
Periodic Neural Codes and Sound Localization in Barn Owls

Lindsey S. Brown Carina Curto

July 21, 2021

Abstract

Inspired by the sound localization system of the barn owl, we define a new class of neural
codes, called periodic codes, and study their basic properties. Periodic codes are binary codes
with a special patterned form that reflects the periodicity of the stimulus. Because these codes
can be used by the owl to localize sounds within a convex set of angles, we investigate whether
they are examples of convex codes, which have previously been studied for hippocampal place
cells. We find that periodic codes are typically not convex, but can be completed to convex codes
in the presence of noise. We introduce the convex closure and Hamming distance completion as
ways of adding codewords to make a code convex, and describe the convex closure of a periodic
code. We also find that the probability of the convex closure arising stochastically is greater
for sparser codes. Finally, we provide an algebraic method using the neural ideal to detect if a
code is periodic. We find that properties of periodic codes help to explain several aspects of the
behavior observed in the sound localization system of the barn owl, including common errors in
localizing pure tones.

1 Introduction

Neural codes are patterns of neural activity, also known as codewords, that arise from the encoding
of environmental stimuli. Understanding neural codes means understanding both their structure
and the relationship between these codewords and the stimuli they represent. One way to begin
understanding this structure is by considering the neural code as a neural ring and exploring the
intrinsic combinatorial properties as they relate to the structure of the stimulus space in an algebraic
framework [6, 7]. More recent work has focused specifically on the relationship between the code
and the stimulus space by considering whether each neuron fires over a convex region of space,
motivated by the place cells in the rat hippocampus [2–4].

Inspired by the owl auditory system, in this work, we focus on periodic codes, which have a
special structure that may be especially well-suited for encoding stimuli that are similarly periodic,
such as sound waves. Periodic firing patterns are observed in the nucleus laminaris of the barn owl,
the first site of binaural convergence in the auditory pathway. Similarly, the codewords in a periodic
code, Ck,m(n), have a precise, periodic pattern: they consist of bands of k consecutive neurons that
are firing, alternating with bands of m consecutive neurons that are silent (see Figure 1). One
advantage of binaural hearing is the ability to localize sounds, and we explore how the structure of
periodic codes relates to this ability to localize a sound to a convex set of angles by asking whether
periodic codes are convex.

First, we show that, except in trivial cases, periodic codes are not convex in Theorem 3.3, which
may explain the barn owl’s errors in sound localization when presented with a single frequency
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stimulus. This theorem also gives a specific formulation for adding codewords to make these codes
convex, and we define the convex closure of a code. In the case of periodic codes, the convex
closure involves taking a union with another periodic code, suggesting that owls may resolve the
issues of nonconvexity of single frequency codes by combining codes from multiple frequencies
higher in the brainstem. Second, we give the precise probability that the convex closure arises
instead from stochasticity, finding that sparser codes are more likely to be completed to convex
codes via stochastic processes. Third, we give an algorithmic method to determine if an arbitrary
code, with the neurons labelled in a potentially permuted order, is periodic using the neural ring
(Theorem 5.10).

The organization of this paper is as follows. In Section 2, we give a rigorous definition of
periodic codes and explore basic combinatorial properties of these codes, highlighting the di↵erences
between periodic codes and cyclic codes [13]. In Section 3, we prove our main result on the
convexity properties of these periodic codes, Theorem 3.3. In Section 4, we explore the role of
stochasticity in creating convex codes from non-convex periodic codes, deriving the probability
that this transformation occurs. In Section 5, we conclude by analyzing periodic codes from an
algebraic perspective and prove Theorem 5.10.

2 Periodic codes

We define a special class of codes, periodic codes, which have both combinatorial and biological
significance. In this section, we give the basic properties of these codes and compare them to
the more familiar cyclic codes. We end with a description of sound localization in the barn owl,
which is our motivating biological example of periodic codes, and discuss questions that arise from
considering periodic codes in this context.

2.1 Basic definitions

We first introduce combinatorial neural codes. To relate continuous firing patterns of a set of n
neurons to a discrete object, we associate each of the n bits in a binary string to a neuron xi, where
xi = 1 if the firing rate f(xi) � t for some firing threshold t and xi = 0 otherwise. A neural code,
C of length n is the collection of these binary strings, where each binary string is a codeword, c
of C. Note that we will interchangeably use c to denote a binary string and the set of indices in
[n] which are 1 in the binary string representation. For example, c = 10100 is equivalent to {1, 3}.
This discrete formulation allows us to explore combinatorial and topological properties of neural
firing. To relate the codewords to the encoded stimuli, by analogy with place field codes, we are
able to define subsets of the stimulus space for which xi = 1 as the receptive field of neuron i.

An abstract simplicial complex � is a collection of sets which is closed under the operation of
taking subsets, meaning if � 2 � and ⌧ ⇢ �, then ⌧ 2 �. Each element of a simplicial complex
is called a face, and a face � has dimension |�| � 1. If a face is maximal, in the sense that it is
not a proper subset of any other element of �, then it is called a facet. Every neural code C has a
corresponding simplicial complex �(C) [4], defined as follows.

Definition 2.1. The simplicial complex of a code C, denoted �(C), is given by

�(C) = {� | � ⇢ c for some c 2 C}.
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Figure 1: k-m Periodic Codes. (a) A k-m periodic codeword on n neurons, where k = 2, m = 3, and n = 12. Circles

depict active (filled) and inactive (no fill) neurons. Each box shows a (k + m)-substring corresponding to cyclic

permutations 10001 and 11000 of the fundamental string s2,3 = 11000. (b) The 2-3 periodic code on 12 neurons,

C2,3(12). Each codeword begins with a di↵erent permutation of s2,3. Note that |C2,3(12)| = k +m = 5.

Each neuron is viewed as a vertex, and the subsets of neurons which cofire in each of the di↵erent
codewords correspond to higher dimensional simplices. The simplicial complex of a code provides
a useful topological structure but loses much of the detailed information about the code [6].

2.2 Periodic codes and their properties

We now formally introduce periodic codes. For any k,m 2 N, let sk,m denote the binary string
s1 · · · sk+m such that si = 1 for 1  i  k and sj = 0 for k + 1  j  k + m. For example,
s2,3 = 11000.

We use the term substring to refer to a subset of bits of consecutive indices, where an x-substring
is a substring of length x. For example, 010 is a 3-substring of 10101, but 111 is not because the
indices are not consecutive.

Definition 2.2. Let k, m, and n be nonnegative integers such that n � k+m. Let c = c1c2 · · · cn be
a codeword of length n. We say c is a k-m periodic codeword on n neurons if every (k+m)-substring
of c is a cyclic permutation of sk,m.

More informally, a k-m periodic codeword on n neurons is a codeword of length n, consisting
of bands of activity and inactivity, where all of the bands of consecutive 1’s have length k and all
the bands of consecutive 0’s have length m with the possible exceptions of the first and last band
of activity or inactivity which may be shorter. This is illustrated in Figure 1, where the periodic
pattern consists of bands of k = 2 active neurons followed by bands of m = 3 inactive neurons, but
in the first band of activity only a single neuron fires.

Recall that the Hamming weight of a binary string b is given by wH(b) =
P

bi.

Lemma 2.3. Uniform Weight Property. Let c = c1c2 · · · cn be a k-m periodic codeword on n
neurons. Every substring of length k +m has Hamming weight k.

Lemma 2.3 follows immediately from Definition 2.2 since every (k+m)-substring of c is a cyclic
permutation of sk,m, which has weight k. Observe that, although each codeword has the uniform
weight property, every codeword does not have the same weight; in Figure 1b, the first codeword
has weight 6, the second has weight 5, and the third has weight 4.

As the name suggests, k-m periodic codewords exhibit a periodic property, where the first k+m
bits of the codeword repeat periodically as formalized in Lemma 2.4 below.

Lemma 2.4. Periodicity Property. Let c = c1c2 · · · cn be a k-m periodic codeword on n neurons.
If i ⌘ jmod (k +m), then ci = cj.
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Proof. We will show that if j = i+(k+m), then ci = cj . From here, it follows by transitivity that
ci = cj for all i, j such that i ⌘ jmod (k +m). Recall that n � k+m. If n = k+m, there is nothing
to prove. Suppose n > k+m. Let i, j 2 [n] with j = i+ (k+m). Consider the (k+m)-substrings
s1 = ci · · · ci+(k+m)�1 and s2 = ci+1 · · · cj . By Lemma 2.3, wH(s1) = wH(s2) = k. Since s1 and
s2 overlap on k + m � 1 bits, we have that wH(s2) = wH(s1) � ci + cj . Thus, we can conclude
ci = cj .

These two properties yield additional characterizations of k-m periodic codewords.

Lemma 2.5. Let c be a binary codeword of length n. The following are equivalent:

1. c is a k-m periodic codeword on n neurons.

2. Every (k +m)-substring of c is a cyclic permutation of sk,m.

3. c1 · · · ck+m is a cyclic permutation of sk,m, and every (k +m)-substring has weight k.

4. c1 · · · ck+m is a cyclic permutation of sk,m, and for all i, j 2 [n], if i ⌘ jmod (k +m), then
ci = cj.

Proof. (1 , 2) The equivalence between 1 and 2 follows is given by Definition 2.2. (2 ) 3) The
equivalence from 2 to 3 follows directly from Lemma 2.3. (3 ) 4) The proof is the same as that of
Lemma 2.4. (4 ) 2) Suppose ci · · · ci+k+m�1 is a cyclic permutation of sk,m and ci = ci+k+m. Then,
ci+1 · · · ci+k+m is a cyclic permutation of sk,m. By hypothesis, c1 · · · ck+m is a cyclic permutation
of sk,m and ci = cj for all i, j 2 [n] such that i ⌘ jmod (k +m). So, by induction, every (k +m)-
substring is a cyclic permutation of sk,m.

These characterizations show that once the first k +m bits of a k-m periodic codeword c are
given, all other bits of c are determined. This observation makes it easy to count the number of
possible k-m periodic codewords and shows that the number of possible codewords is independent
of n.

Definition 2.6. The k-m periodic code on n neurons, denoted Ck,m(n), is the binary code which
contains all possible k-m periodic codewords on n neurons and no other codewords.

Recall that the size of a code C, denoted |C|, is the number of codewords it contains.

Proposition 2.7. Let Ck,m(n) be the k-m periodic code on n neurons.

1. If k = 0 or m = 0, then |Ck,m(n)| = 1.

2. If k,m 6= 0, then |Ck,m(n)| = k +m.

Proof. 1. If k = 0 or m = 0, then sk,m is a string of all 0’s or all 1’s. Since there is only one possible
permutation of sk,m, we have |Ck,m(n)| = 1.

2. If k,m 6= 0, there are k +m cyclic permutations of sk,m. There is one codeword beginning
with each of these permutations, so |Ck,m(n)| = k +m.
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Figure 1 shows an example of the firing patterns and corresponding codewords of a periodic
code. The k-m periodic code is completely parameterized by k, m, and n, which are 2, 3, and 12
in the figure respectively. These five codewords constitute C2,3(12).

