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There exist two four-derivative extensions of N = (1, 0) supergravity in six dimen-

sions. A particular combination of them is known to dualize to the analog of the

the Bergshoeff-de Roo (BdR) action in 10D. Here we first show that the two ex-

tensions are not related to each other by any field redefinitions. Next, we dualize

them separately thereby obtaining a two parameter dual theory. This is done di-

rectly at the level of the action, thus avoiding the laborious method of integrating

equations of motion of the dualized theory into an action. To explore whether a

similar phenomenon exists in 10D, we study the dualization of the BdR action in

10D in detail. We find an obstacle in the separation of the result into a sum of two

independent invariants because of the presence of terms which do not lift from 6D to

10D. We also compare the dual of the BdR action with an existing result obtained

in superspace. We find that the bosonic actions agree modulo field redefinitions.
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1 Introduction

Low energy limit of heterotic string was studied long ago either by computing tree-amplitudes

and seeking an action that produces them [1–3], or from the requirement of superconformal

symmetry of the worldsheet sigma model [4]. In the latter approach, and to first order in

α′, it was found that the bosonic part of the action agrees with that of Bergshoeff-de Roo

(BdR) action [5], which was obtained from supersymmetry of a four-derivative extension of

heterotic supergravity. Given the presence of Lorentz Chern-Simons term in the three-form

field strength, which is necessary for the anomaly cancellation, supersymmetry requires or-

der by order deformation of the action and supersymmetry transformations to infinite order

in a derivative expansion. As is well known, string theory fixes all the relative coefficients.

Nonetheless, since it is still not known if string theory is a unique UV completion of quan-

tum supergravity, it is useful to understand full consequences of supersymmetry, and attempt

to determine the coefficients in the derivative expansion from first principles such as locality,

causality and high energy unitarity.

The construction of the BdR action relies on a trick that exploits the similarity in the su-

pertransformation rules of Yang-Mills multiplet and a composite multiplet made of properly

supercovariantized Lorentz spin connection and the gravitino curvature [6, 7]. It is well known

that this approach cannot produce the most general supersymmetric action at the order of

eight derivatives and beyond. Nonetheless one may ask whether the BdR action provides a

unique four-derivative extension. To rigorously prove this, an analysis of the most general su-

perspace constraints, or the Noether procedure in its most general form that does not rely on

the ‘Lorentz from Yang-Mills” trick may be needed. We shall come back to the deformation

problem in superspace in Section 5, but let us note that the construction of higher deriva-

tive supergravities by Noether procedure is notoriously difficult. For early attempts for direct

Noether procedure, see [8] where the Gauss-Bonnet combination of curvature squared terms,

and [9] where Riemann-squared terms were considered. Partial results were also obtained in [10]

where the dual six-form formulation with Gauss-Bonnet terms was considered. This version of

supergravity describes the low energy limit of five-brane, and provides a lowest order description

of string-five brane duality [11,12]. Interestingly enough, a two parameter extension containing

Riemann-squared and the Gauss-Bonnet terms was found in [13], where supersymmetry vari-

ations that are independent of the seven-form field strength were considered. Whether these

two parameters get related to each other upon taking into account all variations remains to be

seen.

Thanks to the availability of superconformal tensor calculus and off-shell formulation [14,15],

the study of higher derivative extensions of N = (1, 0), 6D supergravity1 are more accessi-

ble [16–18]. It is known that the theory admits two distinct four-derivative extensions [16,18],

1What we refer to as N = (1, 0), 6D supergravity actually consists of the irreducible supergravity and a

single tensor multiplet. This reducible multiplet has the same field content as N = (1, 0), 10D supergravity, and

similar couplings to Yang-Mils, and therefore we shall refer to it as heterotic supergravity in 6D.
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and that a particular combination of them arises from the dualization of the BdR action in

6D [19]. This shows that there does exist a four-derivative extension of heterotic supergravity

in 6D which cannot be obtained by the “Lorentz from Yang-Mills” trick [6, 7]. The similarity

between heterotic supergravities in 6D and the connection afforded by toroidal compactifi-

cation followed by a consistent truncation, motivates a closer look at the structure of the

four-derivative extensions, and the nature of the duality transformations that take into account

these extensions.

The main goal of this paper is to first show that the two four-derivative extensions of

heterotic supergravity in 6D cannot be related to each other by any field redefinition. One of

them has a Riemann2 term [13,16], and the other one has the Gauss-Bonnet combination [18]

(RµνρσRµνρσ − 4RµνRµν + R2). The fact that the R2
µν and R2 terms can be removed by

redefinition of the metric does not imply on-shell equivalence of the two invariants because

several terms involving the three-form field strength, the dilaton and fermions do not coincide.

Next, we shall dualize both extensions separately, thereby obtaining a two parameter (α, γ) dual

theory with Lagrangian Ldual
α,γ . We will do so at the level of the action, by adding a suitable

Lagrange multiplier term that involves a dual two-form potential C, and integrating out the

original field strength H = dB. We thus avoid the laborious method of integrating equations of

motion of the dualized theory into an action, which furthermore may harbor some ambiguities.

Setting γ = α remarkably gives the 6D analog of the BdR action. This is in agreement with

the dualization performed in the opposite direction by integrating out the dualized equations

of motion into an action [19]. Setting γ = −α instead gives a four-derivative extension in which

the curvature-squared terms are
(
RµνR

µν − 1
4R

2
)
. These particular terms can be removed by

field redefinitions, at the expense of complicating the supersymmetry transformation rules.

In order to explore whether a similar phenomenon exists in 10D, we shall examine the

dualization of the BdR action in 10D in detail. This time the Lagrange multiplier term involves

the dual six-form potential B, and we integrate over the Lorentz Chern-Simons modified field

strength G = dC+α′ωL. This dualization was performed long ago in [20,21] but here we provide

a closer look at this dualization in the brane frame, working out in detail the dependence on

H = dB, and explore the possibility of extracting two distinct invariants in analogy with the

Riem2 and Gauss-Bonnet invariants that exist in 6D. We will show that there is an obstacle in

finding such a separation because of the presence of terms which do not lift from 6D to 10D. We

also compare the dual of the BdR action with an existing result obtained in superspace [22–26].

We find that the bosonic actions agree modulo field redefinitions, but a full comparison in

the fermionic sector as well as the supersymmetry transformations remain to be investigated

further.

This paper is organized as follows. In Section 2, we recall two four-derivative off-shell

invariants of N = (1, 0), 6D supergravity, and how to go on-shell. Next, we show that the

resulting invariants cannot be related to each other by any field redefinitions. We also highlight

the difference between these invariants and the 6D analog of BdR invariant2. In Section 3, we

2In the context of on-shell supergravity, by “invariant” we mean a Lagrangian which always contains the two-

4



dualize the two-parameter Lagrangian Lα,γ and show that for γ = α that the result agrees with

that of the 6D analog of BdR action, upon performing certain field redefinitions. In Section

4, we dualize the BdR action in 10D and discuss the obstacle in interpreting the result as a

particular combination of two distinct invariants. We shall also compare the dual Lagrangian

with that obtained in superspace in [26] in Section 5, where we shall also comment on aspects

of the superspace formulation in the two-form formulation. Our results are summarized and

future directions are noted in the Conclusions, conventions and some identities are collected

in Appendix A, and the dimensional reduction of the dual of the BdR action in 10D on T 4 is

described in Appendix B.

2 Higher derivative heterotic supergravity in 6D

The known four-derivative N = (1, 0) supergravities in 6D are as follows. A Riemann-squared

invariant was constructed long ago in [13]. A Gauss-Bonnet invariant was constructed partially

in [13], and its construction was completed in [18]. The square of the scalar curvature was given

in [17] but its bosonic part can be easily shown be completely removable by a redefinition of the

dilaton field. For completeness, we shall also consider the 6D analog of the 10D Bergshoeff-de

Roo (BdR) Lagrangian, which may naively be considered to be the dual formulation of the

Riemann-squared invariant mentioned above, but this is not so [19], as we shall explain it in

detail later. We shall comment on the superspace formulations of all these invariants in Section

5.

2.1 The two parameter higher derivative Lagrangian Lα,γ

An off-shell N = (1, 0), 6D supergravity [14] and an off-shell Riemann-squared invariant [13]

have been known for sometime. The construction of another off-shell invariant containing the

Gauss-Bonnet combination of curvature-squared terms instead was partially achieved in [13]

and it was completed in [18]. The field content of the 48 + 48 degree of freedom off-shell

Poincaré multiplet is [14]

(
eµ

a, Bµν , ϕ, Vµ, Zµ, Eµνρσ , ψi
µ, χi

)
(2.1)

where B,V,E are form potentials with associated gauge symmetries, Zµ is a complex vector

field, ϕ is the dilaton, and the spinors with i = 1, 2 are symplectic Majorana-Weyl. Adding

these three off-shell invariants3

L = LEH − 1
8αLRiem2 − 1

8γLGB , (2.2)

derivative supergravity plus higher derivative terms with an overall arbitrary constant parameter, and therefore

invariant up to a given order in the deformation parameter, such as α′, that counts the number of derivatives.
3We shall use the notation in which we shall suppress the label for the dimension of spacetime for all

Lagrangians that live in 6D, and use the label only for the case of Lagrangians in 10D.
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the process of going on-shell requires the elimination of the auxiliary fields using their equations

of motion (EOM) following from the total Lagrangian. The EOM for the E-field is algebraic

and it can be eliminated exactly schematically in the form Eµ ∼ Vµ + (fermi)2 terms [15].

