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There exist two four-derivative extensions of N = (1,0) supergravity in six dimen-
sions. A particular combination of them is known to dualize to the analog of the
the Bergshoeff-de Roo (BdR) action in 10D. Here we first show that the two ex-
tensions are not related to each other by any field redefinitions. Next, we dualize
them separately thereby obtaining a two parameter dual theory. This is done di-
rectly at the level of the action, thus avoiding the laborious method of integrating
equations of motion of the dualized theory into an action. To explore whether a
similar phenomenon exists in 10D, we study the dualization of the BdR action in
10D in detail. We find an obstacle in the separation of the result into a sum of two
independent invariants because of the presence of terms which do not lift from 6D to
10D. We also compare the dual of the BAR action with an existing result obtained

in superspace. We find that the bosonic actions agree modulo field redefinitions.
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1 Introduction

Low energy limit of heterotic string was studied long ago either by computing tree-amplitudes
and seeking an action that produces them [1-3], or from the requirement of superconformal
symmetry of the worldsheet sigma model [4]. In the latter approach, and to first order in
o/, it was found that the bosonic part of the action agrees with that of Bergshoeff-de Roo
(BdR) action [5], which was obtained from supersymmetry of a four-derivative extension of
heterotic supergravity. Given the presence of Lorentz Chern-Simons term in the three-form
field strength, which is necessary for the anomaly cancellation, supersymmetry requires or-
der by order deformation of the action and supersymmetry transformations to infinite order
in a derivative expansion. As is well known, string theory fixes all the relative coefficients.
Nonetheless, since it is still not known if string theory is a unique UV completion of quan-
tum supergravity, it is useful to understand full consequences of supersymmetry, and attempt
to determine the coefficients in the derivative expansion from first principles such as locality,
causality and high energy unitarity.

The construction of the BAR action relies on a trick that exploits the similarity in the su-
pertransformation rules of Yang-Mills multiplet and a composite multiplet made of properly
supercovariantized Lorentz spin connection and the gravitino curvature [6,7]. It is well known
that this approach cannot produce the most general supersymmetric action at the order of
eight derivatives and beyond. Nonetheless one may ask whether the BdR action provides a
unique four-derivative extension. To rigorously prove this, an analysis of the most general su-
perspace constraints, or the Noether procedure in its most general form that does not rely on
the ‘Lorentz from Yang-Mills” trick may be needed. We shall come back to the deformation
problem in superspace in Section 5, but let us note that the construction of higher deriva-
tive supergravities by Noether procedure is notoriously difficult. For early attempts for direct
Noether procedure, see [8] where the Gauss-Bonnet combination of curvature squared terms,
and [9] where Riemann-squared terms were considered. Partial results were also obtained in [10]
where the dual six-form formulation with Gauss-Bonnet terms was considered. This version of
supergravity describes the low energy limit of five-brane, and provides a lowest order description
of string-five brane duality [11,12]. Interestingly enough, a two parameter extension containing
Riemann-squared and the Gauss-Bonnet terms was found in [13], where supersymmetry vari-
ations that are independent of the seven-form field strength were considered. Whether these
two parameters get related to each other upon taking into account all variations remains to be
seen.

Thanks to the availability of superconformal tensor calculus and off-shell formulation [14,15],
the study of higher derivative extensions of N = (1,0),6D supergravity! are more accessi-

ble [16-18]. It is known that the theory admits two distinct four-derivative extensions [16,18],

"What we refer to as N = (1,0),6D supergravity actually consists of the irreducible supergravity and a
single tensor multiplet. This reducible multiplet has the same field content as N = (1,0), 10D supergravity, and

similar couplings to Yang-Mils, and therefore we shall refer to it as heterotic supergravity in 6D.



and that a particular combination of them arises from the dualization of the BdR action in
6D [19]. This shows that there does exist a four-derivative extension of heterotic supergravity
in 6D which cannot be obtained by the “Lorentz from Yang-Mills” trick [6,7]. The similarity
between heterotic supergravities in 6 and the connection afforded by toroidal compactifi-
cation followed by a consistent truncation, motivates a closer look at the structure of the
four-derivative extensions, and the nature of the duality transformations that take into account
these extensions.

The main goal of this paper is to first show that the two four-derivative extensions of
heterotic supergravity in 6D cannot be related to each other by any field redefinition. One of
them has a Riemann? term [13,16], and the other one has the Gauss-Bonnet combination [18]
(RMPPRyypo — ARM R, + R?). The fact that the wa and R? terms can be removed by
redefinition of the metric does not imply on-shell equivalence of the two invariants because
several terms involving the three-form field strength, the dilaton and fermions do not coincide.
Next, we shall dualize both extensions separately, thereby obtaining a two parameter («,y) dual
theory with Lagrangian Eg??l. We will do so at the level of the action, by adding a suitable
Lagrange multiplier term that involves a dual two-form potential C, and integrating out the
original field strength H = dB. We thus avoid the laborious method of integrating equations of
motion of the dualized theory into an action, which furthermore may harbor some ambiguities.
Setting v = « remarkably gives the 6D analog of the BdR action. This is in agreement with
the dualization performed in the opposite direction by integrating out the dualized equations
of motion into an action [19]. Setting v = —« instead gives a four-derivative extension in which
the curvature-squared terms are (RWR’“’ — %R2). These particular terms can be removed by
field redefinitions, at the expense of complicating the supersymmetry transformation rules.

In order to explore whether a similar phenomenon exists in 10D, we shall examine the
dualization of the BAR action in 10D in detail. This time the Lagrange multiplier term involves
the dual six-form potential B, and we integrate over the Lorentz Chern-Simons modified field
strength G = dC+a/wy,. This dualization was performed long ago in [20,21] but here we provide
a closer look at this dualization in the brane frame, working out in detail the dependence on
H = dB, and explore the possibility of extracting two distinct invariants in analogy with the
Riem? and Gauss-Bonnet invariants that exist in 6. We will show that there is an obstacle in
finding such a separation because of the presence of terms which do not lift from 6D to 10D. We
also compare the dual of the BAR action with an existing result obtained in superspace [22—26].
We find that the bosonic actions agree modulo field redefinitions, but a full comparison in
the fermionic sector as well as the supersymmetry transformations remain to be investigated
further.

This paper is organized as follows. In Section 2, we recall two four-derivative off-shell
invariants of N = (1,0),6D supergravity, and how to go on-shell. Next, we show that the
resulting invariants cannot be related to each other by any field redefinitions. We also highlight

the difference between these invariants and the 6D analog of BAR invariant?. In Section 3, we

2In the context of on-shell supergravity, by “invariant” we mean a Lagrangian which always contains the two-



dualize the two-parameter Lagrangian L, , and show that for v = « that the result agrees with
that of the 6D analog of BAR action, upon performing certain field redefinitions. In Section
4, we dualize the BAR action in 10D and discuss the obstacle in interpreting the result as a
particular combination of two distinct invariants. We shall also compare the dual Lagrangian
with that obtained in superspace in [26] in Section 5, where we shall also comment on aspects
of the superspace formulation in the two-form formulation. Our results are summarized and
future directions are noted in the Conclusions, conventions and some identities are collected
in Appendix A, and the dimensional reduction of the dual of the BdR action in 10D on T is
described in Appendix B.

2 Higher derivative heterotic supergravity in 6D

The known four-derivative N = (1,0) supergravities in 6D are as follows. A Riemann-squared
invariant was constructed long ago in [13]. A Gauss-Bonnet invariant was constructed partially
in [13], and its construction was completed in [18]. The square of the scalar curvature was given
in [17] but its bosonic part can be easily shown be completely removable by a redefinition of the
dilaton field. For completeness, we shall also consider the 6D analog of the 10D Bergshoeff-de
Roo (BdR) Lagrangian, which may naively be considered to be the dual formulation of the
Riemann-squared invariant mentioned above, but this is not so [19], as we shall explain it in
detail later. We shall comment on the superspace formulations of all these invariants in Section
5.

