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BOUNDS ON THE HEAT TRANSFER RATE VIA PASSIVE
ADVECTION∗
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Abstract. In heat exchangers, an incompressible fluid is heated initially and cooled at the
boundary. The goal is to transfer the heat to the boundary as efficiently as possible. In this paper
we study a related steady version of this problem where a steadily stirred fluid is uniformly heated
in the interior and cooled on the boundary. For a given large Péclet number, how should one stir
to minimize some norm of the temperature? This version of the problem was previously studied by
Marcotte et al. [SIAM J. Appl. Math., 78 (2018), pp. 591–608] in a disk, where the authors used
matched asymptotics to show that when the Péclet number, Pe, is sufficiently large one can stir the
fluid in a manner that ensures the total heat is O(1/Pe). In this paper we Pconfirm their results with
rigorous proofs and also provide an almost matching lower bound. For simplicity, we work on the
infinite strip instead of the unit disk and the proof uses probabilistic techniques.
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1. Introduction. A heat exchanger is a system used to transfer heat between
a fluid and a heat source or sink, for either heating or cooling. These are used for
both heating and cooling processes and have a broad range applications including
combustion engines, sewage treatment, nuclear power plants, and cooling CPUs in
personal computers [WBZ92, QM02, VP14, SuHS+19, AK18, MDTY18, WWZ+18,
DT19, LL20].

The temperature of the fluid in the heat exchanger evolves according to the
advection diffusion equation

(1.1) ∂t¹ + v · ∇¹ − »∆¹ = 0 in Ω ,

where Ω ¦ R
d is the region occupied by the fluid. Here ¹ is the temperature of the

fluid, » is the thermal diffusivity, and v = v(x, t) is the velocity field of the fluid.
Throughout this paper we will assume the fluid is incompressible and doesn’t flow
through the container walls. That is, we require

(1.2) ∇ · v = 0 in Ω and v · n̂ = 0 on ∂Ω .

Some portion of the boundary of Ω may be insulated, and some portion may be
connected to a heat source/sink maintained at a constant temperature. Denoting
these pieces by ∂N Ω and ∂DΩ, respectively, and normalizing so that the temperature
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1928 GAUTAM IYER AND TRUONG-SON VAN

of the heat source/sink is 0, we study (1.1) with mixed Dirichlet/Neumann boundary
conditions

∂n̂¹ = 0 on ∂N Ω and ¹ = 0 on ∂DΩ .

A problem of practical interest is to minimize some norm of the temperature
under a constraint on the stirring velocity field. Note that here we assume (1.1)
is a passive scalar equation—the velocity field v is prescribed and is not coupled
to the temperature profile. The active scalar case entails coupling v to ¹ via the
Boussinesq system and leads to Rayleigh–Bénard convection, which has been extensively
studied [Ray16, SG88, Kad01, DOR06].

In order to simplify matters, we set » = 1
2 , assume v is time independent, and

assume the initial temperature ¹0 is identically 1. In this case we note that

T
def

=

∫ ∞

0

¹(x, t) dt

satisfies the Poisson problem

(1.3) − 1

2
∆T + v · ∇T = 1

in Ω, with boundary conditions

(1.4) T = 0 on ∂DΩ and ∂n̂T = 0 on ∂N Ω .

Now a simplified optimization problem of interest is to minimize a norm of T under a
constraint on the advecting velocity field v.

In the recent paper [MDTY18], the authors studied this minimization problem
when Ω ¦ R

2 is a disk of radius 1 and ∂N Ω = ∅. Given p ∈ [1, ∞) and U > 0, let

Vk,p
U

be the set of all W k,p velocity fields satisfying (1.2) such that

(1.5) ∥v∥W k,p(Ω) ⩽ U ,

and define

Ek,p
q (U )

def

= inf
v∈Vk,p

U

∥T v∥Lq .

Here T v is simply the solution to (1.3)–(1.4), and we introduced the superscript v to
emphasize the dependence of T on v.

Physically when k = 0 and p = 2, the constraint (1.5) limits the kinetic energy
of the ambient fluid. If the domain Ω has an associated length scale of order 1, the
quantity U is the Péclet number—a nondimensional ratio measuring the relative
strength of the advection to the diffusion. When the Péclet number is sufficiently
large, the authors of [MDTY18] use matched asymptotics to show

(1.6) E0,2
1 (U ) ⩽ O

( 1

U

)

and support their results with numerics.
In this paper we revisit this problem and aim to provide mathematically rigorous

proofs of the bounds in [MDTY18]. Making matched asymptotics rigorous arises
in many situations and has been extensively studied (see, for instance, [BLP78,
Kus84, Ngu89, Eva90, All92, PS08]). In this situation, however, the flow considered
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HEAT TRANSFER RATE VIA PASSIVE ADVECTION 1929

in [MDTY18] leads to a degenerate homogenization problem, for which one cannot
use standard techniques. Instead we reformulate the problem probabilistically and use
asymmetric large deviations estimates to handle the degenerate diffusivity.

To simplify the proofs, we study the problem in a horizontal strip instead of
the disk. For boundary conditions we cool the top of the strip, insulate the bottom,
and impose 2-periodic boundary conditions in the horizontal direction. To prove
the upper bound E0,p

q (U ) we only need to find a velocity field v ∈ V0,p
U

for which
∥T v∥Lq ⩽ O(1/U ). A natural first guess would be to choose a velocity field that
forms many tall and thin convection rolls, with height O(1), and width/amplitude that
depend on the Péclet number. This, however, turns out to be suboptimal and yields a
bound that is worse than (1.6). To obtain the bound (1.6) one needs to consider tall
and thin convection rolls whose center is very close to the top of the strip. This is the
analogue of the velocity fields used in [MDTY18] and is shown in Figure 2.

To formulate our result precisely, let S = R × (0, 1) ¦ R
2 be an infinite horizontal

strip, ∂DS = R × {1} be the top boundary (where we impose homogeneous Dirichlet
boundary conditions), and ∂N S = R × {0} the bottom boundary (where we impose
homogeneous Neumann boundary conditions). We will impose 2-periodic boundary
conditions in the horizontal direction and identify the function spaces H1(S) and

L2(S) with H1(Ω) and L2(Ω), respectively, where Ω
def

= (0, 2) × (0, 1).

Theorem 1.1. There exists a constant C such that for q ∈ [1, ∞],

(1.7) E0,∞
q (U ) ⩾

1

CU
.

Furthermore, for every µ > 0, p, q ∈ [1, ∞], we have

(1.8)















E0,p
q (U ) ⩽

C ln U

U
p ∈ [1, 2) ,

E0,p
q (U ) ⩽

Cµ ln U

U
2p

3p−2 −µ
p ∈ [2, ∞] ,

whenever the Péclet number, U , is sufficiently large.

For p, q < ∞, the upper bound in (1.8) is suboptimal. Indeed, forthcoming work
of Doering and Tobasco uses methods in [DT19] to show that

(1.9) E0,p
q (U ) ⩽

C

U
for every p, q ∈ [1, ∞)

and some constant C = C(p, q) and all sufficiently large U . This is an improvement
of (1.8) by a logarithmic factor for p ∈ [1, 2), an arbitrarily small algebraic power for
p = 2, and a fixed algebraic power for p ∈ (2, ∞). For q = ∞, however, the methods
in [DT19] do not work. In this case we believe that the logarithmic factor in (1.8) is
necessary due to the presence of hyperbolic critical points, but we are presently unable
to prove this.

We do not presently know how to prove any lower bound for E0,p
q (U ) when p < ∞.

For p = ∞, however, we can use the Eikonal equation to obtain the lower bound stated
in (1.8) in general domains. We state this result next.

Proposition 1.2. Let d ⩾ 2, and let Ω ¦ R
d be a bounded domain with smooth

boundary ∂Ω. Decompose the boundary as ∂Ω = ∂DΩ ∪ ∂N Ω with ∂DΩ ̸= ∅. Then

(1.10) E0,∞
q (U ) ⩾

1

CU
for every q ∈ [1, ∞]

for some constant C = C(Ω) and all sufficiently large U .
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for all sufficiently large E . We may be able to improve this by at most a logarithmic
factor using a detailed analysis of the behavior near saddle points. However, as
mentioned earlier, we do not know whether the upper bound (1.11) is optimal and we
are unable to obtain a matching lower bound.

Plan of the paper. In section 2 we prove the lower bounds in Theorem 1.1
and Proposition 1.2. In section 3, we use an elementary scaling argument to reduce
Proposition 1.3 to obtaining an upper bound on a degenerate cell problem (Proposi-
tion 3.1). In section 4 we prove Proposition 3.1 using probabilistic techniques, modulo
two lemmas concerning exit from/the return to the boundary layer. These lemmas are
proved in sections 5 and 6. The proofs of these lemmas rely on certain large deviation
estimates, which are relegated to Appendix A. The proof of the upper bound in
Theorem 1.1 is similar to the proof of Proposition 3.1 and is presented in section 7.

2. Lower bounds. In this section we prove the lower bound in Theorem 1.1 and
the generalized version in Proposition 1.2. The main idea in the proof is to consider
an incompressible flow that moves directly toward the cold boundary. Since the proof
in a strip is short and explicit, we present it first.

Proof of the lower bound in Theorem 1.1. Let
¯
T be the solution to

−1

2
∂2

y¯
T − U ∂y

¯
T = 1

in the strip S with
¯
T = 0 ∂DS and ∂y

¯
T = 0 on ∂N S. Explicitly solving this yields

(2.1)
¯
T (y) =

e−2U

2U 2

(

1 − e2U (1−y)
)

+
1 − y

U

and hence ∂y
¯
T ⩽ 0.

We now claim that for any velocity field v such that v2 ⩾ −U , the function
¯
T is

a subsolution to (1.3)–(1.4). Indeed,

−1

2
∆

¯
T + v · ∇

¯
T = −1

2
∂2

y¯
T + v2∂y

¯
T ⩽ −1

2
∂2

y¯
T − U ∂y

¯
T = 1 .

The last inequality above followed from the fact that v2 ⩾ −U and ∂y
¯
T ⩽ 0.

Thus by the comparison principle, for every v ∈ V0,∞
U

we must have 0 ⩽
¯
T ⩽ T v.

Hence ∥T v∥Lq ⩾ ∥
¯
T∥Lq and computing ∥

¯
T∥Lq using (2.1) yields the lower bound

in (1.8) as claimed.

In general domains the subsolution isn’t as explicit and needs to be constructed
using the Eikonal equation. The motivation for this idea comes from optimal control
theory. In particular, consider the following control problem: let x ∈ Ω, and define

A def

= {³u(t) | d³u
t = u(t) dt +

√
ε dBt, u(·) ∈ R

2 is measurable} ,

where B is a standard two dimensional Brownian motion. Given a discount factor
¼ > 0, the value function

Vλ(x)
def

= inf
αu∈A

E
x

∫ τ

0

e−λt
( |u(t)|2

2
+ 1

)

dt

satisfies the discounted viscous Hamilton–Jacobi equation [FS06, Chapter III.9]

ε

2
∆Vλ(x) + inf

u∈R2
(u · ∇Vλ(x) +

|u|2
2

+ 1) − ¼Vλ(x) = 0 ,
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1932 GAUTAM IYER AND TRUONG-SON VAN

where, applying the Legendre transform, we get

(2.2) − ε

2
∆Vλ(x) +

1

2
|∇Vλ(x)|2 + ¼Vλ(x) = 1 .