However, the EOM’s for Vµ and Zµ are not algebraic due to the curvature-squared part of the

Lagrangian and therefore they become propagating. They can be eliminated order by order

in the parameters α and γ. To first order in these parameter, the solution takes the form

V µ = Jµ
1 + αJµ

2 + γJµ
3 and Zµ = Jµ

4 + αJµ
5 + γJµ

6 , where Jµ
1 , ..., J

µ
6 are bilinear in fermionic

fields. Since we shall consider actions up to quartic fermion terms and supersymmetric at

first order in α and γ up to cubic fermions in the supertransformations, all the auxiliary fields,

namely (Vµ, Zµ, Eµνρσ) can be set to zero. Thus, we shall consider the Lagrangian (2.2) where45

e−1LEH = e−2ϕ
[
1
4R(ω) + ∂µϕ∂

µϕ− 1
12HµνρH

µνρ

− 1
2 ψ̄µγ

µνρDν(ω)ψρ − 2χ̄γµνDµ(ω)ψν + 2χ̄γµDµ(ω)χ

− 1
24Hµνρ(ψ̄

σγ[σγ
µνργλ]ψ

λ − 4ψ̄σγ
σµνρχ− 4χ̄γµνρχ)

+ ∂µϕ(ψ̄
µγνψν − 2ψ̄νγ

µγνχ)
]
, (2.3)

e−1LRiem2 =Rµν
ab(ω−)R

µν
ab(ω−) +

1
2ε

µνρσλτBµνRρσ
ab(ω−)Rλτab(ω−)

+ 4ψ̄abγ
µDµ(ω, ω−)ψ

ab − 2Rνρ
ab(ω−)ψ̄abγ

µγνρψµ

− 1
3 ψ̄

abγµνρψabHµνρ − [Dµ(ω−,Γ+)R
µρab(ω−)− 4Hµν

ρRµνab(ω−)]ψ̄aγρψb , (2.4)

e−1LGB =RµνρσRµνρσ − 4RµνRµν +R2 + 2RµνρσH
µν,ρσ

− 4RµνH2
µν +

2
3RH2 + 10

3 H4 +
1
9 (H

2)2 − 2(H2
µν)

2

+ 1
2ε

µνρστλBµνRρσ
ab(ω+)Rτλab(ω+) + fermions , (2.5)

where we have used the definitions

ω±µ
ab = ωµ

ab ±Hµ
ab , Hµνρ = 3∂[µBνρ] ,

Hµν,ρσ := HµναHρσ
α , H4 := Hµν,ρσH

µρ,νσ ,

H2
µν := HµρσHν

ρσ , H2 := HµνρH
µνρ ,

ψab = 2ea
µeb

νD[µ(ω+)ψν] ,

Dµ(ω, ω−)ψab =
(
∂µ + 1

4ωµpqγ
pq
)
ψab + ω−µa

cψcb + ω−µb
cψac , (2.6)

4In taking LGB from [18], their conventions can be converted to ours by letting L → e−2ϕ, Bµν →
2Bµν , ωµ

ab → −ωµ
ab and εµ1...µ6 → −εµ1..µ6 . Consequently, Hµνρ → 2Hµνρ, ω±µ

ab → −ω∓µ
ab, Rµν

ab(ω) →
−Rµν

ab(ω), and Rµν
ab(ω±) → −Rµν

ab(ω∓).
5In getting LRiem2 from [16], we let LEH → 2LEH , L → e−2ϕ, Bµν → 2Bµν , Fµνρ(B) → 2Hµνρ, ψµ →√

2ψµ, ϕi → −2e−2ϕχjδ
ij , ǫ →

√
2ǫ, ω±µ

ab → ω±µ
ab and R+µν(Q) →

√
2ψµν .
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and Γ+ = Γ+H with Γ representing the Christoffel symbol. The fermionic part of LGB is very

complicated and it can be extracted from the equations provided in [18]. Sometimes we shall

use the notation ω±µ
ab(H) to emphasize that the torsion shift is given by H. The Lagrangian

LRiem2 is not to be confused with another four-derivative Lagrangian that has similar form but

is distinct from it. This distinct Lagrangian will be discussed in Section 2.2, and we shall refer

to it as LBdR in view of the fact that it has the same form as its counterpart in 10D constructed

long ago in [5]. In particular note that the Einstein-Hilbert term and the four-derivative terms

come with a different overall dilaton factor, unlike the BdR action in 6D. It may seem that the

two invariants are related by a duality transformation. However, this is not the case, since, as

we shall see, the duality transformation must involve a combination of (2.4) and (2.5) [19].

As for the supertransformations, setting the auxiliary field to zero as explained above, they

do not pick up any order α and γ modifications, thereby maintaining their simple form given

by

δeµ
a =ǭγaψµ ,

δψµ =Dµ(ω+)ǫ = Dµ(ω)ǫ+
1
4Hµνργ

νρǫ ,

δBµν =− ǭγ[µψν] ,

δχ =1
2γ

µǫ∂µϕ+ 1
12Hµνργ

µνρǫ

δϕ =ǭχ . (2.7)

In their off-shell supersymmetric versions, LEH ,LRiem2 and LGB are separately invariant under

the off-shell supertransformations. Upon going on-shell , however, it is the sum of the Einstein-

Hilbert and the (α, γ) dependent actions that is invariant under supertransformations up to

first order in these arbitrary parameters.

In summary, the bosonic part of the general two parameter Lagrangian (2.2) takes the form

Lα,γ = LEH − 1
8αLRiem2 − 1

8γLGB

= ee−2ϕ
[

1
4R+ ∂µϕ∂

µϕ− 1
12H

µνρHµνρ

]

− 1
8eα

[
Rµνab(ω−)Rµνab(ω−) +

1
2ε

µνρσλτBµνRρσ
ab(ω−)Rλτab(ω−)

]

− 1
8eγ

[
RµνρσRµνρσ − 4RµνRµν +R2 + 2RµνρσH

µν,ρσ − 4RµνH2
µν +

2
3RH2

+ 10
3 H4 +

1
9 (H

2)2 − 2(H2
µν)

2 + 1
2ε

µνρσλτBµνRρσ
ab(ω+)Rλτab(ω+)

]
.

(2.8)

In studying the relation of this Lagrangian to the type IIA action on K3 for α = γ, it is useful

to express it as [19]

Lα,γ =ee−2ϕ
[

1
4R+ ∂µϕ∂

µϕ− 1
12H

µνρHµνρ

]

7



− 1
8eα

[
Rµνab(ω−)Rµνab(ω−) +

1
2ε

µνρσλτBµνRρσ
ab(ω−)Rλτab(ω−)

]

− 1
8eγ

[
− 1

8ǫ6ǫ6R(ω−)
2 − 2

3ǫ6ǫ6H
2R(ω−)−

2
9ǫ6ǫ6H4 +

1
2ε

µνρσλτBµνRρσ
ab(ω+)Rλτab(ω+)

]
,

(2.9)

where

ǫ6ǫ6R(ω−)
2 :=ǫαβµνρσǫαβabcdRµν

ab(ω−)Rρσ
cd(ω−) ,

ǫ6ǫ6H
2R(ω−) :=ǫαµ0...µ4

ǫαν0...ν4Hµ1µ2
ν0Hν1ν2

µ0Rµ3µ4
ν3ν4(ω−) ,

ǫ6ǫ6H4 :=ǫαβµνρσǫαβ
abcdHµν,abHρσ,cd . (2.10)

For later purposes, it is convenient to write out the H-dependent terms explicitly. Given that

Rµνab(ω−) =Rµνab(ω)− 2D[µ(ω)Hν]ab + 2H[µ
acHν]cb , (2.11)

ωL
µνρ(ω−) =ωL

µνρ(ω) +
(
Hµ

abDν(ω)Hρba − ∂µ
(
Hν

abωρba

)

−Hµ
abRνρba(ω)−

2
3Hµ

acHνc
bHρba

)

[µνρ]
, (2.12)

the Riemann-squared and Gauss-Bonnet actions can be written as

I(Riem2) =

∫
d6x e

[
RµνρσRµνρσ − 2RµνρσHµν,ρσ + 2H2µνH2

µν − 2H4

+ 4 (DµHνρσ) (D
νHµρσ)− 4H̃µνρ

(
ωL
µνρ(ω)−Hµ

abDν(ω)Hρab

+Hµν
σRρσ − 1

3Hµν
σH2

ρσ

)]
, (2.13)

IGB =

∫
d6x e

[
RµνρσRµνρσ − 4RµνRµν +R2 + 2RµνρσH

µν,ρσ

− 4RµνH2
µν +

2
3RH2 + 10

3 H4 +
1
9(H

2)2 − 2(H2
µν)

2

− 4H̃µνρ
(
ωL
µνρ(ω)−Hµ

abDν(ω)Hρab −Hµν
σRρσ + 1

3Hµν
σH2

ρσ

)]
, (2.14)

where we have used the identities (A.2) and (A.3), we have defined

ωL
µνρ(ω±) = tr

(
ω±[µ∂νω±ρ] +

2
3ω±[µω±νω±ρ]

)
,

H̃µνρ = 1
3!ε

µνρσλτHσλτ . (2.15)

LRiem2 and LGB are not equivalent on-shell

Prior to dualization of the Lagrangian Lα,γ , it is useful to check that the α and γ dependent

parts are not equivalent to each other upon field redefinitions. Since the Riem2 terms cannot
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be changed by field redefinitions at the four-derivative order, we take γ = −α to remove these

terms. From (2.8), (2.13) and (2.14), we find that

L(Riem2)− LGB =− 1
8eα

[
4RµνRµν −R2 − 4RµνρσH

µν,ρσ + 4RµνH2
µν −

2
3RH2

+ 4(DµHνρσ)D
νHµρσ + 4(H2

µν)
2 − 1

9 (H
2)2 − 16

3 H4

− 8H̃µνρ
(
Hµν

αRρα − 1
3H

2
µαHνρ

α
)]

. (2.16)

To determine which terms can be removed by field redefinitions, it is convenient to use the

following relations, that follow from the two-derivative Lagrangian, modulo total derivatives,