2.1 The two parameter higher derivative Lagrangian L, ,

An off-shell N = (1,0),6D supergravity [14] and an off-shell Riemann-squared invariant [13]
have been known for sometime. The construction of another off-shell invariant containing the
Gauss-Bonnet combination of curvature-squared terms instead was partially achieved in [13]
and it was completed in [18]. The field content of the 48 4 48 degree of freedom off-shell

Poincaré multiplet is [14]
(eua,B,uua o, Vi, Zys Epvpos 7/),2, Xi) (2.1)

where B,V, E are form potentials with associated gauge symmetries, Z,, is a complex vector
field, ¢ is the dilaton, and the spinors with ¢ = 1,2 are symplectic Majorana-Weyl. Adding

these three off-shell invariants®

ﬁ = ﬁEH — %aERisz — %’yEGB s (2.2)

derivative supergravity plus higher derivative terms with an overall arbitrary constant parameter, and therefore

invariant up to a given order in the deformation parameter, such as o', that counts the number of derivatives.
3We shall use the notation in which we shall suppress the label for the dimension of spacetime for all

Lagrangians that live in 6D, and use the label only for the case of Lagrangians in 10D.



the process of going on-shell requires the elimination of the auxiliary fields using their equations
of motion (EOM) following from the total Lagrangian. The EOM for the E-field is algebraic
and it can be eliminated exactly schematically in the form E, ~ V, + (fermi)? terms [15].
However, the EOM’s for V,, and Z,, are not algebraic due to the curvature-squared part of the
Lagrangian and therefore they become propagating. They can be eliminated order by order
in the parameters « and . To first order in these parameter, the solution takes the form
VE = J" + aJf +vJ§ and ZF = Ji' + aJt + 4 JE, where JY', ..., J§ are bilinear in fermionic
fields. Since we shall consider actions up to quartic fermion terms and supersymmetric at
first order in o and « up to cubic fermions in the supertransformations, all the auxiliary fields,

namely (V,,, Z,,, E,up0) can be set to zero. Thus, we shall consider the Lagrangian (2.2) where!?

e Lpy =e% [%R(w) + 00t o — 5 H,p HHP

= 39" Dy (W) — 2X7" Dy(w)thy + 2X7" Dyu(w)x

— 91 Huwp (07" P — 4oy TP X — 4X7"X)

+ 0up (W'Y "y — 209"97X) | (2.3)

€ Lyjem2 = Ry (W) R ap () + 3777 By Ry (@) Ryrap (w-)

+ 4Py Dy (w, w_ )™ — 2Ry, (w_)pab 1"y Py

— 3V P oy Hyp — [Dy(w—, T 1) RFP (w_) — 4H P RM (w )] thaypths , (24)
e 'Lop = R Ruype — AR™ Ry + R+ 2R, p0 H'™F°

—4RM™H, + 3RH* + L Hy + 5(H?)* — 2(H},)?

+ %E“VPUTABMVRPUCL{)(WJF)RT)\ab(UJJ,_) + fermions , (2.5)

where we have used the definitions

ab __ ab ab _

Wiy = w, " E HY Hywp = 30,By,)
Huu,pa = HuVaHpJa ) Hy = HMV,pUHMpWU >
2 o 2 . v
H2, = Hypo B, H? = Hy HMP

Yap = 2eauebVD[u(w+)7py} )

D,u (wa w—)wab = (a,u + %w“pq,ypq) ¢ab + W—pac¢cb + W—ubc¢ac s (26)

In taking Lop from [18], their conventions can be converted to ours by letting L — e 2%, B, —

ab(w) N

2B, W, = —w,® and et1He 5 gtk Consequently, Huwp — 2H,mp, wep,® — —w=,%, R
—R (W), and Ry, (wa) = =Ry (ws).

In getting Lpiemz from [16], we let Leg — 2L, L — ¢ 2%, Bu, — 2B, Fuup(B) = 2H,up, by —
V2, ©f = =272 x;6Y, € = /2, wi,ﬂb — wi,ﬂb and Ry, (Q) — V29,0



and ['y = I'+ H with I representing the Christoffel symbol. The fermionic part of Lgp is very
complicated and it can be extracted from the equations provided in [18]. Sometimes we shall
use the notation wiuab(H ) to emphasize that the torsion shift is given by H. The Lagrangian
Lyiem? 1s not to be confused with another four-derivative Lagrangian that has similar form but
is distinct from it. This distinct Lagrangian will be discussed in Section 2.2, and we shall refer
to it as Lpgr in view of the fact that it has the same form as its counterpart in 10D constructed
long ago in [5]. In particular note that the Einstein-Hilbert term and the four-derivative terms
come with a different overall dilaton factor, unlike the BdR action in 6. It may seem that the
two invariants are related by a duality transformation. However, this is not the case, since, as
we shall see, the duality transformation must involve a combination of (2.4) and (2.5) [19].

As for the supertransformations, setting the auxiliary field to zero as explained above, they
do not pick up any order @ and v modifications, thereby maintaining their simple form given
by

de, =&y,
51 =Dy (wi)e = Dy(w)e + LH, v Pe
0B = — evutby)
% zéy”eaugp + 1—12Hw,p7’“’pe
dp =€x . (2.7)

In their off-shell supersymmetric versions, Lrp, Lriem2 and Lgp are separately invariant under
the off-shell supertransformations. Upon going on-shell , however, it is the sum of the Einstein-
Hilbert and the («,7y) dependent actions that is invariant under supertransformations up to
first order in these arbitrary parameters.

In summary, the bosonic part of the general two parameter Lagrangian (2.2) takes the form

Lo~ =LEH — %aERiOHp — %7£GB
= e [ iR + 00t — %H“””ijﬂ]
— %EQ[RWab(w_)RWab(w_) + %€”VPU)‘TBWRpoab(w_)R)\mb(w_)] (2.8)
— 3ev| R Rupo — AR Ry, + B2 + 2Ryp0 HYP7 — AR H, + 3R

+20p, + L(H2)? —2(H2,) + %ewmBWR,,oab(w+)Rmb(w+)] .

In studying the relation of this Lagrangian to the type ITA action on K3 for o = =, it is useful

to express it as [19]

Loq =ee [ 1R+ 8,00" 0 — S H"H,,|



- %60& |: ijab(w—)Ruuab(w—) + %euupa)\TB,uuRpoab(w—)R)\Tab (w—)]

- %67[ — LesesR(w-)? — Zegec H2R(w-) — ZesecHa + 3677 By Rpo™ (i) Rarap(wy)|

(2.9)
where
6666R(w_)2 :zeaﬁ””paeagabcdRWab(w_)RPJCd(w_) ,
€6€6H2R(w_) =€apug.pua €A HIR ) H, PO RIS (W)
esceHy ::eaﬁ“”poeagadeHW,aprU,Cd ) (2.10)

For later purposes, it is convenient to write out the H-dependent terms explicitly. Given that
Ruuab(w—) :Rm/ab(w) - 2D[u(w)Hl/}ab + 2H[,uacHu]cb ) (211)

wﬁ,,p(w_) :wﬁ,,p(w) + (HuabDV(w)Hpba — O (HVabwpba)

— H, Ry (w) — %HM“CHVCprba) : (2.12)
[1vp]
the Riemann-squared and Gauss-Bonnet actions can be written as
I(Riem?) = / dSze [RWP"RW — 2R Hy, o + 2H*" H}, — 2H,
4Dy Hypo) (DY HI?) = AH? (wF (@) = H,™ Dy () Hp
Y Hu Ry — %HWUH[%J)] : (2.13)
Igp = / doze [R“””"RWPU — 4R" Ry, + R? 4 2Ry pe HM P
—4RM™H, + 3RH* + L H, + §(H?)* — 2(H},)?
_ 4ﬁ—uup (wﬁup(w) — HuabDy(w)Hpab — HMVURPU + %HMVUHgO-)] ) (214)
where we have used the identities (A.2) and (A.3), we have defined
wﬁ,,p(wi) =tr (W Opw,) + %wi[uwiuwip}) ,
HWP =L etvrr N (2.15)

