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Relating network connectivity to dynamics: opportunities and chal-
lenges for theoretical neuroscience
Carina Curto and Katherine Morrison, May 2019

Abstract. We review recent work relating network connectivity to the dynamics of neural activity.
While concepts stemming from network science provide a valuable starting point, the interpretation of
graph-theoretic structures and measures can be highly dependent on the dynamics associated to the
network. Properties that are quite meaningful for linear dynamics, such as random walk and network
flow models, may be of limited relevance in the neuroscience setting. Theoretical and computational
neuroscience are playing a vital role in understanding the relationship between network connectivity
and the nonlinear dynamics associated to neural networks.

Introduction. Unlike other cellular networks, neural networks possess intricate and precise patterns
of connectivity, whose rules are complex and difficult to ascertain. Another striking feature of neural
networks is their repertoire of rich and varied dynamics. These two properties go hand in hand, as the
structure of connectivity plays an important role in shaping neural activity. Connectomics, and related
efforts that aim to describe the structure of brain networks, promises to deliver a vastly improved and
detailed understanding of how networks of neurons are connected in the brain [53, 2, 44, 73, 12, 35, 80,
49, 19, 69, 20, 36, 83]. A typical output of such research is a graph, with each vertex representing a
neuron and each (directed) edge representing a connection, or synapse, between cells. The vertices may
be further differentiated by location or cell type, and edges may be weighted to carry information about
connection strengths. Suppose we are handed such a graph. What does the connectivity structure tell
us about a circuit’s function? How does the graph of a network shape its dynamics? On the flip side,
we may also ask how this particular pattern of connectivity came about. Can we explain it via simple
rules of learning and development?

While much experimental work remains to be done, many of the central questions relating network
connectivity to dynamics are theoretical in nature. Abstractly, a network can be thought of as a graph
together with a prescription for the dynamics. The main dynamic variables are the activity levels of each
neuron, z;(t), and the synaptic weights W;;. When we try to relate network connectivity to dynamics,
the main goal is to understand how the structure of the graph affects the dynamics of the neurons.
This poses enormous challenges, because our current understanding of the problem is limited by much
more than a lack of experimental data. Mathematically, inferring properties of the dynamics from the
underlying network architecture is hard — even in idealized settings where the dynamics are simple,
the model is deterministic, and every detail of the connectivity graph is known. Mathematical theories
relating network structure to dynamics are notoriously difficult to develop, except when the dynamics
are linear. In the nonlinear setting, the easiest cases are the extremes of either a completely random
or geometrically structured network architecture [79]. For more intricate patterns of connectivity, as
we see in neuroscience, even the simplest nonlinearities are sufficient to introduce serious complexities
in the relationship between graph structure and dynamics [57, 56].

In light of these challenges, how do we decide which features of a connectivity graph are meaningful
for a network’s dynamics? A common approach has been to look for structures in the zoo of graph
features given to us by network science. These structures typically arise in two ways: (i) they have been
shown to be meaningful in highly simplified network models (usually not neuroscience-related); or (ii)
they have been identified as common or overrepresented across a variety of “natural” networks. For (i),
examples of simplified network models include a random walk model or a network flow model. On (ii),
an alternative approach is to look for non-random features across a database of real neural networks,
such as those coming out of connectomics. In both cases, the resulting graph properties may be difficult
to interpret in a neuroscience context. In particular, when the properties are motivated by linear
dynamics, as in random walk and network flow models, the selected features may not be relevant for

Page 1 of 16



networks whose dynamics are fundamentally nonlinear. On the other hand, adding too many biological
details can quickly make a network model intractable to both mathematical and computational analysis.
Finding a good balance between biological relevance and interpretability of graph structures is both a
challenge and an opportunity for theoretical and computational neuroscience.

Graph-theoretic concepts and terminology. We begin by reviewing some useful graph theory
concepts and terminology, with the aid of Figure 1. In neuroscience we care primarily about directed
networks, but many of the graph-theoretic measures available to us are more naturally defined on
undirected graphs. An important property of single nodes is the degree, which simply counts the
number of edges incident to a vertex. In directed graphs, this is further refined into the in-degree and
out-degree. A vertex is called a source if it has in-degree zero, and a sink if it has out-degree zero. The
path length from one node to another is the length of the shortest (directed) path. For example, in
Figure 1A node 9 is a source, while 8 is a sink. The path length from node 2 to node 5 is 2, assuming
each edge is assigned a distance of 1. In general, if different distances (e.g. coming from weights) are
assigned to edges, we add these distances in order to obtain the (shortest) path length.