Rµν = −2ϕµν +H2
µν + 4Eµν − Eϕgµν ,

ϕµ
µ = 2ϕ2 − 1

3H
2 − 2Eµ

µ + 2Eϕ ,

DρH
µνρ = 2ϕρH

µνρ + e2ϕEµν
B ,

ϕµνϕµν = −H2
µνϕ

µϕν − ϕ2H2 + 2(ϕ2)2 + 1
9 (H

2)2

− 4Eµνϕ
µϕν − 6ϕ2Eµ

µ + 4
3H

2Eµ
µ + 7ϕ2Eϕ − 4

3H
2Eϕ

+ 4(Eµ
µ)

2 + 4E2
ϕ − 8Eµ

µEϕ ,

H2
µνϕ

µν = −2H2
µνϕ

µϕν + 1
3ϕ

2H2 − 1
18(H

2)2

− 1
3H

2Eµ
µ + 1

3H
2Eϕ − e2ϕHµνρϕµE

B
νρ ,

H̃µνρHµν
αϕρα = H̃µνρ

(
− 2Hµν

αϕαϕρ − e2ϕEB
µνϕρ

)
,

(DσHµνρ)(D
σHµνρ) = 3RµνρσHµν,ρσ + 2ϕ2H2 − 1

3(H
2)2 − 3(H2

µν)
2

− 12H2
µνE

µν − 2H2Eµ
µ + 5H2Eϕ + 6e2ϕHµνρϕµE

B
νρ + 3e4ϕ(EB

µν)
2 , (2.17)

where we have defined

Eµν := e−1e2ϕ
δL

δgµν
, Eϕ = e−1e2ϕ

δL

δϕ
, EB

µν = 2e−1 δL

δBµν
,

ϕµ := ∂µϕ , ϕµν := Dµϕν , ϕ2 := ϕµϕµ . (2.18)

Using the identities (2.17), the Lagrangian (2.16) becomes

L(Riem2)− LGB = − 1
8eα

[
8(H2

µν)
2 − 4

3(H
2)2 − 16

3 H4 + 32H2
µνϕ

µϕν − 16
3 ϕ

2H2 + 16(ϕ2)2

− 8H̃µνρ
(
4Hµν

αϕρϕα + 2
3H

2
µαHνρ

α
)

− 8H̃µνρ
(
4Hµν

αEρα + 2e2ϕEB
µνϕρ

)
+ 32H2

µνE
µν

− 64Eµνϕ
µϕν − 64Eµνϕ

µν − 16
3 H

2Eµ
µ

9



− 32ϕ2Eµ
µ + 64ϕ2Eϕ + 32e2ϕHµνρϕµE

B
νρ

+ 64(Eµν)
2 − 32EϕE

µ
µ + 20E2

ϕ + 4e4ϕ(EB
µν)

2
]

(2.19)

All the terms involving factors of the lowest order equations of motion can clearly be removed

by field redefinitions in the two-derivative part of the Lagrangian. Then we are left with terms

which schematically have form H4,H2(∂ϕ)2 and (∂ϕ)4. Thus, we see that the Gauss-Bonnet

Lagrangian LGB cannot be brought into the form of the Riemann-squared Lagrangian L(Riem2)

by field redefinitions.

2.2 The Lagrangian LBdR in 6D

The 6D analog of the 10D Bergshoeff-de Roo Lagrangian, including fermionic terms (up to

quartics) was obtained in [27] by dimensional reduction of the former on T 4 followed by a

consistent truncation. The bosonic part of the Lagrangian is given by

LBdR =ee2ϕ

[
1
4R+ gµν∂µϕ∂νϕ− 1

12GµνρG
µνρ

+ α
(
GµνρωL

µνρ(ω−)−
1
4Rµνrs(ω−)R

µνrs(ω−)
)]

, (2.20)

where

ω±µab = ωµab ±Gµab , Gµνρ = 3∂[µCνρ] . (2.21)

As is well known, the term GµνρωL
µνρ(ω−) can be absorbed into the definition of G = dC to

define

Gµνρ = 3∂[µCνρ] − 6αωL
µνρ(ω−) . (2.22)

and the local Lorentz invariance of this field strength requires that Cµν transforms as

δΛCµν = 2α tr(ω−[µ∂ν]Λ) . (2.23)

For later purposes, let us spell out the torsion dependence in LBdR. Using (2.11) and (2.12)

(with H replaced by G) and the following lemma

ee2ϕGµνρωL
µνρ(ω−) = ee2ϕ

[
GµνρωL

µνρ(ω) +Rµνρσ(ω)Gµν,ρσ − 2
3G

µν,ρσGµρ,νσ −Gµνρ∂µ (ων
rsGρrs)

]
,

(2.24)

we obtain

LBdR =ee2ϕ

[
1
4R+ gµν∂µϕ∂νϕ− 1

12GµνρG
µνρ

+ α
(
GµνρωL

µνρ(ω)−
1
4RµνρσR

µνρσ + 3
2RµνρσG

µν,ρσ − 1
6G4

− 1
2G

2
µνG

2µν − (DµGνρσ)D
νGµρσ −Gµνρ∂µ

(
ων

abGρab

))]
. (2.25)

where the definitions (2.6) with H replaced by G have been used.
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3 Dualization of the Lagrangian Lα,γ in 6D

In this section, we shall formulate the Lagrangian Lα,γ such that the field equations and Bianchi

identities associated with the two-form potential B are interchanged. As is well known, in 6D

this involves a dual two-form potential which we shall denote by C. In one approach, one can

work at the level of field equations and Bianchi identities, and after performing the dualization

map, try to find the “dual Lagrangian” which will produce this system. This procedure can

get quite cumbersome. An alternative method which works at the level of the Lagrangian

throughout, thereby not requiring the integrating-out process from a set of field equations, is

what we refer to as the Hodge-dualization method. This is a well known method in which one

adds a total Lagrange multiplier term of the form H ∧ dC where H = dB and integrate over H

which is treated as independent variable. For this approach to work, the B-filed should arise

through its field strength H everywhere in the action. This requirement holds in the Lagrangian

Lα,γ we are considering.

3.1 The Lagrange multiplier method

Adding to the Lagrangian Lα,γ given in (2.8) a total derivative Lagrange multiplier term

∆L(B,C) = 1
2×3!ǫ

µνρστλHµνρ∂σCτλ , (3.1)

where Cµν is the dual potential, and using (2.11) we have

Lα,γ +∆L(B,C) = ee−2ϕ
[

1
4R+ ∂µϕ∂

µϕ− 1
12H

µνρHµνρ

]

− 1
8αe

[
RµνρσRµνρσ + 4DµHνabD

νHµab − 2RµνρσH
µν,ρσ + 2H2

µνH
2µν − 2H4

]

− 1
8γe

[
RµνρσRµνρσ − 4RµνRµν +R2 + 2RµνρσH

µν,ρσ − 4RµνH2
µν +

2
3RH2

+ 10
3 H4 − 2(H2

µν)
2 + 1

9(H
2)2

]
+ 1

36ǫ
µνρστλHµνρGστλ , (3.2)

where the H̃µνρωL
µνρ(ω±) terms present in the Lagrangian Lα,γ have been absorbed into the

Lagrange multiplier term now involving the field strength

Gµνρ = Gµνρ − 3αωL
µνρ(ω−(H)) − 3γ ωL

µνρ(ω+(H))

Gµνρ = 3∂[µCνρ] ,

G̃µνρ = 1
3!ε

µνρσλτGσλτ , idem G̃µνρ . (3.3)

Note that the Lorentz Chern-Simons form depend on spin connection shifted by torsion given

by H instead of G. It is convenient to group the terms in this Lagrangian as follows

Lα,γ +∆L(B,C) = L01 + L1

e−1L01 = e−2ϕ
[

1
4R+ ∂µϕ∂

µϕ− 1
12H

µνρHµνρ

]
+ 1

6H
µνρG̃µνρ ,

11



e−1L1 = −1
8

[
(α+ γ)RµνρσRµνρσ − 4γRµνRµν + γR2 + 2(−α + γ)RµνρσH

µν,ρσ

− 4γRµνH2
µν +

2
3γRH2 + 4α(DµHνρσ)D

νHµρσ + 2(α − γ)(H2
µν)

2

+ 1
9γ(H

2)2 +
(
−2α+ 10

3 γ
)
H4

]
. (3.4)

The first term is labelled as L01 to denote the fact that it contains up to and including terms

that are first order in parameters α and γ. Treating Hµνρ as an independent field, its field

equation is

G̃µνρ = e−2ϕHµνρ − 3H̃αβγ δ

δHµνρ

(
αωL

αβγ(ω−(H)) + γ ωL
αβγ(ω+(H))

)
− 6e−1 δL1

δHµνρ
. (3.5)

This is a nonlinear equation in H. For our purposes here, we need the solution for H in terms

of G only to first order in α and γ which is readily seen to be

Hµνρ =e2ϕ

{
G̃µνρ + 3H̃αβγ δ

δHµνρ

[
αωL

αβγ(ω−(H)) + γ ωL
αβγ(ω+(H))

]
+ 6e−1 δL1

δHµνρ

}∣∣∣∣∣
H=e2ϕG̃

,

(3.6)

where we recall that ω±(H) = ω ± H. Writing H = e2ϕG̃ + αH1 + γH2, without having to

specify H1 and H2, it is easy to verify that up to order α and γ the last two terms in L01

simplify as
(
e−2ϕHµνρH

µνρ − 2G̃µνρHµνρ

)∣∣∣
H=e2ϕG̃

= e2ϕGµνρGµνρ

∣∣∣
H=e2ϕG̃

. (3.7)

Thus the dualized action to first order in α and γ is given by

e−1Ldual
α,γ =

[
e−2ϕ

(
1
4R+ ∂µϕ∂

µϕ− 1
12e

4ϕGµνρGµνρ

)
+ L1

]
H=e2ϕG̃

. (3.8)

Working out the last two terms explicitly in terms of G we find, to first order in α and γ,