Lriem2z and Lgp are not equivalent on-shell

Prior to dualization of the Lagrangian L, -, it is useful to check that the o and v dependent

parts are not equivalent to each other upon field redefinitions. Since the Riem? terms cannot



be changed by field redefinitions at the four-derivative order, we take v = —a to remove these
terms. From (2.8), (2.13) and (2.14), we find that

E(Riem2) —Lag = — %ea [4RWRW _R2_ 4pron,po + 4R“”H3V o %RH2
+4(Dy Hypo) DVH 4 A(H}, ) — 5 (H?)? — 3 Hy
~ 8 (R~ §HEu )| (216)

To determine which terms can be removed by field redefinitions, it is convenient to use the

following relations, that follow from the two-derivative Lagrangian, modulo total derivatives,
Ry = —20u + H}\, + 480 — Epguu
oF = 20° — %Hz — 281, 4+ 28, ,
D HMP = 20, HMP + 2 &L
O 0y = —Hﬁycp“cp” GPH? 1 2(02)2 %(Hz)z
— A& tp” — 6% EF, + SHPEN, + T9*E, — $H?E,
FA(EN,)? +AEL - BEMLE,
H} " = —2H? ot + 30°H? — 5(H?)?
— HPE!, + SH?E, — P HMP o, ED
H"™PHp,® po = H™? (= 2Hy " 0app — €°E00,0,)
(Do Hpuwp)(D7HMP) = 3RMP7 H,py pe + 20°H* — 2(H?)? — 3(H},)?
— 12H,, €M — 2H?E!, + 5HE, + 6> HM P 0, £ + 3e* (€))7 (2.17)

where we have defined

oL oL oL
. —1 2 _—12 B _ -1
Ew =€ 5059“” , p=€ 650%, w = 2e 5B
Pu = auSD ) Puv = Du‘PV ) 902 = ‘PHSOM . (2'18)

Using the identities (2.17), the Lagrangian (2.16) becomes
L(Riem?) — Lgp = — gea[S(H2 )? — H(H?)? - %H, + 32H31,<,0“<,0” — B ,2H? +16(4°)*
— 8H"™P (4H,, " pppa + 2H2 Hyp™)

— 8HMP(4H " Epo + 26*°EL 0,) + 32H 2, EM

— 640" 0" — 64E,,0M — %H%’“u



— 320°EM, + 6408, + 2P HIWP o, ED

+64(E)? — B2E,E, + 2082 + 4™ (E]}))? (2.19)

All the terms involving factors of the lowest order equations of motion can clearly be removed
by field redefinitions in the two-derivative part of the Lagrangian. Then we are left with terms
which schematically have form H*, H?(9p)? and (9¢)*. Thus, we see that the Gauss-Bonnet
Lagrangian Lgp cannot be brought into the form of the Riemann-squared Lagrangian £(Riem?)
by field redefinitions.

2.2 The Lagrangian Lgsr in 6D

The 6D analog of the 10D Bergshoeff-de Roo Lagrangian, including fermionic terms (up to
quartics) was obtained in [27] by dimensional reduction of the former on T* followed by a

consistent truncation. The bosonic part of the Lagrangian is given by

LBdr —ee?? iR + g”yau(paytp — 1—12GMVPG“VP
Fa @k (00) ~ E Ry )R w0 ] , (220
where
Wetpab = Wyah T Guab , Gup = 38[MCVP] . (2.21)

As is well known, the term G* pwﬁup(w_) can be absorbed into the definition of G = dC' to
define

Guvp = 30,,C,p — 6w, (w_) . (2.22)

and the local Lorentz invariance of this field strength requires that C),, transforms as

OAC = 2atr(w_[,0,A) . (2.23)

For later purposes, let us spell out the torsion dependence in Lpgr. Using (2.11) and (2.12)
(with H replaced by G) and the following lemma

e GHPE, () = e [GIPL, (W) + REP () Giaspo — 3GH P Gy — G708y (7 Girs) |

pp
(2.24)
we obtain
LBdr —ee?? %R + g“”au(p&,(p — 1—12GMVPG“VP
+ a(G“”Pwﬁyp(w) — 1 Ruwpo R + §Rupe GMP7 — Gl
—1G2,G* — (D,Gpo) D'GH7 — G, (w,ﬂmeb) ) ] . (2.25)

where the definitions (2.6) with H replaced by G have been used.

10



3 Dualization of the Lagrangian £, in 6D

In this section, we shall formulate the Lagrangian £, , such that the field equations and Bianchi
identities associated with the two-form potential B are interchanged. As is well known, in 6D
this involves a dual two-form potential which we shall denote by C. In one approach, one can
work at the level of field equations and Bianchi identities, and after performing the dualization
map, try to find the “dual Lagrangian” which will produce this system. This procedure can
get quite cumbersome. An alternative method which works at the level of the Lagrangian
throughout, thereby not requiring the integrating-out process from a set of field equations, is
what we refer to as the Hodge-dualization method. This is a well known method in which one
adds a total Lagrange multiplier term of the form H A dC where H = dB and integrate over H
which is treated as independent variable. For this approach to work, the B-filed should arise
through its field strength H everywhere in the action. This requirement holds in the Lagrangian

L~ we are considering.

3.1 The Lagrange multiplier method

Adding to the Lagrangian L, given in (2.8) a total derivative Lagrange multiplier term

AL(B,C) = 5ige "™ H,,,0,Cr | (3.1)

where C),, is the dual potential, and using (2.11) we have
Lap +AL(B,C) = ™ | LR+ 00000 — 5 H" |
- %ae[R“”p"RWM + 4D}, Hyq, D" H"* — 2Ry, e H*P° + 2H2 H* — 2H,
— 3ye| R Ry — AR™ Ry + B2 + 2Ryp0 HWP7 — ARM HY, + 3 RH*

+ %H4 - 2(H31/)2 + %(H2)2] + %EMVPUTAHqugUT)\ ) (32)

where the H* ”wﬁ,,p(wi) terms present in the Lagrangian L, have been absorbed into the

Lagrange multiplier term now involving the field strength

g,uup = G,ul/p — 3« wﬁyp(w— (H)) - 37 wﬁup(w-l-(H))

Guvp = 301,Cup)
G = LewrNT G idem R (3.3)

Note that the Lorentz Chern-Simons form depend on spin connection shifted by torsion given

by H instead of G. It is convenient to group the terms in this Lagrangian as follows
Lany+ALB,C) = Lo + L4

6_1,601 = 6_280 %R + 8;,,(,08”(,0 - %H}/«VPH#VP + %H“Vpg‘uyp ;

11



1L = =&+ VR Ry — AYR By + YR+ 2=+ ) Rypo HP
—4yRM"H?, + 3yRH” + 40(D} Hypo) DY H* + 2(a — 7)(H},,)*
+ %7(H2)2 + (—2a + %7) H4] . (3.4)

The first term is labelled as Ly; to denote the fact that it contains up to and including terms
that are first order in parameters o and 7. Treating H,,, as an independent field, its field
equation is

-1 5£1

GHve — "2 [Hve _ 3FOP (a Wy (w_(H)) + wgm(w+(1{))) ~ 6e . (3.5)
3H

pvp
This is a nonlinear equation in H. For our purposes here, we need the solution for H in terms

of G only to first order in a and v which is readily seen to be

)

