
using a function, and then we bootstrap from the previously approximated value functions to
carry out DP iterations. To train the model with historical data, a fitted Q-iteration is used
to solve the problem offline, which is important for online applications. Our proposed algo-
rithm is guaranteed to converge, while the existing ANN-based algorithms cannot guarantee
convergence.

When the state or action space is high-dimensional or continuous, it is difficult or im-
possible to evaluate a function at every possible state or state-action pair. To avoid this
problem, function approximation is a method to approximate the value or action value func-
tion with a parametric or nonparametric function [9]. In this paper, we explore different
function approximations such as the K nearest neighborhood regression, Gaussian process
regression, and kernel regression on the state-action value function, or the Q-function, to
find the optimal control rule with the undiscounted reward and an infinite horizon. A fitted
Q-iteration algorithm is implemented in the framework of off-policy reinforcement learning.

A case study on real operational data of wind turbines is conducted to show the capability of



the proposed method to maximize the power output. We also develop an evaluation model
to assess the results obtained from different function approximations and to show the supe-
riority of the obtained optimal control policy compared with the originally employed control
policy.

In summary, the main contributions of this paper are as follows:

e The MPPT problem is modeled as an MDP that captures the correlation between

consecutive control decisions over time (instead of optimizing for a single time point).

e The MDP problem with continuous state and action spaces is solved using reinforcement

learning with function approximation.

e We introduce a new model-free, offline fitted Q-iteration algorithm to solve the MDP

problem, which is guaranteed to converge.

e An evaluation model is developed to assess the results obtained from different function
approximations including the K nearest neighborhood regression, Gaussian process re-

gression, and kernel regression.

e We demonstrate the superiority of the proposed method to the current operating policy

using real operational data of wind turbines.

The remainder of the paper is arranged as follows. In Section 2, we extensively review the
literature on the existing approaches to MPPT followed by the elaboration of the research
gap we address. In Section 3, we start with the introduction of the physical mechanisms of
the wind turbines and then propose our RL-based MPPT model which maximizes the long-
term power output by adjusting the pitch angle. Section 4 contains the results we obtained
from analyzing the real operational data of wind turbines. In Section 5, we conclude our

research and discuss possible extensions and future studies.



2. Literature Review

Different models and algorithms have been developed to optimize the power output in
the MPPT with various control variables, such as the linear regression with polynomial
features, and time-series models (e.g., Kalman filter) [10]. Before the implementation of the
supervisory control and data acquisition (SCADA) system, the maximization of the power
output is achieved by adjusting the rotor speed based on the power signal feedback [11].
With the recent deployment of the SCADA system [12], modern data-driven techniques
(e.g., ANN, support vector machine and Gaussian process) have been well utilized to model
and optimize the power output at each time point, along with other variables that are
continuously monitored [10, 13, 14]. However, existing methods fail to consider the time lag
between the observation of signals and the time of implementing the decision in controlling
turbines, which is critical especially when the elapsed time between the decision epochs is not
negligible. In addition, existing studies ignore the ever-changing stochastic wind profile that
crucially influences the operation of turbines. In this research, we address these limitations
by using a Markov decision process (MDP) to model the optimal control problem of wind
turbines, in which a reinforcement learning (RL) algorithm with function approximation is
applied to maximize the power output under the stochastic wind profile.

Existing literature has used the MDP to model the MPPT of wind turbines in which
the dynamic programming (DP) approach was applied with the discretization of the control
variables [15]. Dynamic programming has been developed as a solution to MDP problems
with discrete and finite state and action spaces [16], which use a table to represent all
state values (or state-action values) and are thus called tabular methods. DP methods can
also be applied to some extensions of the original MDPs, such as semi-MDPs and partially
observable MDPs [8]. Despite their higher efficiency than the exhaustive search over the
policy space, DP methods cannot handle large, high-dimensional or continuous state and
action spaces due to the “curse of dimensionality”. The drawback is not alleviated until the

recent introduction of reinforcement learning for solving the MDPs [9], which is also adopted



in this research.