The previous properties resulted from the combinatorial properties of periodic codes, but the
periodic structure of these codes also gives rise to topological properties in the simplicial complex
of the code, which allow us to compare periodic codes to cyclic codes in the next section. As a
result of the Periodicity Property (Lemma 2.4) of periodic codewords, we are also able to give a
property of �(Ck,m(n)), which will be useful for proving later results.

Proposition 2.8. Let � = �(Ck,m(n)). Assume i ⌘ jmod (k +m). If vi[� 2 �, then vi[vj[� 2
�. In particular, vi [ � 2 � if and only if vj [ � 2 �.

Proof. Without loss of generality, assume vi[� 2 �. Since by Lemma 2.4, ci = cj for all c 2 C, vj is
connected to vi and vj is connected to any face to which vi is connected. Therefore, vi[vj [� 2 �.
Since � is a simplicial complex, vj [ � 2 �.

2.3 Comparison to cyclic codes

One class of highly structured codes that are of particular relevance to coding theorists are cyclic
codes [13]. A cyclic code is defined by the property that the set of codewords is closed under
all shifts in coordinates. Since periodic codes have a similar periodic property (Lemma 2.4), it is
natural to ask whether periodic codes are just a special case of cyclic codes.

Definition 2.9. A cyclic code of length n is a code C with the property that for every c1c2 · · · cn�1cn 2
C, the cyclic permutation cnc1c2 · · · cn�1 2 C.

Note that cyclic codes are often defined with the additional property that the code be linear. A
linear binary code C is a binary code where for all c, d 2 C, c+ d 2 C, where addition is performed
bitwise over F2. Clearly, the all-zeros codeword 00 · · · 0 2 C for any linear code C. We do not
require the extra structure imposed by linearity because most periodic codes are not linear, and in
fact, a k-m periodic code is linear if and only if k = 0 since these are the only k-m periodic codes
which contain the all-zeros codeword.

The following lemma shows that, although they are not linear, many periodic codes satisfy the
cyclic property from Definition 2.9.

Lemma 2.10. Let C = Ck,m(n). The code C is cyclic if and only if for all c 2 C, cn = ck+m.

Proof. Recall n � k + m. ()) Suppose C is cyclic, and let c1 · · · cn 2 C. Since C is cyclic,
cnc1 · · · cn�1 2 C. By Lemma 2.3, wH(c1 · · · ck+m) = wH(cnc1 · · · ck+m�1) = k. This implies
cn = ck+m. (() Let c = c1 · · · cn 2 C. To show C is cyclic, we want to show c0 = cnc1 · · · cn�1 2 C.
By assumption cn = ck+m, so cnc1 · · · ck+m�1 is a cyclic permutation of sk,m and has weight k. All
other (k +m)-substrings of c0 are substrings of c, and so they have weight k. By part 3 of Lemma
2.5, c0 is k-m periodic and hence in C.

To see why n must be a multiple of k + m, consider C = C2,2(5). Clearly, the codeword
11001 2 C, but the cyclic permutation 11100 /2 C.

Proposition 2.11. Let Ck,m(n) be a k-m periodic code on n neurons.
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Figure 2: Comparing k-m Periodic Codes and Cyclic Codes. The simplicial complexes of (a) C = C2,6(8), (b) the

cyclic code C0
= {10010000, 01001000, 00100100, 00010010, 00001001, 10000100, 01000010, 00100001}, and (c) the

cyclic code C̃ = {10100000, 01010000, 00101000, 00010100, 00001010, 00000101, 10000010, 01000001}. The codes C
and C0

have isomorphic simplicial complexes and so are permutation equivalent (Corollary 2.13) as can be seen by

matching vertices in the same position to obtain the permutation (24)(37)(68). C̃ has a di↵erent simplicial complex

and, thus, is not a k-m periodic code.

1. If k = 0 or m = 0, then Ck,m(n) is a cyclic code, independent of n.

2. If k 6= 0 and m 6= 0, then Ck,m(n) is a cyclic code if and only if n is a multiple of k +m.

Proof. 1. If k = 0 or m = 0, Ck,m(n) consists only of the all 0’s or all 1’s codeword respectively,
so is trivially cyclic. 2. Suppose k,m 6= 0. Let C = Ck,m(n) and recall n � k + m. By Lemma
2.10, it su�ces to prove that cn = ck+m for all c 2 C if and only if n is a multiple of k +m. (()
Assume n is a multiple of k + m. By Lemma 2.4, cn = ck+m. ()) We prove the contrapositive.
Assume n = a(k+m)+ b for integers a, b > 0 and b < k+m. By Lemma 2.4, cn = cb for all c 2 C.
Since there exists a cyclic permutation of sk,m, and hence a codeword c 2 C, such that cb 6= ck+m,
it follows that cn 6= ck+m for that codeword.

Proposition 2.11 tells us which k-m periodic codes are cyclic, so it is natural to ask which cyclic
codes are permutation equivalent to k-m periodic codes, meaning that there exists a permutation
of the vertices of the cyclic code such that the permuted code is periodic. As seen in Figure 2,
some cyclic codes can be made periodic by applying a permutation of the vertices. Comparing the
simplicial complexes of a cyclic and periodic code allows us to see they are permutation equivalent
when they have the same simplicial complex. By matching the vertices in the simplicial complexes,
we are able to give a permutation which makes the codes the same. In this example, we can apply
the permutation (24)(37)(68) to C2,6(8) to obtain C 0.

We say that a codeword is maximal if it is contained in no other codewords. We call a code
maximal if it contains only maximal codewords. Observe that Ck,m(n) is always maximal.

Proposition 2.12. Any two maximal codes are permutation equivalent if and only if they have
isomorphic simplicial complexes.

Proof. ()) It is clear that if two codes do not have the same simplicial complex, then they are
not permutation equivalent. (() Let C1 and C2 be two maximal codes with isomorphic simplicial
complexes. Since all the codewords in C1 and C2 are maximal, they all correspond to a facet of the
simplicial complex. The isomorphism between �(C1) and �(C2) is a permutation of vertices that
takes facets to facets and thus induces an isomorphism between C1 and C2 by permuting vertices
(neurons).
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Observe that two codes with the same simplicial complex need not be permutation equivalent.
This is because two codes have the same simplicial complex if and only if they have the same
maximal codewords, but the codes may di↵er on non-maximal codewords. For example, consider
the codes C1 = {11} and C2 = {11, 10}. We have �(C1) = �(C2) = {;, {1}, {2}, {1, 2}}. However,
it is clear that the codes are not equivalent as |C1| 6= |C2|. Thus, the maximality property is
necessary.

As a consequence of Proposition 2.12, we can now assert when a cyclic code is permutation
equivalent to a periodic code.

Corollary 2.13. A cyclic code C of length n is permutation equivalent to Ck,m(n) if and only if
�(C) ⇠= �(Ck,m(n)) and |C| = |Ck,m(n)|.

Proof. ()) Assume C is permutation equivalent to Ck,m(n). Clearly, |C| = |Ck,m(n)|. Since
Ck,m(n) is maximal, C must also be maximal. By Proposition 2.12, �(C) ⇠= �(Ck,m(n)). (()
Assume |C| = |Ck,m(n)| and �(C) ⇠= �(Ck,m(n)). Since Ck,m(n) is maximal, its codewords are all
the facets of�(Ck,m(n)). Since�(C) ⇠= �(Ck,m(n)), C must also contain a codeword corresponding
to each facet. Since |C| = |Ck,m(n)|, C must also be maximal. By Proposition 2.12, C and Ck,m(n)
are permutation equivalent.

2.4 Biological motivation: sound localization in the barn owl

From the comparison to cyclic codes, we see that the study of periodic codes is interesting because
they share properties with some cyclic codes, but these codes are also interesting biologically because
they give an abstraction of the neural firing in the barn owl’s auditory system. Barn owls use two
cues to localize sounds in space, interaural intensity di↵erences to determine the elevation of the
sound source and interaural time di↵erences to determine its azimuth. Here, we give an overview of
the interaural time di↵erence pathway (Figure 3a) and show how this pathway results in periodic
firing in one of the nuclei (Figure 3b).

As shown in Figure 3a, the interaural time di↵erence pathway begins in the nucleus magno-
cellularis (NM), which responds in a phase locked fashion to the incoming sound waves. The NM
projects onto the nucleus laminaris (NL), the first place of binaural convergence in the time di↵er-
ence pathway (signals from the left in green, signals from the right in purple). As a result of the
tonotopic projections from the NM, neurons in the NL are arranged tonotopically in isofrequency
laminae, meaning neurons within a column fire only in response to a certain sound frequency. It is
within each of these isofrequency columns that we see periodic codes arise.

Figure 3b illustrates an isofrequency column of the NL. The ipsilateral signal, the signal coming
from NM of the same side, enters through the dorsal surface and the contralateral signal, the signal
coming from the NM of the opposite side, enters through the ventral surface of the NL. A neuron
in this column acts as a coincidence detector, firing when it receives simultaneous stimulation from
both sides, analogous to the model of delay lines proposed by Je↵ress for the mammalian medial
superior olive. To show periodic firing in the column, we first compute the delay to each neuron in
the signals from each side of the brain.

A sound source on the horizon travels a di↵erent distance to reach each ear and this signal must
be transmitted through the auditory pathway on each side of the brain before reaching a column
of the NL, giving us di↵erent time delays from each side, ⌧` and ⌧r, before the signal reaches the
NL. Once these signals enter the NL, experiments show that the conduction delay varies linearly
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Figure 3: (a)Overview of the Barn Owl’s Auditory Pathway. Sound waves travel to each of the owl’s ears, stimulating

the auditory nerve, which sends a signal to the nucleus magnocellularis (NM). The NM then projects tonotopically to

an isofrequency column in the ipsilateral (same side) nucleus laminaris (NL), entering on the dorsal side, and to an

isofrequency column in the contralateral (opposite side) NL, entering on the ventral side. (b) Isofrequency Column

of the Left Nucleus Laminaris. A sound wave, with period T from a sound source closer to the left ear arrives at an

isofrequency column of the left NL at a time delay of ⌧` from the left (green) and at ⌧r from the right (purple), with

⌧l < ⌧r. Within the NL, there are di↵erent delays due to the depth the signal has traveled into the nucleus, which

vary linearly with depth but at a di↵erent rate for the signals coming from each side of the brain, shown by changes

by a factor of �l on the left and �r on the right. A neuron in the column fires whenever it receives stimulation that

is in phase from both sides within some error bound, |(⌧` + a�`) � (⌧r + b�r)|modT < ". For example, the second

neuron in the column fires if |(⌧` + 9�`) � (⌧r + 2�r)|modT < ". Due to the di↵erence in delay, a peak stimulating

the left ear must travel deeper into the column than the same peak stimulating the right ear for the two peaks to

coincide (red). When these peaks coincide, other peaks will also coincide, an earlier point in the sound wave (blue)

on the right coincides with a later point in the sound wave (yellow) on the left.
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with depth; the ipsilateral side changes at approximately .46 degrees per micrometer (�l), and the
contralateral side changes at approximately .68 degrees per micrometer (�r). Thus, for a given
neuron, the total delay in the signal coming from the left side is ⌧` + a�`, and the total delay in
the signal coming from the right side is ⌧r + b�r for integers a and b denoting how many neurons
into the column the neuron is from the dorsal and ventral surface respectively. A neuron receives
coincident signals and fires whenever |(⌧` + a�`)� (⌧r + b�r)| < " for some error bound ".