~ ~ ) oL
HHe :62“0{9‘“”) + 3H°‘575— awls, (w_(H)) + ’ywﬁﬁﬁ/(er(H))] +6e T —1 } )
H=e2rG

uvp 0H

(3.6)
where we recall that wy (H) = w+ H. Writing H = e2°G + oH, + vHs, without having to
specify Hy and Ho, it is easy to verify that up to order a and « the last two terms in L

simplify as

—2¢ wp _ 9oHVp — o2pgpvp
(e Hp H™? — 2G pr) (H:e%é =G G|, (3.7)
Thus the dualized action to first order in « and « is given by
—1pdual _ [, —20( 1 1.4
emtodunl — [e w( LR+ 9,00"0 — Le wguupgwp> n .cl]H:e%é . (3.8)
Working out the last two terms explicitly in terms of G we find, to first order in « and ~,
_ 1 o2ecuvp
= ee?? [ — 1—12GMVPG“”” + %(a + ’y)G“V”wﬁVﬁ(w) — %(a — ’y)G“”pé)u(wV“prab)]
— %(a — 7)@“’” (68@GiaG,,pa — 364“0GW°‘R,,,1) (3.9)
6_151‘ = — o+ 7)Rupe R — Ly(—4R,, R* + R?)
H=e2¢G

— Lebe [g(—:sa + 5Y)GF P G+ 2( — 7) G2, G 4 by (G2)2}
- %ew [2(@ — V) Ry pe GHP7 — 4ozRWGiV + %QRGQ
— 20Dy Gopo ) (DFGYP7) 4+ 4a(DP Gy ) (D7 GTH) — LGP 07 DG i

+ 1609’ G D GTH + 16@0;2“/90“90” — 13—6aG2<,02 , (3.10)

12



where we have used the identities (A.2) and (A.3) with H replaced by G. Adding the two
contributions to the Lagrangian, the resulting £ = Ly + L1, prior to rescaling of the metric

and prior to identification of EOM terms, is given by
e_lﬁg:,lval =% [%R + Oupdto — %ewGWPGWp - %(a - ’Y)ewGwpau(ewwvabépab)}
o o 5 ) B o+ 1]
— Lete [2(a — ) Runpe G — 4aR™ G2, + 2aRG?
- %a(DMG,,pU)(D“G”””) +4a(DPG ) (D:G™) — %aG“”pgDUDJGWp

+ 160’ G Do G + 16awacp“<p" — %aGch]

0o[—

€™ [%(—?m +57) G Gp e + 2( — )G, G + Ly (G2)2}

—tla— ’y)é“””(estiaGypo‘ —3e"Gu " Rpa) - (3.11)

% and

The supertransformations of the dualized theory can be derived as follows. Those of e,
¢ in (2.7) remain the same. In the supertransformations of ¢, and x, bearing in mind that we
are considering terms up to cubic fermion terms and at first order in « and -, it suffices to use
the duality equation to replace H. There remains the supertransformation of C),,. To find it,
we follow the method provided in [21] and we seek the cancellation of the terms that arise from
the variation of C), in the Lagrangian (3.4) (including the fermion terms up to the quartics)
with the Lagrange multiplier term, and treat H,,, as independent variable, thereby not using
dH = 0. Putting aside the fermionic parts of Ly;.,2 and Lgp, the variations that contain df

are
0Lo1 _— lieuuul._.m (8,,1 H,,2__,,4) (50,“, + atr(w_udw_,,)H:ewé + ’ytr(w+u5w+y)H:ez¢(~;

+ e 2PEy, 1, — 6_2“067,“,)() . (3.12)

The last two terms come from the variation of the Pauli coupling in Lgg. The other source
of variations that contain dH come from the following lemma in which the fermionic terms are

omitted:
Ohap = %VCdRabcd(w-l-) €= %/}/CdRcdab(w—) €+ VCda[aHbcd} €. (313)

The curvature Rgpeq(w—) transforms like the gaugino of the Yang-Mills multiplet, and it is the
part which participates in the usual cancellations in the Noether procedure involving Lg;e2-
As to the variation of Lgp, it is not clear from the results given in [21] whether the dH terms

arise in that way. Therefore, we shall write the dH involving terms coming from £; as follows

_ 0Lg;
5£1 . :EMVVL-.VAL (aylHI/Q..I/AL) ( — ﬁ O‘E’Vlwab %O:F — %’youy)a (314)
a
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where we have written all the terms proportional to dH that arise in the variation of Lop as

eHryL--va (81,1 HVQ.M)OW. Thus, requiring that all the terms containing dH cancel, we find that

0C, —e 2P (—Ey[uq/),,} + Emwx) - [oz tr(w_[uéw_,,]) + 7tr(w+[u5w+u})

i OLp: . 2
- %6 Q€Y pvab 52}1::1 - %’Youu] Hee2oG (315)
3.2 The string frame
Next, we rescale the metric as
Guv — gl'w = ewg,w . (3.16)
As a consequence, we have
P/Zu = FZJ/ + 6,5901/ + 55@/1 - g;w@p >
o‘):Lab :wuab + 26“[(1()011} 7
DgGqu = DUGWJP — 3GU[Vp90u] — 3G“,,p(,00 + 3ga[pGuu]'rSDT ’
Ry po (9,) =% [R,ul/po - 4(9#/)%«7 —= GupPrPo + %9#/)91/0902) } )
[1v][po]
Rul/(g/) =Ry — g/u/(Ppp — Ao + dpupy — 49/11/902 )
R(¢) =e™2¢ (R —10p", — 204,02) ,
wuLVp :wﬁ,,p(w) + 28[u(wvabep}a%) : (3.17)
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Note in particular that D' G A = D G auv- Substituting these results in the primed version
of the total Lagrangian (3.11), we obtain one of the key results of this paper taking the form

e_lﬁgl,l;ﬂ = e %R + 0updp — _GMVPG,uup - %(O‘ - V)G“Vpa,u(wuabépab)
+ (0 = NGO Copo) + (0 + V)G eputr)
3@ )L, () b+ ) Ry RO — (2R R 4 L)

N[

(@ = V) Rupe G + 3a R G, — $5aRG?

N

— (a = 3y)Ruw@" e’ + (o — 37) R + 3(o + 37)Re* + 3yRot),
— (=G " — (a+ )G "™ + (a — 379G + oGP, i1
—2( = 37)¢" o — 5+ 129)(¢"1)? + 4 = 37)pu PH'e” o
— 2020+ 99’ — 5o+ 37)(¢7)°

(D, Gy )(DFGYP7) — La(D G ) (D-GTH)

Gblr—-

- %QGW”@(’DUGWP - ozgppGpWDAGA’“’

v,po v 2
— %( 30[+5’7)G“ P G up,vo %(O‘_/}/)Giuqu - %7 (G2)

=

(0 —7)GHP <G/2uxGVPa — 3G (Rpa — 4Ppa + 4‘:0/)90&))]

Setting v = 0 gives the result of dualizing Lg;em2, and setting o = 0 gives the result of dualizing
Lap. While several terms can be removed by field redefinitions, such a step will modify the
simple supersymmetry transformations by introducing the corresponding « or v dependent
higher derivative terms.

3.3 Comparison with Lpir

To compare Edual with Lg4r we set v = a in (3.18) and examine the difference
ﬁg?;l — LByr = 0466230 ZGMVPOH( epa(’pb) + G‘“’pa ( Wy Gpab)

3 wo _ 1L (2\2 4 152 o2
= 5 Ryupo G — =5 (G ) + GG
— (2R, R"™ + §R?) + 3R G, — RGP
+ 2R 0" — 2R, 0" + 2Rp? + %ch“u

- Zwago’“’ + %G2<,02 + %G2<,DMH
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+ 4" @ — B (@H ) — 8pupte” — 22070k, — 20(p?)?