There is already existing research that approaches the MPPT problem under the context
of reinforcement learning [15, 17, 18]. To maximize the power output, Wei et al. used a
tabular Q-learning algorithm to control the tip speed ratio of the turbine by discretizing
the control variables [15], which inevitably introduces the discretization error. Wei et al.
further approached the problem with continuous input and output variables using an ANN
model-based Q-learning [17], which was later applied to yaw controlling by Saenz et al. [18].
The advanced actor-critic algorithm has been used for online pitch angle control [19, 20].
Although the ANN model-based Q-learning and the actor-critical algorithm performed well
in the simulation study, they heavily rely on the online training process that is not practical
in real-time applications. Consequently, these methods have not been applied to address
the issues with real data, where online training is not available and the system dynamics is
more complicated than the simulated environment. In this research, we propose to use the

model-free reinforcement learning that can be trained offline on existing operational data.

3. Methodology

The optimal control of wind turbines concerns periodically adjusting the controllable
variables (e.g., pitch angle, generator torque) according to the aerodynamic conditions (e.g.,
wind speed and direction) and the conditions of turbines monitored in real-time. It can be
approached by using reinforcement learning techniques, where the problem is formulated as a
Markov decision process. We first briefly introduce the physical mechanisms of wind turbines,
and then describe our methodology including the preliminaries of MDP and reinforcement

learning approaches with function approximation for maximizing the power output.

3.1 Physical Mechanisms of Wind Turbines

Wind turbines operate by capturing the kinetic energy in wind and transforming it into

mechanical power, which is then used to generate electric energy by spinning a generator.



Wind turbines commonly consist of several main components including a rotor, a nacelle,
a yaw system, a pitch system and a tower. The rotor and the nacelle are mounted on top
of the tower, and the nacelle houses a set of gears and a generator [21]. The gears lie in
the gearbox which connects to the rotor and the generator by the low-speed shaft and the
high-speed shaft. The yaw system and the pitch system adjust the angles of the nacelle as
well as the rotor blades, respectively, to align with the changes in wind direction.

The rotor, the gearbox, the low-speed shaft, the high-speed shaft and the generator
together make up the drive train of the wind turbine. The drive train is the core component
of the wind turbine as it is involved in the whole process of converting the wind power to
the electric power. The rotor is made of the hub and the blades connected to it. When the
wind passes through the rotor, it drives the rotor blades and the low-speed shaft connected
to it to rotate. Then in the gearbox, the rotation of the low-speed shaft is converted to the
rotation of the high-speed shaft, which directly drives the generator and generates electricity
as it spins. To maximize the proportion of the wind power converted to the electric power,
we usually need to change the rotational speed of the rotor according to the wind speed and

adjust the pitch angle of the nacelle.
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Figure 1: The power curve [22]

The relation between the power output of the WT and the wind speed can be briefly

represented by the power curve in Figure 1. When the wind speed is below the cut-in speed,



Veut in, the wind turbine does not spin and generates no power. When the wind speed is larger
than vey in, the generated power increases with the wind speed. When the wind speed is
between the rated wind speed, v,qtcq, and the cut-off wind speed, veys o, the power output
stays at the standard power output point, P,.q. The wind turbine stops working when the
wind speed is higher than v., ors. An accurate formula describing the power output of a

wind turbine is [23, 5, 13, 2, 24]

P = PuinaCp(\, B) = %pﬂ'RQ?Jng(/\, B) (1)

where P,;,q is the theoretical wind power available to a turbine, p is the air density, R is the
rotor radius, and v is the wind speed before passing the rotor. C, (A, 3) is the power coefficient
that evaluates the proportion of available wind power captured by the wind turbine, which
is a nonlinear function of the blade pitch angle 8 and the tip-speed ratio A = w, R/v with w,
being the rotational speed of the rotor [13, 23, 24, 25, 1]. An empirical expression of C,(\, /5)

proposed in the literature is [26, 24, 25]

C,(\, B) = %()\ —0.0228% — 5.6)e %17A (2)

which is theoretically bounded by the Betz limit C), ;0. = 0.593 [24]. Eq. (2) implies that we
can control the power output by controlling the pitch angle, 5 and the tip-speed ratio, A. In
practice, the pitch angle can be changed directly for variable pitch wind turbines [1], while
the tip-speed ratio cannot be controlled directly and is often adjusted through the generator
torque [27]. As the generator torque control is often carried out by electrical-mechanical
feedback systems, we only investigate the control of pitch angle using the RL model in this

research [3].