directed network B undirected network motifs (induced subgraphs)
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Figure 1: Graph-theoretic concepts for directed and undirected networks. (A) A directed
network is one in which each edge of the graph has a direction ¢ — j. Bidirectional edges, such as
5 <> 6, reflect the presence of both the i — j and j — i edges. (B) The undirected graph corresponding
to the network in A. (C) Motifs are induced subgraphs, obtained by selecting a subset of nodes and
keeping all edges between them. The graph in A has a variety of motifs, depicted here with matching
vertex labels. (D) A geometric graph consists of vertices embedded in a metric space, with (typically
undirected) edges between nodes obeying rules based on the distance between them. (E) A small world
network has an underlying geometric organization, but also randomly-selected long-range connections.
(F) An Erdos-Renyi random graph assigns undirected edges with probability p, independently for each
pair of vertices. (G) A hierarchical, or modular, network consists of local modules with long-range
connections between them.

We are also interested in understanding the organization of graphical motifs, as these subnetworks
could provide the basic units, or building blocks, of neural computation. Figure 1C depicts three
different kinds of motifs, all as induced subgraphs of the directed graph in A. While cycles and cliques
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are associated with recurrent network dynamics, a directed acyclic graph (DAG) has a feedforward
structure. Specifically, the nodes in a DAG may be ordered in such a way that there can only be an
edge from earlier to later nodes in the order. For example, the DAG motif in Figure 1C has such an
ordering: 3,5,1,8.

The global network organizations that are most often discussed in the literature range from Erdos-
Rényi random graphs (Figure 1F) to geometric ones (Figure 1D), whose connectivity rules (or proba-
bilities) are dictated by a spatial organization of the nodes. In between these extremes are the so-called
“small world” networks, such as the Watts-Strogatz small world network depicted in Figure 1E, which
have a mix of geometric organization together with random long-range connections [84]. Finally, net-
works can have a hierarchical or modular structure, combining local motifs into larger networks with
multiple scales of organization [10] (see Figure 1G).

Graph measures from network science. There are several common graph structures that rou-
tinely come up in network analyses [10, 11, 81, 6, 71, 29]. Perhaps the most obvious feature to study is
the degree distribution of the connectivity graph. The degree distribution is the set of all degrees, with
multiplicity, and viewed as a histogram or probability distribution. Although many features of graphs
are not captured by the degree distribution, certain types of graph structures lead to stereotyped degree
distributions, which can serve as coarse signatures. In the case of an Erdos-Rényi random graph, the
degrees are Poisson distributed, while scale-free networks are characterized by degree distributions that
follow a power law [5].

In some cases, different types of degree distributions may be associated to the same network struc-
ture. For example, small world networks [84] are graphs characterized by a different set of measures
called the characteristic path length, L, and the clustering coefficient, C:

1 1
Ldéfmzdij and Odéfﬁzci,
1#] i

where d;; denotes the length of the shortest path from node ¢ to j, and Cj is the fraction of all possible
connections that is present in the neighborhood of i. A network with a short characteristic path length,
comparable to that of an Erdos-Rényi random network, and a large clustering coefficient, significantly
higher than that of a random network (and comparable to a geometric network), is considered to be
small world [84]. This can be achieved in various ways. In the original Watts-Strogatz formulation [84],
small world networks were created by interpolating between a completely regular geometric network
and one that is Erdés-Rényi random (see Figure 1D-F). These networks have exponentially decaying
degree distributions. On the other hand, many scale-free networks are also small world, but have
power law degree distributions. Modularity can also give a network small world characteristics, with
very different degree distributions [37]. In particular, one could have a small world network with
uniform degree (that is, a delta function degree distribution) as in Figure 1G.

The reason the small world structure is considered meaningful for dynamics comes from thinking
about simple linear models, such as random walks, network flow, or disease transmission. For example,
in the case of infectious disease spreading dynamics, Watts and Strogatz showed that the time to
global infection scales with the characteristic path length. With coupled oscillator dynamics, small
world networks synchronize much more quickly than expected given the (small) number of edges [84].
More generally, having a small characteristic path length, and related measures of centrality [9], are
interpreted as facilitating the fast flow of information [10]. This notion of information flow along
shortest paths, however, does not have a straightforward interpretation for neural networks.