+ (DuGypo) DY GH° + L(DyGpe ) (DFGYP7) — L(D G ) (D-GTH)
— 2G"P " DGy — 9P Gy DAGM (3.19)

Next, we show that this difference can be removed entirely by field redefinitions. To this end

we use the field equations obtained from the 2-derivative part of the Lagrangian (3.18) through

oL oL oL
=1 -2 _ —1,-2 Cc _ -1
Ew =€ e ¢W’ E,=¢e""e “0@, = 2e SCar (3.20)
and computing the analogs of (2.17) for this case, we find
L& _ Lpp = ae[ — 2w, e a0y — wu™Glap + 2Gup” | ECH
(3.21)
e e (86, EM + 26,60, — 2AE,)? + JEL+ (G,
which shows that Eg‘f;l equals £p4r upon performing the field redefinitions®
8C = — 20(2w1,e,)0 b + Wi Gulap — 2Guupe” — € ES,)
59;”/ =« (85,uu - 29;1,1/5)\)\ + 29#1/&0) )
Sp =3a&, . (3.22)

For completeness, it is useful to also determine the local gauge transformations that leave the
dual Lagrangian invariant. Those associated with the metric and dilaton remain the same, but
the Local Lorentz and supersymmetry transformations of €, get deformed. To begin with,
the local Lorentz invariance of the duality equation (3.6) implies that G, is invariant. From
(3.17), and taking into account the rescaling of the metric, it follows that under local Lorentz

transformations C),,, acquires the transformation
5ACy = 200tr(w), 0, A) + dop®e), 0 Ay - (3.23)

Consequently, the redefined CZW = C,,+0C,,,, upon using (3.22), and recalling the redefinition

of the metric, transforms as
0ACy,, = 20 tr(w(, 0y A) + 200G, 0,y Mgy = 200 tr(w_[, 0, M) (3.24)

in agreement with (2.23). After a long and tedious calculation we have also established the

following result for the dual of ﬁ%‘ﬁ%:

ﬁ%lzal% :Ea,a B %O& ¢ [4?[#"!’]{”[)0{5’5& - 664@(5’5”5511 + 1083

5The terms that involve the square of the EOM’s can be removed in two different ways, since given a term of
the form f&€1 & where f is constant or field dependent term, and &1, &2 refer to the EOM of fields @1 and ¢2, we

can either make the field redefinition dp1 = —f&2 or dpa = —fE1. Here we have chosen one of these two ways.
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— 326,60, + 326, €M — 16E,E", +16(6",)?] (3.25)

This result shows that the dualization of the Lagrangian Lpg4r is indeed equal to L, with
~v = «, and modulo field redefinitions.

As far as supersymmetry is concerned, it also shows that the only boson that needs to be
redefined is the two-form potential B, since terms proportional to field equations can always
be set to zero in the on-shell supersymmetry transformations. Using the results for the super-
transformations discussed in subsection 3.1, setting o = ~, passing over to the string frame
and performing the field redefinition just discussed gives the known supertransformations that
leave the BAR action in 6D invariant; see eq. (6.3) in [27]. Passing over to the string frame, in

addition to (3.16) also requires the relations,
U = U =Pt ) . XX =Py, e d =, (326)

and the resulting supertransformations are

a

de, " = ey, ,
oYy = Dy(w)e + %gww’yupe )
0Cu = —eyuiby) — 2actr (w_[u&f)_y}) ,
oX = 37" €0u — 5 Gupy™ e |
do = €y , (3.27)

where G, = 39),C,, — 6 wﬁyp(w_), with w_ =w — G and G = dC.

We conclude this section by addressing whether the Lagrangian (3.18) has any implication
for the possibility of constructing two independent four derivative extension of heterotic super-
gravity in 10D. In the case of v = «, the resulting BdR action is straightforwardly related
to the ordinary dimensional reduction of the BAR action in 10D on T* followed by consistent
truncation [27]. However, if v # «, there seems to be an obstacle since the terms in the last

line of (3.18), to wit,
£i‘fj‘l : —%(a — )e2PGrrP (GiaG,,po‘ — 3G (Rpa — 4¢pa + 4<,0p<,0a)> , (3.28)

do not seem to lift to 10D. This provides a supportive evidence for the uniqueness of the BdR

action in 10D as the four-derivative supersymmetric extension of heterotic supergravity in 10D.

4 Dualization of the BdAR Lagrangian in 10D

In this section we shall start from the BAR Lagrangian in 10D, including fermions, and perform
Hodge-dualization. This has already been achieved in [21]. Our aim here is to have a closer

look at this dualization in the brane frame, and explore the possibility of extracting two distinct
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invariants in analogy with the Riem? and Gauss-Bonnet invariants that exist in 6. We shall
also compare the result of dualization with results obtained in superspace in [26].

The BdR Lagrangian in 10D has the same form as in 6. Up to quartic fermions, and order
o/, the BdR Lagrangian in 10D is given by

10D 2

BdR —¢€€ %R(w) + 9" Oupdyp — %gw’ﬁgw

— S0P Dy (w)ihy + 2X7" Dy(w)ihy + 2% Dy(w)x
— 371G O"P — ausO@“'y”wu + MWWVX)

+ O/< - iRuuab(w—)R‘uyab(w—) - Rm/ab(w—)DH(w—) (qza,yuqﬁb)

— Py Dy (w, w_)ap + 3 Ry ™ (W) hap (YY" + 29" x) — %Gwp&abwup%b) ]

(41)
where

W-tpab =Wyab £ Gpab Guvp = 30,,Cyp) (4.2a)

Guvp =Guwp — 6/ wh, (0_(G)) , (4.2b)

wﬁVﬁ(w_) =tr (O, O + %‘Z)—[u‘z)—'/‘z)—p]) ,

=ofple0) + [ (s P hyptn) — B Yrpin)| 4 O() (420)

VYab =2e4"ep” Dy (wy)hy) (4.2d)

Dy(w,w-)ab = (O + 19pg¥™) Yab + W—pua“Veb + Wy Ve (4.2¢)

oHr = (i”V[ov“”p’YTWT + dpgy TP X — AP x) : (4.2f)

It is understood that the term proportional to a/? coming from G2 is to be dropped, since we

are considering the Lagrangian to first order in o/. Various supercovariantizations are given by

"D:I:uab = d}uab + éuab s (43)
d}uab = Wuab + ZEHV[cﬂ/)b] + %Tz)alyuwb s éuab = Guab + %&[,uﬂ/aqﬁb} . (44)
"D—uab = W_pab + &a’ﬁﬂpb ) d}-i-uab = Wipab + 27;5;17[a¢b} . (4.5)

It is understood that only O(a’) terms are to be kept, and that the quartic fermion terms are
to be dropped in the Lagrangian (4.1).
The action of the Lagrangian (4.1) is invariant under the following supersymmetry trans-

formation rules up to O(a/) and cubic fermion terms,
de,” =&v", ,
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oY =Dy (w4(G))e ,
0Cm = = euthy) + 20" (w00 _prs)
X :%7“6%90 - %guwﬁw% )
dp =€x . (4.6)

Next, we study the dualization of the above Lagrangian by introducing the Lagrange multiplier

term

A,CIOD(B, O) :Gi’?' E“Vpo-ln.o"?Ho'l,,,o"yG‘uyp - %6 ﬁuup (guyp + 6()/Wﬁyp((;}_)) (47)

where
Hy, .z = 78[M1Bu2---u7] ) HMWP = %Euupm...mHUlmm . (4.8)

Next, we integrate over G,,,. Thus we need its field equation that follows from
LYD 1+ ALYP(B,C) = Loy + 'Ly, (4.9)
Lo = ee®? [%R(w) + ¢"" 0,00, — %gwp (g*“’f’ — 26_2‘pﬁ‘“’p)
— 30" Dy (W)t + 2X7" Dy (w)thy + 27" Dy (w)x
— Oy @’W”wy + 2%7”7’%) - z—ﬁlgwpoﬂ””} (4.10)
L1 = e[~ L Rpan e )R (0.) = Rpup(w0-) D () (574)
— " Dy(w, w0 Yhap + 5 Ry (0 )thap (77" 105 + 29 X)
- %Guup&abVWPT/)ab} + eHMP (wﬁup(w—) - Ruuab(w—)T;Gprb) . (4.11)

We have collected the O(’) terms in which the dependence on G arises through the torsionful
connection w_. We are treating G as independent variable, while H = dB. Thus, the field
equation for B gives the relation dg = —a/tr(R A R), which can be solved to give (4.2b).
Recalling that we only work up to order o/ Lagrangian, in expressions above w_ = w — G. The
field equation for G at O(a’) following from [ d'%z(Lo; + /L1) is given by

0L

—20 77 1 -2
g/u/p =€ <PHqu - Zop,up + 60/6 spéG/“/P . (412)
This equation is readily solved for G in terms of H, again at O(c/), as’
~ oL
-2 1 -2 1
g/.u/p =e ‘pHMVp - ZO“W’ +6d’e sp&Gqu Gee-20i10 " (413)

"Note that the last term produces quartic fermion terms as well but such terms are understood to be omitted

throughout the paper because all results are up quartic fermion terms.