− 1
12ee

2ϕGµνρGµνρ

∣∣∣
H=e2ϕG̃

= ee2ϕ
[
− 1

12GµνρG
µνρ + 1

2 (α+ γ)GµνρωL
µνρ(ω)−

1
2(α− γ)Gµνρ∂µ(ων

abHρab)
]

− 1
6(α− γ)G̃µνρ

(
e8ϕG2

µαGνρ
α − 3e4ϕGµν

αRρα

)
(3.9)

e−1L1

∣∣∣
H=e2ϕG̃

=− 1
8(α+ γ)RµνρσR

µνρσ − 1
8γ(−4RµνR

µν +R2)

− 1
8e

8ϕ
[
2
3(−3α+ 5γ)Gµν,ρσGµρ,νσ + 2(α − γ)G2

µνG
2µν + 1

9γ
(
G2

)2 ]

− 1
8e

4ϕ
[
2(α− γ)RµνρσG

µν,ρσ − 4αRµνG2
µν +

2
3αRG2

− 4
3α(DµGνρσ)(D

µGνρσ) + 4α(DρGρµν)(DτG
τµν)− 16

3 αG
µνρϕσDσGµνρ

+ 16αϕρGρµνDσG
σµν + 16αG2

µνϕ
µϕν − 16

3 αG
2ϕ2

]
, (3.10)
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where we have used the identities (A.2) and (A.3) with H replaced by G. Adding the two

contributions to the Lagrangian, the resulting L = L01 + L1, prior to rescaling of the metric

and prior to identification of EOM terms, is given by

e−1Ldual
α,γ =e−2ϕ

[
1
4R+ ∂µϕ∂

µϕ− 1
12e

4ϕGµνρGµνρ −
1
2(α− γ)e4ϕGµνρ∂µ(e

2ϕων
abG̃ρab)

]

+
[
1
2 (α+ γ)e2ϕGµνρωL

µνρ(ω)−
1
8(α+ γ)RµνρσR

µνρσ − 1
8γ(−4RµνR

µν +R2)
]

− 1
8e

4ϕ
[
2(α − γ)RµνρσG

µν,ρσ − 4αRµνG2
µν +

2
3αRG2

− 4
3α(DµGνρσ)(D

µGνρσ) + 4α(DρGρµν)(DτG
τµν)− 16

3 αG
µνρϕσDσGµνρ

+ 16αϕρGρµνDσG
σµν + 16αG2

µνϕ
µϕν − 16

3 αG
2ϕ2

]

− 1
8e

8ϕ
[
2
3 (−3α+ 5γ)Gµν,ρσGµρ,νσ + 2(α− γ)G2

µνG
2µν + 1

9γ
(
G2

)2 ]

− 1
6 (α− γ)G̃µνρ

(
e8ϕG2

µαGνρ
α − 3e4ϕGµν

αRρα

)
. (3.11)

The supertransformations of the dualized theory can be derived as follows. Those of eµ
a and

ϕ in (2.7) remain the same. In the supertransformations of ψµ and χ, bearing in mind that we

are considering terms up to cubic fermion terms and at first order in α and γ, it suffices to use

the duality equation to replace H. There remains the supertransformation of Cµν . To find it,

we follow the method provided in [21] and we seek the cancellation of the terms that arise from

the variation of Cµν in the Lagrangian (3.4) (including the fermion terms up to the quartics)

with the Lagrange multiplier term, and treat Hµνρ as independent variable, thereby not using

dH = 0. Putting aside the fermionic parts of LRiem2 and LGB, the variations that contain dH

are

δL01

∣∣∣
dH

= 1
12ǫ

µνν1...ν4
(
∂ν1Hν2..ν4

)(
δCµν + α tr

(
ω−µδω−ν

)
H=e2ϕG̃

+ γ tr
(
ω+µδω+ν

)
H=e2ϕG̃

+ e−2ϕǭγµψν − e−2ϕǭγµνχ
)
. (3.12)

The last two terms come from the variation of the Pauli coupling in LEH . The other source

of variations that contain dH come from the following lemma in which the fermionic terms are

omitted:

δψab =
1
4γ

cdRabcd(ω+) ǫ =
1
4γ

cdRcdab(ω−) ǫ+ γcd∂[aHbcd] ǫ . (3.13)

The curvature Rabcd(ω−) transforms like the gaugino of the Yang-Mills multiplet, and it is the

part which participates in the usual cancellations in the Noether procedure involving LRiem2 .

As to the variation of LGB , it is not clear from the results given in [21] whether the dH terms

arise in that way. Therefore, we shall write the dH involving terms coming from L1 as follows

δL1

∣∣∣
dH

=ǫµνν1...ν4
(
∂ν1Hν2..ν4

)(
− 1

8×24 α ǭγµνab
δLRiem2

δψ̄ab
− 1

8γOµν

)
, (3.14)
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where we have written all the terms proportional to dH that arise in the variation of LGB as

ǫµνν1...ν4
(
∂ν1Hν2..ν4

)
Oµν . Thus, requiring that all the terms containing dH cancel, we find that

δCµν =e−2ϕ
(
−ǭγ[µψν] + ǭγµνχ

)
−

[
α tr

(
ω−[µδω−ν]

)
+ γ tr

(
ω+[µδω+ν]

)

− 1
16 α ǭγµνab

δLRiem2

δψab
− 3

2γOµν

]
H=e2ϕG̃

. (3.15)

3.2 The string frame

Next, we rescale the metric as

gµν → g′µν = e2ϕgµν . (3.16)

As a consequence, we have

Γ′ρ
µν = Γρ

µν + δρµϕν + δρνϕµ − gµνϕ
ρ ,

ω′
µ
ab =ωµ

ab + 2eµ
[aϕb] ,

D′
σGµνρ = DσGµνρ − 3Gσ[νρϕµ] − 3Gµνρϕσ + 3gσ[ρGµν]τϕ

τ ,

Rµνρσ(g
′) = e2ϕ

[
Rµνρσ − 4

(
gµρϕνσ − gµρϕνϕσ + 1

2gµρgνσϕ
2
)∣∣∣

[µν][ρσ]

]
,

Rµν(g
′) =Rµν − gµνϕ

ρ
ρ − 4ϕµν + 4ϕµϕν − 4gµνϕ

2 ,

R(g′) =e−2ϕ
(
R− 10ϕµ

µ − 20ϕ2
)
,

ω
′L
µνρ =ωL

µνρ(ω) + 2∂[µ(ων
abeρ]aϕb) . (3.17)
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Note in particular that D′λGλµν = DλGλµν . Substituting these results in the primed version

of the total Lagrangian (3.11), we obtain one of the key results of this paper taking the form

e−1Ldual
α,γ = e2ϕ

[
1
4R+ ∂µϕ∂

µϕ− 1
12G

µνρGµνρ −
1
2 (α− γ)Gµνρ∂µ(ων

abG̃ρab)

+ (α− γ)Gµνρ∂µ(ϕ
σG̃νρσ) + (α+ γ)Gµνρ∂µ(ων

abeρaϕb)

+ 1
2(α+ γ)GµνρωL

µνρ(ω)−
1
8 (α+ γ)RµνρσR

µνρσ − 1
4γ(−2RµνR

µν + 1
2R

2)

− 1
4(α− γ)RµνρσG

µν,ρσ + 1
2αR

µνG2
µν −

1
12αRG2

− (α− 3γ)Rµνϕ
µϕν + (α− 3γ)Rµνϕ

µν + 1
2(α+ 3γ)Rϕ2 + 3

2γRϕµ
µ

− (α− γ)G2
µνϕ

µϕν − (α+ γ)G2
µνϕ

µν + (56α− 1
2γ)G

2ϕ2 + 1
3αG

2ϕµ
µ

− 2(α− 3γ)ϕµνϕµν −
1
2(α+ 12γ)(ϕµ

µ)
2 + 4(α− 3γ)ϕµνϕ

µϕν

− 2(2α+ 9γ)ϕ2ϕµ
µ − 5(α + 3γ)(ϕ2)2

+ 1
6α(DµGνρσ)(D

µGνρσ)− 1
2α(D

λGλµν)(DτG
τµν)

− 2
3αG

µνρϕσDσGµνρ − αϕρGρµνDλG
λµν

− 1
12(−3α+ 5γ)Gµν,ρσGµρ,νσ − 1

4 (α− γ)G2
µνG

2µν − 1
72γ

(
G2

)2

− 1
6(α− γ)G̃µνρ

(
G2

µαGνρ
α − 3Gµν

α
(
Rρα − 4ϕρα + 4ϕρϕα

))
]

(3.18)

Setting γ = 0 gives the result of dualizing LRiem2 , and setting α = 0 gives the result of dualizing

LGB . While several terms can be removed by field redefinitions, such a step will modify the

simple supersymmetry transformations by introducing the corresponding α or γ dependent

higher derivative terms.