Finally, it is worth noting that spectral properties of the graph Laplacian (a modified version of
the adjacency matrix) can capture various measures of graph structure such as number of connected
components, bounds on min/max degree, bipartiteness, and community structure [3, 50]. The graph
Laplacian is also highly relevant for diffusion-based dynamics [3] and chip-firing dynamics [46]. It
has been used to study macroscopic anatomical neuronal networks of the macaque and cat, and the
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microscopic network of C. elegans [17]. Here they also found spectral signatures for particular motifs
in the network (see [4] for more details).

Graph Structures

Degree distribution

o Erdts-Rényi random (Poisson distribution)
Scale-free (power law distribution)
Exponential
Truncated log normal
Sparsity

Geometric/regular organization
¢ Ring or lattice connectivity
o Probability of connection drops off with distance
o Watts-Strogatz small world: locally geometric
with random long range connections

Characteristic path length, Clustering coefficient
Centrality measures

Hubs, Rich Clubs, Modularity
Clusters & Communities (structural vs. functional)

Spectral properties of
o Adjacency matrix
¢ Weighted connectivity matrix
o Graph Laplacian

Connectivity statistics
¢ Probability of unidirectional vs. bidirectional
connections
o Probability of connection between cell types
o Distribution of synaptic weights

Motif statistics
« Overrepresentation with respect to null model
o Motifs within/across cell types

Dynamic Models

Linear/Network flow models
o Random walk
Percolation
Diffusion
Disease transmission
Markov chain
Information flow -- broadcast vs. routing
Transport network
Electric network flow

Nonlinear/Neuro-inspired models

o Spiking models, e.g., LIF, Hodgkin-Huxley
Morris-Lecar, Fitzhugh-Nagumo, Izhikevich
Coupled oscillators
Firing rate models, e.g. Threshold-linear
Discrete networks, e.g. Hopfield, SER models
Linear conductance-based models

Dynamic Properties

Global population activity
o Average/mean field activity
Synchronization vs. asynchronous firing
Spontaneous activity
UP/DOWN states
State transitions
Criticality/edge of chaos
Oscillations and rhythmicity
Traveling waves

Specific patterns of neural activity
e Attractor structure -- number and type
e Cell assembly structure
o Persistent activity
e Sequence generation

Spiking properties

¢ Correlation structure/variance of spike trains
e Bursting
o Neural avanlanches, cascades

Figure 2: Graph structures, dynamic models, and dynamic properties of interest. Many of the graph
structures we look for in neural networks are motivated by their relevance in very simple dynamic
models [10, 6]. These models are often linear, and may be poor predictors of nonlinear behavior that
is more typical of neural activity.

Relevance of graph measures to neural dynamics. Figure 2 (top) summarizes various graph
structures in terms of degree distribution, geometric organization, and modularity. Several studies
have looked for signatures of these graph properties in a variety of neural networks, such as microscale
connectomes like C. elegans [54, 17, 82], mesoscale connectomes [34, 17, 75, 70], functional connectivity
networks in cortex and hippocampus [76, 63, 23, 66, 21], and synthetic biological networks such as
the Blue Brain [77, 30, 24]. Figure 2 also lists a variety of dynamic models that are often considered
when studying networks (bottom left), and which are often used to ascribe meaning to various graph
properties. Although there is a considerable literature applying network science measures to neural

networks [10, 11, 81, 6, 71, 29|, in order to fully understand the meaning and appropriateness of these
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measures we must consider dynamics that are more relevant to neuroscience, including nonlinearities
and spiking.

Dynamic properties of interest for neural networks are also distinct, and often richer, than what is
considered in traditional network science models. They include things like oscillations, state transitions,
attractor structure, and detailed correlation structure (see Figure 2, bottom right). Much recent
research in computational neuroscience aims to connect graph structure to these kinds of dynamic
phenomena [48, 22, 43, 27, 64, 67, 85, 47, 68, 78, 7, 13, 45, 26, 74, 1, 31, 40, 18, 52, 58, 62, 61, 86].
Here we summarize a few examples where graph structures, such as clusters or hubs, have been shown
to be relevant to neural network dynamics, and also some measures where the dynamic relevance is far
more questionable.