3.2 MDP and Reinforcement Learning

A stationary MDP is characterized by a quintuple {7, S, As, p(:|s,a),r(s,a)} consisting
of a set of decision epochs T, a state space S, an action space A, under state s, a stochastic
transition function p, and a reward function r [28]. At each decision epoch, an action available
for the current state s is selected and an instant reward r(s, a) is received. The probability
distribution of the next state p(:|s,a) completely depends on the current state and action,
which is a core assumption of MDPs.

In an MDP model, a controller or agent seeks to find a policy 7 : S — A, that maximizes
a certain value criterion related to the reward. A commonly used criterion is the expected

total discounted reward [28]

J5(s) = }LILHQOZE htr(st, W(st))‘so = s} , (3)

where v is the discount factor. When the reward represents the revenue, it is proper to
choose ~ as the reciprocal of the risk-free rate. Such a discounted reward is referred to as
the value function, or the V-function, of the state s under the policy 7, denoted by v,. The

goal of MDP is to find an optimal policy 7* such that
Ve (s) > va(s) VseS,m.

In most cases, we write v, (s) as v.(s) for brevity. The value function under the optimal

policy should satisfy the Bellman optimality equation, a central property of MDPs [9]:
v.(8) = max Zp(s’, rls, a)[r + yv.(s)].

In general, the optimization problem using the V-function is computationally intractable,
unless an explicit model is assumed. The machine learning approach usually does not make

any assumption about models. Instead, the problem is typically tackled using the state-



action value function, or the @-function defined as

h
¢r(s,a) = lim Ex[v'r(se, m(s¢))|s0 = 5,00 = a.

h— 00
t=0

The Bellman optimality equation characterizes the optimal ¢, when an optimal control

policy 7* is achieved [9]

(5.0) = 3 0l rls, @)l + y maxa. (', ), @)

s'r

where ¢, is defined as the optimal ()-function achieved at 7*.
In this research, we maximize the long-term average power output without the existence
of the discount factor as the average power output is what we are concerned about, which is

equivalent to maximizing the long-term average reward defined as [9]

h
1
R™(s) = h_)oo 5 z; r(se, m(st))|s0 = 8] (5)

The relationship between the expected total discounted reward JZ (s) in Eq. (3) and the

long-term average reward RZ (s) in Eq. (5) is given by [9]

Joo(8) = T——R"(s). (6)

Therefore, the results from modeling the MPPT of wind turbines as an MDP with a
discounted reward can be readily used to obtain the optimal control policy and the optimal

long-term average reward or power output.

3.3 MDP for WT Optimal Control

In this section, we formulate the MDP for the operation control problem of wind turbines,
including the state space, action space, and reward function. In the MDP formulation of

MPPT, actions are determined at fixed decision epochs given the state at the epoch. The
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wind profile, power output and control variables in the previous decision epoch can be
taken as the state of the current decision epoch, which is then used to determine the control
variables at the current decision epoch. The overall MDP framework for MPPT is illustrated

in Figure 2.
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Figure 2: The MDP framework for MPPT.

The information collected from the SCADA system covers a wide range of variables, such
as the rotation speed of shafts and bearings, the vibration measurements of components,
the electrical measurements, the component temperature, and the wind speed and direction,
among others [12]. Among these variables, some of them are the physical states that can
be measured and controlled (e.g., the rotation speed of shafts and bearings, the pitch angle,
the vibration measurements of components and the electrical measurements), and other
variables are called the exogenous states that can be measured but are uncontrollable (e.g.,
the component temperature, the wind speed and direction). For the state space in our MDP,
we choose the ones that are closely related to the power output, namely, the pitch angle
representing the physical state, and the wind profile as the exogenous state [12]. The pitch
angle is selected because it affects the power coefficient in Eq. (2), while the wind profile
is selected as the wind speed directly determines the power output as shown in Eq. (1)
[13]. The current power output is included in our state space, due to the autocorrelation in
consecutive power output records [13].

Therefore, the state space of our MDP model is s = (s1, 9, S3, S4, S5) where s; denotes

11



the pitch angle measured in degrees, ss is the generator torque in Nm, s3 is the average
wind speed in m/s, s is the corrected absolute wind direction in degrees, and ss is the
power output in the previous epoch. For the action space, we only consider the pitch angle
denoted by ay, which represents the pitch angle in the next step in degrees. To avoid the
discretization error, all the variables in the state and action spaces are kept continuous
as they are measured, instead of being discretized, which is achieved by applying function
approximation to the state-action value function.