3.3 Comparison with LBdR

To compare Ldual
α,γ with LBdR we set γ = α in (3.18) and examine the difference

Ldual
α,α − LBdR =αee2ϕ

[
2Gµνρ∂µ(ων

abeρaϕb) +Gµνρ∂µ

(
ων

abGρab

)

− 3
2RµνρσG

µν,ρσ − 1
72

(
G2

)2
+ 1

2G
2
µνG

2µν

− 1
4(−2RµνR

µν + 1
2R

2) + 1
2R

µνG2
µν −

1
12RG2

+ 2Rµνϕ
µϕν − 2Rµνϕ

µν + 2Rϕ2 + 3
2Rϕµ

µ

− 2G2
µνϕ

µν + 1
3G

2ϕ2 + 1
3G

2ϕµ
µ
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+ 4ϕµνϕµν −
13
2 (ϕ

µ
µ)

2 − 8ϕµνϕ
µϕν − 22ϕ2ϕµ

µ − 20(ϕ2)2

+ (DµGνρσ)D
νGµρσ + 1

6 (DµGνρσ)(D
µGνρσ)− 1

2 (D
λGλµν)(DτG

τµν)

− 2
3G

µνρϕσDσGµνρ − ϕρGρµνDλG
λµν

]
(3.19)

Next, we show that this difference can be removed entirely by field redefinitions. To this end

we use the field equations obtained from the 2-derivative part of the Lagrangian (3.18) through

Eµν := e−1e−2ϕ δL

δgµν
, Eϕ = e−1e−2ϕ δL

δϕ
, EC

µν = 2e−1 δL

δCµν
, (3.20)

and computing the analogs of (2.17) for this case, we find

Ldual
α,α − LBdR = αe

[
− 2ωµ

abeνaϕb − ωµ
abGνab + 2Gµνρϕ

ρ
]
ECµν

+ αe e2ϕ
[
8EµνE

µν + 2EϕE
µ
µ − 2(Eµ

µ)
2 + 5

2E
2
ϕ + e−4ϕ(EC

µν)
2
] (3.21)

which shows that Ldual
α,α equals LBdR upon performing the field redefinitions6

δCµν =− 2α
(
2ω[µ

abeν]aϕb + ω[µ
abGν]ab − 2Gµνρϕ

ρ − e−2ϕEC
µν

)
,

δgµν =α
(
8Eµν − 2gµνE

λ
λ + 2gµνEϕ

)
,

δϕ =5
2αEϕ . (3.22)

For completeness, it is useful to also determine the local gauge transformations that leave the

dual Lagrangian invariant. Those associated with the metric and dilaton remain the same, but

the Local Lorentz and supersymmetry transformations of Cµν get deformed. To begin with,

the local Lorentz invariance of the duality equation (3.6) implies that Gµνρ is invariant. From

(3.17), and taking into account the rescaling of the metric, it follows that under local Lorentz

transformations Cµν acquires the transformation

δΛCµν = 2α tr(ω[µ∂ν]Λ) + 4αϕae[µ
b∂ν]Λab . (3.23)

Consequently, the redefined C ′
µν = Cµν+δCµν , upon using (3.22), and recalling the redefinition

of the metric, transforms as

δΛC
′
µν = 2α tr(ω[µ∂ν]Λ) + 2αG[µ

ab∂ν]Λab = 2α tr(ω−[µ∂ν]Λ) , (3.24)

in agreement with (2.23). After a long and tedious calculation we have also established the

following result for the dual of Ldual
BdR:

Ldual
BdR =Lα,α − 1

4α e
[
4H̃µνρHνρ

αEB
µα − 6e4ϕEB

µνE
µν
B + 10E2

ϕ

6The terms that involve the square of the EOM’s can be removed in two different ways, since given a term of

the form fE1E2 where f is constant or field dependent term, and E1, E2 refer to the EOM of fields ϕ1 and ϕ2, we

can either make the field redefinition δϕ1 = −fE2 or δϕ2 = −fE1. Here we have chosen one of these two ways.
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− 32EϕE
µ
µ + 32EµνE

µν − 16EϕE
µ
µ + 16(Eµ

µ)
2
]

(3.25)

This result shows that the dualization of the Lagrangian LBdR is indeed equal to Lα,γ with

γ = α, and modulo field redefinitions.

As far as supersymmetry is concerned, it also shows that the only boson that needs to be

redefined is the two-form potential B, since terms proportional to field equations can always

be set to zero in the on-shell supersymmetry transformations. Using the results for the super-

transformations discussed in subsection 3.1, setting α = γ, passing over to the string frame

and performing the field redefinition just discussed gives the known supertransformations that

leave the BdR action in 6D invariant; see eq. (6.3) in [27]. Passing over to the string frame, in

addition to (3.16) also requires the relations,

ψµ → ψ′
µ = eϕ/2(ψµ + γµχ) , χ → χ′ = e−ϕ/2χ , ǫ → ǫ′ = eϕ/2ǫ , (3.26)

and the resulting supertransformations are

δeµ
a = ǭγaψµ ,

δψµ = Dµ(ω)ǫ+
1
4Gµνργ

νρǫ ,

δCµν = −ǭγ[µψν] − 2α tr
(
ω−[µδω̂−ν]

)
,

δχ = 1
2γ

µǫ∂µϕ− 1
12Gµνργ

µνρǫ ,

δϕ = ǭχ , (3.27)

where Gµνρ = 3∂[µCνρ] − 6αωL
µνρ(ω−), with ω− = ω −G and G = dC.

We conclude this section by addressing whether the Lagrangian (3.18) has any implication

for the possibility of constructing two independent four derivative extension of heterotic super-

gravity in 10D. In the case of γ = α, the resulting BdR action is straightforwardly related

to the ordinary dimensional reduction of the BdR action in 10D on T 4 followed by consistent

truncation [27]. However, if γ 6= α, there seems to be an obstacle since the terms in the last

line of (3.18), to wit,

Ldual
α,γ : −1

6(α− γ)e2ϕG̃µνρ
(
G2

µαGνρ
α − 3Gµν

α
(
Rρα − 4ϕρα + 4ϕρϕα

))
, (3.28)

do not seem to lift to 10D. This provides a supportive evidence for the uniqueness of the BdR

action in 10D as the four-derivative supersymmetric extension of heterotic supergravity in 10D.

4 Dualization of the BdR Lagrangian in 10D

In this section we shall start from the BdR Lagrangian in 10D, including fermions, and perform

Hodge-dualization. This has already been achieved in [21]. Our aim here is to have a closer

look at this dualization in the brane frame, and explore the possibility of extracting two distinct
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invariants in analogy with the Riem2 and Gauss-Bonnet invariants that exist in 6D. We shall

also compare the result of dualization with results obtained in superspace in [26].

The BdR Lagrangian in 10D has the same form as in 6D. Up to quartic fermions, and order

α′, the BdR Lagrangian in 10D is given by

L10D
BdR =ee2ϕ

[
1
4R(ω) + gµν∂µϕ∂νϕ− 1

12GµνρG
µνρ

− 1
2 ψ̄µγ

µνρDν(ω)ψρ + 2χ̄γµνDµ(ω)ψν + 2χ̄γµDµ(ω)χ

− 1
24GµνρO

µνρ − ∂µϕ
(
ψ̄µγνψν + 2ψ̄νγ

µγνχ
)

+ α′
(
− 1

4Rµνab(ω−)R
µνab(ω−)−Rµνab(ω−)D

µ(ω−)
(
ψ̄aγνψb

)

− ψ̄abγµDµ(ω, ω−)ψab +
1
2Rµν

ab(ω−)ψ̄ab (γ
ργµνψρ + 2γµνχ)− 1

12Gµνρψ̄
abγµνρψab

)]

(4.1)

where

ω±µab =ωµab ±Gµab , Gµνρ = 3∂[µCνρ] , (4.2a)

Gµνρ =Gµνρ − 6α′ ωL
µνρ(ω̂−(G)) , (4.2b)

ωL
µνρ(ω̂−) = tr

(
ω̂−[µ∂νω̂−ρ] +

2
3 ω̂−[µω̂−νω̂−ρ]

)
,

=ωL
µνρ(ω−) +

[
∂µ

(
ω−ν

abψ̄aγρψb

)
−Rµν

ab(ω−)ψ̄aγρψb

)]
[µνρ]

+O(α′) , (4.2c)

ψab =2ea
µeb

νD[µ(ω+)ψν] , (4.2d)

Dµ(ω, ω−)ψab =
(
∂µ + 1

4ωµpqγ
pq
)
ψab + ω−µa

cψcb + ω−µb
cψac , (4.2e)

Oµνρ =
(
ψ̄σγ[σγ

µνργτ ]ψ
τ + 4ψ̄σγ

σµνρχ− 4χ̄γµνρχ
)
. (4.2f)

It is understood that the term proportional to α′2 coming from G2 is to be dropped, since we

are considering the Lagrangian to first order in α′. Various supercovariantizations are given by

ω̂±µab = ω̂µab ± Ĝµab , (4.3)

ω̂µab = ωµab + ψ̄µγ[aψb] +
1
2 ψ̄aγµψb , Ĝµab = Gµab +

3
2 ψ̄[µγaψb] . (4.4)

ω̂−µab = ω−µab + ψ̄aγµψb , ω̂+µab = ω+µab + 2ψ̄µγ[aψb] . (4.5)

It is understood that only O(α′) terms are to be kept, and that the quartic fermion terms are

to be dropped in the Lagrangian (4.1).

The action of the Lagrangian (4.1) is invariant under the following supersymmetry trans-

formation rules up to O(α′) and cubic fermion terms,

δeµ
r =ǭγrψµ ,
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δψµ =Dµ(ω+(G))ǫ ,

δCµν =− ǭγ[µψν] + 2α′
(
ω−[µ

rsδω̂−ν]rs

)
,

δχ =1
2γ

µǫ∂µϕ− 1
12Gµνργ

µνρǫ ,

δϕ =ǭχ . (4.6)

Next, we study the dualization of the above Lagrangian by introducing the Lagrange multiplier

term

∆L10D(B,C) = 1
6×7!ǫ

µνρσ1...σ7Hσ1...σ7
Gµνρ = 1

6e H̃
µνρ

(
Gµνρ + 6α′ωL

µνρ(ω̂−)
)

(4.7)

where

Hµ1...µ7
= 7∂[µ1

Bµ2...µ7] , H̃µνρ = 1
7!ε

µνρσ1...σ7Hσ1...σ7
. (4.8)

Next, we integrate over Gµνρ. Thus we need its field equation that follows from

L10D
BdR +∆L10D(B,C) = L01 + α′L1 , (4.9)

L01 = ee2ϕ
[
1
4R(ω) + gµν∂µϕ∂νϕ− 1

12Gµνρ

(
Gµνρ − 2e−2ϕH̃µνρ

)

− 1
2 ψ̄µγ

µνρDν(ω)ψρ + 2χ̄γµνDµ(ω)ψν + 2χ̄γµDµ(ω)χ

− ∂µϕ
(
ψ̄µγνψν + 2ψ̄νγ

µγνχ
)
− 1

24GµνρO
µνρ

]
(4.10)

L1 = ee2ϕ
[
− 1

4Rµνab(ω−)R
µνab(ω−)−Rµνab(ω−)D

µ(ω−)
(
ψ̄aγνψb

)

− ψ̄abγµDµ(ω, ω−)ψab +
1
2Rµν

ab(ω−)ψ̄ab (γ
ργµνψρ + 2γµνχ)

− 1
12Gµνρψ̄

abγµνρψab

]
+ eH̃µνρ

(
ωL
µνρ(ω−)−Rµνab(ω−)ψ̄

aγρψ
b
)
. (4.11)

We have collected the O(α′) terms in which the dependence on G arises through the torsionful

connection ω−. We are treating G as independent variable, while H = dB. Thus, the field

equation for B gives the relation dG = −α′ tr(R ∧ R), which can be solved to give (4.2b).