In order words, the optimal flow that minimizes the cost of moving the particle directly
to the boundary gives a value function that satisfies the discounted viscous Hamilton–
Jacobi equation (2.2). Of course, this flow penetrates the boundary of the domain and
so is not an element of V0,∞

U
. However, it can still be used to build a subsolution and

prove the desired lower bound (1.10).

Proof of Proposition 1.2. Let v ∈ L∞(Ω), and let T = T v be the solution of (1.3).
For any ε > 0 let T̃ ε,λ be the solution to the following viscous Hamilton–Jacobi
equation:

{

¼T̃ ε,λ − ε∆T̃ ε,λ + |∇T̃ ε,λ| = 1 , x ∈ Ω ,

T̃ ε,λ = 0 , x ∈ ∂Ω .

Note that T̃ ε,λ ⩾ 0 as 0 is a subsolution to this equation. It is well known (see, for
instance, [Cal18, Tra21]) that for every ¼ > 0, T̃ ε,λ converges uniformly as ε → 0 to
the viscosity solution of the equation

{

¼T̃ 0,λ + |∇T̃ 0,λ| = 1 , x ∈ Ω ,

T̃ 0,λ = 0 , x ∈ ∂Ω .

Now letting ¼ → 0, T̃ 0,λ converges uniformly to the viscosity solution of the Eikonal
equation

{

|∇T̃ 0,0| = 1 , x ∈ Ω ,

T̃ 0,0 = 0 , x ∈ ∂Ω .

We claim that
¯
T ε,λ def

= εT̃ ε,λ is a subsolution of (1.3) provided ε ⩽ 1/∥v∥L∞ .
Indeed,

− ∆
¯
T ε,λ + v · ∇

¯
T ε,λ

⩽ −∆
¯
T ε,λ + ε∥v∥L∞ |∇T̃ ε,λ|

⩽ −∆
¯
T ε,λ + |∇T̃ ε,λ| +

¼

ε ¯
T ε,λ = −ε∆T̃ ε,λ + |∇T̃ ε,λ| + ¼T̃ ε,λ = 1 .

Since
¯
T ε,λ = 0 on ∂Ω, and T v is nonnegative, the minimum principle implies

¯
T ε,λ ⩽ T v

in Ω. This immediately implies

1

ε
∥T v∥Lq ⩾

1

ε
∥
¯
T ε,λ∥Lq

ε→0−−−→ ∥T̃ 0,λ∥Lq
λ→0−−−→ ∥T̃ 0,0∥Lq .

Thus when ε is sufficiently small we have

∥T v∥Lq ⩾
ε

2
∥T̃ 0,0∥Lq .

Consequently, if ∥v∥L∞ is sufficiently large, we can choose ε = 1
∥v∥L∞

and obtain

(2.3) ∥T v∥Lq ⩾
1

2∥v∥L∞
∥T̃ 0,0∥Lq .

This immediately implies the bound (1.10) as claimed.
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3. Upper bound for enstrophy constrained convection rolls (Proposi-
tion 1.3). Our aim in this section is to prove Proposition 1.3. First note that by
doubling the domain and using symmetry and rescaling we can reduce the problem to
proving (1.11) on the domain

S2
def

= R × (−1, 1) with ∂N S2 = ∅ , ∂DS2 = R × {−1, 1} ,

and only using velocity fields v for which

(3.1) v1(x1, −x2) = v1(x1, x2) and v2(x1, −x2) = −v2(x1, x2) .

We will now prove the upper bound (1.11) by producing a velocity field v (depending
on E ) such that we have

(3.2) ∥T v∥L∞ ⩽ C|ln E |13
( 1

E

)2/5

for all E sufficiently large. We do this by forming convection rolls with height 1, width
ε, and amplitude Aε/ε2 for some small ε and large Aε (see Figure 1). Moreover, as we
will see shortly, ε and Aε should be chosen according to

(3.3)
Aε

ε3
= E .

To construct v, consider a Hamiltonian H : R2 → R such that

H(x1, −1) = H(x1, 1) = 0 ,(3.4a)

H(x1, −x2) = −H(x1, x2) ,(3.4b)

H(x1 + 2, x2) = H(x1, x2)(3.4c)

for all (x1, x2) ∈ R
2. To obtain convection rolls of width ε and height 1, we rescale

the horizontal variable. Define

(3.5) Hε(x1, x2) = H
(x1

ε
, x2

)

and vε =
Aε

ε
∇§Hε =

Aε

ε

(

∂2Hε

−∂1Hε

)

,

and let Tε = T vε

. By uniqueness of solutions to (1.3) we see that Tε satisfies
Tε(x1 + 2ε, x2) = Tε(x1, x2). Thus, it is natural to make the change of variables

(3.6) y1 =
x1

ε
, y2 = x2 , and v = (v1, v2) = ∇§

y H .

In these coordinates we see that Tk,ε satisfies

(3.7) Aεv · ∇yTε − 1

2
∂2

y1
Tε − 1

2
ε2∂2

y2
Tε = ε2 .

Examining (3.7) we see that in the horizontal direction the diffusion has strength 1.
However, since we impose periodic boundary conditions in this direction, there are no
boundaries that provide a cooling effect directly felt by the horizontal diffusion. In
the vertical direction, the diffusion coefficient is ε2, and so the cooling effect from the
Dirichlet boundary ∂S2 will be felt in the domain in time O(1/ε2). Since our source
(the right hand side of (3.7)) is also ε2, we expect that the diffusion alone will ensure
Tε is of size O(1) as ε → 0. This would lead to the bound E1,p

q (E ) ⩽ C, which is far
from optimal.
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We claim that the convection term reduces this bound dramatically. Indeed,
through convection one can travel an O(1) distance in the vertical direction in time
1/Aε. Due to our no flow requirement v · n̂ = 0 on ∂S2, one can never reach the
boundary of S2 through convection alone. Thus, the cooling effect of the boundary ∂S2

must propagate into the domain through a combination of the effects of the slow
vertical diffusion ε2∂2

y2
and the fast convection Aεv · ∇y. Our aim is to estimate how

much improvement this can provide over the crude O(1) bound that can be obtained
through diffusion alone. This is our next result.

Proposition 3.1. There exists a smooth Hamiltonian H satisfying (3.4a)–(3.4c)
and a constant C such that the following holds. For every ¿ > 0, and Aε chosen such

that Aε ⩾ 1/εν , we have

(3.8) ∥Tε∥L∞ ⩽ Cε2
(

1 +
|ln ε|13

ε
√

Aε

)

for all sufficiently small ε. Here Tε = T vε

and vε is given by (3.5).

Remark 3.2. We believe the bound (3.8) is true for every smooth, nondegenerate
cellular flow v (with a constant C = C(v)), provided ¿ ⩾ 2. To obtain (3.8) for all
¿ > 0, our proof requires the velocity field v to be exactly linear near the vertical cell
boundaries. We do not know whether (3.8) remains true for ¿ ∈ (0, 2) without this
assumption. We note, however, that choosing ¿ ∈ (0, 2) does not lead to an improved
bound as in this range the constant term on the right of (3.8) will eliminate any benefit
obtained from further increasing the amplitude.

Remark 3.3. For simplicity, the velocity field we construct to prove Proposition 3.1
will be chosen to be exactly linear near cell corners. This assumption is mainly present
as it leads to a technical simplification of the proof of Proposition 3.1. Since the proof
of Proposition 1.3 only requires us to produce one velocity field v satisfying (3.2), we
only state and prove Proposition 3.1 for a specific cellular flow, instead of generic
cellular flows.

We prove Proposition 3.1 using probabilistic techniques in the next section. Propo-
sition 1.3 follows immediately from Proposition 3.1 by scaling.

Proof of Proposition 1.3. By definition, we have

vε(x1, x2) =
Aε

ε
∇§Hε(x1, x2) =

Aε

ε2

(

εv1(y1, y2)
v2(y1, y2)

)

,

and hence

∇xvε =
Aε

ε3

(

ε∂y1
v1 ε2∂y2

v1

∂y1
v2 ε∂y2

v2

)

.

Therefore, as ε → 0, we have

E = ∥vε∥W 1,p = O
(Aε

ε3

)

.

Choosing Aε = 1/εν , we have for large enough E ,

(3.9) E = O
( 1

ε3+ν

)

and ε = O
( 1

E 1/(3+ν)

)

.
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Combining this with (3.8), we have

∥Tε∥L∞ ⩽ C
(

ε2 + ε1+ν/2|ln ε|13
)

.

Rewriting this in terms of E using (3.9) and choosing ¿ = 2 shows

∥Tε∥L∞ ⩽ C
|ln E |13

E 2/5
.

This implies (1.11) as desired.

4. Exit time from tall and thin cells (proof of Proposition 3.1). Our aim
in this section is to prove Proposition 3.1. For ease of notation we will now write
v = vε, T = Tε, A = Aε. Let Zε be a solution to the SDE

(4.1) dZε
t = Av(Zε) ds + Ã dBt , where Ã

def

=

(

1 0
0 ε

)

.

Here B is a standard two dimensional Brownian motion. For convenience let Zε =
(Zε

1 , Zε
2), and let

(4.2) Äε = inf{t | Zε
2,t ̸∈ (−1, 1)}

be the first exit time of Zε from the strip S2. (Here the notation Zε
2,t refers to (Zε

2)t, the
value of the process Zε

2 at time t.) By the Dynkin formula we know Tε(z) = ε2
E

zÄε.
Before delving into the details of the proof of Proposition 3.1, we now briefly

explain the main idea. Consider many tracer particles evolving according to (4.1).
First, we note that particles near ∂S2 get convected away from ∂S2 in time O(1/A).
In this time, these particles can travel a distance of O(ε/

√
A) in the vertical direction

through diffusion. Thus, if we can ensure particles get to within a distance of O(ε/
√

A)
from ∂S2, then they will exit quickly with probability at least p0 for some small p0 > 0
that is independent of ε.

We claim that in the boundary layer, every O(1/
√

A) seconds2 tracer particles
will pass within a distance of O(ε/

√
A) from ∂S. Every pass has an O(ε) probability

of being within ε/
√

A away from ∂S2, and so a probability O(ε) of exiting from ∂S2.
This suggests

(4.3) sup
z∈S2

E
zÄε

⩽ C
(

1 +
ε√
A

+
(1 − ε)2ε√

A
+

(1 − ε)23ε√
A

+ · · ·
)

= C
(

1 +
1

ε
√

A

)

,

which is dramatically better than the crude O(1/ε2) bound obtained by using diffusion
alone.