19



The G-dependence of £; arises through dependence on w_(G) and 94 in all the terms except

L
12

that 6L /0w_,q and 6L1/61p, are proportional to field equations. Therefore, the last term
4.13) will be of the form ¥, ,1%q + EOM terms, the details of which can be found in [21].
uvp

The supertransformations of the dualized theory are obtained by substituting for G in the case

the term ——=a/ 662‘pGWp1Z“b7W Pahap where it also appears explicitly. In [21] it has been shown

of the fermions. As for the six-form potential B,, ., its supersymmetry variation is determined
by treating G as independent field in the supersymmetry variations of Ly; +co’£1 and demanding

that all terms proportional to dG cancel. Up to quartic fermions, such terms are given by [21]

_ 1
&cm(dg n a’ézl(dg S L X [5Byl,,,yﬁ
L oLC
2 L, 1
—e S0(36’}’ [v1.. 1/51/}1/5] + 671/1 I/GX) — 3 &‘pab Gee—2001 Yabvy .. V66:| ’

(4.14)

where (3.13) with H replaced by G has been used, and the notation X | i refers to terms propor-
tional to dG in X. Thus, in the dualized theory, and in the string frame, supertransformations

up to cubic fermions and at O(«’) are given by

de,* =ev"y,
~ oL
— 1 -2 / 1 vp
60y =D(@)e + 5 (Hup + 60’ 5| | )97Pe
_ _ 0Ly
5BH1---H«6 26299 (367[u1...u57ﬂu6} + 6’7}11...#6X> + 10/51/}[117 - Q(Pnyabul v6€ s
~ oL
1 _ 1,2 ! 1 ) pvp
ox = ’y Hed, 26 (H,wp—kﬁa 5GP | oo )€
dp =€x . (4.15)

The o dependent terms turn out to be proportional to a combination of field equations which
can be read of from eq. (33) of [21]. Substituting for G given in (4.12) back into the Lagrangian
L gives

10D,dual
ﬁBdR " _662@ R( )_|_gﬂ 8,%,08,,(,0 2><7le 4SD];[M1---M7I{M1 Hr

— 20,7 D, (W), 42XV Dy (w)thy + 2X7" Dy (w) x

— e H,,,0M — 9, (117“7”% + 2«%7“7%)]

1 O/ ghvpoal...as B

T 4X6! a1...aaRuyab(d)—)Rpgab(d}_)‘

G=e—2¢H+O

+ 0/66280 [_%R,uuab(w—)Ruuab(@—) - qzjab’yuDM (OJ, OJ—)wab
+ LR (@ Ya (7 + 29X) = G0V | L, (416)

G=e—2¢H+0O
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in agreement with [21]. To explore further the structure of this result, using (2.11), (2.12) (with

H replaced by G) and (2.24), we obtain for the the bosonic part of the Lagrangian

10D,dual
Lo aual —ee2e

—4
BdR = %R(w) + 9" 0up0yp — ﬁe PHpy . M W]

+ a/< B %RMVPJR“VPU + 66_4%0RWJH;2LV — 3¢ "YRH? - %e_4goR‘uypoH”"’pU

1 -8 2 -8 2 2 14 -8 2\2
—lemSery — 2e7Sep2 A 4 UemSe(?)

+ 2 (DyHy ., )(DFHY V) + 8¢ WH? 0 — de” " D, H?
+ e_z“oﬁ“”pwﬁyp(w) + ﬁe%@f[“”pﬂu’\l“"\6D,,Hp)\1...)\6)] )

where the products of H’s are defined as

1 A1 A5 2 .1 A1 A6 2. 1172 v
Hypo = & Huwngons Hpo™ 5, HZ, = G H o n Hy , H?=1E? g

We have also used the following two lemmas:

ﬁuuAﬁpa)\ = ( - H/u/,pa + 4H3pgl/0' - 2H2gupgua>

(], [po]

H,/" Hype =2H?, — 2H%g,, .

(4.17)

(4.18)

(4.19)

It is useful to study the ordinary dimensional reduction of the Lagrangian (4.17) on 4-torus,

followed by a consistent truncation in which the only kept bosonic fields are (g, By, ¢). This

is done in Appendix B.

Next, we go over to the brane frame [28] by rescaling the metric as

e—2<p/3

/
Guv — G = Guv

thereby obtaining the Lagrangian

10D,dual __ —2¢/3 1 1 IR
Lpar — =ee 1B = menHppr H

ol e | = ARMP Ry + 6HZ R — 3H2R — SR™ Hy
—2H; H* — 1H, + Y (H?)? + Z(DyHy, .. ) DFH T

+ 60" Dy H? + GH 0! + W HE o' + 2 H?p?

— 2R 'Y — SR + §RY” — By’

— B — 3(0H? + Lk, — Heh)?

2 rTpvp o106 4 rruvp, o rruvp, L
+ @H H/J' DVHPO'l‘“O'tS — gH (2 U, po + H WHVP(W)
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As to the supertransformations, we also need to redefine the fermions as
b = P, = e (1 — Ivux) X=X =e/O e e =e ¥/ . (4.22)

Dropping a local Lorentz transformation of e,®, the supertransformations (4.15) expressed in

the brane frame, and up to cubic fermions, take the form [21]
de,* =&y, ,
0ty =Dyu(W)e + 75 Hape (37" +7,7™) € + EOMs
OBy ...pis =3V [y .5 Pug) T EOMs |
1% :%W“EQL@ — % Nuy,ﬁ‘“’pe + EOMs

dp =€x . (4.23)

5 Comparison with results in superspace

The dualization of heterotic supergravity in 10D has also been studied in superspace. It is useful
to compare the results described above with those obtained from superspace considerations.
Starting from the two-form formulation, the key equations for the superspace description are
the Bianchi identities

DTA=RAgANEB, DG=dtr(RAR). (5.1)

With a particular set of constraints these were solved in [29-36] 8, where the consistency of the
BI's was proven to all orders in o/. In this approach the dimension zero torsion component is
taken to be Tjs = 755 but certain other components are deformed by o/ dependent terms. In

particular the following relation (in our notation) arises
gabc = e_2<pTabc + a/Wabc(T) ) (52)

where Wy, is a nonlinear function of the torsion superfield T,;. which can be found in the
papers referred to above. To obtain the deformed equations of motion, one solves for T, in
terms of G, order by order in o/, and uses the result in the supertorsion BI's. The resulting
equations of motion were obtained at O(c’) in [35,36]. These equations apparently have not
been compared with those which arise from the BdR action. While they are expected to agree
at O(d), it is an open question whether equivalence holds to all orders in «’. This approach has
been updated in [38] where relationship to another approach by [39,40] which focuses on order
by order in o analysis (without addressing fully the question of the consistency of the entire
procedure) was clarified. Interestingly, the formulation of [38] is such that the Gauss-Bonnet

action appears as part of the bosonic action. The full four-derivative action in this framework

8These BI's have been analyzed in superspace also for N = (1,0),6D supergravity in [37].
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has not been worked out but it is expected to be related to the result that follow from [29-34]
by field redefinitions.