Notice that because a sound wave of a given frequency is periodic with period T , the signals will
also be coincident for |(⌧`+a�`)� (⌧r + b�r)|modT < ", and so neurons will also fire in response to
time di↵erences that are integer multiples of the period away from the true time di↵erence [1]. Also
observe that the time di↵erence in the signals to each neuron in a column changes at a constant
rate, �` + �r per neuron, which implies that a neuron in the column fires every T

�l+�r
neurons. This

gives rise to periodicity in the column. Behavioral experiments show that when localizing pure
tones, owls may make errors in sound localization by responding to phantom targets, responding
to the location of a sound at one of the multiples of the period rather than the location of the true
time di↵erence, showing the ambiguity of time di↵erence as a sound localization cue due to the
periodic nature of sound waves [11].

Thus, we have seen that periodic codes arise biologically, so we now ask what behavioral im-
plications such a code has. The periodic code in the owl’s nucleus laminaris is part of the system
that the owl uses to determine the position of a sound source on the horizon. It is natural to ask
how this code relates to a more highly studied position code, the place code in the place cells of
the mammalian hippocampus. Each of these place cells fire over a convex set corresponding to the
animal’s position in the environment. We consider whether the cells in the owl’s nucleus laminaris
can be associated to convex subsets of angles on the horizon, addressed formally in the next section.

3 Convex closures of periodic codes

Inspired by the periodic structure of the neural code in the nucleus laminaris of the barn owl, we
explore the convexity of periodic codes, beginning by formally defining a convex code and introduc-
ing the concept of a convex closure. By considering the biological relevance of these concepts, we
demonstrate that convexity is important to the owl’s sound localization ability. We then present
our main result, Theorem 3.3, and conclude by proving it.

3.1 Convex codes and the convex closure

Here we review the concept of convex codes and some basic results [4, 5] before introducing a new
concept, the convex closure.

Given an open cover U of a topological space X, where U is the collection of open sets
{U1, . . . , Un} such that Ui ⇢ X, we can define a code of the cover C(U),

C(U) def
=

8
<

:� ✓ [n] |
\

i2�
Ui \

[

j2[n]\�

Uj 6= ;

9
=

; .

In C(U), each Ui is called the receptive field of neuron i. We say that a code is convex if it can be
realized as C(U) where each of the Ui is an open convex set. As an example, see Figure 4. Note
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Figure 4: A code of a cover, C(U). This arrangement of receptive fields U = {U1, U2, U3} corresponds to C(U) =

{100, 110, 111, 010, 011, 000}. Neurons which cofire correspond to a region of intersection of their corresponding

receptive fields. Observe that C(U) is a convex code since each Ui is a convex set.

Figure 5: A link in a simplicial complex, Lk{1}(�). The simplicial complex � is shown in black and gray. The

link of vertex 1, Lk{1}(�) = {;, {2}, {3}, {4}, {2, 3}} is highlighted in red, and we see it is disconnected and hence

non-contractible.

that not every code is convex because there are geometric and topological constraints imposed by
convexity [4].

An important property that prevents a code from having a convex realization is based on the
links of the simplicial complex of the code. The link of a face � in a simplicial complex �, denoted
Lk�(�), is

Lk�(�) = {! 2 � | � \ ! = ; and � [ ! 2 �}.

To every � we associate a unique minimal code consisting of all � having non-contractible links:

Cmin(�) = {� 2 � | Lk�(�) is non-contractible}.

An example of these concepts for a simplicial complex � is shown in Figure 5, where we see
Lk{1}(�) is non-contractible. As a result, 1000 2 Cmin(�). In contrast, Lk{2}(�) = {;, {1}, {3}, {1, 3}},
which is contractible, so 0100 /2 Cmin(�).

If ⌧ is a facet of �, then Lk⌧ (�) = ;, which is non-contractible. It follows that all facets of �
are automatically contained in Cmin(�). In fact, these facets correspond to the maximal codewords
of any code with simplicial complex � (see [4] for more details). Note that in case of periodic codes,
Ck,m(n), every codeword is maximal and corresponds to a facet of � = �(Ck,m(n)). Therefore, for
periodic codes, we always have Ck,m(n) ✓ Cmin(�).

We call the elements of Cmin(�) mandatory codewords because they must all be included in any
convex code C with simplicial complex �. This follows from [4, Theorem 1.3], with the relevant
portion summarized in the lemma below.

Lemma 3.1. Let C be a code with simplicial complex �. If C 6◆ Cmin(�), then C is not a convex
code.

10



A counterexample given in [12] illustrates that the converse is not true; a code may contain all
the mandatory codewords but may still not have a convex realization. To address this, we introduce
the concept of a convex closure.

Definition 3.2. A convex closure C̄ of C is a convex code of smallest size such that C ✓ C̄ and
�(C̄) = �(C).

We note that the convex closure is a closure operator on the power set P([n]).1 From Lemma 3.1,
it is clear that Cmin(�(C)) ✓ C̄, but there are cases where C̄ must contain additional codewords [12].

3.2 Convexity and sound localization

As we will see in the next section, periodic codes are not generally convex, except in degenerate
cases. However, because of the various advantages of convex codes in associating firing patterns
with a specific region of the stimulus space, we are interested in how we may modify periodic codes
to attain convexity.

Convexity is especially relevant to the periodic codes in the nucleus laminaris (NL) of the owl
as the function of this brain structure is to locate sounds on the horizon, which is equivalent to
determining the convex set of angles from which the sound originated. When receiving a pure tone,
the owl makes predictable errors in its judgment of the sound’s location. The phantom targets to
which the owl responds are not random but correspond to the location of a sound source where
the time di↵erence reaching the ears is the true time di↵erence plus some multiple of the period of
the sound wave (see Figure 3b). This suggests that the owl is able to localize a sound to a choice
of several disconnected sets of angles, rather than a single convex set. This behavior corresponds
to the fact that the neural code in the NL does not have a convex realization as we will show in
Theorem 3.3.

However, such behavioral errors are rare and are restricted to the case of single frequency tones.
When responding to wide bandwidth sounds, the owl’s average error in sound localization is one
third of its average error in responding to a single frequency tone [10]. Higher in the brain stem,
biologists have observed space mapped cells in the external nucleus of the inferior colliculus, which
receives inputs from multiple frequency columns. This suggests that the biological system somehow
forms a convex code from the nonconvex periodic codes in the NL, a biological convex closure, so
that the owl is able to locate wide bandwidth sounds within an average of 2 degrees [9]. Such
a convex code may arise by combining the code in multiple isofrequency columns of the NL or
through stochasticity in neural firing. We explore these possibilities in the combinatorial neural
code framework, answering the following questions.

Question 1. What codes are a convex closure of a periodic code?

We answer this question in Theorem 3.3, showing that the convex closure is unique. Given this
convex closure, we then analyze how this convex closure could arise, asking the following question.

Question 2. How does stochastic noise in the firing patterns of a k-m periodic code alter the
convexity of the code?

We explore this question in Section 4.

1
A closure operator, Cl : P(S) ! P(S), maps the power set of S to itself and for X,Y ✓ S satisfies i) X ✓ Cl(X),

ii) if X ✓ Y , then Cl(X) ✓ Cl(Y ), and iii) Cl(Cl(X)) = Cl(X).

11



Figure 6: Convex Closure of C2,3(5). (a) The convex closure of C2,3(5) is C̄ = C2,3(5) [ C1,4(5) (Theorem 3.3),

which has a convex realization as shown here. The original code, C2,3(5) (black dots) has a convex realization with

the union of C1,4(5) (gray diamonds). (b) The convex closure preserves the simplicial complex, �(C̄) = �(C2,3(5)),

shown here.

3.3 The convex closure of a periodic code

Our main result in this section is Theorem 3.3, which gives the convex closure of any k-m periodic
code for k  m. We restrict our analysis to the case where k  m, requiring a certain degree of
sparsity in the code. Such sparse codes better reflect the codes which arise biologically and decrease
the number of nontrivial intersections among neurons.

Theorem 3.3. Let C = Ck,m(n) be a k-m periodic code on n neurons with simplicial complex �.
For k  m, the convex closure of C is precisely C̄ = Cmin(�), and is thus unique. Moreover,

1. C̄ = Cmin(�) = C if k = 0 or k = 1, and

2. C̄ = Cmin(�) = Ck,m(n) [ Ck�1,m+1(n) if 1 < k  m.

As an example, consider C2,3(5), which contains the codewords 11000 and 01100. The codeword
11000 implies that U1 \ U2 6= ;. Similarly, the codeword 01100 implies that U2 \ U3 6= ;. There
are no codewords for which neuron 1 and neuron 3 cofire, so U1 \ U3 = ;. However, the codeword
01000 is not in the code, so U2 is entirely contained in U1 [ U3. Since U1 and U3 are disjoint, this
can only be true if U2 is disconnected, and hence not convex. As illustrated in Figure 6, the code
C̄ = C2,3(5) [ C1,4(5) has a convex realization and �(C̄) = �(C).

This result is particularly interesting because it gives an example of a class of codes where
C̄ = Cmin(�(C)). In general, we do not always have C ⇢ Cmin(�(C)), but we do in the case of
periodic codes because every codeword corresponds to a facet of the simplicial complex. What we
also see in these codes is that convexity is fully determined by containing Cmin(�), which is not
always true [12]. This raises the question of whether there are special properties of �(Ck,m(n))
which can be used to detect more generally when Cmin(�) is convex for some �.

To prove Theorem 3.3, we need the following two propositions:

Proposition 3.4. Let � = �(Ck,m(n)) and 1 < k  m. Then Ck,m(n)[Ck�1,m+1(n) ✓ Cmin(�).

Proposition 3.5. The code Ck,m(n) [ Ck�1,m+1(n) is convex for 1 < k  m.

12



Given these two propositions, which we will prove in the next subsection, we can now prove
Theorem 3.3.

Proof of Theorem 3.3. Let C = Ck,m(n) for k  m and � = �(C). By definition, C̄ ◆ C,
�(C̄) = �, and C̄ is convex. By Lemma 3.1, we also have C̄ ◆ Cmin(�). Recall that since every
codeword in C corresponds to a facet of �, we also have C ✓ Cmin(�) and thus,

C ✓ Cmin(�) ✓ C̄.