A second look at the above argument suggests that (4.3) should have a logarithmic
correction. Indeed, the flow v has hyperbolic saddles at cell {−1, 0, 1} × Z, which
causes a logarithmic slow down of particles close to it. As a result, we are able to
prove the following bound on EÄε.

Proposition 4.1. Let ¿ > 0 and A ⩾ 1/εν . There exists a cellular flow v and a

constant C such that

(4.4) sup
z∈S2

E
zÄε

⩽ C
(

1 +
| ln ε|13

ε
√

A

)

holds for all sufficiently small ε.

2The diffusion may carry particles into the interior of the cell before they exit at ∂S2. These
particles will now take O(1/

√

A) time to return to the boundary layer, which is why the time taken

here is O(1/
√

A) and not the convection time O(1/A).
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1936 GAUTAM IYER AND TRUONG-SON VAN

Of course Proposition 4.1 immediately implies Proposition 3.1.

Proof of Proposition 3.1. Since T (z) = ε2
E

zÄε, the estimate (4.4) implies (3.8)
as desired.

We now describe the flow v that will be used in Proposition 4.1. As remarked
earlier, we expect Proposition 4.1 to hold for any generic nondegenerate cellular flow.
However, the specific form we describe below simplifies many technicalities. For
notational convenience, we will now restrict our attention to the rectangle

(4.5) Ω′ def

= (0, 2) × (−1, 1) .

Assumption 1. The function H : R2 → [−1, 1] is C2 with ∥H∥C2 ⩽ 100 and is
2-periodic in both x1 and x2. The level set {H = 0} is precisely (R × Z) ∪ (Z × R).
Moreover, H(1/2, 1/2) = 1, H(3/2, 1/2) = −1 and these both correspond to non-
degenerate critical points of H. All other critical points of H are hyperbolic and lie
on the integer lattice Z

2.
Assumption 2. There exists c0 ∈ (0, 1/10) such that for

(4.6) Q0
def

= (−2c0, 2c0)2

we have

(4.7) H(x1, x2) =



















x1x2 (x1, x2) ∈ Q0 ,

(1 − x1)x2 (x1, x2) ∈ Q0 + (1, 0) ,

x1(1 − x2) (x1, x2) ∈ Q0 + (0, 1) ,

(1 − x1)(1 − x2) (x1, x2) ∈ Q0 + (1, 1) .

Assumption 3. There exists a constant h0 such that for x ∈ {|H| < h0} and
i ∈ {1, 2},

sign ∂2
i H = − sign H .

Assumption 4. In the region {|H| ⩽ h0} ∩ (i + (−c, c)) × R, where i ∈ Z,

(4.8) ∂1v2 = −∂2
1H = 0 .

Apart from nondegeneracy and normalization, the main content of the first
assumption is that H only has one critical point in the interior of every square of side
length 1 with vertices on the integer lattice. This is the main geometric restriction
imposed on the Hamiltonian H. Assumptions 2–3 are not necessary, but lead to
technical simplifications of the proof. Finally, Assumption 4 is only required for the
exit time bounds we obtain (Lemma 4.2, below) to be valid when A ⩽ 1/ε2. Notice
that in the proof of Proposition 1.3 we only use A ≈ 1/ε2, and so Assumption 4 is not
essential. We elaborate on this in Remark 4.3, below.

Now we split the proof of Proposition 4.1 into two steps: estimating the time
taken to reach the boundary layer and then estimating the time taken to exit from
the boundary layer. In time 1/A, the process Zε will typically travel a distance of

¶
def

=
ε√
A

in the vertical direction. Given ³ > 0 define the boundary layer (see Figure 3) Bα by

Bα = Bε
α

def

=
{

|H| <
³√
A

}

.
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5. Exit from the boundary layer (Lemma 4.2). In this section, we will
prove Lemma 4.2. We will fix ¿ > 0 and suppose A ⩾ 1/εν as in the hypothesis of
Lemma 4.2 throughout this section. Furthermore, for notational convenience, we will
now drop the explicit ε dependence from Zε and A.

The main idea behind the proof of Lemma 4.2 is to focus our attention on
trajectories in the boundary layer B1, until they leave the bigger boundary layer B5.
Our first lemma estimates the chance of starting in B1 and exiting the strip S2, before
exiting the bigger boundary layer B5.

Lemma 5.1. There exists a constant C > 0, independent of ε, such that

(5.1) inf
z∈B1

P
z(Äε < ¸ε

5) ⩾
Cε

|ln ¶|12

for all sufficiently small ε.

Our next lemma estimates the amount of time the process takes to exit the bigger
boundary layer B5 (the union of the light and dark blue regions in Figure 3).

Lemma 5.2. There exists a constant C such that

(5.2) sup
z∈B1

E
z¸ε

5 ⩽
C|ln ¶|

A

for all sufficiently small ε.

Finally, we estimate the time taken for the process to return to the boundary
layer B1 starting from the boundary of the bigger boundary layer B5. Since trajectories
may travel further inward this step is slower in comparison and takes O(|ln ¶|/

√
A).

Lemma 5.3. There exists a constant C such that there exists an ε0, where

(5.3) sup
z∈∂B5

E
z¸ε

1 ⩽ C
|ln ¶|√

A

for all ε < ε0.

Momentarily postponing the proofs of Lemmas 5.1–5.3, we prove Lemma 4.2.

Proof of Lemma 4.2. In this proof, the constant C may vary from line to line but
does not depend on ε. We first define two sequences of barrier stopping times,

Ã′
0 = 0 , Ã̃0 = inf

{

t ⩾ Ã′
0

∣

∣ Zε
t ∈ ∂B5

}

,

Ã′
n = inf

{

t ⩾ Ã̃n−1

∣

∣ Zε
t ∈ ∂B1

}

, Ã̃n = inf
{

t ⩾ Ã′
n

∣

∣ Zε
t ∈ ∂B5

}

.

We have

E
zÄε =

∫ ∞

0

P
z
(

Äε
⩾ t

)

dt

= E
z

∞
∑

n=1

∫ σ′
n

σ′
n−1

1{τε⩾t} dt ⩽

∞
∑

n=1

E
z
1{τε⩾σ′

n−1
}(Ã′

n − Ã′
n−1)

=

∞
∑

n=1

E
z
1{τε⩾σ′

n−1
}E

Zε(σ′
n−1)Ã′

1

⩽

∞
∑

n=1

P
z(Äε

⩾ Ã′
n−1) sup

z′∈∂B1

E
z′

Ã′
1 .(5.4)

We will now estimate each term on the right.
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First, by the strong Markov property and Lemmas 5.2–5.3 we have

(5.5) E
zÃ′

1 = E
z
(

Ã̃0 + E
Zε(σ̃0)¸ε

1

)

⩽ E
z
(

¸ε
5 + sup

z′∈∂B5

E
z′

¸ε
1

)

⩽
C|ln ¶|√

A

for every z ∈ ∂B1. To estimate P
z(Äε ⩾ Ã′

n), we use Lemma 5.1 and the fact that
Ã′

1 ⩾ Ã̃0 = ¸ε
5 to obtain

sup
z∈∂B1

P
z(Äε

⩾ Ã′
1) ⩽ sup

z∈∂B1

P
z(Äε

⩾ ¸ε
5) = 1 − inf

z∈∂B1

P
z(Äε < ¸ε

5) ⩽ 1 − Cε

(ln ¶)12
.

Now, by the strong Markov property,

sup
z∈B1

P
z
(

Äε
⩾ Ã′

n

)

= sup
z∈B1

E
z
(

1{τε⩾σ′
n−1

}E
Zε(σ′

n−1)
1{τε⩾σ′

1}
)

⩽ sup
z∈B1

E
z
1{τε⩾σ′

n−1
} sup

z′∈∂B1

P
z′

(Äε
⩾ Ã′

1)

⩽

(

1 − Cε

(ln ¶)12

)

E
z
1{τε⩾σ′

n−1
} .

Hence by induction

(5.6) sup
z∈B1

P
z
(

Äε
⩾ Ã′

n

)

⩽

(

1 − Cε

|ln ¶|12

)n

for all n ∈ N.
Using (5.5) and (5.6) in (5.4) yields

E
zÄε

⩽
C|ln ¶|√

A

∞
∑

n=0

(

1 − Cε

|ln ¶|12

)n

,

finishing the proof.

5.1. Proof of Lemma 5.1. In this subsection, we will give the proof of
Lemma 5.1. Let the coordinate processes of Z be Z1 and Z2, respectively (i.e.,
Z = (Z1, Z2)). Define µt to be the deterministic curve satisfying the ODE

(5.7) ∂tµt = Av(µt) .

We again need a few results to prove Lemma 5.1.
By symmetry and the reflection principle, when Z wanders into the lower half

of the domain (0, 2) × (−1, 0), its behavior is mirrored by −Z, which is again on the
upper half of the domain (0, 2) × (0, 1). Hence, without loss of generality, we may
restrict our attention to the upper half of the domain and all the lemmas below are
stated in this context.

The first result we state is a “tube lemma” estimating the probability that the
process Z stays within a small tube around the deterministic trajectories. This
is well studied and many such estimates can be found in the literature (see, for
instance, [FW12]). The standard estimates, however, work well for times of order
1/A. Due to the degeneracy, and the hyperbolic saddles near cell corners, we need an
estimate that works for time scales of order |ln ¶|/A. We state this estimate here.
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Lemma 5.4. Let z0 ∈ (0, 2)×(0, 1)∩
(

Q0/2+(j, k)
)

, where (j, k) ∈ {0, 1, 2}×{0, 1}
and Q0 is as in (4.6). Let µ satisfy (5.7) with µ0 = z0, and define

(5.8) T
def

= inf{t > 0 | |µ2,t − 1| ⩽ ¶ or |µ1,t − 1| = c0 or |µ2,t − 1| = c0} .

Then there exists ε0 so that for every ε < ε0,

P z0

(

sup
0⩽t⩽T

|Zi,t − µi,t| ⩽
Ãii

√

|ln ¶|A
∀i ∈ {1, 2}

)

⩾
C

|ln ¶|2 .

Here we recall that Ã11 = 1 and Ã22 = ε are the diagonal entries in the matrix Ã
in (4.1).

Remark 5.5. By a direct calculation, we can check that T ⩽ |ln ¶|/A.

The proof of Lemma 5.4 uses the Girsanov theorem and is greatly simplified by the
fact that H is exactly quadratic near cell corners. Since it is similar to the standard
proofs, we present it in Appendix A.

Once Lemma 5.4 is established it quickly gives an estimate on the probability of
getting within a distance of O(1/

√
A) away from cell boundaries.

Lemma 5.6. Let z0 ∈ B1 ∩ (0, 2) × (0, 1). There exist constants C, M > 0 such

that for small enough ε,

(5.9) P
z0

(

¼0 < ¸ε
4M

)

⩾
C

|ln ¶|2 .

Here, ¼0
def

= inf
{

t > 0
∣

∣ Zt ∈ {dist(z, ∂Ω′) ⩽ M/
√

A}
}

.