The adopted constraints on torsion and G in proving the consistency of (5.1) can yield the
deformed equations of motion to any order in /. However, this framework does not capture
the most general supersymmetric deformation. For example, at order O(a’?), deformations
involving (R?)? but not R* will arise. To get the latter, one can either deform the constraint
on T35 to include a tensor in 1050 dimensional representation of SO(9,1) [41-46] or take Gop,
to be nonvanishing [47].

Putting aside the question of dualization, heterotic supergravity directly in the six-form for-
mulation in superspace including o/ corrections was studied in [48-52] where partial results were
obtained. A more complete treatment which builds especially on the results of [52] appeared
in [22-26], where the dualization phenomenon in superspace, suggested in [53], was spelled out
as well. Here we shall focus on the key results of [26] where the equations of motion deduced
from superspace were also integrated into an action for the bosonic fields, and we shall compare
the result with ours.

The super BI’s for supertorsion TA“} n and the super seven-form H; = DBg are given by
DTA=RA3ANEP, DH;=0. (5.3)

Note that the BI for H7 does not acquire o’ deformation, unlike the BI for G in (5.2). The BI's

(5.3) are solved by (see [26] and references therein)

Tocﬁc = /726 ) Taﬁﬂy = ﬁTbcd <7b0d7a)6 K ) Tocbc =0 ) TOCBFY =0 )
Hal...a5aﬁ = - (’Yal...as)aﬁ , Hal...a7 = éeal...tmabcTabc ,
other components of H; =0, (5.4)

together with a scalar superfield ¢ with
Do¢ = Xa » DaXB = %’VZﬁDaﬁb + (_%QSTabc + O/Aabc) <7abc> of s (55)

where D, is covariant derivative with bosonic torsion, and Agp. is a crucial superfield which

governs the o/ deformation given by [26]°

1 1 d 1 d 5 2
Agbe = [_ 53T abe + 36D Taape — 567 aDvTede — 19T Tabe

5 2 d 5 3 1 ai...ay
— deaTbc + ﬁTabc — 3888 Cabe Tay..asDay Tas...az

_ 4_18Ta1a2a (27abc77a1b1 77a2b2 + 4 'Vabc’?/bl 77a2b2 + 24yM ’Yc’Ybl 622 522) Tblbgﬁ] g (5.6)

where Ty, = Tabd and T,,* is the gravitino curvature, and

a a

Toved = TupTede , T2 =T Toca , Tope := Tadyay Ty2% Toa, ™, T? := Ty T . (5.7)

9Certain terms for Aqpe and their implications for the o/ corrections were considered in [48-52].

23



It is noteworthy that the solution is an exact one, even though there is an o’ dependent defor-
mation. The EOM’s that result from the analysis of the superspace BI’s are also given in [26]
in terms of superfields whose lowest order components in # expansion are the supergravity mul-
tiplet of fields. For a more detailed explanation of how the EOMs are obtained in superspace,
see [23]. These equations imply an action with o/ Riem? term, and yet their supersymmetry is
realized exactly. No higher than first order in o’ terms arise in supersymmetric variations of
these EOM’s since, as can be seen in [26], the o/ dependent terms do not involve the dilatino
x which is the only field that develops o/ deformation; see (5.5).

A bosonic Lagrangian which yields these EOM’s can only be determined up to squares
of the lowest order (i.e. two-derivative) EOM’s. With this understood, the resulting bosonic
Lagrangian is found to be [26] 1°

Lsrz = ee” 2/ [1R+ %ﬁwpﬁwp]

+ed [ = LRMP R, + SR Ry — o€ PN MR Rypgab Bay g
+ 3RM(H?),, — YH™P D’ DyHyp + (D H™P)Hppy o — SHM P Hypo] - (5.8)
For completeness, we also express this Lagrangian in terms of the seven-form field strength,
Lsrz =ee 3 [ZR = g Hppopr H “7]
+ dea! [ = RO Ry + 2RV Ry, + AR HE, — ARH?
— %(DyHy,..p) DFH" T+ B H? HP — 2H — 2(H?)?
+ AHMP D Hyy o + 4H“”pwﬁl,p(w)] . (5.9)

The supertransformation resulting from the constraints (5.4) are [24] (up to cubic fermions
here)

de,* =y,
3y =Dye — 5 Tupe (37" va +vay™)e
OBpus...pie =3V uy.usPug)
OX =37 €0 + (— 550Tube + & Agpe) Y€
0p =€y , (5.10)

where it is understood that ¢ — e=2#/3 and y — e 2¢/3y. These are also understood to be
valid up to the lowest order EOMs. It has been shown in [26] that the algebra closes on-shell,

101p converting the conventions of [25] ours, we first let w,ﬂb — —wuab7 and then let nep = —7ab, €ay...a10 —
~ - 2
—€ay..a10s Muvp = 2Hnp, ¢ — €7 3% kg — o', and L — 4L. Note also that the term T}Q(M2)2 term in (4.10)
of [25] should be absent, as noted later in [26] as well.

24



and that the closure functions are o independent. Thus, the closure of the algebra is not a
statement up to order o/ but an exactly valid statement. The fact that Ay, obeys the relation
DAgpe = Yape® X 4o where X4, is an arbitrary function [26] is behind this property.
Comparing the Lagrangian Lg7z with the bosonic sector of the dual of the BdR Lagrangian
in 10D (4.21), which was obtained by solving the duality equation to order o/, we see that they
differ by many terms. To determine the nature of these terms, we consider the lowest order

field equations

oL

2, 6L —1,20L
0Buy-pg

3¥ E, = —
ogm 7 dp

Ew=cle ERITHS = Gle! (5.11)

and compute the analogs of the relations (2.17) for this case. In particular, we have

%(Dqufl"'W)DMHVlmw = %RMVPUHHV,PU - 2H3VH2MV + %(H2)2 - %H/%VQDMQDV + %H%@Q

2
—4H2 M + B2k, + LH2E, + 2226390 H 0 €

1e39EB gt 5.12
+6!e H1-pe™~ B : ( : )

Using these identities we find that the difference between the bosonic part of the Lagrangians

10D,dual .
E;dR’ " and Lgryz is given by

L™ — Lopz = ed |AH?E, — 2026, — 8E,,EM

diop \2 w 2 3 éso B M1
T A(E" )P +AE W Ey — 13E2 4+ FeRPED L El0] (5.13)

Thus we are left with terms that vanish on-shell, which imply that the two actions are related
to each other by field redefinitions. Since the Lagrangian Lgry is given up to terms that are

squares of the EOMs, the relevant field redefinition to consider in comparing it with £pgp is
© = o+ ae¥/? (4H2 — %@2) , (5.14)

up to terms that are bilinear in fermions. Such terms are not available since the part of
Lsrz that contain the fermionic fields has not been given in [26]. Consequently, the expected
redefinition of the dilatino x is not available either, we are not in a position to compute the
result of the redefinitions of ¢ and x in the supertransformation rules (4.23) to compare the
result with those of ST'Z given in (5.10). At any rate, the result (4.23) for dx cannot produce
the STZ result because the latter is exact in o’ while the former is an order o result. To achieve
a proper comparison, the dualization of the BdR action in two-form formulation to all orders
in o is needed. Such a results is not available. Nonetheless, a conjectured solution may be
envisaged in superspace as follows.