Recent experimental studies have shown that network hubs significantly shape neural dynamics.
Specifically, functional connectivity was mapped in hippocampus [8] and entorhinal cortex [55], and a
subset of the neurons with high in-degree were shown to drive network synchronization and/or slow
down network oscillations when optogenetically stimulated. Hubs have been shown to have dynamic
relevance in neuro-inspired modeling work as well. For example, in [72] it is shown that the presence
of “weight hubs,” neurons with strong incoming edges, induces regular and irregular slow oscillations
similar to UP/DOWN state transitions in a generalized integrate-and-fire neuron model. In a 3-state
automaton model of susceptible-excited-refractory (SER) dynamics, hubs were shown to have a signifi-
cant impact on directing co-activation patterns within a network [25]. Additionally, these co-activation
patterns are highly correlated with modular structure, or clusters, in the network. Litwin-Kumar and
Doiron also show that the presence of clusters of highly connected excitatory neurons significantly
changes the dynamics of balanced networks [51]. These clusters appear to support attractor-like dy-
namics during which a cluster transiently increases the neural firing rates while other clusters have
decreased firing rates, suppressed by inhibition, consistent with experimental findings from cortex.

In contrast, small world measures have shown little dynamic relevance. In [32], the authors consid-
ered a laminar model of cortical connectivity generated from experimental connectivity statistics and
investigated the computational power of such a network with Hodgkin-Huxley dynamics in contrast to
a matched random network and a network with matched small world measures of clustering coefficient
and average shortest path length. The matched networks showed dramatically lower performance on a
variety of neuro-inspired computational tasks. In [42] it was also found that characteristic path length
and average betweenness centrality alone do not predict the emergence of population synchronization
of bursting neurons, and only when degree distribution is also taken into account can this property be
understood. Finally, [28] considered dynamics similar to those of Boolean networks on the C. elegans
connectome and compared the network activity to that of Erdos-Rényi random and Watts-Strogatz
small world networks that were matched according to average degree, average shortest path length
and clustering coefficient. They found dramatically different likelihoods of regular network oscillations
across these networks, despite matching parameters, indicating the lack of dynamic relevance of these
measures.

Furthermore, even in the case of linear models of network flow, the relevance of a network measure
is highly dependent on the characteristics of the flow model for which it was designed. Borgatti [9]
nicely summarizes the relevant features of numerous network flow models and highlights how these
features relate to different measures of node centrality. Simulations of different flow dynamics on the
same network topology show that different centrality statistics make dramatically different predictions
for these dynamics that are not informative when the features of the dynamic flow do not match those
for which the measure was designed.

Graph motifs. To get a sense of the challenges involved in studying graph motifs in neural networks,
consider this: the number of directed graphs of sizes n = 1, ... ;5 are 1, 3, 16, 218, and 9608. These
have been enumerated, and are available in data bases like the one in SageMath (www.sagemath.org).
For n = 6, on the other hand, there are roughly 1.5 million directed graphs. Studying the dynamic
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properties associated to these structures by brute force methods appears intractable, even for the
simplest dynamics. When one introduces additional variations, such as different node types (for cell
types) or different edge types (for synapse types), the combinatorial complexity rises even higher.

Because of these challenges, most analyses looking for overrepresented motifs in network graphs such
as connectomes have focused on the very smallest motifs, of size n = 2, 3,4 [54, 76, 33, 63, 82, 66, 24].
The two motifs in Figure 3A were identified as overrepresented in at least three different studies,
ranging from connectivity data in C. elegans to mammalian cortex [76, 63, 82]. Interestingly, some
simple generalizations of these small motifs have also been found to be overrepresented [41]. For
example, the two graphs in Figure 3B were created from the top graph in panel A by doubling one of
the nodes (shaded), and copying the same edge pattern to the rest of the graph. In [41], these graphs
were also found to be overrepresented in the C. elegans connectome. In a separate study [65], it was
found that directed cliques are greatly overrepresented in the Blue Brain’s cortical networks, whose
connections are devised to be biologically realistic. Directed cliques are graphs with the following
property: there exists an ordering of the nodes 1,...,n such that i — j if ¢ < j. In particular, there
is at least one edge between any pair of nodes, and an overall sense of direction to the graph (see
Figure 3C).

A B c 1 D
1.\.3 [ 20/ \04 \° t
1) S vy S
<P D e
\.3 *3 \*.fj

Figure 3: Overrepresented motifs and robust motifs. (A) Two motifs that were overrepresented in
several distinct connectome studies [76, 63, 82]. (B) Generalized motifs obtained by doubling one of
the nodes in the top graph of A. These have also been found to be overrepresented in the C. elegans
connectome [41]. (C) Directed cliques have an ordering of the nodes for which ¢ — j if i < j. Note
that bidirectional edges are also allowed. (D) Robust motifs of TLNs.