Proof. Note first that by Taylor expansion of H, for small ε there exists M > 0
such that dist(z0, ∂Ω′) ⩽ M/

√
A for all z0 outside the corners Q0/2 + (j, k), where

(j, k) ∈ {0, 1, 2} × {0, 1}. So now, we assume z0 ∈ Q0/2 + (j, k) for some (j, k) ∈
{0, 1, 2} × {0, 1}. For brevity, we only present the proof when z0 ∈ Q0/2, as the other
cases are identical.

If dist(z0, ∂Ω′) ⩽ 1/
√

A we are done, so we now suppose z0 ∈ Q0/2 with
dist(z0, ∂Ω′) > 1/

√
A. Let µ be the deterministic trajectory defined by (5.7) with

µ0 = z0, and let T be as in (5.8). Note that since dist(z0, ∂Ω′) > 1/
√

A we cannot
have |µ2,T − 1| ⩽ ¶. Thus, either |µ1,T − 1| = c0 or |µ2,T − 1| = c0. In either case there

exists a constant M such that |µ2,T − 1| ⩽ M/
√

A or |µ1,T − 1| ⩽ M/
√

A, respectively.
Now using Lemma 5.4 we obtain (5.9) as desired.

Remark 5.7. For notational convenience, we assume that M = 1 for the rest of
the paper.

Another consequence of Lemma 5.4 is a lower bound on the probability of reaching
O(¶) away from the top boundary before reentering the cell interior.

Lemma 5.8. Let Qδ
top = (1 − 2c0, 1 + 2c0) × (1 − 4¶, 1) be a box of height 4¶ at the

top of the cell corner. Let ¼
def

= inf{t ⩾ 0 | Zt ∈ Qδ
top}. Then, there exists a constant

C > 0 such that

(5.10) inf
z0∈(1−δ,1+δ)×(1−c0,1)

P
z0

(

¼ < ¸ε
4

)

⩾
C

(ln ¶)2
.
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Proof. Let T = inf
{

t > 0
∣

∣ |µ2,t − 1| ⩽ ¶
}

be the time the deterministic process
hits the top boundary layer with width ¶. By Lemma 5.4, there exists a constant
C > 0 so that

P z0

(

sup
0⩽t⩽T

|Zi,t − µi,t| ⩽
Ãii

√

|ln ¶|A
∀i ∈ {1, 2}

)

⩾
C

(ln ¶)2
.

As z0 ∈ (1 − ¶, 1 + ¶) × (1 − c0, 1), µ1,T ∈ (1 − c0, 1 + c0). Therefore,

{

sup
0⩽t⩽T

|Zi,t − µi,t| ⩽
Ãii

√

|ln ¶|A
∀i ∈ {1, 2}

}

¦
{

¸ε
4 > ¼

}

,

from which (5.10) follows.

Next, we bound the probability of exiting from the top when trajectories start
in Qδ

top.

Lemma 5.9. There exists a constant p0 > 0 such that

(5.11) inf
z0∈Qδ

top

P
z0

(

Äε < ¸ε
4

)

⩾ p0 .

Proof. Let T̃ = 1/A. When A is sufficiently large, we note that given X0 = z0 ∈
Qδ

top, there exists n ⩾ 1, independent of ε, such that the deterministic flow µt starting
at z0 still remains in the top edge of the boundary layer {|H| ⩽ n¶}∩ (0, 2)× (1−n¶, 1)
for time T̃ . Define µ̃t by

∂tµ̃t = Au(µ̃t) ,

where u = (u1, u2) is chosen to satisfy the condition µ̃t = (µ1,t, µ̃2,t), where µ1,t is the
first coordinate of µ, and µ̃2,t is some continuous function such that

µ̃2,0 = µ2,0 , |v2 − u2| ⩽ 2n¶, and µ̃2,T̃ ⩾ n¶ .

An example of such µ̃ is µ̃t = (µ1,t, µ2,t + 2An¶t). By continuity of Z, we have

E3
def

=
{

sup
0⩽t⩽T̃

|Z2,t − µ̃2,t| ⩽ ¶
}

¢
{

Äε < ¸ε
4

}

.

Now a standard large deviation estimate will show that P
z0(E3) ⩾ pε for some constant

Cε that vanishes as ε → 0. In order to prove Lemma 5.9, we need to remove this
ε dependence. We do this here using the fact that in this box |∂1v2| ⩽ O(ε) and
|v2 −u2| ⩽ O(¶). We claim that if we go through the standard large deviation estimate
with these additional assumptions, the constant pε can be made independent of ε.
Since the details are not too different from the standard proof, we carry them out
in Lemma A.3 in Appendix A, below. Hence, we see that there exists a constant p0

(independent of z0, ε) so that

P
z0(E3) ⩾ p0 ,

proving (5.11).

Lemma 5.10. Let ¼̃
def

= inf
{

t ⩾ 0
∣

∣ Zt ∈ (1 − ¶, 1 + ¶) × (1 − c0, 1)
}

. There exists a

constant C > 0 such that

(5.12) inf
z0∈{dist(z,∂Ω′)⩽1/

√
A}

P
z0

(

¼̃ < ¸ε
4

)

⩾
Cε

(ln ¶)8
.
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where C > 0 independent of z0. The proof of (5.13) is presented with the other tube
lemmas we use in Appendix A. We in fact prove a more general estimate (Lemma A.4
applied to the deterministic flow), from which (5.13) follows.

Now, let z0 ∈ □2, define □2R = □2 ∩ [1−c0, 1]× [0, 2/
√

A], and let ¼1 = inf
{

t > 0
∣

∣

Zt ∈ □2R

}

. Proceeding as in the case for □1 with µ(t) being the deterministic trajectory
so that µ(0) = z0, T1 = inf{t > 0 | µ1,t = c0/2}, we have

(5.14) P
z0

(

¼1 < ¸ε
4

)

⩾ P
z0

(

sup
0⩽t⩽T1

|Zt − µt| ⩽
1√
A

)

⩾ C .

To see why the last lower bound is true, we consider by Itô formula,

sup
0⩽t⩽T1

E
z0 |Zt − µt|2 ⩽ 2A∥v∥C1

∫ T1

0

E
z0 sup

0⩽t⩽T1

|Zt − µt|2 + (ε2 + 1)T1,

which, by Gronwall’s inequality and Assumption 1, implies

sup
0⩽t⩽T1

E
z0 |Zt − µt|2 ⩽ (1 + ε2)T1e200T1 .

Inequality (5.14) follows by Chebychev’s inequality.
Now let ¼′ = inf

{

t ⩾ 0
∣

∣ Zt ∈ □1

}

. Using Lemma 5.4 and the Markov property,
there exists a constant C (independent of z0) so that

(5.15) P
z0

(

¼′ < ¸ε
4

)

⩾ P
z0

(

¼1 < ¸ε
4

)

inf
z1∈□2R

P
z1

(

¼′ < ¸ε
4

)

⩾
C

(ln ¶)2
.

Combining (5.13), (5.15) and using the Markov property gives

P
z0

(

¼̃ < ¸ε
4

)

⩾ P
z0

(

¼′ < ¸ε
4

)

inf
z1∈ □1

P
z1

(

¼̃ < ¸ε
4

)

⩾
Cε

(ln ¶)2
.

Repeating this argument again for □3, . . . , □5 we see that we obtain an extra
C/|ln ¶|2 factor every time we pass a corner. Combining these estimates gives (5.12) as
claimed.

We are now ready to give the proof for Lemma 5.1.

Proof of Lemma 5.1. Let z0 ∈ B1 and denote D1
def

=
{

dist(z, ∂Ω′) ⩽ 1/
√

A
}

,

D2
def

= (1 − ¶, 1 + ¶) × (1 − c0, 1), and D3
def

= (1 − 2c0, 1 + 2c0) × (1 − 4¶, 1). As ¸ε
4 < ¸ε

5

when z0 ∈ B1, by Lemmas 5.6–5.10 and the Markov property, we have that

P
z0(Äε < ¸ε

5) ⩾ E
z01{τε<ηε

5}1{λ<ηε
5}1{λ0<ηε

5}1{λ̃<ηε
5}

= E
z01{λ0<ηε

5}E
z0

(

1{τε<ηε
5}1{λ̃<ηε

5}1{λ<ηε
5}

∣

∣

∣
Fλ0

)

= E
z01{λ0<ηε

5}E
Zλ0

(

1{τε<ηε
5}1{λ̃<ηε

5}1{λ<ηε
5}

)

⩾ E
z01{λ0<ηε

5} inf
z1∈D1

E
z1

(

1{λ<ηε
5}1{λ̃<ηε

5}1{τε<ηε
5}

)

⩾ E
z01{λ0<ηε

5} inf
z1∈D1

E
z11{λ̃<ηε

5} inf
z2∈D2

E
z21{λ<ηε

5} inf
z3∈D3

E
z31{τε<ηε

5}

⩾
Cε

|ln ¶|12
,

where C is independent of z0. Taking the infimum over z0, we achieve the desired
result.
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5.2. Proof of Lemma 5.2. In this subsection, we give a proof of Lemma 5.2.
The strategy then will be similar to that of the proof of Lemma 5.1 as will will estimate
the probability for a typical particle to successfully enter the inner region after each
time it goes around the boundary layer B5. To do this, we first need a few results.

Lemma 5.11. Let □̃1 = B5 ∩ {x2 ∈ [c0, 1 − c0]}. There exists a constant p0 such

that

(5.16) inf
z0∈□̃1

P
z0

(

¸ε
5 <

1

A

)

⩾ p0 .

Proof. Since we restrict our attention to the region of the boundary layer on the
sides, for each ε > 0 there exists an interval Rε with length |Rε| = 1/

√
A such that

dist
(

Rε × [c0, 1 − c0] , B5 ∩ {x2 ∈ [c0, 1 − c0]}
)

=
1√
A

.

Let M be independent of ε such that

Rε × [c0, 1 − c0] ∪
(

B5 ∩ {x2 ∈ [c0, 1 − c0]}
)

¦
(

1 − M√
A

, 1 +
M√

A

)

× [c0, 1 − c0]

and z0 ∈ □̃1. By Lemma A.4 applied to the deterministic curve µ (given by (5.7))
with µ0 = z0, we have

P
z0

(

¸ε
5 <

1

A

)

⩾ P
z0

(

sup
0⩽t⩽1/A

|Z1,t − µ1,t| ⩽
M√

A
, sup

0⩽t⩽1/A

|Z2,t − µ2,t| ⩽
ε√
A

, Z1,T0 ∈ Rε

)

⩾ p0 ,

where p0 is independent of z0 as desired.

Lemma 5.12. Let ¼̃2 = inf
{

t > 0
∣

∣ Z2,t ∈ {c0, 1 − c0}
}

and z0 ∈ B5 − □̃1. Then

(5.17) lim
ε→0

inf
B5−□̃1

P
z0

(

¼̃2 ⩽
5|ln ¶|

A

)

⩾ 1 − C ln A

A1/4
.