Recalling that we only work up to order α′ Lagrangian, in expressions above ω− = ω−G. The

field equation for G at O(α′) following from
∫
d10x(L01 + α′L1) is given by

Gµνρ = e−2ϕH̃µνρ −
1
4Oµνρ + 6α′e−2ϕ δL1

δGµνρ
. (4.12)

This equation is readily solved for G in terms of H, again at O(α′), as7

Gµνρ = e−2ϕH̃µνρ −
1
4Oµνρ + 6α′e−2ϕ δL1

δGµνρ

∣∣∣
G=e−2ϕH̃+O

. (4.13)

7Note that the last term produces quartic fermion terms as well but such terms are understood to be omitted

throughout the paper because all results are up quartic fermion terms.
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The G-dependence of L1 arises through dependence on ω−(G) and ψab in all the terms except

the term − 1
12α

′ee2ϕGµνρψ̄
abγµνρψab where it also appears explicitly. In [21] it has been shown

that δL1/δω−µab and δL1/δψab are proportional to field equations. Therefore, the last term

(4.13) will be of the form ψ̄abγµνρψab + EOM terms, the details of which can be found in [21].

The supertransformations of the dualized theory are obtained by substituting for G in the case

of the fermions. As for the six-form potential Bν1...ν6, its supersymmetry variation is determined

by treating G as independent field in the supersymmetry variations of L01+α′L1 and demanding

that all terms proportional to dG cancel. Up to quartic fermions, such terms are given by [21]

δL01

∣∣∣
dG

+ α′δL1

∣∣∣
dG

=− 1
6×6!ǫ

µνρσν1...ν6∂σGµνρ

[
δBν1...ν6

− e2ϕ
(
3ǭγ[ν1...ν5ψν6] + ǭγν1...ν6χ

)
− 1

2α
′ δL1

δψab

∣∣∣
G=e−2ϕH̃

γabν1...ν6ǫ
]
,

(4.14)

where (3.13) with H replaced by G has been used, and the notation X
∣∣
dG

refers to terms propor-

tional to dG in X. Thus, in the dualized theory, and in the string frame, supertransformations

up to cubic fermions and at O(α′) are given by

δeµ
a =ǭγaψµ ,

δψµ =Dµ(ω)ǫ+
1
4e

−2ϕ
(
H̃µνρ + 6α′ δL1

δGµνρ

∣∣∣
G=e−2ϕH̃

)
γνρǫ ,

δBµ1...µ6
=e2ϕ

(
3ǭγ[µ1...µ5

ψµ6] + ǭγµ1...µ6
χ
)
+ 1

2α
′ δL1

δψab

∣∣∣
G=e−2ϕH̃

γabν1...ν6ǫ ,

δχ =1
2γ

µǫ∂µϕ− 1
12e

−2ϕ
(
H̃µνρ + 6α′ δL1

δGµνρ

∣∣∣
G=e−2ϕH̃

)
γµνρǫ ,

δϕ =ǭχ . (4.15)

The α′ dependent terms turn out to be proportional to a combination of field equations which

can be read of from eq. (33) of [21]. Substituting for G given in (4.12) back into the Lagrangian

L gives

L10D,dual
BdR =ee2ϕ

[
1
4R(ω) + gµν∂µϕ∂νϕ− 1

2×7!e
−4ϕHµ1...µ7

Hµ1...µ7

− 1
2 ψ̄µγ

µνρDν(ω)ψρ + 2χ̄γµνDµ(ω)ψν + 2χ̄γµDµ(ω)χ

− 1
24e

−2ϕH̃µνρO
µνρ − ∂µϕ

(
ψ̄µγνψν + 2ψ̄νγ

µγνχ
)]

− 1
4×6!α

′ εµνρσα1...α6Bα1...α6
Rµν

ab(ω̂−)Rρσab(ω̂−)
∣∣∣
G=e−2ϕH̃+O

+ α′ee2ϕ
[
−1

4Rµνab(ω̂−)R
µνab(ω̂−)− ψ̄abγµDµ(ω, ω−)ψab

+ 1
2Rµν

ab(ω−)ψ̄ab (γ
ργµνψρ + 2γµνχ)− 1

12Gµνρψ̄
abγµνρψab

]
G=e−2ϕH̃+O

, (4.16)
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in agreement with [21]. To explore further the structure of this result, using (2.11), (2.12) (with

H replaced by G) and (2.24), we obtain for the the bosonic part of the Lagrangian

L10D,dual
BdR =ee2ϕ

[
1
4R(ω) + gµν∂µϕ∂νϕ− 1

2×7!e
−4ϕHµ1...µ7

Hµ1...µ7

]

+ α′
(
− 1

4RµνρσR
µνρσ + 6e−4ϕRµνH2

µν − 3e−4ϕRH2 − 3
2e

−4ϕRµνρσHµν,ρσ

− 1
6e

−8ϕH4 −
2
3e

−8ϕH2
µνH

2µν + 14
3 e

−8ϕ(H2)2

+ 2
7!e

−4ϕ(DµHν1···ν7)(D
µHν1···ν7) + 8e−4ϕH2ϕ2 − 4e−4ϕϕµDµH

2

+ e−2ϕH̃µνρωL
µνρ(ω) +

1
360e

−6ϕH̃µνρHµ
λ1···λ6DνHρλ1···λ6

)]
, (4.17)

where the products of H’s are defined as

Hµν,ρσ := 1
5!Hµνλ1···λ5

Hρσ
λ1···λ5 , H2

µν := 1
6!Hµλ1···λ6

Hν
λ1···λ6 , H2 := 1

7H
2
µνg

µν . (4.18)

We have also used the following two lemmas:

H̃µν
λH̃ρσλ =

(
−Hµν,ρσ + 4H2

µρgνσ − 2H2gµρgνσ

)∣∣∣
[µν],[ρσ]

H̃µ
ρσH̃νρσ =2H2

µν − 2H2gµν . (4.19)

It is useful to study the ordinary dimensional reduction of the Lagrangian (4.17) on 4-torus,

followed by a consistent truncation in which the only kept bosonic fields are (gµν , Bµν , ϕ). This

is done in Appendix B.

Next, we go over to the brane frame [28] by rescaling the metric as

gµν → g′µν = e−2ϕ/3gµν , (4.20)

thereby obtaining the Lagrangian

L10D,dual
BdR = e e−2ϕ/3

[
1
4R− 1

2×7!Hµ1···µ7
Hµ1···µ7

]

+ α′ e
[
− 1

4R
µνρσRµνρσ + 6H2

µνR
µν − 3H2R− 3

2R
µνρσHµν,ρσ

− 2
3H

2
µνH

2µν − 1
6H4 +

14
3 (H

2)2 + 2
7!(DµHν1···ν7)D

µHν1···ν7

+ 6ϕµDµH
2 + 4

9H
2
µνϕ

µϕν + 16
3 H

2
µνϕ

µν + 22
9 H

2ϕ2

− 2
9Rµνϕ

µϕν − 2
3Rµνϕ

µν + 1
9Rϕ2 − 16

27ϕµνϕ
µϕν

− 8
9ϕµνϕ

µν − 4
9(ϕ

2)2 + 16
27ϕ

2ϕµ
µ − 1

9 (ϕ
µ
µ)

2

+ 2
6!H̃

µνρHµ
σ1···σ6DνHρσ1···σ6

− 4
3H̃

µνρϕσHµν,ρσ + H̃µνρωL
µνρ(ω)

]

(4.21)
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As to the supertransformations, we also need to redefine the fermions as

ψµ → ψ′
µ = e−ϕ/6

(
ψµ − 1

3γµχ
)
, χ → χ′ = eϕ/6χ , ǫ → ǫ′ = e−ϕ/6ǫ . (4.22)

Dropping a local Lorentz transformation of eµ
a, the supertransformations (4.15) expressed in

the brane frame, and up to cubic fermions, take the form [21]

δeµ
a =ǭγaψµ ,

δψµ =Dµ(ω)ǫ+
1
72H̃abc

(
3γabcγµ + γµγ

abc
)
ǫ+ EOMs ,

δBµ1...µ6
=3ǭγ[µ1...µ5

ψµ6] + EOMs ,

δχ =1
2γ

µǫ∂µϕ− 1
12H̃µνργ

µνρǫ+ EOMs ,

δϕ =ǭχ . (4.23)

5 Comparison with results in superspace

The dualization of heterotic supergravity in 10D has also been studied in superspace. It is useful

to compare the results described above with those obtained from superspace considerations.