In superspace, leaving the solution of the BI’s reviewed above intact, one can also construct

a super three-form G which obeys the super BI (5.1) as [26]
Gapy =0,
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gaﬁa = (’Va)aﬁ + o Uaﬁa )
gocbc = - (/VbCX)a + O/ Uabc )

gabc = - ¢Tabc + O/ Uabc s (515)
where [26]

Uabc = [ - 2DTabc - 6Ddea,bc - 6TdeanTcde - GRdeachde - 6RdaTbcd + 4Tc§bc
~ Torar” (’Yabcnalblnme + 7" Yabey " 72 4 12y 1 65262

+ 1260160 22y, 4 651 50 5327*’2)%1%,;1 o (5.16)

and the expressions for U,g, and Uy, which are functions of Ty, and T,*, can be found
in [26]. The last equation in (5.15) is expected to be equivalent to (5.2) upon field redefinitions,
and it also represents the duality relation between the two-form and six-form formulations as

can be seen by substituting Type = Hype from (5.4) into this relation, which now takes the form

Gave = —OHape + o Ugpe _ . (5.17)
Taef=Hgey

Solving for fNIabc order by order in « and substituting the result into the EOM’s obtained by
STZ in [26] is expected, though not proven, to generate the EOM’s of BdR to all orders in ¢/,
just as solving for Ty in (5.2) is expected, but not proven, to lead to the same result upon field
redefinitions, as explained above. It would be interesting to reduce the duality equation (5.17)
on T and consistently truncate to N = (1,0) supersymmetry, and then compare with (3.5) for
v = a. The terms coming from Uy, in such a reduction would give rise to terms similar to
those arising in (3.5). However, it must be kept in mind that while (5.17) is an exact relation,
(3.5) holds up to first order in («,7y). Therefore, the relation between the for (5.17) and (3.5)

remains to be understood!!.

6 Conclusions

In this paper we have examined in detail the four-derivative extensions of heterotic supergrav-
ities and their dualization in six and ten dimensions. In 6D the two known four-derivative
invariants are off-shell supersymmetric. To dualize them, we first eliminated the auxiliary
fields order by order in a derivative expansion, and then employed the time-honored Lagrange
multiplier method, which avoids the far more tedious method of integrating out the dualized

equations of motion into an action. We have also treated the issue of field redefinitions in a

1 One way to obtain equations of motion, and duality relation, that would be exact at order (c,~) is to start
from the off-shell Lagrangian (2.2) and eliminate only the auxiliary field E,,,, discussed in Section 2 which has
algebraic equation of motion [16]. However, there would be terms that depend on the auxiliary field V;fj , which

do not seem to be accommodated in the dimensional reduction of the STZ results in the six-form formulation.
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systematic manner by determining the dependence of the dualized actions on the lowest order
equations of motion. Consequently the Lagrangian depends on product of fields which are
differentiated at most once.

We have shown that the two four-derivative extensions of heterotic supergravity in 6D
cannot be related to each other by any field redefinitions. We have dualized them separately,
thereby obtaining a two parameter («,<) dual theory with Lagrangian 531331. We have shown
that ./:g?;l is the BdR Lagrangian upon field redefinitions that are spelled out. We have also
shown that ﬁg"lﬁla is a four-derivative extension that contains no curvature squared terms.

We have highlighted the question of whether the BAR action in 10D is a unique four-
derivative extension of heterotic supergravity. The existence of two such extension in 6D
motivated us to examine more closely the dualization of BdR supergravity in 10D [20]. We
have noted that while the reduction on 4-torus followed by consistent truncation to N = (1,0)
gives the BdR action in 6D, we cannot represent the dual of the BdR action in 10D as sum of
two distinct four-derivative extensions, since certain 6D terms we have identified do not admit
a lift to 10D. Working out the details of the dualized BdR action in 10D has also made it
possible to compare the result with that of [26] obtained in superspace. We have shown that
the bosonic sectors agree after suitable field redefinition that are spelled out.

While our results suggest that the BdR action may indeed be the unique four-derivative
extension of heterotic supergravity in 10D, a rigorous proof would be desirable. The general
Noether procedure that does not rely on the trick of replacing the Yang-Mills field with the
Lorentz connection may be forbiddingly difficult, but the superspace approach, in particular
in the dual six-form formulation, may prove to be more effective. We have reviewed various
aspects of the superspace approach in the previous section.

The inclusion of the Yang-Mills sector both in six and ten dimensions, is straightforward at
order o since the two-derivative action arises at this order. More interesting and challenging
problem is to construct the higher derivative couplings of heterotic supergravity to hypermulti-
plets and tensor multiplets in 6D. The ordinary dimensional reduction of the 10D BdR action
on T?, followed by consistent truncation has been shown to yield the couplings of hypers that
parametrize SO(4,4)/(SO(4) x SO(4)) [27]. Couplings of more general quaternionic Kahler
manifolds are currently under investigation [54], and we expect that not all will be obtainable
from the compactifications of string theory. This makes them a fertile and interesting arena to
investigate the necessity of string theory miracles, should inconsistencies be identified in such

a rich landscape of higher derivative couplings in N = (1,0) supergravity in six dimensions.
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A Conventions and some identities

In our conventions {ya, v} = 21y With 1., = (=, +,...+), and

7“1'#”’77 = _(6—1n)!gun.“myl.“%in'yvl~~~l/67n ) Vulnunvll = (loin)!gunmmylmyloin%/lmlflofn .
(A1)

Some useful identities that have been used in the calculations are given by
H"PR,, " Hyup = H"PH,,," Ry (A.2)
H"™PH,q pH," = SH"PH,,"H?, (A.3)
]?I“””HHabHVp“cpb =0, (A.4)
/ d°z H*"H, " DgH,,, = / d®z H"PH,*P D, H g (A.5)

where HHP = %E‘“’ PIAM H sr. The first one can be derived from the identically zero expression,
bPoAT Ho e Ry Hpog = 0 A6
€ o T flpy paB =Y, ( : )

and the second one from a similar expression with R, replaced by H,,,3. The last two

identities can be derived from
elveo o HOY  Heyppa =0
elpoAm g HYP Dy H s =0 . (A.7)
In 10D we have used the lemmas
H"™Po" Hypypr = 0,
Evporvneve HMPH, ™ = —12H,,1 H" 1y ) - (A.8)

The first identity is easy to deduce from H,, ,q = —H [
by

v po]- Another useful lemmas are given

1
6(ee’R) =e* (R — §g,wR — POy — o + O G + g’ p) 69"
wﬁup(w +X)= wﬁyp(w) — O tr(wy X)) + tr(RX,)

2
+ (X Dy (@)X,)) + 5 (X X, X)) - (A.9)

. . ) 10D,dual
B Dimensional Reduction of L BOdR’ e

Here we consider an ordinary dimensional reduction of the Lagrangian (4.17) on 4-torus, fol-

lowed by a consistent truncation in which only kept bosonic fields are (g, Buv, @), originating

from

N

g;w = Guv > o=, Buuijk( = Buueiij ) (Bl)
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where the hatted fields are those of 10D, and the unhatted are the ones in 6D, and we have
hatted the 10 coordinates and split them as 2% = (z*,y%), i = 1,...,4. Thus, recalling to set

0; = 0, we get the intermediate results

& 3 1 2 ) 1 2
Huu,pa = H/u/,pa ) Hm’,uj = §6inuy ) Hij,kl = §5i[k6@jH )
72 1172 72 15 172 72 _ 1772
H/’”j — iHﬂV 3 HZ] — a(leH 3 H — EH .

It follows that
Hy= Hy+2H*H2, + L(H?)?
HP 2, = LHP R, + S (H?)?
Using these lemmas in the ordinary dimensional reduction of (4.17), we get in 6D

Edual 2¢

BdR — €€ %R(W) + 9" 0 Oup — 1_126_4@HWPHWP

+ o ( — %RNVPURMVPU + 36_4<PRMVH2V _ %6—490RH2

_ 3.~ puvpo _1,-8p _ 1, 8pr2 rr2uv
se TR Hyppo — g€ "THy— 5e HWH

+ 3¢ (D Hypo) DM HYP? + 5 W H?0? — 26740 D H?
+ e_wﬁwpr (w) + e_ﬁwﬁ‘“’pH “Sp,H
pvp M vidpap )

We have checked that this result agrees with direct dualization of Lggyr in 6D.
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