Proof. Let q ⩾ 2 be some large number to be chosen later, and let z̃0 be the closest
point on {H = A−1/q} to z0. Let d̃ = A|z0 − z̃0| and µt be the deterministic curve
(defined by (5.7)) with µ0 = z̃0. Note that, by Assumptions 1–2,

(5.18)
d̃

A
⩽

C

A1/2q
.

By the Itô formula, we have

E
z0 |Zt − µt|2 ⩽

d̃2

A2
+ 2A∥v∥C1

∫ t

0

E
z0 |Zs − µs|2 ds + (1 + ε2)t .

By Gronwall’s inequality and Assumption 1, it follows that

E
z0 |Zt − µt|2 ⩽

( d̃2

A2
+ (1 + ε2)t

)

e200At .
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Now, let T0 = inf{t > 0 : µ2,t ∈ (2c0, 1 − 2c0)}, and note that T0 ⩽ D ln A/(Aq) for
some constant D > 0. By (5.18), we have

P
z0

(

|ZT0
− µT0

| ⩾ c0

10

)

⩽
100

c2
0

( C

A2q
+ (1 + ε2)

D ln A

Aq

)

e200D ln A/q

⩽ CA200D/q−1 ln A .

Picking q such that 200D/q − 1 < −1/2, we have

(5.19) P
z0

(

|ZT0 − µT0 | <
c0

10

)

⩾ 1 − C ln A

A1/4
.

As q ⩾ 2 , T0 < 5|ln ¶|/A. Therefore, by the continuity of Z, it follows that

{

Z2,T0 ∈ [2c0, 1 − 2c0]
}

¦
{

¼̃2 ⩽
5|ln ¶|

A

}

.

Combining this with (5.19), we deduce

lim
ε→0

inf
B5−□̃1

P
z0

(

¼̃2 ⩽
5|ln ¶|

A

)

⩾ 1 − C ln A

A1/4
,

as desired.

We are now ready for the proof of Lemma 5.2.

Proof of Lemma 5.2. Step 1. We first claim that for each z0 ∈ B5 and ε > 0, there
exists a constant C > 0, independent of z0 and ε, such that

(5.20) P
z0

(

sup
0⩽t⩽6|ln δ|/A

|H(Zt)| >
5√
A

)

⩾ C .

To prove this, suppose for contradiction there exists a sequence {zn, εn}∞
n=1 such

that

(5.21) lim
n→∞

P
zn

(

sup
0⩽t⩽6|ln δ|/A

|H(Zt)| >
5√
A

)

= 0 .

Let C0 be the lower bound in Lemma 5.11 and denote ¼̃1 = inf
{

t ⩾ 0
∣

∣ Zt ∈ □̃1

}

. By
Lemma 5.11 and the strong Markov property,

P
zn

(

sup
0⩽t⩽6|ln δ|/A

|H(Zt)| >
5√
A

)

⩾ E
zn

(

E
zn

(

1{

sup0⩽t⩽λ̃1
|H(Zt)|⩽ 5√

A

}1{

λ̃1⩽5|ln δ|/A
}1{

ηε
5<λ̃1+1/A

} | Fλ̃1

))

= E
zn

(

1{

sup0⩽t⩽λ̃1
|H(Zt)|⩽ 5√

A

}1{

λ̃1⩽5|ln δ|/A
}E

Zλ̃1 1{

ηε
5<1/A

}

)

⩾ E
zn

(

1{

sup0⩽t⩽λ̃1
|H(Zt)|⩽ 5√

A

}1{

λ̃1⩽5|ln δ|/A
}

)

inf
z∈□̃1

E
z
1{

ηε
5<1/A

}

⩾ C0P
zn

(

sup
0⩽t⩽λ̃1

|H(Zt)| ⩽
5√
A

; ¼̃1 ⩽
5|ln ¶|

A

)

.

The second equality follows from the fact that ¸ε
5 > ¼̃1 under the event

{

sup
0⩽t⩽λ̃1

|H(Zt)| ⩽
5√
A

}

.
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We claim that for large enough n, we have

P
zn

(

sup
0⩽t⩽λ̃1

|H(Zt)| ⩽
5√
A

; ¼̃1 ⩽
5|ln ¶|

A

)

⩾
1

2
,

which contradicts our assumption (5.21). To see that this lower bound is true, we first
note that zi ̸∈ □̃1 by Lemma 5.11. Thus, we only consider the case zn ∈ B5 − □̃1.

Recall ¼̃2 = inf
{

t > 0
∣

∣ Z2,t ∈ {c0, 1 − c0}
}

. Observe that

1{sup0⩽t⩽λ̃1
|H(Zt)|⩽ 5√

A
}1{λ̃1⩽5|ln δ|/A}

= 1{sup0⩽t⩽λ̃1
|H(Zt)|⩽ 5√

A
}1{λ̃2⩽5|ln δ|/A} .

By (5.17) and (5.21), we can pick n large enough such that

P
zn

(

sup
0⩽t⩽λ̃1

|H(Zt)| ⩽
5√
A

; ¼̃1 ⩽
5|ln ¶|

A

)

⩾ P
zn

(

sup
0⩽t⩽6|ln δ|/A

|H(Zt)| ⩽
5√
A

; ¼̃2 ⩽
5|ln ¶|

A

)

⩾
1

2
.

This is a contradiction, proving (5.20) as desired.
Step 2. Once (5.20) is established, we can estimate E¸ε

5 as the expected time to
success of a Bernoulli trial using a similar argument as in the proof of Lemma 4.2.
Explicitly, let ∆t = 6|ln ¶|/A, and observe that by (5.20),

P
z0

(

¸ε
5 < ∆t

)

= P
z0

(

sup
0⩽t⩽6|ln δ|/A

|H(Zt)| >
5√
A

)

⩾ C .

By the strong Markov property and estimate (5.20), we have that for i > 1,

P
z0

(

¸ε
5 ⩾ i∆t

)

= E
z0E

z0
(

1{ηε
5⩾i∆t}1{ηε

5⩾(i−1)∆t} | F(i−1)∆t

)

= E
z01{ηε

5⩾(i−1)∆t}E
Z(i−1)∆t1{ηε

5⩾∆t}

⩽ E
z01{ηε

5⩾(i−1)∆t} sup
z∈B5

E
z
1{ηε

5⩾∆t}

= E
z01{ηε

5⩾(i−1)∆t}
(

1 − inf
z∈B5

P
z
(

¸ε
5 < ∆t

))

= E
z01{ηε

5⩾(i−1)∆t}(1 − C) ⩽ (1 − C)i ,

where C is the constant in (5.20). Therefore,

E
z0¸ε

5 =

∫ ∞

0

P
z0(¸ε

5 ⩾ t) dt ⩽
∞

∑

i=1

∫ i∆t

(i−1)∆t

P
z0

(

¸ε
5 ⩾ t

)

dt

⩽ ∆t

∞
∑

i=0

P
z0

(

¸ε
5 ⩾ i∆t

)

⩽ ∆t

∞
∑

i=0

(1 − C)i
⩽

6|ln ¶|
(1 − C)A

,

from which (5.2) follows immediately.

5.3. Proof of Lemma 5.3. In this subsection, we restrict our attention to a
particular cell (0, 1) × (0, 1) as the analysis is similar for (1, 2) × (0, 1). Thus, assume
for simplicity that |H| = H. By Assumption 3, ∂2

i H ⩽ 0 for i ∈ {1, 2}. Let z ∈ Bc

1

and denote Uε(z) = E
z¸ε

1. Then, Uε solves the following equation:
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Lemma 5.13. Let Uε be the solution to (5.22). Then, there exists a function f
that satisfies the requirement (5.23) so that for small enough d1,

ϕ ⩾ Uε on Λ .

Postponing the proof of this lemma, we now give the proof of Lemma 5.3.

Proof of Lemma 5.3. By construction, on B5 − B1 and for small enough ε, we
have 5√

A
⩽ d1. Therefore, when H = 5/

√
A,

ϕ ⩽ − S

d1

5√
A

ln
( 5√

A

)

+
∥f∥L∞√

A
⩽

|ln ¶|√
A

.

It follows that

E
z¸ε

1 = U(z) ⩽ ϕ(z) ⩽
|ln ¶|√

A

for every z ∈ ∂B5, as desired.

Proof of Lemma 5.13. Step 1. Recall that v = ∇§H and H ⩾ 1/
√

A. We have
that

∇Ç2 = −f ′(Θ)

AH
∇Θ +

f(Θ)

AH2
∇H ,

−∂2
1Ç2 =

1

A

(f ′′(Θ)

H
(∂1Θ)2 − 2

f ′(Θ)

H2
∂1Θ∂1H +

f ′(Θ)

H
∂2

1Θ
)

+
1

A

(2f(Θ)

H3
(∂1H)2 − f(Θ)

H2
∂2

1H
)

⩾
1

A

(f ′′(Θ)

H
(∂1Θ)2 − 2

f ′(Θ)

H2
∂1Θ∂1H +

f ′(Θ)

H
∂2

1Θ
)

,

and

−∂2
2Ç2 ⩾

1

A

(f ′′(Θ)

H
(∂2Θ)2 − 2

f ′(Θ)

H2
∂2Θ∂2H +

f ′(Θ)

H
∂2

2Θ
)

.

Therefore, by (5.23) and H ⩾ 1/
√

A,

(5.24) − (∂2
1 + ε∂2

2)Ç2 ⩾ − 2

A

(f ′(Θ)

H2

(

∂1Θ∂1H + ε∂2Θ∂2H
)

)

− C√
A

.

Step 2. On the other hand,

∇Ç1 = − S

d1
(1 + ln H)∇H

and

−∂2
1Ç1 =

S

d1
∂2

1H(ln H + 1) +
S

d1

(∂1H)2

H
.

We note that there exists a function Ä = Ä(x) > 0 such that

∇Θ = Ä(x)∇§H = Ä(x)v(x) ,
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and ¼1 ⩽ Ä ⩽ ¼2 on
{

|H| ⩽ c0

}

for some 0 < ¼1 < ¼2. Therefore, by (5.24) and

H ⩾ 1/
√

A,

− ∂2
1ϕ − ε∂2

2ϕ + Av · ∇ϕ

⩾
S

d1
∂2

1H(ln H + 1) +
S

d1

(∂1H)2

H
− f ′(Θ)|∇H|2

H
Ä(5.25)

− 2

A

(f ′(Θ)

H2

(

∂1Θ∂1H + ε∂2Θ∂2H
)

)

− C√
A

.

Recall

R2 = Λ ∩ {z2 ∈ [c0, 1 − c0]} and R1 = Λ − R2 .

We would like to estimate the above quantity in R1 and R2.
Step 3. For R1, we decompose this set further:

Ra
1 = R1 ∩ {c0 ⩽ z1 ⩽ 1 − c0} and Rb

1 = R1 − Ra
1 .

In Ra
1 , there exists a constant C̃ such that |∇H|2 ⩾ C̃. Therefore, by (5.23), (5.25),

and H ⩾ 1/
√

A,

−∂2
1ϕ − ε∂2

2ϕ + Av · ∇ϕ ⩾ −f ′(Θ)|∇H|2
H

Ä − C∥f ′∥L∞

⩾
¼1C̃ infR1

|f ′(Θ)|
d1

− C∥f ′∥L∞ .