MPPT aims to maximize the power output in the long term. Therefore, for each action,
the reward is measured by the average power output generated in the next epoch. For the
control of wind turbines, it is not practical to change the pitch angle constantly in time,
since it can cause the machine subject to unnecessary stress. Therefore, we consider that
control actions are taken at discrete times, e.g., every hour, every day. In this study, the
decision epoch is chosen to be one hour to balance between timely adjusting control variables
and preventing excessive stress on equipment. Our RL model is a model-free method, which
means we do not rely on the transition function p(-|s,a) and the reward function r(s,a, s’)
to carry out the optimization. Instead, we use sample transitions in the dataset and the

instant reward is defined as the power output at the next decision epoch r(t) = s5(t + 1).

3.4 Reinforcement Learning with Function Approximation

As both state space and action space are continuous, we consider using function approx-
imation in reinforcement learning, where the Q-function is approximated. The method we
introduce is also an offline learning method, which is important for capital intensive indus-
tries such as wind turbines because online training will be too expensive. In this approach,
the state-action function, or Q-function Q)(s,a) receives continuous state and action values,
instead of a table of values on finite state-action pairs. This setting allows us to keep the con-
tinuous sensor data and avoid the discretization error when estimating Q(s, a) from existing
samples.

One of the most straightforward algorithms to handle the approximated Q-function is

12



the fitted Q-iteration algorithm [29]. In the fitted Q-iteration, the approximation function
can be in any form that approximates the state-action value function Q:S8xA—R. The
algorithm assumes a greedy policy, given a training set (s;, a;,7;,s;) for i = 1,...,N. In
each iteration, we first estimate the ()-function for each training quadruple from the current

approximation according to the Bellman equation
qi <_7Ai+7m22(62(8;aa)7 (7)
ac

where 7 is the discount factor. Then we update the function approximation with the new
estimated Q-function value g; for the training set. This process can be viewed as an operator

H imposed on the function approximation Q:

Qn—H = ]:IQn (8)

When Q is in the form of a kernel regression described in Table 1 with the same kernel in
cach iteration, H is a contraction on the Banach space defined over S X A and the supremum
norm, which guarantees Q to converge to a unique fixed point of H [29]. The whole algorithm

is described in Algorithm 1.

Algorithm 1: Fitted Q Iteration Algorithm [29]

Input The observation set D = {(s;,a;,ri,s5) Y., and the mazimum number of iterations MazIter.
Initialization: n < 0, Qo(s,a) =0.
while n < MaxIter and Q,(s,a) does not converge, do

n<n+1.

¢i — i +ymax Q,(s),a) fori=1,... N.
) acA
Obtain @Q+1(s;,a) according to g;, for i = 1,...n.
Output The optimal Q-function Q(s, al6*).

Since ¢; in Eq. (7) is essentially the Bellman optimality equation in Eq. (4) at the sample
transition (s;, a;, 1, s;), the unique fixed point for H is also the unique solution to the Bellman
optimality equation in (4). Therefore, the algorithm can find the policy that maximizes JZ ()

[29]. In the discounted case with an infinite horizon, the algorithm converges to the optimal

13



policy that is a stationary point of the Bellman equation for qualified models. The detailed
conditions are described in [9]. We can do the fitted Q-iteration according to Eq. (6) to
reach the optimal policy and calculate the optimal long-term average reward. The choice of

the discounted factor 7 is validated in our numerical experiment.

3.5 Kernel Regression Function Approximation

The crucial element of the aforementioned fitted Q-iteration algorithm is the function
approximation Q Without other restrictions, Q can take any parametric or non-parametric
form, ranging from regression, and kernel models, to neural networks. However, when we
switch from a tabular () to function approximation Q, the convergence property is no longer
guaranteed for most forms of @ and their performances vary in terms of speed, stability
and optimality. In our case, a kernel regression is adopted for its guaranteed convergence
property, which is essential for estimating Q [30]. Theoretically, we can prove that the

algorithm converges to Q(s, a; 0%) if it satisfies [30, 29]

Zé\il k((sa a)v (Siv ai))Q(Siv ai) .