To show that C̄ = Cmin(�), it thus su�ces to show that Cmin(�) is convex.
In the cases k = 0 and k = 1, we can see directly that C is convex, and thus C̄ = Cmin(�) = C.

For k = 0, C consists of only the all-zeros codeword, 00 · · · 0, and is thus trivially convex. For
k = 1, all codewords in C are disjoint and, since they all correspond to facets of �, we see that all
facets of � are disjoint. It then follows from [4, Proposition 2.6] that C is convex.

For the remaining cases, 1 < k  m, we have that Ck,m(n)[Ck�1,m+1(n) ✓ Cmin(�) (Proposi-
tion 3.4), and thus

C ✓ Ck,m(n) [ Ck�1,m+1(n) ✓ Cmin(�) ✓ C̄.

We also have that Ck,m(n) [ Ck�1,m+1(n) is convex (Proposition 3.5), which immediately implies
C̄ = Cmin(�) = Ck,m(n) [ Ck�1,m+1(n), as desired.

Biological relevance

Theorem 3.3 implies periodic codes are not convex except in the cases where k = 0 and k = 1,
corresponding respectively to a state of constant inactivity or perfect precision. Both extremes are
unlikely given the inherent stochasticity in this system (see Section 4 for more details). The second
part of the theorem, for k > 1, can provide insight into the behavioral errors made by the owl in
locating a single frequency tone: because the neural code for a single isofrequency column of the
nucleus laminaris (NL) is not convex, the owl cannot determine a unique open region in space from
which the sound must have originated.

Yet, the owl does not always make these behavioral errors, suggesting that the biology of the
system provides a way for the owl to disambiguate the possible locations of the sound source,
thus yielding a convex neural code. Theorem 3.3 shows that a convex closure of a periodic code
is formed from the union of two periodic codes. In particular, these two codes di↵er by whether
a single neuron is firing in each firing band; the close relationship between these codes suggests
stochasticity in the system could result in the convex closure, which we address in greater depth in
Section 4.

In addition to the possible stochastic relationship between the two codes, the two periodic codes
may also be related by the connections among nuclei in the barn owl’s brain stem. The NL projects
to the central nucleus of the inferior colliculus (IC), which sends inputs from multiple isofrequency
laminae to the external nucleus of the IC [16]. Recall that each isofrequency column i of the NL
with frequency 1

Ti
fires every Ti

�l+�r
neurons (Figure 3b), which corresponds to a di↵erent m value

in the periodic code of each column. Thus, receiving input from multiple columns is analogous to
receiving input from di↵erent periodic codes, as is needed for the convex closure of a single column;
in fact, it has been observed that the first space mapped cells exist in the external nucleus of the
IC, where the signals for multiple frequencies first converge [16].
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3.4 Proof of Propositions 3.4 and 3.5

Proof of Proposition 3.4

As has already been noted, since every codeword in Ck,m(n) corresponds to a facet, Ck,m(n) ✓
Cmin(�). To prove Proposition 3.4, we will show that for any ⌧ 2 Ck�1,m+1(n), the link Lk⌧ (�) is
non-contractible, and so ⌧ 2 Cmin(�). We first consider the special case of k-m periodic codes on
k+m neurons (Lemma 3.6) and then extend this result to a code on n neurons using Proposition 3.8.

We introduce the notation �i,j(n) for i, j 2 [n] to be the face of a simplicial complex on a set of
consecutive vertices, where we consider the nth and first vertex to be adjacent. More formally, we
define

�i,j(n) =

(
{` | i  `  j} if i  j

{` | i  `  n} [ {` | 1  `  j} if i > j

Note that a general simplicial complex may not contain such a face, but we are interested
specifically in �(Ck,m(n)), which contains �i,j(n) whenever |�i,j(n)|  k. In the case n = k +m,
the collection of all �i,j(k +m) with |�i,j(k +m)| = x for x  k corresponds to Cx,k+m�x(k +m).

Lemma 3.6. Let � = �(Ck,m(k +m)) and m 6= 0. If |�i,j(k +m)| = k � 1, then Lk�i,j(k+m)(�)
is non-contractible.

Proof. Let � = �i,j(k + m) where j = (i + k � 2)mod (k +m). We have Lk�(�) = {h, `} where
h = i � 1mod (k +m) and ` = i + k � 1mod (k +m). These vertices are distinct since they are
distance k apart and m 6= 0, so the set is disconnected and non-contractible.

This lemma allows us to show that Ck,m(n) restricted to the first k + m vertices has non-
contractible link for the faces corresponding to Ck�1,m+1(k +m). We want to show that every ⌧
corresponding to a codeword Ck�1,m+1(n) has non-contractible link in �(Ck,m(n)). To do so, we
use the following lemma, which requires the notation for the restricted simplicial complex,

�|�[⌧ = {s 2 � | s ✓ � [ ⌧}.

Lemma 3.7. [4, Corollary 4.3] Suppose v /2 � and � \ ⌧ = ;. If Lk�(�|�[⌧ ) is non-contractible,
then Lk�(�|�[⌧[v), Lk�[v(�|�[⌧[v), or both are non-contractible.

One way to demonstrate contractibility is to show that a simplicial complex is a cone. We will
use the fact that a simplicial complex is a cone if and only if the intersection of all the facets of the
simplicial complex is nontrivial in the proof of the following proposition.

Proposition 3.8. Let � = �(Ck,m(n)). Let ⌧ = {vi | 1  i  k + m}, � ⇢ ⌧ , and j > k + m.
Suppose Lk�(�|⌧ ) is non-contractible:

1. If j ⌘ imod (k +m) for some i such that vi 2 �, then Lk�[vj (�|⌧[vj ) is non-contractible.

2. Otherwise, Lk�(�|⌧[vj ) is non-contractible.
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Proof. 1. Assume j ⌘ imod (k +m) for some i such that vi 2 �. To show that Lk�[vj (�|⌧[vj ) is
non-contractible, it su�ces to show that Lk�(�|⌧[vj ) is contractible (Lemma 3.7). By Proposition
2.8, for any ! ⇢ ⌧ , if vi[! 2 �, then vi[vj [! 2 �. Thus, every facet of Lk�(�|⌧[vj ) contains vj .
It follows that Lk�(�|⌧[vj ) is a cone and hence contractible. 2. Assume j 6⌘ imod (k +m) for any i
such that vi 2 �. Then j ⌘ `mod (k +m) for some ` such that v` 2 ⌧ \�. We have two cases. Case
1: Assume that v` /2 Lk�(�|⌧ ). This implies v` [ � /2 �|⌧ , and so v` [ � /2 �|⌧[vj ; by Proposition
2.8, vj [ � /2 �|⌧[vj . This implies vj /2 Lk�(�|⌧[vj ), and we have Lk�(�|⌧[vj ) = Lk�(�|⌧ ),
which is non-contractible. Case 2: Assume that v` 2 Lk�(�|⌧ ). Let ⇤ be the closure of the set
{⇢ 2 Lk�(�|⌧ ) | v` ✓ ⇢} – that is, the smallest simplicial complex containing the faces of Lk�(�|⌧ )
that contain v`. By Proposition 2.8, for any ! 2 �|⌧[vj , if v`[! 2 �|⌧[vj then vj [v`[! 2 �|⌧[vj .
This implies that Lk�(�|⌧[vj ) = Lk�(�|⌧ )[conevj (⇤), where conevj (⇤) = {�[vj | � 2 ⇤}. Observe
that ⇤ itself is a cone since all the facets contain v`, and hence we have coned o↵ a contractible
subcomplex of Lk�(�|⌧ ). This implies that the homotopy type of Lk�(�|⌧[vj ) is the same as the
homotopy type of Lk�(�|⌧ ), which is non-contractible.

We are now able to extend the results of Lemma 3.6 to a code on n neurons, completing the
proof of Proposition 3.4.

Proof of Proposition 3.4. By Lemma 3.6, the link of every �i,j(k +m) with |�i,j(k +m)| = k � 1
is non-contractible in �(Ck,m(k +m)). Observe that the codewords corresponding to �i,j(k +m)
of dimension k � 1 are the codewords of Ck�1,m+1(n) restricted to the first k +m neurons. Each
codeword in Ck�1,m+1(n) is the set of neurons which are equivalent modulo k+m to some �i,j(k+m).
Let ! be a face corresponding to a codeword in Ck�1,m+1(n) with corresponding �0 = �i,j(k+m). By
Proposition 3.8, since Lk�0(�(Ck,m(n))) is non-contractible, Lk!(�(Ck,m(n))) is non-contractible.
Thus, the link of the face corresponding to every codeword in Ck�1,m+1(n) is non-contractible, so
Ck�1,m+1(n) ⇢ Cmin(�).

Proof of Proposition 3.5

To prove Proposition 3.5, we need to show Ck,m(n) [ Ck�1,m+1(n) has a convex realization. We
first explicitly construct a convex realization for n = k +m (Proposition 3.12) and then show that
this realization can be extended to a code on n neurons (Lemma 3.13).

We first begin with a construction which will help us construct a convex realization of Ck,m(k+
m) [ Ck�1,m+1(k +m).

Definition 3.9. A circular cover, �, is a collection of open arcs {�i} with �i = �(a, b) for �2⇡ 
a < b  2⇡ and b� a  2⇡, where �(a, b)

def
= {(cos ✓, sin ✓) | a < ✓ < b}.

Note that this cover is circular in the sense that it is composed of circular arcs, but the definition
does not require that the union of the arcs covers S1. Analogously to the way we defined the code
of a cover, we can define the code of a circular cover.

Definition 3.10. The code of a circular cover � = {�i} is the neural code

C(�)
def
=

(
� ✓ [n] |

\

i2�
�i \ [j2[n]\��j 6= ;

)
.
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Figure 7: Circular and Convex Realizations of C̄ = C2,4(6) [ C1,5(6). (a) A circular realization of C̄. Each colored

open arc, �i is an element of � and can be identified with an open sector Ui of the same color in C(U). (b) A convex

realization of C̄, derived from the circular realization.

An example of the code of a circular cover is shown in Figure 7. Observe that any point p
written in polar coordinates as (r, ✓) with r = 1 corresponds to a codeword c1 · · · cn 2 C(�) where
ci = 1 if (cos ✓, sin ✓) 2 �i and ci = 0 otherwise. To prove when such circular realizations are
convex, we introduce the support of a codeword c, denoted supp(c) as the set {i | ci = 1}.

Proposition 3.11. If length(�i)  ⇡ for all �i 2 �, then C(�) has a convex realization.