By (5.23), we could then pick d1 small, independent of ε, to make the following hold:

−∂2
1ϕ − ε∂2

2ϕ + Av · ∇ϕ > 1

in Ra
1 .
On the other hand, in Rb

1, we have |∇H(z1, z2)|2 = z2
1 + z2

2 . Therefore, by the
Cauchy–Schwarz inequality,

(5.26)
∣

∣

∣
f ′(Θ)

|∇H|2
H

∣

∣

∣
= −f ′(Θ)

|∇H|2
H

= −f ′(Θ)
z2

1 + z2
2

z1z2
⩾ 2 inf

R1

|f ′| .

Also, note that in Rb
1 it holds that |∂iΘ∂iH| = (∂iH)2 for i = 1, 2. Thus, by (5.23)–

(5.26) and H ⩾ 1/
√

A, we choose f such that ¼1 infR1
|f ′| > 2 and ε small enough to

get

− ∂2
1ϕ − ε∂2

2ϕ + Av · ∇ϕ

⩾ −f ′(Θ)|∇H|2
H

Ä − 2

A

(f ′(Θ)

H2

(

∂1Θ∂1H + ε∂2Θ∂2H
)

)

− C√
A

⩾ −f ′(Θ)|∇H|2
H

Ä − 2

A

∣

∣

∣

f ′(Θ)|∇H|2
H2

∣

∣

∣
− C√

A

=
∣

∣

∣

f ′(Θ)|∇H|2
H

∣

∣

∣

(

Ä − 2

AH

)

− C√
A

⩾ ¼1 inf
R1

|f ′| − C√
A

> 1 .
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Thus, we have just shown that there exists a function f that satisfies (5.23) so
that in R1,

−∂2
1ϕ − ε∂2

2ϕ + Av · ∇ϕ > 1 .

Step 4. In R2, there exist constants C1, C2 so that

0 < C2 ⩽ C1|∇H|2 ⩽ (∂1H)2 .

We then look at

− ∂2
1ϕ − ε∂2

2ϕ + Av · ∇ϕ

⩾
S

d1
∂2

1H(ln H + 1) +
S

d1

(∂1H)2

H
− f ′(Θ)|∇H|2

H
Ä − C

⩾
S

d1
∂2

1H(ln H + 1) +
S

d1

C1|∇H|2
H

− ¼2∥f ′∥L∞(R2)
|∇H|2

H
− C

⩾
C2

C1d1

(SC1

d1
− ¼2∥f ′∥L∞(R2)

)

− C .

Pick d1 smaller if needed to get

−∂2ϕ − ε∂2
2ϕ + Av · ∇ϕ > 1 in R2 .

Step 5. Combining Steps 3 and 4, we have shown that there exists a function f
such that

−∂2ϕ − ε∂2
2ϕ + Av · ∇ϕ > 1 in Λ .

By construction, ϕ ⩾ Uε on {H = d1} ∪ {H = 1√
A

}. The comparison principle then

tells us that

ϕ ⩾ Uε in Λ

as desired.

6. Proof of Lemma 4.4. In this section, we give the proof of Lemma 4.4.
This fact has been obtained in more generality by the PDE method by Ishii and
Souganidis [IS12]. Our method proof, still PDE-based, is different than that in [IS12].
Although the argument is new for our particular situation, it is an adaptation of the
method in [Kum18], where the author studies the Freidlin problem for first order
Hamilton–Jacobi equations.

It is convenient to work in the so-called curvilinear coordinates (h, ¹), in one cell.
Let Q∗

0 = (0, 1)2 − Γ0, where Γ0 is the closure of one trajectory of the gradient flow
of H starting on the boundary of the unit square. On Q∗

0 we define the curvilinear
coordinates by setting h = H(x), ¹ = Θ(x), where Θ solves

∇Θ · ∇H = 0 ,

in Q∗
0, normalized so that the range of Θ is (0, 2Ã). In this coordinate system, h(x)

determines the level set of the Hamiltonian to which x belongs and ¹ describes the
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HEAT TRANSFER RATE VIA PASSIVE ADVECTION 1951

position of x on this level set. Since ∇Θ and ∇§H are parallel, there must exist a
nonzero function Ä such that

∇Θ = Ä∇§H .

By reversing the orientation of Θ if needed, we may assume, without loss of gener-
ality, that Ä > 0. Let J = ∂1H∂2Θ − ∂2H∂1Θ be the Jacobian of the coordinate
transformation, and note

J = Ä|∇H|2 , |∇Θ| = Ä|∇H| .

Let µ be the solution to (5.7) with µ0 = x and T be the time period of µ. Note T
only depends on h = H(x) and is given by

(6.1) T (h)
def

= inf{t > 0 : µ(t, x) = x} =

∮

{H=h}

1

|∇H| |dℓ| ,

where |dℓ| denotes the arc-length integral along the curve {H = h}.

Let S(x)
def

= inf{t | µ(t, x) ∈ Γ0} be the amount of time µ takes to to reach Γ0

starting from x. This time is not a continuous function of x. Therefore, in order to
make it continuous, we modify it to the following continuous function:

(6.2) S̃(x) :=

{

S(x) if S(x) > Γ(H(x))/2,

−S(x) + Γ(H(x)) if S(x) < Γ(H(x))/2.

As we have restricted our attention to one cell, we can assume H ∈ [0, 1]. Define
the coefficients D1 and D2 on [0, 1] as follows:

D1(h) =
1

T (h)

∮

{H=h}

|∂1H|2
|∇H| |dℓ| ,(6.3a)

D2(h) =
1

T (h)

∮

{H=h}

∂2
1H

|∇H| |dℓ| .(6.3b)

Note that by the Gauss–Green theorem, we have

T (h)D1(h) = −
∫

{H⩾h}
∂2

1H(x) dx =

∫ h

1

∮

{H=h}

∂2
1H

|∇H| |dℓ| dh .

Therefore,

(6.4)
d

dh
(T (h)D1(h)) = T (h)D2(h) .

We are now ready to show the proof of Lemma 4.4.

Proof of Lemma 4.4. As before, we restrict our attention to a particular cell (0, 1)2

as the estimate is the same for other ones.
Step 1. Let Uε(x)

def

= E
xÄε

0 and Ωε
def

= (0, 1)2 − Bα. Then, Uε is the solution to the
equation

−1

2
∂2

1Uε − ε2

2
∂2

2Uε + Av · ∇Uε = 1 on Ωε
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1952 GAUTAM IYER AND TRUONG-SON VAN

with boundary condition

Uε = 0 on ∂Ωε .

Lemma 4.4 will follow immediately from the uniform bound

sup
ε

∥Uε∥L∞(Ωε
1) ⩽ C.

To see why this bound is true, let us consider the solution Ū to the ODE

{

−D1(h)∂2
hŪ − D2(h)∂hŪ = 4 ,

Ū(0) = 4 .

Note that Ū is bounded. To see this, we use (6.4) to rewrite the equation

− 1

T (h)
∂h

(

T (h)D1(h)∂hŪ
)

= 4 .

Observe that T (h)D1(h) ≈ O(1−h) and T (h) → T0 > 0 as h → 1; T (h) ≈ O(|ln h|) and
D1(h) ≈ O(1/|ln h|) as h → 0 (see Chapter 8.2 in [FW12]). Using these asymptotics,
we deduce

∂hŪ(h) =
4

T (h)D1(h)

∫ 1

h

T (s) ds , Ū(h) =

∫ h

0

4

T (s)D1(s)

∫ 1

s

T (r) drds ,

and

∥Ū∥W 1,∞ ⩽ C .

Step 2. Note that Ū ◦ H is a function on Ω. Let

g = ∂2
1(Ū ◦ H) ,

and we see that

ḡ(x)
def

=
1

T (H(x))

∫ T (H(x))

0

g(µ(t, x)) dt = −4 ,

where T is defined in (6.1). Define

φ(x) =

∫ S̃(x)

0

(ḡ(x) − g(µt(x))) dt ,

where S̃ is defined in (6.2). Note that

(6.5) v(x) · ∇φ(x) = g(x) − ḡ(x) = g(x) + 4 .

To see this, consider

φ(µ(s, x)) = −
∫ S̃(γ(s,x))

0

(

g(µ(t, µ(s, x))) − ḡ(µ(s, x))
)

dt

= −
∫ S̃(x)

s

(

g(µ(t, x)) − ḡ(x)
)

dt .

Differentiating in s and evaluating at s = 0, we get (6.5).
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Step 3. Let

Gε
def

= Ū ◦ H +
1

A
φ , Lε = −1

2
∂2

1 − ε2

2
∂2

2 + Av · ∇ ,

and note

LεGε = −1

2
∂2

1(Ū ◦ H) − 1

2A
∂2

1φ − ε2

2
∂2

2(Ū ◦ H) − ε2

2A
∂2

2φ + g(x) + 4

= − 1

2A
∂2

1φ − ε2

2
∂2

2(Ū ◦ H) − ε2

2A
∂2

2φ + 4 = eε + 4 ,

where eε
def

= − 1
2A ∂2

1φ − ε2

2 ∂2
2(Ū ◦ H) − ε2

2A ∂2
2φ. Since U is smooth and eε converge

uniformly to 0 as ε → 0, there exists an ε0 such that for all ε ⩽ ε0, LεGε ⩾ 1 and
Gε ⩾ Uε on ∂Ωε. By the maximum principle, Gε ⩾ Uε on Ωε. Finally, observe that
supε∥Gε∥L∞ < ∞, which implies what we want.

7. Upper bound for energy constrained flows (Theorem 1.1). In this
section our aim is to prove the upper bound in Theorem 1.1. As in the proof of
Proposition 1.3, we will consider the doubled strip S2 = R × (−1, 1) with Dirichlet
boundary conditions and only use velocity fields v satisfying (3.1). Our aim is to find
v ∈ V0,p

U
satisfying (3.1) such that

∥T v∥L∞ ⩽
C ln U

U

for all sufficiently large U . The flow we use is an analogue of the one used by Marcotte
et al. [MDTY18] adapted to the periodic strip and is shown in Figure 2. It consists of
1/ε convection rolls of width ε, height 1 skewed so that the center of the roll is only
¶ away from the top boundary. Here ε, ¶ > 0 are small numbers that will shortly be
chosen in terms of the Péclet number U .

Let ¿ ∈ (0, 1), ¶ = ε2+ν , and H : R2 → R be defined by

H(x1, x2)
def

= H1(x1)H2(x2) ,

where H1 : R → R, H2 = H2,ε : [0, 1] → R are Lipschitz functions such that

H1(x1 + 2) = H1(x1) , H2(−x2) = H2(x2) ,

H1(x1) =



























x1, x1 ∈
[

0,
1

2

)

,

1 − x1, x1 ∈
[1

2
,

3

2

)

,

−2 + x1, x1 ∈
[3

2
, 2

)

.

and

H2(x2) =

{

x2, x2 ∈ [−1 + 2¶, 1 − 2¶] ,

0, x2 = ±1 .