Q(s,a) = SV k(s a), (si,a4))

The function approximation (s, a) of this form is called kernel regression, and k(x, z;)
is the kernel function.

In general, consider samples {(z;, ;) },, the kernel regression function my () takes the

form [31]

my(z) = Yo ik (z, 2;)
' Z?:l k(x,z;)

where k : R4 x R? — [0,00) is the kernel function we mentioned above. Common kernel
functions include the uniform kernel, Epanechnikov kernel [32], Gaussian kernel, quadratic
kernel [33] and tricube kernel [34]. In this research, we compare the performance of four
different kernel functions for the function approximation: linear kernel, Laplacian kernel,

Gaussian kernel, and quadratic kernel. The formulas of these kernels are given in Table
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2. For the Gaussian kernel in the table, the parameter v = ||x; — x;||2/h where h is the
bandwidth of the kernel. When it comes to a kernel that is a function of w, it requires such
a bandwidth that can be selected using Scott’s rule of thumb [35].

In addition to these four kernels, we also consider the K-nearest neighborhood regression
(KNN) and the linear regression as kernel regressions in the function approximation. Al-
though different model selection and bandwidth selection methods exist for kernel regressions
[36, 37], we can only compare our final fitted Q-iteration results because we have no sample

for the true value of Q(s, a).

Name Formula
Linear kernel k(xi,xj) = xlz;
Laplacian kernel | k(z;,z;) = —exp(||z; — xj]1)
Gaussian kernel k(zi,x;) = \/%e_%uz
Quadratic kernel k(xi,zj) = (yolz; + 1)

Table 1: Kernels considered in function approximation [32, 33, 36, 37

4. Case Studies

4.1 Data Description

In this research, we consider the Senvion MM8&2 2.056MW wind turbines that have large
turbines with a rotor diameter of 82m and a hub height of 80m [38]. The technical speci-
fications for this turbine indicate that the allowed wind speed lies between the cut-in wind
speed of 3.5 mph and the cut-off wind speed of 25 mph, i.e., s3 € (3.5,25) [38]. Although the
ranges for other variables are not provided in the technical specifications, they can be esti-
mated from historical data. The pitch angle ranges from -1 to 92.5 degrees in the dataset,
i.e., s1 € [—1,92.5]. The generator torque can be as low as zero when the wind speed is
low, and it usually does not go beyond 6,000Nm, i.e., sy € [0,6000]. Finally, the wind can

come from any direction and we have s, € [0,360]. As the power output should not exceed
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2,050kW, we have s5 € [0,2050]. The range of action a; is specified according to the current
state to make sure that the next state lies in the normal range.

The SCADA data we analyzed in this research were collected by ENGIE at the La Haute
Borne wind farm located in Meuse, France for 25,000 hours [39]. Specifically, we selected four
turbines with the ID numbers R80711, R80721, R80736 and R80790. Due to the storage
and IO limit, we are only able to access the maximum, minimum, and average values of
the signals in a 10-minute interval, although the original data were collected at a higher
frequency.

During the operations of wind turbines, it is not practical to take real-time actions that
constantly change the control variables, due to machine stress induced by the adjustment.
Therefore, we use one hour as the decision epoch in this research and take the average value

in a one-hour interval as the observed value for each variable.

4.2 Preliminary Analysis

A preliminary analysis is conducted on the WT operation data to help select the training
data and the control variables. We first analyze and visualize some SCADA variables that
are related to the physical model including the power output, the power coefficient, and the
generator torque. According to Eq. (1), we can calculate the theoretical power available to
the turbine, P,;,q, where the air density, p, is approximately 1.175kg/m? at 411m above the
sea level. The power output P, the wind power P,;,q and the power coefficient C,(A, §) are
plotted for a sample window of 450 hours in Figure 3. As shown in Figure 3, the power output
P is below the available wind power, P,;,q, and the power coefficient lies in a reasonable
range below the Betz’s limit, which indicates the validity of the dataset.

Then we investigate the relationship between the wind speed and the power output of the
whole dataset to verify the dataset for our study. As shown in Figure 4, at some time points
such as the range between around 20,000 hours and 24,500 hours, the power output keeps
zero where the wind speed is normal. It is reasonable to assume that the corresponding

turbine was not operating during those time points. Therefore, we exclude these data from
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Figure 3: The wind power, power output and power coefficient in a sample window of 450 hours

our analysis and modeling.