Proof. Let � be a circular cover. Define an open cover U = {Ui} in R2 by the following method.
For each open arc �i = �(ai, bi) 2 �, let Ui be the open sector {(r cos ✓, r sin ✓) | 0 < r < 1
and ai < ✓ < bi}. Since bi � ai = length(�i)  ⇡, each Ui is convex. Observe that the origin
is not contained in any Ui. We want to show that C(U) = C(�) and thus C(�) has a convex
realization. Suppose c 2 C(U). There exists some point p 2 \i2supp(c)Ui, which can be written as
(r cos ✓, r sin ✓). Map p to the corresponding point p✓ = (cos ✓, sin ✓) on the unit circle. We have
p✓ 2 \i2supp(c)�i, and thus c 2 C(�) also. This implies C(U) ✓ C(�). To see that C(�) ✓ C(U),
let c 2 C(�). There exists some point p✓ 2 \i2supp(c)�i. Write p✓ as (cos ✓, sin ✓). Map p✓ to the
point p = (12 cos ✓,

1
2 sin ✓). We have p 2 \i2supp(c)Ui, and thus c 2 C(U). This gives C(�) ✓ C(U),

and so C(�) = C(U).

Figure 7 shows an example of C(U) = C(�) and the correspondence between the open arcs and
open sectors. We can now show that the code Ck,m(k+m)[Ck�1,m+1(k+m) is convex by showing
that it arises from a circular cover and applying Proposition 3.11.

Proposition 3.12. The code Ck,m(k+m)[Ck�1,m+1(k+m) has a convex realization for k  m.

Proof. We define an open arc �i for each neuron i in the following manner. If i  m, let �i =
�(i 2⇡

k+m
, (i+ k) 2⇡

k+m
). If i > m, let �i = �(i 2⇡

k+m
� 2⇡, (i+ k) 2⇡

k+m
� 2⇡). This collection of receptive

fields gives a circular cover, �, with length(�i) = k 2⇡
k+m

 ⇡ for all i. By Proposition 3.11, C(�) is
convex. We need only show that C(�) = Ck,m(k+m)[Ck�1,m+1(k+m). At every angle which is
not a multiple of 2⇡

k+m
, exactly k of the �i intersect, corresponding to codewords in Ck,m(k +m).
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At angles that are a multiple of 2⇡
k+m

, exactly k� 1 of the �i intersect, corresponding to codewords
in Ck�1,m+1(k +m). Thus, C(�) = Ck,m(n) [ Ck�1,m+1(k +m).

We want to extend this convex realization on k +m neurons to a code on n neurons.

Lemma 3.13. Let C be a code where for every codeword c1 · · · cn 2 C, if i ⌘ jmod z, then ci = cj.
The code C is convex if and only if C restricted to any z consecutive neurons is convex.

Proof. ()) Suppose C is convex. There exists a convex, open cover U = {Ui}i2[n] such that C(U) =
C. Let C|Z be C restricted to a set Z consisting of z consecutive neurons. Then U 0 = {Ui}i2Z is
an open cover with C(U) = C|Z , so C|Z is convex. (() Suppose C|Z is convex on any set Z of z
consecutive neurons. Without loss of generality, there exists a convex, open cover U = {Ui}1iz.
Define a convex, open cover U 0 = {Uj | Uj = Ui if i ⌘ jmod z}. By assumption, if i ⌘ jmod z,
then ci = cj in every codeword in C, so C(U 0) = C. Therefore, C has a convex realization.

Lemma 3.13 implies that the convexity of a k-m periodic code depends only on whether the
code can be realized convexly on the first k + m neurons. We can now complete the proof of
Proposition 3.5.

Proof of Proposition 3.5. The code Ck,m(n) [ Ck�1,m+1(n) has the property that ci = cj if i ⌘
jmod (k +m) for every codeword. By Lemma 3.13, since Ck,m(k + m) [ Ck�1,m+1(k + m) has a
convex realization for k  m (Proposition 3.12), Ck,m(n) [ Ck�1,m+1(n) has a convex realization
for k  m.

Observe that for any k and m, we can construct a circular realization of the code by defining
open arcs in the same construction as above. However, for k > m, the method of constructing
sectors as open sets no longer generates convex sets because we do not have length(�i)  ⇡. The
question of how and whether a convex realization can be constructed for Ck,m(n)[Ck�1,m+1(n) and
k > m remains open, as some but not all of these codes do not contain Cmin(�(C)). For example,
let C 0 = C3,2(5) [ C2,3(5) and C 00 = C4,1(5) [ C3,2(5). We have C 0 ◆ Cmin(�(C 0)). On the other
hand, C 00 6◆ Cmin(�(C 00)), as Lk1,4(�) = {23, 35, 25}, which is noncontractible.

4 Stochastically convex periodic codes

Here we address Question 2 from Section 3.2. In Theorem 3.3, we showed that for 1 < k  m,
the periodic code Ck,m(n) can be completed to a convex code by adding the set of codewords in
Ck�1,m+1(n). One of the possible ways Ck�1,m+1(n) may arise biologically is through the stochas-
ticity of the neural response, where neurons fail to fire. This stochasticity arises naturally from our
system, the nucleus laminaris (NL) of the barn owl, in at least two di↵erent ways:

1. Stochasticity in the stimulus. Recall that in our description of the NL (see Figure 3b), we
assumed that a neuron fires if the di↵erence in the phase of the signal coming to the neuron
is less than ". We also showed that within a column, neurons di↵er by a time di↵erence
of �l + �r. This means that for a given ", up to d "

�l+�r
e neurons could fire. Depending on

the incoming time di↵erence, one fewer neuron than this upper bound could fire. Thus, the
stochasticity of the signal in time could give rise to the additional codewords necessary for
the convex closure.
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2. Stochasticity in neural firing. In addition to the stochasticity of the incoming signal, there is
stochasticity in the neural response; a neuron may fail to fire when it should (false negative),
or fire when it should not (false positive), based on the stimulus.

To attain the convex closure and form the words in Ck�1,m+1(n), we clearly need some neuron
to fail to fire, but adding codewords resulting from other neurons failing to fire could potentially
alter the convexity of the code. Lemma 4.1 guarantees that if the convex closure has been attained,
adding codewords that preserve the simplicial complex, or equivalently result from neurons failing
to fire, maintains the convexity of the convex closure.

Lemma 4.1. [2, Theorem 1.3] Let C be a convex code. If �(C) ◆ eC ◆ C, then eC is convex.

Thus, we can attain the convex closure of a periodic code by introducing some probability that
neurons fail to fire; let p be the probability that a neuron fires correctly so 1� p is the probability
that the neuron fails to fire. Given this probability and the fact that other neurons’ failure to fire
does not create non-convexity, we ask how likely it is to attain the convex closure via failure to fire
stochasticity.

Proposition 4.2. Suppose each codeword in Ck,m(k +m) is sampled N times. The probability of
receiving all of the codewords in Ck�1,m+1(k +m) is

P(k,m,N, p) =

✓
1� (1� 2

k +m
(1� p)pk�1)N

◆
k+m

.

Before proving this formula in the following section, we use it to estimate the number of times
N that each codeword needs to be sampled to attain a probability greater than .95 of seeing all
the codewords in Ck�1,m+1(k + m), rendering the resulting code convex. The results are plotted
in Figure 8, showing that N grows supralinearly with k but approximately linearly with m. In
exploring the convex closure, we assumed that k  m to reflect the fact that neural codes are
generally sparse. The relationship between sparsity and convexity has only begun to be investigated
[8]. By comparing the way N grows in comparison to k and m, we argue that this sparsity is not
only a general property of codes but is necessary for convexity to arise through stochasticity in
this system. By increasing k, the number of consecutive active neurons, the number of times each
codeword must be sampled increases rapidly. In contrast, a code can be expanded by increasing
m, the number of consecutive silent neurons, without the number of samples of each codeword
growing too rapidly that all the codewords in the convex closure would likely never all be seen.
Thus, sparsity allows the convex closure to be obtained through failure to fire stochasticity. The
importance of sparsity to the ability to achieve the convex closure is further seen in Figure 8c.
Here, we see that there is an optimal value for 1 � p, the rate of failure to fire, which minimizes
the number of times each codeword needs to be sampled to achieve the convex closure. Intuitively,
this optimal 1� p results from the fact that there must be some failure rate so that single neurons
misfire, but if the failure rate is too high, multiple neurons will misfire at the same time. By finding
the minimum of N with respect to p, we are able to see how this relates to the sparsity of the code.

Corollary 4.3. The optimal failure to fire rate 1� p for which both N is minimized for a given P
and P is maximized for a given N is

1� p =
1

k
.
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Figure 8: Number of Samples N of Each Codeword Needed for P > .95. (a) E↵ect of k on N. For fixed m and p, as k
increases, the number of times, N , that each codeword needs to be sampled for the probability that each codeword

in the convex closure has been received grows supralinearly. This suggests the importance of sparsity in keeping N
small. The dotted black lines show our approximation, which closely tracks the exact solutions (colored lines). (b)
E↵ect of m on N. For fixed k and p, as m increases, N grows approximately linearly. Compared with the rapid

growth of N with k, expanding the code with additional silent neurons does not dramatically increase the number

of times that each codeword must be sampled for a convex realization. As before, the dotted black lines are our

approximation. (c) E↵ect of Failure to Fire Rate 1 � p on N. For fixed k and m, we see that there is an optimal

failure rate 1� p for which N is minimized, 1� p =
1
k (solid dots).

Observe, that this result is not surprising; the number of neurons which fail to fire is binomially
distributed as Bin(k, 1 � p), so for the expected number of neurons that fail to fire to be exactly
one, we need 1� p = 1

k
. This provides an additional argument for sparsity in our code because as

k increases, the probability of failure to fire decreases, meaning that the biological system must be
increasingly precise in its firing as the number of active neurons increases.

4.1 Proof of Proposition 4.2

We assume the probability of a neuron firing correctly is p, so the probability of a 1 being switched
to a 0 is 1�p. Here, we consider only the case where neurons fail to fire; neurons have 0 probability
of misfiring (i.e., firing when they should be silent). In addition, we assume that the stimulus
space has a uniform distribution over all possible stimuli, so all codewords in Ck,m(n) are equally
probable to be the correct codeword, and we assume that the brain always stores the codewords
from Ck,m(n) in memory. Let N be the number of times that each codeword is sampled that the
brain stores.

In Theorem 3.3, we showed that for 1 < k  m, the convex closure is Ck,m(n) [ Ck�1,m+1(n).
We give the probability of this convex closure for n = k +m. We first consider the probability of
seeing one of the needed mandatory codewords.

Lemma 4.4. Let c 2 Ck�1,m+1(k+m). Assuming that neurons never misfire and that the stimulus
space is uniform such that all codewords in Ck,m(k + m) are equally probable to be the true sent
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codeword, the probability that c is received on a given trial is

2

k +m
(1� p)pk�1.

Proof. Without loss of generality, let c = 11 · · · 1k�10k · · · 0k+m. Observe that, since we assume that
neurons never misfire, c can only be formed by the failure of one of the neurons in a codeword in
Ck,m(k+m) failing to fire. There are exactly two codewords in Ck,m(k+m) where the failure of one
neuron produces c, the codewords c1 = 11 · · · 1k0k+1 · · · 0k+m and c2 = 11 · · · 1k�10k · · · 0k+m�11k+m.
We have Pr(c received | c1 or c2 sent) = Pr(c received)

Pr(c1 or c2 sent) . Since we assumed the stimulus space was

uniform, each codeword is equally likely to have been sent, so Pr(c1 or c2 sent) = 2
k+m

. If c1 or
c2 was sent and c was received, then exactly one neuron failed to fire and all the other neurons
fired correctly, so Pr(c received | c1 or c2 sent) = (1� p)pk�1. Therefore, we have Pr(c received) =

2
k+m

(1� p)pk�1.