Starting from the two-form formulation, the key equations for the superspace description are

the Bianchi identities

DTA = RA
B ∧ EB , DG = α′ tr(R ∧R) . (5.1)

With a particular set of constraints these were solved in [29–36] 8, where the consistency of the

BI’s was proven to all orders in α′. In this approach the dimension zero torsion component is

taken to be T a
αβ = γaαβ but certain other components are deformed by α′ dependent terms. In

particular the following relation (in our notation) arises

Gabc = e−2ϕTabc + α′Wabc(T ) , (5.2)

where Wabc is a nonlinear function of the torsion superfield Tabc which can be found in the

papers referred to above. To obtain the deformed equations of motion, one solves for Tabc in

terms of Gabc order by order in α′, and uses the result in the supertorsion BI’s. The resulting

equations of motion were obtained at O(α′) in [35, 36]. These equations apparently have not

been compared with those which arise from the BdR action. While they are expected to agree

at O(α′), it is an open question whether equivalence holds to all orders in α′. This approach has

been updated in [38] where relationship to another approach by [39,40] which focuses on order

by order in α′ analysis (without addressing fully the question of the consistency of the entire

procedure) was clarified. Interestingly, the formulation of [38] is such that the Gauss-Bonnet

action appears as part of the bosonic action. The full four-derivative action in this framework

8These BI’s have been analyzed in superspace also for N = (1, 0), 6D supergravity in [37].
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has not been worked out but it is expected to be related to the result that follow from [29–34]

by field redefinitions.

The adopted constraints on torsion and G in proving the consistency of (5.1) can yield the

deformed equations of motion to any order in α′. However, this framework does not capture

the most general supersymmetric deformation. For example, at order O(α′3), deformations

involving (R2)2 but not R4 will arise. To get the latter, one can either deform the constraint

on T a
αβ to include a tensor in 1050 dimensional representation of SO(9, 1) [41–46] or take Gαβγ

to be nonvanishing [47].

Putting aside the question of dualization, heterotic supergravity directly in the six-form for-

mulation in superspace including α′ corrections was studied in [48–52] where partial results were

obtained. A more complete treatment which builds especially on the results of [52] appeared

in [22–26], where the dualization phenomenon in superspace, suggested in [53], was spelled out

as well. Here we shall focus on the key results of [26] where the equations of motion deduced

from superspace were also integrated into an action for the bosonic fields, and we shall compare

the result with ours.

The super BI’s for supertorsion TA
MN and the super seven-form H7 = DB6 are given by

DTA = RA
B ∧ EB , DH7 = 0 . (5.3)

Note that the BI for H7 does not acquire α′ deformation, unlike the BI for G in (5.2). The BI’s

(5.3) are solved by (see [26] and references therein)

Tαβ
c = γcαβ , Taβ

γ = 1
(72)2

Tbcd

(
γbcdγa

)
β

γ , Tαb
c = 0 , Tαβ

γ = 0 ,

Ha1...a5αβ = − (γa1...a5)αβ , Ha1...a7 =
1
6!ǫa1...a7

abcTabc ,

other components of H7 = 0 , (5.4)

together with a scalar superfield φ with

Dαφ = χα , Dαχβ = 1
2γ

a
αβDaφ+

(
− 1

36φTabc + α′Aabc

) (
γabc

)
αβ

, (5.5)

where Da is covariant derivative with bosonic torsion, and Aabc is a crucial superfield which

governs the α′ deformation given by [26]9

Aabc =
[
− 1

18�Tabc +
1
36D

dTda,bc −
1
36T

de
aDbTcde −

5
1944T

2Tabc

− 5
108T

2
daTbc

d + 5
54T

3
abc −

1
3888ǫabc

a1...a7Ta1...a3Da4Ta5...a7

− 1
48Ta1a2

α
(
2γabcη

a1b1ηa2b2 + γa1γabcγ
b1ηa2b2 + 24γa1γcγ

b1δa2a δb2b

)
Tb1b2

β
]
[abc]

, (5.6)

where Tabc = T[abc] and Tab
α is the gravitino curvature, and

Tab,cd := Tab
eTcde , T 2

ab := Ta
cdTbcd , T 3

abc := Tad1d2Tb
d2d3Tcd3

d1 , T 2 := TabcT
abc . (5.7)

9Certain terms for Aabc and their implications for the α′ corrections were considered in [48–52].
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It is noteworthy that the solution is an exact one, even though there is an α′ dependent defor-

mation. The EOM’s that result from the analysis of the superspace BI’s are also given in [26]

in terms of superfields whose lowest order components in θ expansion are the supergravity mul-

tiplet of fields. For a more detailed explanation of how the EOMs are obtained in superspace,

see [23]. These equations imply an action with α′Riem2 term, and yet their supersymmetry is

realized exactly. No higher than first order in α′ terms arise in supersymmetric variations of

these EOM’s since, as can be seen in [26], the α′ dependent terms do not involve the dilatino

χ which is the only field that develops α′ deformation; see (5.5).

A bosonic Lagrangian which yields these EOM’s can only be determined up to squares

of the lowest order (i.e. two-derivative) EOM’s. With this understood, the resulting bosonic

Lagrangian is found to be [26] 10

LSTZ = ee−2ϕ/3
[
1
4R+ 1

12H̃
µνρH̃µνρ

]

+ eα′
[
− 1

4R
µνρσRµνρσ + 1

2R
µνRµν −

1
4×6!ε

µνρσλ1 ···λ6Rµν
abRρσabBλ1···λ6

+ 1
2R

µν(H̃2)µν −
1
6H̃

µνρDσDσH̃µνρ + (DσH̃µνρ)H̃µν,ρσ − 1
6H̃

µν,ρσH̃µρ,νσ

]
. (5.8)

For completeness, we also express this Lagrangian in terms of the seven-form field strength,

LSTZ = ee−
2
3ϕ

[
1
4R− 1

2×7!Hµ1···µ7
Hµ1···µ7

]

+ 1
4eα

′
[
−RµνρσRµνρσ + 2RµνRµν + 4RµνH2

µν − 4RH2

− 4
7!(DµHν1···ν7)D

µHν1···ν7 + 16
3 H

2
µνH

2µν − 2
3H4 −

40
3 (H

2)2

+ 4H̃µνρDσHµν,ρσ + 4H̃µνρωL
µνρ(ω)

]
. (5.9)

The supertransformation resulting from the constraints (5.4) are [24] (up to cubic fermions

here)

δeµ
a =ǭγaψµ ,

δψµ =Dµǫ−
1
72Tabc

(
3γabcγa + γaγ

abc
)
ǫ ,

δBµ1...µ6
=3ǭγ[µ1...µ5

ψµ6] ,

δχ =1
2γ

µǫ∂µφ+
(
− 1

36φTabc + α′Aabc

)
γabcǫ ,

δφ =ǭχ , (5.10)

where it is understood that φ → e−2ϕ/3 and χ → e−2ϕ/3χ. These are also understood to be

valid up to the lowest order EOMs. It has been shown in [26] that the algebra closes on-shell,

10In converting the conventions of [25] ours, we first let ωµ
ab → −ωµ

ab, and then let ηab → −ηab, ǫa1...a10
→

−ǫa1...a10
,Mµνρ → 2H̃µνρ, φ̃ → e−

2

3
ϕ, kg → α′, and L → 4L. Note also that the term 1

162
(M2)2 term in (4.10)

of [25] should be absent, as noted later in [26] as well.
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and that the closure functions are α′ independent. Thus, the closure of the algebra is not a

statement up to order α′ but an exactly valid statement. The fact that Aabc obeys the relation

DAabc = γabc
deXde where Xde

α is an arbitrary function [26] is behind this property.

Comparing the Lagrangian LSTZ with the bosonic sector of the dual of the BdR Lagrangian

in 10D (4.21), which was obtained by solving the duality equation to order α′, we see that they

differ by many terms. To determine the nature of these terms, we consider the lowest order

field equations

Eµν ≡ e−1e
2
3ϕ

δL

δgµν
, Eϕ ≡ e−1e

2
3ϕ

δL

δϕ
, Eµ1···µ6

B ≡ 6!e−1 δL

δBµ1···µ6

, (5.11)

and compute the analogs of the relations (2.17) for this case. In particular, we have

1
7!(DµHν1···ν7)D

µHν1···ν7 = 1
2R

µνρσHµν,ρσ − 2H2
µνH

2µν + 26
3 (H

2)2 − 4
9H

2
µνϕ

µϕν + 2
9H

2ϕ2

− 4H2
µνE

µν + 26
9 H

2Eµ
µ + 11

3 H
2Eϕ + 2

3×6!e
2
3ϕϕµHµν1···ν6E

ν1···ν6
B

+ 1
6!e

4
3ϕEB

µ1···µ6
Eµ1···µ6

B . (5.12)

Using these identities we find that the difference between the bosonic part of the Lagrangians

L10D,dual
BdR and LSTZ is given by

L10D,dual
BdR − LSTZ = eα′

[
4H2Eϕ − 2

3ϕ
2Eϕ − 8EµνE

µν

+ 4
9(E

µ
µ)

2 + 4Eµ
µEϕ − 13E2

ϕ + 3
6!e

4
3ϕEB

µ1···µ6
Eµ1···µ6

B

]
. (5.13)

Thus we are left with terms that vanish on-shell, which imply that the two actions are related

to each other by field redefinitions. Since the Lagrangian LSTZ is given up to terms that are

squares of the EOMs, the relevant field redefinition to consider in comparing it with LBdR is

ϕ → ϕ+ α′e2ϕ/3
(
4H2 − 2

3ϕ
2
)
, (5.14)

up to terms that are bilinear in fermions. Such terms are not available since the part of

LSTZ that contain the fermionic fields has not been given in [26]. Consequently, the expected

redefinition of the dilatino χ is not available either, we are not in a position to compute the

result of the redefinitions of ϕ and χ in the supertransformation rules (4.23) to compare the

result with those of STZ given in (5.10). At any rate, the result (4.23) for δχ cannot produce

the STZ result because the latter is exact in α′ while the former is an order α′ result. To achieve

a proper comparison, the dualization of the BdR action in two-form formulation to all orders

in α′ is needed. Such a results is not available. Nonetheless, a conjectured solution may be

envisaged in superspace as follows.