Once motifs have been found to be overrepresented, the next question is to interpret them in the
context of neural dynamics. Two natural questions arise: (1) how did these motifs emerge through
developmental and plasticity rules? and (2) how do they affect the network’s dynamics? A number of
studies have addressed the question of how motifs affect dynamics in neural networks [85, 39, 40, 62, 38],
and also how network dynamics produce emergent motifs via plasticity rules [60, 59]. While some
studies have shown a large effect of motif structure [85, 25, 14, 40], others have concluded that motifs
without knowledge of weights and other local parameters tell us very little about a network’s dynamics
[47]. Furthermore, it has been suggested that only local properties, like the degree distribution, matter
[61, 62]. For example, in [33] it was found that motif structure was not important for certain dynamic
properties if one controlled for its effects on the degree distribution.

Another approach to studying motifs is to look for specific subfamilies of graphs that have been
pre-identified, by theoretical work, as being relevant to neural network dynamics. In a recent study
of threshold-linear networks (TLNs), it was found that certain motifs are “robust” in the following
sense: once the graph associated to the network is fixed, the structure of (stable and unstable) fixed
points of the network is invariant across all allowed choices of the synaptic weights [16]. In other words,
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robust motifs have highly constrained dynamics with qualitative features that remain the same in the
presence of synaptic plasticity. Nearly all robust motifs up to size n = 5 fit into two infinite families,
depicted in Figure 3D, corresponding to graphs that can be decomposed as a DAG together with a
target node, t, that receives edges from all the other nodes [16]. Interestingly, the overrepresented
motifs in Figure 3A-C all fit into the robust motif families shown in D, so it may be that robust motifs
are more generally overrepresented in neural networks.
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Figure 4: Motif embedding matters. (A) A simple 3-cycle motif produces a sequential limit cycle
attractor in an inhibition-dominated TLN. (B) The attractor associated to a 3-cycle may or may not
survive as an attractor of a larger network. In the 5-neuron network (left), there are two 3-cycles
but only one of them, 235, has an associated limit cycle (right). (C-E) Three additional networks
have identical connectivity statistics as the graph in B. However, they all exhibit qualitatively distinct
dynamics. The network in C has two limit cycles, corresponding to the 3-cycles 125 and 253, but no
attractor for 145. In contrast, the network in D has four chaotic attractors, while the one in E has
three fixed point attractors, one for each 2-clique [56].

Motif embeddings and local connectivity. In addition to identifying new classes of motifs that
may be of interest, theoretical work can also give us hints on the effects of motif embedding in larger
networks. In other words, the dynamic relevance of a given motif may be highly dependent on how
it interacts with other neurons. As an example, consider the case of simple threshold-linear network
dynamics on graph motifs with binary synapses (see [57, 15, 56] for more details). In these networks,
cyclic motifs give rise to periodic (limit cycle) attractors, where the neurons fire in a repeated sequence
(see Figure 4A). These dynamics can be significantly altered, however, depending on how the motif
is embedded in a larger network. In Figure 4B, there are two 3-cycle motifs, given by neurons 145
and 235. However, in the associated TLN dynamics only one of these, 235, produces a limit cycle.
While the two motifs are identical, their embedding in the larger network of 5 neurons is different:
the 235 cycle only sends one outgoing edge to each external node, while 145 sends two edges to node
2. This produces large differences in their effect on the network’s dynamics: only one has a surviving
attractor. Properties of the embedding can also affect the basins of attraction for a motif’s associated
attractor(s).

More generally, theoretical studies can alert us to the fact that local connectivity statistics may be
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misleading. In particular, networks with identical degree sequences can have very different dynamics.
For example, the four networks in Figure 4B-E have identical degree sequences, given by in/out degrees
(1,2), (1,2), (2,1), (2,1) and (2,2). Nevertheless, they all display qualitatively different dynamics,
ranging from one or two limit cycles (B-C) to multiple chaotic attractors (D) or multiple stable fixed
points (E). This illustrates a situation in which the global network structure has a strong effect on the
dynamics, while local connectivity statistics tells us very little.

Conclusions. The problem of relating network connectivity to dynamics will continue to pose a
serious challenge for theoretical and computational neuroscience. Theory is essential for identifying
and interpreting important graph structures in neural networks, while computational studies allow us
to analyze existing networks, and to test our ideas as to how various graph structures can impact neural
dynamics. Although the tools of network science provide a valuable starting point, it is important to
keep in mind where these measures come from. In particular, we should not assume that because a
measure is meaningful in the context of simple (and linear) dynamic models that its relevance will
automatically translate to the more complicated (and nonlinear) neuroscience setting. It also seems
likely that graph motifs will play an important role in understanding the structure and function of neural
circuits. Here, too, is an area where new developments in theoretical and computational neuroscience
will be needed.
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