We now consider the set of codewords in Ck�1,m+1(k +m).

Lemma 4.5. Let q be the probability of seeing a codeword in Ck�1,m+1(k+m) on a given trial. If
each of the codewords in Ck,m(k+m) is sampled N times, the probability of seeing all the codewords
in Ck�1,m+1(k +m) is (1� (1� q)N )k+m.

Proof. Let x be the probability of seeing a codeword at least once. There are k +m codewords in
Ck,m(k +m), so the probability of seeing all k +m codewords at least once is xk+m. We have

x = 1� Pr(never seeing a codeword in N trials).

We also have
Pr(never seeing a codeword in N trials) = (1� q)N .

Thus, the probability of seeing all the codewords is

xk+m =
�
1� (1� q)N

�k+m
.

We are able to combine the results of Lemma 4.4 and Lemma 4.5 to give us the probability of
receiving the convex closure,

P(k,m,N, p) =

 
1�

✓
1� 2

k +m
(1� p)pk�1

◆
N
!

k+m

.

From this formula for the probability, it is natural to ask how many times each codeword needs
to be sampled to achieve some probability that all the codewords in the convex closure have been
received. Using this formula, we derive the number of times N which each codeword needs to be
sampled in order to achieve some probability bound P of receiving all the codewords in the convex
closure, finding

N = log1� 2
k+m (1�p)pk�1

⇣
1� P

1
k+m

⌘
=

ln
⇣
1� P

1
k+m

⌘

ln
⇣
1� 2

k+m
(1� p)pk�1

⌘ .
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To develop better intuition about the dependence of N on k and m, we can approximate

ln
⇣
1� 2

k+m
(1� p)pk�1

⌘
as � 2

k+m
(1� p)pk�1. Using this approximation, we find

N ⇡
ln(P) + (k +m) ln

✓
1

P
1

k+m
� 1

◆

�2(1� p)pk�1
= f(k) +mg(k) ln

✓
1

P
1

k+m

� 1

◆
,

where f(k) = lnP+k

�2(1�p)pk�1 and g(k) = 1
�2(1�p)pk�1 . The plots show that this approximation closely

follows the analytic solution. Through this approximation, we are able to see why we might expect
N to depend almost linearly on m, as seen in the plot in Figure 8.

Recall our expression for P from Proposition 4.2. By optimizing this expression for fixed k, m,
and N , we are able to solve for the p which gives the highest probability of observing the convex
closure (Corollary 4.3). The probabilty of observing the convex closure P has a minimum of 0 at
p = 1 and a maximum at p = k�1

k
. Similarly, by optimizing N for fixed k, m, and P, we find that

N is minimized at p = k�1
k

.
These results are limited to the case where the stochasticity is only for neurons failing to

fire with the assumption that neurons never fire when they should not. The more challenging
question combinatorially is what the probability is that a code becomes convex when there is some
nonzero probability that neurons fire when they should not because this additional firing changes
the simplicial complex and hence which codewords are mandatory. This combinatorial question
remains open and is further complicated by the fact that for n > k+m, receiving a (k� 1)-(m+1)
codeword requires a pattern of repeated errors at each firing band.

4.2 Convex completions of Hamming distance d

While less probable, it is also possible for neurons to fire incorrectly, which would correspond to
codewords of greater weight that no longer preserve the simplicial complex. Observe that while
multiple errors in firing are possible, the probability of each additional error decreases. We use
Hamming distance as a measure of the degree to which two codewords di↵er, counting the number
of errors that would be needed for one codeword to be transmitted as another. Recall that the
Hamming distance between two codewords a and b, denoted dH(a, b), is given by dH(a, b) = wH(a�
b) where subtraction is performed over F2. Unlike in Theorem 3.3, we no longer require that the new
code preserve �(C), but instead require that the added codewords have small Hamming distance
from the original codewords.

Definition 4.6. A Hamming distance d convex completion of C is a code bC ◆ C such that bC is
convex, and for all a 2 bC \C there exists c 2 C such that dH(a, c)  d. We say bC is minimal if | bC|
is minimal.

From [4, Lemma 2.5], we know that any code which contains the all-ones codeword, 11 · · · 1, is
convex. Thus, for any code on n neurons where the maximal weight codeword has weight w, we
have a minimal Hamming distance n � w convex completion given by simply adding the all-ones
codeword to the code. In particular, for the case of a k-m periodic code on k+m neurons, we have
a minimal Hamming distance m convex completion given by adding the all-ones codeword. We can
also guarantee a Hamming distance k � 1 convex completion by adding all codewords which are
subsets of some codeword in Ck,m(k +m), but this method is rarely minimal.
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As d increases, the probability of a codeword of Hamming distance d from an original codeword
being received decreases, so while codewords of Hamming distance k� 1 and m are possible, these
convex completions are often less probable. For this reason, we give special attention to the cases
of a Hamming distance 1 convex completion of a k-m periodic code.

Observe that for k  m, the convex closure of Ck,m(k + m) is a Hamming distance 1 convex
completion, where the codewords of Ck�1,m+1(k+m) result from a single neuron in a codeword in
Ck,m(k+m) failing to fire (Theorem 3.3). On the other hand, for k  m� 2, the code obtained by
adding higher weight codewords Ck,m(k +m) [ Ck+1,m�1(k +m) is a Hamming distance 1 convex
completion, since this code is precisely the convex closure of Ck+1,m�1(k + m). Both of these
examples of Hamming distance 1 convex completions require k +m additional codewords, so it is
natural to ask whether the convex closure is a minimal Hamming distance 1 convex completion.

Theorem 4.7. For k  m, the convex closure of Ck,m(k +m) is a minimal Hamming distance 1
convex completion.

Proof. Let bC be a Hamming distance 1 convex completion. Define A = bC \ C, so proving bC is
minimal is equivalent to proving |A| is minimal.

Let C = Ck,m(k +m) for k  m and let � = �(C). For the cases of k = 0 and k = 1, C̄ = C
(Theorem 3.3), so A is the empty set and must be minimal. Now consider the case 1 < k  m. We
know that the convex closure is the minimal Hamming distance 1 convex completion which also
preserves the simplicial complex of the code, where A = Ck�1,m+1(k +m) and |A| = k +m. Thus,
in order to show that the convex closure is minimal, we will prove that there is no smaller A0 of
Hamming distance 1 codewords such that Cmin(�(C [ A0)) ✓ C [ A0. Define b� = �(C [ A0) and
A⇤ = Cmin(b�) \ C. For C [A0 to be convex, we must have A⇤ ⇢ A0.

For any A0 such that b� = �, we have A⇤ = Ck�1,m+1(k+m). We want to show that by adding
a single Hamming distance 1 codeword to A0, we can reduce |A⇤| by at most 1. Without loss of
generality, consider the face ⌧ 2 Ck�1,m+1(k +m) with ⌧ = �2,k(k +m), using our notation from
Section 3.2. Recall from the proof of Lemma 3.6 that Lk⌧ (�) = {1, (k + 1)}. To form a convex
completion, we must either have ⌧ 2 A0 or choose A0 such that Lk⌧ (�(C [ A0)) is contractible.
Since Lk⌧ (�) ✓ Lk⌧ (b�), in order for Lk⌧ (b�) to be contractible, we must have that either the edge
{1(k+1)} 2 Lk⌧ (b�) or the edges {1j} and {(k+1)j} are both in Lk⌧ (b�) for some j > k+1. The
only way we can add the edge {1(k+1)} to Lk⌧ (b�) by adding a Hamming distance 1 codeword is if
�1,k+1(k+m) 2 A0. The only way we can add the edges {1j} and {(k+1)j} using Hamming distance
1 codewords is if 1 · · · 1k0 · · · 01j0 · · · 0 2 A0 and 01 · · · 1k+10 · · · 01j0 · · · 0 2 A0. The addition of these
codewords does not change the link of any of the other codewords in Ck�1,m+1(k +m) and hence
A⇤ = (Ck�1,m+1(k+m)�{⌧})[Cmin(b�))\C. This gives us |A⇤| � |Ck�1,m+1(k+m)|�1. So for A0

to be a convex completion, we must have A0 ◆ �1,k+1(k+m)[A⇤, giving us |A0| � 1+ |A⇤| � k+m.
Thus, there exists no smaller A0 such that Cmin(b�) ✓ C [A0.

5 Algebraic signatures of k-m periodic codes

We defined k-m periodic codes as the codes containing all k-m periodic codewords, relying on a
specific ordering of the vertices. We showed that we could determine whether another maximal code
is permutation equivalent to a periodic code by comparing the simplicial complexes of the codes
(Proposition 2.12). In this section, we prove Theorem 5.10, which gives an algebraic description of
periodic codes and allows us to check if any code is permutation equivalent to a periodic code.

22



5.1 The neural code as an algebraic ideal

The code may also be viewed from an algebraic perspective as an ideal. To encode a neural code
C as an ideal, we associate to each neuron an indeterminant xi. The neural ideal is defined by

JC = {f 2 F2[x1, . . . , xn] | f(c) = 0 for all c 2 C} \ �,

where F2[x1, . . . , xn] is the ring of polynomials with coe�cients in F2, the finite field with 2 elements
{0, 1} and � = {xi(1� xi)}ni=1 the set of Boolean generators.

The neural ideal gives us information about the relationships among the receptive fields of the
neurons as explained in the following lemma.

Lemma 5.1. [6, Lemma 4.2] Let C be a neural code and U a collection of open sets (not necessarily
convex) such that C = C(U). Then for any �, ⌧ ⇢ [n] such that � \ ⌧ = ;,

Y

i2�
xi
Y

j2⌧
(1� xj) 2 JC ,

\

i2�
Ui ✓

[

j2⌧
Uj .

For example, in Figure 4, we see U3 ⇢ U2, so x3(1 � x2) 2 JC . In the previous lemma, the
generators of the neural ideal are given as polynomials of the form x�

Q
i2⌧ (1� xi), which we call

psuedo-monomials when � \ ⌧ = ;.
Viewing the generators of the neural ideal from the perspective of receptive fields, we are able to

observe some special properties in JCk,m(n) that result from the periodicity property (Lemma 2.4). In
particular, since for i ⌘ jmod (k +m) we have xi = xj , we know that xi and xj are interchangeable
in the elements of the ideal of a k-m periodic code. We define a map Tij between pseudo-monomials,
where Tij(f) is f with xi and xj interchanged. For example, Tij(xix`(1� xj)) = xjx`(1� xi) and
Tij(xi(1� x`)) = xj(1� x`).