Moreover, we assume H1, H2 are such that H has only one nondegenerate critical
point in the square (0, 2) × (0, 1). Stream lines of such a Hamiltonian are shown in
Figure 2.
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1954 GAUTAM IYER AND TRUONG-SON VAN

Given ε > 0, define the rescaled Hamiltonian Hε by

Hε(x1, x2)
def

= H
(x1

ε
, x2

)

, and set vε def

=
Aε

ε
∇§Hε =

Aε

ε

(

∂2Hε

−∂1Hε

)

.

Let Tε = T vε

be the solution to (1.3)–(1.4) with drift vε.
By the uniqueness of solutions we see that Tε satisfies Tε(x1 + 2ε, x2) = Tε(x1, x2).

Thus, we change variables and define

y1 =
x1

ε
, y2 = x2 , and v = ∇§

y H .

In these coordinates we see that Tε satisfies

(7.1a) Aεv · ∇yTε − 1

2
∂2

y1
Tε − 1

2
ε2∂2

y2
Tε = ε2

with boundary conditions

(7.1b) Tε(y1 + 2, y2) = Tε(y1, y2) and Tε(y1, 1) = Tε(y1, −1) = 0 .

To estimate the size of Tε, consider the associated diffusion process Zε = (Zε
1 , Zε

2),
defined by the SDE (4.1). And let Äε (defined in (4.2)) be the exit time of Z from the
doubled strip S2. By the Dynkin formula, we know Tε = ε2

EÄε, and so estimating EÄε

will give us a bound on Tε. This is our next proposition.

Proposition 7.1. Given a Hamiltonian H in the above form, choose Aε = 1/εν ,

v = ∇§
y H. There exists a constant C = C(¿) such that

(7.2) sup
z∈Ω′

E
zÄε

⩽
C|ln ε|

Aε

for all sufficiently small ε.

The reason for the bound (7.2) is as follows. In time O(|ln ε|/Aε), deterministic
trajectories of the flow v will move most interior points to O(¶) away from the ∂DS2. In
this region, the drift has speed O(Aε/¶) so particles in this region have O(¶/Aε) time
to diffuse vertically before getting carried away from the boundary ∂DS2. Within this
time, particles can diffuse a vertical distance of O(ε

√

¶/Aε). By choice of ¶ = ε2/Aε,

we know ε
√

¶/A = ¶. Therefore, particles a distance O(¶) away from ∂DS2 exit S2

with nonzero probability, before being carried away from ∂DS2 by the flow. Now using
the strong Markov property we can estimate EÄε by the expected time to success of
repeated Bernoulli trials, leading to (7.2). Before carrying out these details, we first
show how it can be used to finish the proof of Theorem 1.1.

Proof of the upper bound in Theorem 1.1. Clearly it is enough to prove (1.8) for
q = ∞. Let v be the flow from the Hamiltonian in Proposition 7.1 and Aε = ε−ν . We
note that

U = ∥vε∥Lp = O
(Aε

ε

( 1

εp
+

1

¶p−1

)1/p)

= O
(Aε

ε

( 1

εp
+

1

ε(2+ν)(p−1)

)1/p)

= O(ε−q) ,

where

p′ =















2 + ¿, 1 ⩽ p ⩽
2 + ¿

1 + ¿
,

1 + ¿ +
(2 + ¿)(p − 1)

p
, p ⩾

2 + ¿

1 + ¿
.
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Let Tε be the solution to (7.1a)–(7.1b), and note that by Dynkin’s formula,
Tε = ε2

EÄε. Thus, by Proposition 7.1

∥Tε∥L∞ ⩽
Cε2|ln ε|

Aε
⩽

C ln U

U (2+ν)/p′ .

If p < 2, then by choosing ¿ > 0 small enough we can ensure p ⩽ (2 + ¿)/(1 + ¿). In
this case 2 + ¿ = p′ and hence

∥Tε∥L∞ ⩽
C ln U

U
.

On the other hand, if p ⩾ 2, then for any µ > 0 we can choose ¿ > 0 small enough to
ensure

∥Tε∥L∞ ⩽
Cµ ln U

U
2p

3p−2 −µ
,

finishing the proof.

It remains to prove Proposition 7.1. The key step is to show that starting from
any point in S2, the probability Zε hits the boundary ∂DS2 in time O(|ln ε|/Aε) is
bounded away from 0. This is our next lemma.

Lemma 7.2. Let Aε = ε−ν . There exists constants p0 = p0(¿) ∈ (0, 1) and

K = K(¿) ∈ N, independent of ε, such that

(7.3) inf
z∈Ω′

P
z
(

Äε
⩽

K|ln ε|
Aε

)

⩾ p0

for all sufficiently small ε > 0.

Using Lemma 7.2 one can prove Proposition 7.1 by treating the exit from the strip
as repeated Bernoulli trials.

Proof of Proposition 7.1. Letting ti = iK|ln ε|/Aε, we note

sup
z∈Ω′

P
z(Äε

⩾ ti) = sup
z∈Ω′

E
z(Ez(1τε⩾ti−11τε⩾ti | Fti−1))

= sup
z∈Ω′

E
z(1τε⩾ti−1

P
Zti−1 (Äε

⩾ (ti − ti−1)) ⩽ (1 − p0) sup
z∈Ω′

P
z(Äε

⩾ ti−1),

and hence

sup
z∈Ω′

P
z(Äε

⩾ ti) ⩽ (1 − p0)i .

Consequently,

E
zÄε =

∫ ∞

0

P
z(Äε

⩾ t) dt ⩽

∞
∑

i=0

(ti+1 − ti)P
z(Äε

⩾ ti)

⩽
K|ln ε|

Aε

∞
∑

i=0

(1 − p0)i =
K |ln ε|
p0Aε

for every z ∈ Ω′. This yields (7.2) as desired.
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It remains to prove Lemma 7.2, and this constitutes the bulk of this section. We
will subsequently assume Aε = ε−ν , and for notational convenience simply write A
instead of Aε.

Let »1, defined by

(7.4) »1
def

= inf
{

t ⩾ 0
∣

∣ Zε
t ∈ (0, 2) × (1 − 2¶, 1)

}

,

be the first time Zε
t hits the set (0, 2) × (1 − 2¶, 1).

Lemma 7.3. Let 0 < h0 j c0 be a small constant independent of ε, and define

Rh0
= Ω ∩

(

Bc
h0

∪ (1 − c0, 1 + c0) × (c0, 1 − c0)
)

.

Suppose h0 is small enough so that Bc
h0

∩ (1 − c0, 1 + c0) × (c0, 1 − c0) is nonempty.

There exists constants C0 > 0 and p1 ∈ (0, 1) such that

(7.5) inf
z0∈Rh0

P
z0

(

»1 ⩽
C0

A

)

⩾ p1 .

The proof of Lemma 7.3 is based on a standard tube lemma argument and is presented
in Appendix A.

Lemma 7.4. Let h0 be as in Lemma 7.3, T0 = inf{t > 0 : µ2,t ∈ {2c0, 1 − 2c0}},

and T1 = min{T0, |ln A|/A}. Then

(7.6) inf
Bh0 ∩(0,2)×(0,c0)

P
z0

(

ZT1
∈ (1 − 2c0, 1 + 2c0) × (c0, 1 − c0)

)

⩾ 1 − C ln A

A1/2

and

(7.7)

inf
Bh0 ∩(0,2)×(1−c0,1−2δ)

P
z0

(

ZT1
∈

(

(0, 2c0) ∪ (2 − 2c0, 2)
)

× (c0, 1 − c0)
)

⩾ 1 − C ln A

A1/2
.

Proof. We only show the proof for (7.6) as (7.7) holds also by symmetry. Let
q ⩾ 2 be some large number to be chosen later, and let z̃0 be the point in the set
{H ∈ (A−1/q, h0)} which is closest to z0. Let d̃ = A|z0 − z̃0| and µt be the solution
to (5.7), with µ0 = z̃0. Note that if z0 is already in {H ∈ (A−1/q, h0)}, then d̃ = 0.
Also, by Assumption 1,

(7.8)
d̃

A
⩽

C

A1/(2q)
.

By Itô formula, we have

E
z0 |Zt − µt|2 ⩽

d̃2

A2
+ 2A∥v∥C1

∫ t

0

E
z0 |Zs − µs|2 ds + (1 + ε2)t .

By Gronwall’s inequality, it follows that

E
z0 |Zt − µt|2 ⩽

( d̃2

A2
+ (1 + ε2)t

)

e2∥v∥C1 At .

Now, let T = inf{t > 0 | µ2,t ∈ (2c0, 1 − 2c0)} and note that T ⩽ D ln A/(Aq) for some
constant D > 0. By (7.8), we have

P
z0

(

|ZT − µT | ⩾ c0

10

)

⩽
100

c2
0

( C

A2q
+ (1 + ε2)

D ln A

Aq

)

e2∥v∥C1 D ln A/q

⩽ CA2D∥v∥C1 /q−1 ln A ⩽
C ln A

A1/2
,
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provided q is chosen so that 2∥v∥C1D/q − 1 < −1/2. We have

(7.9) P
z0

(

|ZT − µT | <
c0

10

)

⩾ 1 − C ln A

A1/2
.

Since the trajectories of Z are continuous,

{ZT1
∈ (1 − 2c0, 1 + 2c0) × (c0, 1 − c0)} §

{

|ZT − µT | <
c0

10

}

,

from which (7.6) follows.

Lemma 7.5. There exist constants D > 0, p2 ∈ (0, 1), independent of ε so that

(7.10) inf
z0∈Bh0

P
z0

(

»1 ⩽
D|ln A|

A

)

⩾ p2 .

Proof. Denote

□1
def

= (1 − 2c0, 1 + 2c0) × (c0, 1 − c0) ,

□2
def

= Bh0 ∩ {x2 ∈ (0, c0)} ,

□3
def

= Bh0
∩

(

(0, 2c0) ∪ (2 − 2c0)
)

× (c0, 1 − c0) ,

□4
def

= Bh0
∩ {x2 ∈ (1 − c0, 1)} .

First, if z0 ∈ Bh0
∩ □1, we are done, by Lemma 7.3.

Suppose now that z0 ∈ □2. Let T1 be as in Lemma 7.4. By Lemmas 7.3 and 7.4
and the strong Markov property we note

P
z0

(

»1 ⩽
D

A
+ T1

)

⩾ P
z0

(

ZT1 ∈ □1

)

inf
z1∈□1

P
z1

(

»1 ⩽
D

A

)

⩾

(

1 − C ln A

A

)

p1 .(7.11)

Suppose now that z0 ∈ □3. Denote »2
def

= inf{t > 0 | Z1,t ∈ {2c0, 2 − 2c0}}. By a
similar argument as in Lemma 7.4, there exists p ∈ (0, 1) such that

inf
z0∈□3

P
z0

(

»2 ⩽
|ln A|

A

)

⩾ p .