In superspace, leaving the solution of the BI’s reviewed above intact, one can also construct

a super three-form G which obeys the super BI (5.1) as [26]

Gαβγ =0 ,
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Gαβa =φ (γa)αβ + α′ Uαβa ,

Gαbc =− (γbcχ)α + α′ Uαbc ,

Gabc =− φTabc + α′ Uabc , (5.15)

where [26]

Uabc =
[
− 2�Tabc − 6DdTda,bc − 6T de

aDbTcde − 6Rde
abTcde − 6RdaTbc

d + 4T 3
abc

− Ta1a2
α
(
γabcη

a1b1ηa2b2 + γa1γabcγ
b1ηa2b2 + 12γa1γcγ

b1δa2a δb2b

+ 12δa1a δb1b ηa2b2γc + 6δa1a δb1b δa2c γb2
)
Tb1b2

β
]
[abc]

, (5.16)

and the expressions for Uαβa and Uαbc, which are functions of Tabc and Tab
α, can be found

in [26]. The last equation in (5.15) is expected to be equivalent to (5.2) upon field redefinitions,

and it also represents the duality relation between the two-form and six-form formulations as

can be seen by substituting Tabc = H̃abc from (5.4) into this relation, which now takes the form

Gabc = −φH̃abc + α′ Uabc

∣∣∣
Tdef=H̃def

. (5.17)

Solving for H̃abc order by order in α and substituting the result into the EOM’s obtained by

STZ in [26] is expected, though not proven, to generate the EOM’s of BdR to all orders in α′,

just as solving for Tabc in (5.2) is expected, but not proven, to lead to the same result upon field

redefinitions, as explained above. It would be interesting to reduce the duality equation (5.17)

on T4 and consistently truncate to N = (1, 0) supersymmetry, and then compare with (3.5) for

γ = α. The terms coming from Uabc in such a reduction would give rise to terms similar to

those arising in (3.5). However, it must be kept in mind that while (5.17) is an exact relation,

(3.5) holds up to first order in (α, γ). Therefore, the relation between the for (5.17) and (3.5)

remains to be understood11.

6 Conclusions

In this paper we have examined in detail the four-derivative extensions of heterotic supergrav-

ities and their dualization in six and ten dimensions. In 6D the two known four-derivative

invariants are off-shell supersymmetric. To dualize them, we first eliminated the auxiliary

fields order by order in a derivative expansion, and then employed the time-honored Lagrange

multiplier method, which avoids the far more tedious method of integrating out the dualized

equations of motion into an action. We have also treated the issue of field redefinitions in a

11One way to obtain equations of motion, and duality relation, that would be exact at order (α, γ) is to start

from the off-shell Lagrangian (2.2) and eliminate only the auxiliary field Eµνρσ discussed in Section 2 which has

algebraic equation of motion [16]. However, there would be terms that depend on the auxiliary field V ij
µ , which

do not seem to be accommodated in the dimensional reduction of the STZ results in the six-form formulation.
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systematic manner by determining the dependence of the dualized actions on the lowest order

equations of motion. Consequently the Lagrangian depends on product of fields which are

differentiated at most once.

We have shown that the two four-derivative extensions of heterotic supergravity in 6D

cannot be related to each other by any field redefinitions. We have dualized them separately,

thereby obtaining a two parameter (α, γ) dual theory with Lagrangian Ldual
α,γ . We have shown

that Ldual
α,α is the BdR Lagrangian upon field redefinitions that are spelled out. We have also

shown that Ldual
α,−α is a four-derivative extension that contains no curvature squared terms.

We have highlighted the question of whether the BdR action in 10D is a unique four-

derivative extension of heterotic supergravity. The existence of two such extension in 6D

motivated us to examine more closely the dualization of BdR supergravity in 10D [20]. We

have noted that while the reduction on 4-torus followed by consistent truncation to N = (1, 0)

gives the BdR action in 6D, we cannot represent the dual of the BdR action in 10D as sum of

two distinct four-derivative extensions, since certain 6D terms we have identified do not admit

a lift to 10D. Working out the details of the dualized BdR action in 10D has also made it

possible to compare the result with that of [26] obtained in superspace. We have shown that

the bosonic sectors agree after suitable field redefinition that are spelled out.

While our results suggest that the BdR action may indeed be the unique four-derivative

extension of heterotic supergravity in 10D, a rigorous proof would be desirable. The general

Noether procedure that does not rely on the trick of replacing the Yang-Mills field with the

Lorentz connection may be forbiddingly difficult, but the superspace approach, in particular

in the dual six-form formulation, may prove to be more effective. We have reviewed various

aspects of the superspace approach in the previous section.

The inclusion of the Yang-Mills sector both in six and ten dimensions, is straightforward at

order α′ since the two-derivative action arises at this order. More interesting and challenging

problem is to construct the higher derivative couplings of heterotic supergravity to hypermulti-

plets and tensor multiplets in 6D. The ordinary dimensional reduction of the 10D BdR action

on T 4, followed by consistent truncation has been shown to yield the couplings of hypers that

parametrize SO(4, 4)/(SO(4) × SO(4)) [27]. Couplings of more general quaternionic Kahler

manifolds are currently under investigation [54], and we expect that not all will be obtainable

from the compactifications of string theory. This makes them a fertile and interesting arena to

investigate the necessity of string theory miracles, should inconsistencies be identified in such

a rich landscape of higher derivative couplings in N = (1, 0) supergravity in six dimensions.
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A Conventions and some identities

In our conventions {γa, γb} = 2ηab with ηµν = (−,+, ...+), and

γµ1..µnγ7 = − 1
(6−n)!ε

µn...µ1ν1...ν6−nγν1...ν6−n
, γµ1..µnγ11 =

1
(10−n)!ε

µn...µ1ν1...ν10−nγν1...ν10−n
.

(A.1)

Some useful identities that have been used in the calculations are given by

H̃µνρRµν
abHρab = H̃µνρHµν

σRρσ , (A.2)

H̃µνρHµa,νbHρ
ab = 1

2H̃
µνρHµν

σH2
ρσ , (A.3)

H̃µνρHµabHνρ
aϕb = 0 , (A.4)

∫
d6xHαβµHα

νρDβH̃µνρ =

∫
d6x H̃µνρHµ

αβDνHραβ , (A.5)

where H̃µνρ = 1
3!ε

µνρσλτHσλτ . The first one can be derived from the identically zero expression,

ε[µνρσλτHσλτRµν
α]βHραβ = 0 , (A.6)

and the second one from a similar expression with Rµναβ replaced by Hµα,νβ. The last two

identities can be derived from

ε[µνρσλτHσλτH
α]β

µHβνρϕα = 0 ,

ε[µνρσλτHσλτH
α]β

µDνHραβ = 0 . (A.7)

In 10D we have used the lemmas

H̃µνρϕσHµν,ρσ = 0 ,

ενρστν1···ν6H̃
µνρH̃µ

στ = −12H̃µν[ν1H
µν

ν2···ν6] . (A.8)

The first identity is easy to deduce from H[µν,ρσ] = −H̃[µν,ρσ]. Another useful lemmas are given

by

δ
(
eecϕR

)
= ecϕ

(
Rµν −

1

2
gµνR− c2ϕµϕν − cϕµν + c2ϕ2gµν + cgµνϕ

ρ
ρ

)
δgµν ,

ωL
µνρ(ω +X) =ωL

µνρ(ω)− ∂[µ tr(ωνXρ]) + tr(R[µνXρ])

+ tr(X[µDν(ω)Xρ]) +
2

3
tr(X[µXνXρ]) . (A.9)

B Dimensional Reduction of L10D,dual
BdR

Here we consider an ordinary dimensional reduction of the Lagrangian (4.17) on 4-torus, fol-

lowed by a consistent truncation in which only kept bosonic fields are (gµν , Bµν , ϕ), originating

from

ĝµν = gµν , ϕ̂ = ϕ , B̂µνijkℓ = Bµνǫijkℓ , (B.1)
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where the hatted fields are those of 10D, and the unhatted are the ones in 6D, and we have

hatted the 10 coordinates and split them as x̂µ = (xµ, yi), i = 1, ..., 4. Thus, recalling to set

∂i = 0, we get the intermediate results

Ĥµν,ρσ = Hµν,ρσ , Ĥµi,νj =
1
2δijH

2
µν , Ĥij,kl =

1
3δi[kδℓ]jH

2 ,

Ĥ2
µν = 1

2H
2
µν , Ĥ2

ij =
1
6δijH

2 , Ĥ2 = 1
6H

2 . (B.2)

It follows that

Ĥ4 = H4 + 2H2µνH2
µν +

1
3(H

2)2 ,

Ĥ2µ̂ν̂Ĥ2
µ̂ν̂ = 1

4H
2µνH2

µν +
1
9 (H

2)2 . (B.3)

Using these lemmas in the ordinary dimensional reduction of (4.17), we get in 6D

Ldual
BdR = e e2ϕ

[
1
4R(ω) + gµν∂µϕ∂νϕ− 1

12e
−4ϕHµνρH

µνρ

+ α′
(
− 1

4R
µνρσRµνρσ + 3e−4ϕRµνH2

µν −
1
2e

−4ϕRH2

− 3
2e

−4ϕRµνρσHµν,ρσ − 1
6e

−8ϕH4 −
1
2e

−8ϕH2
µνH

2µν

+ 1
3e

−4ϕ(DµHνρσ)D
µHνρσ + 4

3e
−4ϕH2ϕ2 − 2

3e
−4ϕϕµDµH

2

+ e−2ϕH̃µνρωL
µνρ(ω) + e−6ϕH̃µνρHµ

αβDνHραβ

)]
, (B.4)

We have checked that this result agrees with direct dualization of LBdR in 6D.
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