Lemma 5.2. Let C = Ck,m(n) be k-m periodic with n > k + m. For any i, j 2 [n], i ⌘
jmod (k +m) if and only if xi(1 � xj) 2 JC . Furthermore, if i ⌘ jmod (k +m), then for ev-
ery f 2 JC , we also have Tij(f) 2 JC .

Proof. (() Assume xi(1 � xj) 2 JC , so Ui ⇢ Uj . Suppose i 6⌘ jmod (k +m), and that i ⌘
ı̃mod (k +m) and j ⌘ |̃mod (k +m) for ı̃ and |̃ less than k + m. We can choose a permutation
of sk,m such that ı̃ = 1 and |̃ 6= 1, so there exists a codeword where 1 = i = ı̃ 6= |̃ = j. Thus,
Ui 6⇢ Uj , a contradiction, so we must have i ⌘ jmod (k +m). ()) Assume that i ⌘ jmod (k +m).
By Lemma 2.4, ci = cj for all codewords in Ck,m(n). This implies that neuron i and neuron j fire
over exactly the same set, so equivalently Ui ⇢ Uj and Uj ⇢ Ui. These receptive field relationships
correspond to the generators xi(1�xj) and xj(1�xi). Moreover, since Ui and Uj are the same set,
xi and xj are interchangeable in the generators of the canonical form, as occurs under the operation
Tij .

From this result, we are able to define an equivalance relation on [n] from the generators of JC .

Lemma 5.3. Let C = Ck,m(n) with n � k +m. The relation i ⇠ j if xi(1 � xj) 2 JC defines an
equivalence relation on [n].

Proof. We trivially have xi(1 � xi) 2 JC , so ⇠ is reflexive. By Lemma 5.2, if xi(1 � xj) 2 JC ,
then i ⌘ jmod (k +m), so we also have j ⌘ imod (k +m), giving us xj(1 � xi) 2 CF(C) and
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⇠ is symmetric. Again applying Lemma 5.2, if xi(1 � xj) 2 JC and xj(1 � x`) 2 JC , then
i ⌘ jmod (k +m) and j ⌘ `mod (k +m), which implies i ⌘ `mod (k +m), so we must have
xi(1� x`) 2 JC , giving us the transitivity of ⇠.

Observe that this equivalence relation is not true for a general receptive field code. In our
example from Figure 4, x3(1� x2) 2 JC(U) but x2(1� x3) is not.

We also observe that we can find the neural ideal of the k-m periodic code for m > k from the
neural ideal of the k-m periodic code with k  m.

Lemma 5.4. If x�
Q

i2⌧ (1� xi) 2 JCk,m(n), then x⌧
Q

j2�(1� xj) 2 JCm,k(n).

Proof. To form the neural ideal, we take the set of functions that evaluate to zero on all codewords
in the code. Given a codeword c 2 Ck,m(n), there is a corresponding codeword c0 2 Cm,k(n) such
that ci 6= c0

i
for all i. This implies that any function that evaluates to 1 on all codewords in Ck,m(n)

evaluates to 0 on some codeword in Cm,k(n).

Observe that the m-k periodic code can be formed from the k-m periodic code by flipping
every bit in every codeword. Lemma 5.4 shows that combinatorially the information represented
by bits which are 1’s and bits which are 0’s has a certain equivalence. Yet, this information is not
equivalent topologically. For example, for all x > 1, C1,x(1 + x) is convex but Cx,1(1 + x) is not in
general. This implies that the information represented by 1’s in a code is fundamentally di↵erent
than that represented by 0’s.

In order to compare di↵erent codes, it is convenient to use a convention to represent the ideal
of a code. In their work, Curto et al. [6] develop an algorithm which allows the neural ideal to be
expressed in canonical form.

Definition 5.5. Let C be a neural code and JC its neural ideal. The canonical form of the neural
ideal is the set of all minimal pseudo-monomial elements in JC , where an element f 2 JC is minimal
if f 6= gh for any pseudo-monomial g 2 JC with deg(g) < deg(f) and some h 2 F2[x1, . . . , xn].

From this canonical form, a description of the receptive field structure can be extracted from
knowledge only of the code [6]. The canonical form of the code in Figure 4 is given by {x3(1�x2)},
corresponding to the receptive field relationship U3 ⇢ U2.

5.2 The canonical form of k-m periodic codes

One question of algebraic interest is whether the canonical forms of k-m periodic codes have any
significant properties. In particular, can the canonical form be used to detect whether a code is
periodic? In this section, we first give the canonical form for a periodic code on k+m neurons. We
then prove several lemmas which extend these results from codes on k +m neurons to codes on n
neurons, allowing us to present the canonical form of any k-m periodic code in Theorem 5.10.

We first introduce the definition of the interval mod n between two indices, which will be useful
in our formulation of the canonical form of a periodic code. Recall our notation,

�i,j(n) =

(
{` | i  `  j} if i  j

{` | i  `  n} [ {` | 1  `  j} if i > j
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Definition 5.6. The interval mod n between indices i and j, denoted Intn[i, j], is the set �i,j(n)
or �j,i(n), whichever is smaller. If |�i,j(n)| = |�j,i(n)|, we choose Intn[i, j] = �i,j(n) such that i < j
by convention.

For example, we have Int5[1, 2] = {1, 2}, and Int5[1, 5] = {1, 5}.
For simplicity, we include the zeros codeword when we give the general structure of the canonical

form. The addition of the zeros codeword removes generators of the form
Q

i2⌧ (1 � xi) with no
changes to any of the other generators. This observation in combination with our interval notation
allows us to define four natural classes of pseudo-monomial generators of the canonical form of the
periodic code Ck,m(n). We define

A1 = {xixj | k < |Intk+m[i, j]|}.

The set A1 consists of generators of the form xixj . A generator xixj corresponds to Ui\Uj = ;.
We know that the receptive field of two neurons intersect if and only if they both fire in the same
codeword. In Ck,m(k + m), neurons i and j only cofire if |Intk+m[i, j]|  k, so for Ui \ Uj = ;,
|Intk+m[i, j]| > k. Thus, A1 consists of generators of the neural ideal. We define

A2 = {xixj(1� xz) | z 2 Intk+m[i, j] and k � |Intk+m[i, j]|}

and
A3 = {xz(1� xi)(1� xj) | z 2 Intk+m[i, j] and k � |Intk+m[i, j]|}.

We observe that A2 also consists of generators of the neural ideal. If both neuron i and j are
firing and |Intk+m[i, j]|  k, then any neuron contained in Intk+m[i, j] must also fire or there would
be a band of firing neurons of size less than k. Analogously, A3 also consists of generators of the
neural ideal since if both neuron i and j are not firing, then any neuron contained in Intk+m[i, j]
must also not fire or there would be a band of firing neurons of size less than k. We define

A4 ={xixjxz | z /2 Intk+m[i, j], j /2 Intk+m[i, z], i /2 Intk+m[j, z],

and k � max(|Intk+m[i, j]|, |Intk+m[i, z]|, |Intk+m[j, z]|)}.

A4 also consists of generators of the neural ideal. A generator xixjxz corresponds to Ui \
Uj \ Uz = ;. For this generator to be minimal, we must have that the pairwise intersections
are nontrivial, so |Intk+m[i, j]|  k, |Intk+m[i, z]|  k, and |Intk+m[j, z]|  k, but for the triple
intersection to be trivial, we must have that the third vertex is not contained in these pairwise
intervals. Using these sets, we can construct the canonical form of the k-m periodic code on k+m
neurons.

Proposition 5.7. Let k  m. The canonical form of a k-m periodic code on k + m neurons is
given by

CF(Ck,m(k +m) [ {0}) = A1 [A2 [A3 [A4.

Proof. From the discussion above, we have seen that all of the described sets must be generators of
the neural ideal. It remains to show that this set is minimal and that there are no other generators.
It is clear that none of the generators in A2 or A4 are multiples of the generators of A1 since in A1,
we have |Intk+m[i, j]| > k and in A2 and every pair in A4, the interval has size less than or equal
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to k. Thus the generators in A1, A2, and A4 are minimal. To see that A3 is minimal, we note that
there can be no generators of the form xi(1� xj) corresponding to Ui ⇢ Uj since the cyclic nature
of the code makes it so that no neuron always fires when another is firing. We show that this set
is complete by showing that it generates no codewords not in Ck,m(k + m) [ {0}. The all-zeros
codeword clearly satisfies the conditions of the minimal generators and is included in C, so any
other codeword must have a 1 at some bit. Let c1 · · · cn be a binary string which vanishes on all of
the generators. Without loss of generality, let c1 = 1. We can choose c2 to be 0 or 1. If we choose
it to be zero, then we must choose cn�k+2 = · · · = cn = 1 to vanish on the generators in A2 and A3.
We also must have that all other bits are 0 to vanish on the generators in A1. Thus, we generate a
k-m periodic codeword. If we choose c2 = 1, then we can choose c3 to be 0 or 1, and if we choose
it to be 0, we introduce analogous restrictions on the remaining bits in the codewords as when we
chose c2 = 0, so we form another k-m periodic codeword but shifted by one bit. Thus, whenever
we choose cj = 0 for j < k, given that c1 = 1, we have fixed the remaining bits of the code so that
we have a k-m periodic codeword. Thus, we do not generate any codewords other than those in C.
Therefore, the set A1 [ A2 [ A3 [ A4 is complete and consists of minimal generators of the neural
ideal of Ck,m(k +m).

Given that the convex closure is closely related to the original code by the union with another
periodic code, it is natural to ask if we can also find the canonical form of the convex closure. To
do this we will use Algorithm 1 of [15], which describes a method to update the canonical form of
a code, CF(C) when a new codeword c is added. For f 2 CF(C), if f(c) = 0, add f to a set L,
and otherwise, add f to a set M . For every g 2 M and every ci, define h = (xi � ci)g. If h is not a
multiple of an element of L and g is not a multiple of (xi� ci�1), add h to a set W . The canonical
form of the new code is given by CF(C [ c) = L [W .

We also require defining a subset of the generators in A3 which are not generators of the neural
ideal of the closure,

Ã3 = {xz(1� xi)(1� xj) | z 2 Intk+m[i, j] and k = |Intk+m[i, j]|}.

Lemma 5.8. Let C = Ck,m(k +m) for k  m. The canonical form of the convex closure C̄ [ {0}
is

CF(C̄ [ {0}) = CF(C [ {0}) \ Ã3.