4.3 Evaluation Model

As different forms of function approximation in the fitted Q-iteration may give us different
results in terms of the optimal control policies and the power output, we need an approach
to evaluate the performance of different RL models developed with different function ap-
proximations. The power output can also serve as the reward function r(s, a, ) in our MDP
model, which evaluates the instant reward based on the full state transition. Without access
to wind turbines, we decide to develop an independent model to evaluate their performance

which can be described as

f = f(817837 54, S5, a1, 82’,7821)'
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Figure 4: v3 and power output of the whole dataset

Rather than the ) function that only depends on the current state and action, our
evaluation model also takes into account the wind profiles at the next decision epoch which
is not available in a control model. The model for performance evaluation uses the wind
profile at time ¢ to predict the power output at time ¢. According to [13], a good model can be
obtained with the aforementioned predictors with an artificial neural network (ANN) model.
Then with the evaluation model, we can evaluate the performance based on the existing
operational data without simulation on real turbines using our new control policy. We
considered linear regression, random forest, Gaussian process regression, KNN and multilayer
perceptron when selecting an evaluation model. The final evaluation model will be chosen
according to its out-of-sample predictive power.

After the preliminary analysis, we continue to develop a reliable model for evaluating our
results. We intend to select an appropriate evaluation model that has the best predictive
performance on the power output. Particularly, we use the first 80% sample data as our
training data, and the modeling performance is evaluated on the last 20% test data. We
consider four metrics of the test data to measure the predictive performance, namely, the

mean squared error (MSE), mean absolute error (mean AE), maximum absolute error (max

18



AE) and minimum absolute error (min AE). In order to predict P(t), the power output
at time ¢, the inputs of our model include the wind speed and direction at ¢ and t — 1,
v(t),v(t — 1), a,(t), a,(t — 1), the pitch angle at t and t — 1, ay,(t), a,(t — 1), and the power
output at ¢, P(t —1). As given in Eq. (1), we also include v3(¢) and v3(¢ — 1) in the analysis
which proves to improve the results significantly. The performance of linear regression (LR),
k-nearest neighborhood (KNN), random forest (RF), Gaussian process regression (GPR)
and multi-layer perceptron (MLP) is listed in Table 2. For Gaussian process regression,
we considered different basis functions and kernel functions. Among these models, the GPR
without the v3 feature achieves the best result in almost all metrics. It achieves the least MSE
which is half as much as that of the RF mode. It also obtains the least mean AE and Max
AE which indicates the high robustness of the model. The selected GPR model is a Gaussian
process over the predictors with a constant mean § = 672.56 and an radial basis function

kernel k(s,s') = o7 exp (—||s — s'[|2/(207)), whose kernel parameters are o; = 3594.68 and

of = 2089.41.

Predictors Model MSE | Mean AE | Max AE | Min AE
LR 197.74 10.97 94.88 0.0057

No v° KNN(k=4) 84.04 6.36 117.55 0.00043
GPR(constant basis, rbf ker) 22.19 3.21 39.90 0.0020
RF(n=93) 45.24 4.71 45.18 0.000002

3-hidden layer of size 100 MLP 574.96 14.56 166.06 0.0047

LR 197.543 11.01 91.62 0.0013

With v° KNN(k=4) 87.13 6.32 117.55 0.0017
GPR(constant basis, matern52 ker) | 23.12 3.25 48.77 0.00037

RF(n=12) 46.04 4.72 51.23 0.005

3-hidden layer of size 100 MLP 190.34 9.79 125.18 0.0099

Table 2: Out-of-sample performance of the evaluation models

4.4 Fitted Q-Iteration Results

To verify whether the linear model is appropriate for our function approximation, we
start with conducting fitted Q-iterations with different values of v by using a linear model
in this experiment. As the sum of the absolute change in ¢;, the convergence threshold
does not exceed 1,000. When v = 0.4,0.6 and 0.8, the estimated long-term average rewards
obtained in Eq. (5) are 465.31 kW, 467.40 kW and 468.00 kW, respectively. The results are
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Figure 5: The optimal power output and optimal control (linear kernel)

about a few kilowatts higher than the observed average reward of 460.11kW. The optimal
action is to minimize the pitch angle (-1), which is a natural optimal condition for a linear
model. However, under this control policy, the mean average power output is smaller than
the original power output, which indicates that the linear model is not appropriate for our
function approximation.