Proof. We have C̄ [ {0} = Ck,m(k + m) [ Ck�1,m+1(k + m) [ {0}. Algorithm 1 of [15] allows
us to determine the canonical form of a code that is modified by adding a single codeword. Let
c 2 Ck�1,m+1(k + m). Since c vanishes on every generator in A1, A2, and A4, we have L =
A1 [A2 [A4. Since Ck�1,m+1(k+m) is periodic, we know that c also vanishes on every generator
in A3 \ Ã3. It remains to show that for every f 2 Ã3, there exists c 2 Ck�1,m+1(k+m) which does
not vanish on f(c). Note that since |Intk+m[i, j]| = k, we have j = i + k � 1. Take the codeword
� = �i,i+k�2(k +m). We have f(�) = 1. So we add xz(1 � xi)(1 � xj) to M . We have c` = 1 for
` 2 Intn[i, i + k � 2], but xz(1 � xi)(1 � xj)(1 � x`) is a multiple of a generator in A3 \ Ã3 ⇢ L.
We have c` = 0 for ` 62 Intk+m[i, i+ k � 2]. For ` = i+ k � 1, xzx`(1� xi)(1� xj) is a multiple of
a generator in A2 ⇢ L, and otherwise we have xzx`(1� xi)(1� xj) is a multiple of a generator in
A1 ⇢ L. Thus, we have CF(C̄ [ {0}) = L = (A1 [A2 [A3 [A4) \ Ã3 = CF(C [ {0}) \ Ã3.
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Thus, we have the canonical form of a k-m periodic code and its closure on k+m neurons, and
we want to extend this to a k-m periodic code on n neurons. In particular, Lemma 5.2 gives us
the key result that allows us to do so. Observe that by Lemma 2.4, the convex closure also satisfies
that ci = cj for i ⌘ jmod (k +m), so the same lemma allows us to extend the results of Lemma 5.2
to the canonical form of the convex closure. Lemma 5.2 also allows us to define an equivalence
relation on the generators of the neural ideal of a k-m periodic code.

More significantly, Lemma 5.2 in combination with Proposition 5.7 allows us to detect if a code
of arbitrary length is periodic, as we will show in the following section. To do so we will introduce
a concept of equivalence of pseudo-monomials.

Definition 5.9. Let f and g be pseudo-monomials, f = x�
Q

i2⌧ (1�xi) and g = x�0
Q

i2⌧ 0(1�xi).
We say f ⌘ gmod a if there exist bijections s : � ! �0 and t : ⌧ ! ⌧ 0 such that s(i) ⌘ imod a and
t(j) ⌘ jmod a for some integer a.

Observe that g ⌘ gmod (k +m) trivially by taking both s and t as the identity.
We note that the canonical form of the neural ideal fully characterizes the code [6]. If two

codes are permutation equivalent, we can similarly permute the indeterminants, xi, that appear
in the canonical form, so if one canonical form, CF(C) can be attained from the other, CF(C 0)
through a permutation of the indeterminants, we say that the canonical forms are permutation
equivalent, denoting this equivalence as CF(C) ⇠= CF(C 0). Combining the results of Proposition 5.7,
Lemma 5.8, and Lemma 5.2 allows us to give the canonical form of a k-m periodic code on n neurons
and that of its convex closure, hence allowing us to determine if any code is permutation equivalent
to a periodic code. We see that CF(Ck,m(n) [ {0}) � CF(Ck,m(k + m) [ {0}). The canonical
form CF(Ck,m(n) [ {0}) also contains the generators which define the equivalence relation, and
as a result of this equivalence, contains generators equivalent modulo k + m to the generators of
CF(Ck,m(k +m) [ {0}).

Theorem 5.10. Let Ck,m(n) be a k-m periodic code on n neurons and Ck,m(n) be its convex
closure. Define B = {xi(1� xj) | i ⌘ jmod (k +m) and i 6= j}. Then

CF(Ck,m(n) [ {0}) =
{f | f ⌘ gmod (k +m) for some g 2 CF(Ck,m(k +m) [ {0})} [B

and

CF(Ck,m(n) [ {0}) =
{f | f ⌘ gmod (k +m) for some g 2 CF(Ck,m(k +m) [ {0})} [B.

Moreover, a code C of length n which does not contain the all-zeros codeword is permutation equiv-
alent to Ck,m(n) if and only if

CF(C [ {0}) ⇠= CF(Ck,m(n) [ {0})

for some permutation of the neurons in C. Similarly, C is permutation equivalent to the convex
closure if and only if

CF(C [ {0}) ⇠= CF(Ck,m(n) [ {0}).
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The canonical forms follow immediately from Proposition 5.7, Lemma 5.8, and Lemma 5.2.
From the results in [6], we know that CF(C) fully determines JC , which, in turn, fully determines
C. Thus, CF(C[{0}) ⇠= CF(Ck,m(n)[{0}) if and only if C and Ck,m(n) are permutation equivalent.
Thus, we are able to provide three simple checks to detect that a code is not periodic.

Lemma 5.11. Let C be a neural code with canonical form CF(C [ {0}). If any of the following
conditions hold, C is not periodic:

1. There exists f 2 CF(C[{0}) where f =
Q

i2� xi
Q

j2⌧ (1�xj) such that |⌧ | > 2 or |�[⌧ | > 3.
2. For i 6= j and xi(1 � xj) 2 CF(C [ {0}), there exists g 2 CF(C [ {0}) such that Tij(g) /2

CF(C [ {0}).
3. For i 6= j and j 6= `, both xi(1 � xj) 2 CF(C [ {0}) and xj(1 � x`) 2 CF(C [ {0}), but

xi(1� x`) /2 CF(C [ {0}).

The proof of Lemma 5.11 follows immediately from Theorem 5.7 and Lemma 5.3. Observe that
this guarantees that if xi(1� xj) is in the canonical form, xj(1� xi) is also in the canonical form,
as required by Lemma 5.2, since either pseudo-monomial is obtained from the other by applying
Tij . This lemma provides a simple way to determine when a code is not periodic. Next, we will
show that for arbitrary codes of length n which satisfy these simple criteria, there is still a method
which will allow us to determine k and m and hence the permutation equivalence of the code to a
periodic code.

5.3 Identifying periodic codes algebraically

Our formulation of the canonical form of a k-m periodic code requires knowledge of k and m. For
a given code, it may not be immediately obvious whether it is periodic as the neurons may have
been permuted as we saw in Figure 2, where

C 0 = {10010000,01001000, 00100100, 00010010, 00001001,
10000100, 01000010, 00100001}

and

C̃ = {10100000,01010000, 00101000, 00010100, 00001010,
00000101, 10000010, 01000001},

which have corresponding canonical forms,

CF(C 0 [ {0}) = {x1x2, x2x4, x1x5, x4x5, x1x3, x2x3, x3x4, x3x5, x2x6, x4x6, x5x6, x1x7,

x3x7, x5x7, x6x7, x4(1� x1)(1� x7), x1x8, x2x8, x4x8, x6x8, x7x8,

x5(1� x2)(1� x8), x1(1� x4)(1� x6), x6(1� x1)(1� x3),

x2(1� x5)(1� x7), x7(1� x2)(1� x4), x3(1� x6)(1� x8),

x8(1� x3)(1� x5)}

and

CF(C̃ [ {0}) = {x1x2, x2x3, x1x4, x3x4, x1x5, x2x5, x4x5, x3(1� x1)(1� x5), x1x6, x2x6,

x3x6, x5x6, x4(1� x2)(1� x6), x2x7, x3x7, x4x7, x6x7, x5(1� x3)(1� x7),

x1x8, x3x8, x4x8, x5x8, x7x8, x6(1� x4)(1� x8), x1(1� x3)(1� x7),

x7(1� x1)(1� x5), x2(1� x4)(1� x8), x8(1� x2)(1� x6)}.
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In this case, it is not immediately obvious even from the canonical form whether the code is
periodic as all of the generators of CF(C 0) and CF(C̃) have the form xixj or xi(1 � xj)(1 � xz),
consistent with Lemma 5.11, but only C 0 is periodic. The information we do gain from the canonical
form is that there are no generators of the form xi(1� xj), so we know that if the code is periodic,
then n = k + m (Lemma 5.2), which also allows us to determine k by taking the weight of each
codeword, but the question remains how to determine k and m in a general case.

For a code which satisfies the easy-to-check conditions in Lemma 5.11, we present an algorithm
that allows us to determine k and m, and hence whether an arbitrary code C of length n is k-m
periodic for some permutation of the neurons.

1. Determine k +m by determining equivalence classes of vertices. In Lemma 5.3, we
showed that the relation i ⇠ j if xi(1�xj) 2 JC is an equivalence relation, so we can partition
[n] into k +m equivalence classes. If |C| 6= k +m, then C is not periodic (Lemma 2.7).

2. Determine k by forming C|k+m. Let C|k+m be the code formed by restricting C to k+m
vertices, where there is one vertex from each equivalence class. If C|k+m is not a constant
weight code, then C is not periodic. Otherwise, k = wH(c) for c 2 C|k+m.

3. Check for permutation equivalence given k and m. Given k andm, apply Theorem 5.10
to determine if C is permutation equivalent to Ck,m(n).

We apply this algorithm to C 0 and C̃ to show that C 0 is periodic and C̃ is not. In the first
step of the algorithm, we find that each neuron is its own equivlance class for both codes, giving
us k +m = 8 and both codes contain 8 codewords. Since each neuron is its own equivalence class,
we have that C|k+m is the original code for both cases in the second step of our algorithm. Each
codeword in both codes has weight 2, giving us k = 2 for both codes. In the third step, we check
for permutation equivalence of the canonical forms of C 0 and C̃ with the canonical form of C2,6(8).
We have

CF(C2,6(8) [ {0}) ={x1x3, x1x4, x2x4, x1x5, x2x5, x3x5, x2(1� x1)(1� x3),

x4(1� x3)(1� x5), x1x6, x2x6, x3x6, x4x6, x3(1� x2)(1� x4),

x5(1� x4)(1� x6), x1x7, x2x7, x3x7, x4x7, x5x7, x6(1� x5)(1� x7),

x2x8, x3x8, x4x8, x5x8, x6x8, x7(1� x6)(1� x8), x1(1� x2)(1� x8),

x8(1� x1)(1� x7)}.

We see by applying the permutation (24)(37)(68) to C 0 that we attain the same canonical form,
so C 0 is permutation equivalent to a periodic code. There is no such permutation for C̃, so this
code is not periodic.

6 Discussion

We showed that periodic codes, Ck,m(n), with 1 < k  m do not have a convex realization, poten-
tially explaining the behavioral errors which owls make in localizing sounds of a single frequency.
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However, for sounds with greater bandwidth, the owl is able to locate sounds with high precision,
which suggests that there is a convex realization of these codes. In particular, we showed that the
convex closure of a single periodic code is its union with another periodic code. Such a code could
arise by combining the code from many isofrequency columns as occurs in the inferior colliculus,
perhaps explaining why the first space mapped cells exist in this nucleus. Alternatively, we dis-
cussed that this could arise biologically through stochasticity, suggesting that both stochasticity
and sparsity might be advantageous biologically.

Here we have framed our questions in terms of the system of sound localization in the owl,
but we note that there are other systems which may be a natural extension of periodic codes. For
example, the receptive fields of rats’ grid cells are centered at the vertices of a hexagonal lattice so
are themselves periodic [14]. This two dimensional system of grid cells raises the question of how
to define periodic codes in higher dimensions, which we leave for further research.
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