We then carry out the fitted Q-iteration algorithm on the aforementioned function ap-
proximation in Table 1 including Gaussian kernel regression, Laplacian kernel regression,
linear kernel regression, quadratic kernel ridge regression (KRR) and KNN. A snapshot of
the optimal power output and optimal control is shown for each of the five kernels in Figure
5-9, respectively. In the figures, the z-axis denotes the time step in hours. The y-axis is the
angle in degrees for the pitch angle, and the original and the optimal power output given by
our evaluation model.

For comparison, the corresponding optimal average power outputs calculated using our
evaluation model are shown in Table 3, where the reference average power output is the
original average power output of 460.11 kW. The percentage of improvement is also provided

in the last column of Table 3. From the last column, we can see that the optimal policies
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Figure 6: The optimal power output and optimal control (Gaussian kernel)

—— original power output
optimal power output

1000

2250 2300 2350 2400 2450 2500 2550 2600

209 — oﬁdmalpkchangm

,,,,,, optimal pitch angle

Tl Ll b

2250 2300 2350 2400 2450 2500 2550 2600
hour

Figure 7: The optimal power output and optimal control (Laplacian kernel)
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Figure 8: The optimal power output and optimal control (Quadratic kernel)
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Figure 9: The optimal power output and optimal control (KNN regressor with k = 4)

22



Predictor Optimal Average Power Output (kW) | Improvement(%)
KRR with linear kernel 509.93 10.83
KRR with Gaussian kernel 460.12 0.002
KRR with Laplacian kernel 459.81 -0.065
KRR with Quadratic kernel 460.48 0.080
KNN when k=4 469.36 2.01
Reference 460.11 -

Table 3: Results from Different Predictors of Function Approximation

obtained by the fitted Q-iteration with most function approximation predictors have higher
average power output than the reference value of 460.11kW, except for the one from the KRR
with Laplacian kernel. Overall, KRR function approximations with Gaussian, Laplacian
and Quadratic kernels provide nearly the same results as the reference. This is due to
their tendency to make the same control decision as the training data that can be seen from
Figure 6-8. The KRR function approximation with a linear kernel shows the most significant
improvement in the optimal average power output, and the KNN function approximation
also improves the power output. Meanwhile, these two function approximation predictors
provide more radical optimal policies, judging from Figure 5 and Figure 9. The benefit of
KNN and KRR with linear kernel can be explained by their relatively simple structures,
which prevent them from the local optima during the optimization steps. In conclusion, a

linear kernel should be adopted in the MPPT problem.

5. Discussion and Conclusions

In this research, we maximize the power output of wind turbines under the stochastic
wind profile by formulating the problem as a Markov decision process with continuous state
and action spaces. As exact methods become infeasible for the large MDPs, we utilize the
function approximation in reinforcement learning to overcome the curse of dimensionality
of DP methods. In computational studies using real data, we derive the optimal control
policy of the pitch angle by applying the fitted Q-iteration algorithm to the MPPT task of
operating wind turbines with a linear kernel. We also use a GPR model for evaluating our

results of MDP using all available information, which achieves a high precision in predicting
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the power output compared with previous results using the ANN. The evaluation model
demonstrates the superiority of the optimal control policy obtained by our RL algorithm.

The proposed algorithms using the KNN function approximation and the KRR function
approximation with a linear kernel achieve 2% and 10% improvement on the optimal average
power output over the operational records, respectively, which is competitive compared with
the existing methods on power output [13, 14]. Considering that the existing methods do not
take account of the lag between the observation of signals and the time of implementing the
decision in controlling turbines, the performance of the proposed method has demonstrated
its practical benefits compared with previous methods.

One issue with the MDP formulation lies in the delay in the consecutive decision-making
and control embedded in the model, as the control variables in the next decision epoch are
determined based on the state at the current decision epoch. For future research, we can
generalize the reinforcement learning to the online version with policy gradient techniques,
if the experimental wind turbines are accessible or a system dynamics model is available [9].
Furthermore, instead of the linear model, more complex models can be used for function

approximation, such as non-linear models, supervised learning, or a neural network method.
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