There are two possibilities:
1. There exists a p′

2, independent of ε, such that

P
z0

(

Zκ2 ∈ □2 ; »2 ⩽
|ln A|

A

)

⩾ p′
2 .

In this case, we can apply the same argument as in (7.11) to arrive at the
desired result.

2. Otherwise, there exists a constant p′
2, independent of ε, such that

P
z0

(

H(Zκ2
) ⩾ h1 ; »2 ⩽

|ln A|
A

)

⩾ p′
2

for some h1 independent of ε. We can then apply Lemma 7.3 to get the desired
result.
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The same argument works when z0 ∈ □4, and this completes the proof
of (7.10).

Lemma 7.6. There exists a constant p3 ∈ (0, 1) such that

(7.12) inf
z0∈{z|z2⩾1−2δ}

P
z0

(

Äε
⩽

ε

A

)

⩾ p3 .

Proof. Denote T3(z) = inf{t > 0 | µ2,t ⩽ 1 − 4¶ , µ0 = z}, and let

T4
def

= inf
{z|z2⩾1−2δ}

T3(z) .

By the definition of H we see that T4 ⩾ C¶/A for some constant C. In time C¶/A
the process Z diffuses a distance of O(ε

√

¶/A) = O(¶) vertically and hence should hit
the top boundary with a probability that is bounded away from 0. That is, we should
have

(7.13) P
z0

(

Äε
⩽ T4

)

⩾ p3 ,

which immediately implies (7.12). The inequality (7.13) can be proved using a tube
lemma (Lemma A.3) and is the same as the proof of Lemma 5.9.

Proof of Lemma 7.2. Given Lemmas 7.3, 7.5, 7.6, the proof of (7.3) is identical
to that of Lemma 5.1.

Appendix A. Tube lemmas. In this appendix, we prove several tube lemmas
and estimate the probability a diffusion stays close to the underlying deterministic flow.
Many such estimates are standard and can be found in books (see, for instance, [FW12]).
However, in our situation, we require estimates where the diffusion coefficient is
degenerate in one direction and the amplitude of the drift is large. While the proofs
follow standard techniques, the estimates themselves aren’t readily available in the
literature, and we present them here.

Throughout this appendix we consider the SDE

(A.1) dZt = Av(Zt) dt + Ã dBt ,

where

(A.2) ∥v∥L∞ ⩽ 1 , ∥Dv∥L∞ ⩽ 1 ,

(A.3) Ã = (Ãij) =

(

1 0
0 ε

)

.

For notational convenience we will often denote the diagonal entries with just one
subscript and write Ãi for Ãii (i.e., Ã1 = 1 and Ã2 = ε).

Lemma A.1. Fix ¼, ´ > 0, and define T = Tβ,A and R = RA,λ by

(A.4) T
def

=
´

A
, R

def

=
(

1 − ¼√
A

, 1 +
¼√
A

)

× (1 − ε, 1) .

Let z0 ∈ R, u ∈ C1(R2), and let µ̃ be the solution to the ODE

∂tµ̃t = Au(µ̃t) dt with µ̃0 = z0
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and Γ̃ = {µ̃(t) | t ∈ [0, T ]} be the image of µ̃. Denote

LT =
A2

2

∫ T

0

∑

i=1,2

( |ui(µ̃(t)) − vi(µ̃(t))|
Ãi

+
2

∑

j=1

Ãj∥∂jvi∥L∞(R+Γ̃)

Ãi

√
A

)2

dt .

Then for some ³ > 0 we have

P
z0

(

sup
0⩽t⩽T

|Ã−1(Zt − µ̃t)|∞ ⩽
¼√
A

)

⩾ P

(

sup
t⩽T

|Bt|∞ ⩽
¼√
A

)

exp
(

−³
√

LT − 1

2
LT

)

for all sufficiently large A. Here the notation |z|∞ denotes maxi|zi|.
Remark A.2. A similar upper bound also holds but is not needed for purposes of

this paper.

Proof. Define the process Z̃ by

dZ̃t = Au(µ̃t) dt + Ã dBt with Z̃0 = z0 .

Define

h(t)
def

= A(u(µ̃t) − v(Z̃t)) ,

ĥ(t)
def

= Ã−1h(t) ,

Mt
def

= exp
(

−
∫ t

0

ĥ(s) dBs − 1

2

∫ t

0

ĥ(s)2 ds
)

(A.5)

and a measure P̂ so that

dP̂ = MT dP .

By the Girsanov theorem (see, for example, Theorem 8.6.6 in [Øks03]), the process

B̂t
def

=

∫ t

0

ĥ(s) ds + Bt

is a Brownian motion with respect to the measure P̂ up to time T . Since

dZ̃ = Av(Z̃) dt + Ã dB̂t ,

by weak uniqueness we have

E
z0f(Zt) = Ê

z0f(Z̃t) = Ê
z0f(µ̃t + ÃBt) = E

z0
(

f(µ̃t + ÃBt)Mt

)

for any test function f . Thus

P
z0

(

sup
t⩽T

|Ã−1(Zt − µ̃t)|∞ ⩽
¼√
A

)

= E
z0

(

1KMT

)

,

where

K
def

=
{

sup
t⩽T

|Bt|∞ ⩽
¼√
A

}

.
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Now let ³ = (2/P
z0(K))1/2, and let K̂ be the event

K̂
def

=
{(

∫ T

0

ĥ(t) dBt

)2

< ³2

∫ T

0

ĥ(t)2 dt
}

.

By Chebychev’s inequality and the Itô isometry, we see

P
z0(K̂c) ⩽

1

³2
=

P
z0(K)

2
,

and hence

P
z0(K ∩ K̂) ⩾

P
z0(K)

2
.

Thus

E
z0(1KMT ) ⩾ E

z0

(

1K∩K̂ exp
(

−³
(

∫ T

0

ĥ(t)2 dt
)1/2

− 1

2

∫ T

0

ĥ(t)2 dt
))

⩾
P

z0(K)

2
inf
K

exp
(

−³
(

∫ T

0

ĥ(t)2 dt
)1/2

− 1

2

∫ T

0

ĥ(t)2 dt
)

.(A.6)

To estimate the exponential, note that on the event K we have

|ĥi(t)| =
|hi(t)|

Ãi
=

A

Ãi

∣

∣

∣
vi(µ̃t + ÃBt) − vi(µ̃t) + vi(µ̃t) − ui(µ̃t)

∣

∣

∣

⩽
¼

√
A

Ãi

∑

j

Ãj∥∂jvi∥L∞(Γ̃+R) +
A|ui(µ̃t) − vi(µ̃t)|

Ãi
(A.7)

for every i = 1, 2. Combining (A.7) with (A.6) completes the proof.

Lemma A.3. Using the same notation as in Lemma A.1, we now additionally

assume

max
i∈{1,2}

∑

j=1,2

Ãj∥∂jvi∥L∞(R+Γ̃)

Ãi
⩽ C0,(A.8)

∑

i=1,2

∫ T

0

A2|ui(µ̃t) − vi(µ̃t)|2
Ã2

i

dt ⩽ C2
0 .(A.9)

Then there exists C1 = C1(C0, ¼, ´) > 0 such that

P
z0

(

sup
0⩽t⩽T

|Ã−1(Zt − µ̃t)|∞ ⩽
¼√
A

)

⩾ C1.

Proof. Following the proof of Lemma A.1 and using (A.8)–(A.9) in (A.7) gives

∫ T

0

|ĥ(t)|2 dt ⩽ 2C2
0 (1 + ¼´d) .

Combined with (A.6) the lemma follows.

Next, we show the following estimate for the side boundary layer.
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Lemma A.4. Let z0 ∈ B̃n
def

= Bn − [c0, 1 − c0] × [0, 1] and n ∈ N; Zt be a stochastic

process satisfying (A.1)–(A.3) and µt be a deterministic process satisfying

∂tµt = Av(µt) with µ0 = z0 .

Let T, R be as in (A.4), let Γ = {µ(t) | t ∈ [0, T ]} be the image of µ, and assume

(A.10) ∂1v2 = 0 in Γ + R .

For M ⩾ 1, let R̃ε ¦ [1 − M/
√

A, 1 + M/
√

A] be a Borel set and T = m/A for some

m ∈ N. Then, there exists a constant C = Cm,M and ε0 > 0 such that for all ε < ε0,

P
z0

(

sup
0⩽t⩽T

|Z1,t − µ1,t| ⩽
2M√

A
, sup

0⩽t⩽T
|Z2,t − µ2,t| ⩽

ε√
A

, Z1,T − µ1,T ∈ R̃ε

)

⩾ Cm,nP

(

|Bt| ⩽
2M√

A
, B1,T ∈ R̃ε

)

.(A.11)

As before we write Z = (Z1, Z2), µ = (µ1, µ2), and the notation Zi,t and µi,t denote
the values of the coordinate processes Zi and µi, respectively, at time t.

Proof. We follow the proof of Lemma A.1 and explicitly substitute Ã1 = 1 and
Ã2 = ε. Our conclusion (A.11) will follow provided we can show

(A.12)

∫ T

0

ĥ(t)2 dt ⩽ C

for some finite constant C, independent of ε. To bound this, we use the upper
bound (A.7) and observe that the second term on the right hand side is identically
0 since u = v. For the first term, the only term that may grow faster than

√
A is

when i = 2 and j = 1. In this case, the assumption (A.10) guarantees that this term
is identically 0. Now squaring and integrating from 0 to T = m/A proves (A.12) as
desired.

Remark A.5. If the velocity field v does not satisfy (A.10), then Lemma A.4 still
holds provided A is chosen so that A ⩾ 1/ε2. To see this we note that (A.7) implies

∫ T

0

ĥ(t)2 dt ⩽
Cm

Aε2
.

If A ⩾ 1/ε2, the right hand side of this is bounded independent of ε, and so the
remainder of the proof of Lemma A.4 remains unchanged.

Finally, we prove Lemmas 5.4 and 7.3, which were used in the proofs of Theorem 1.1
and Proposition 1.3. Both proofs follow along the lines of the above tube lemmas.

Proof of Lemma 5.4. We only consider the case where z0 ∈ Q0/2. The other
cases are similar. First, recall that, by a direct calculation, we can check T ⩽ |ln ¶|/A.
Therefore, for small enough ε, under the event {|Zi,t −µi,t| ⩽ Ãi(|ln ¶|A)−1/2 for all t ⩽
T , i = 1, 2}, we must have Zt ∈ Q0 for t ⩽ T . Thus,

(A.13) v1(Zt) = Z1,t and v2(Zt) = −Z2,t .

Now define

dZ̃t = A

(

v1(µt)
v2(µt)

)

dt + Ã dBt
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and write

(A.14) h(t)
def

= A

(

v1(µt) − v1(Z̃t)
v2(µt) − v2(Z̃t)

)

= A

(

µ1,t − Z̃1,t

−µ2,t + Z̃2,t

)

= A

(

−B1,t

εB2,t

)

.

As before, we define ĥ and a new measure P̂ by

ĥ(t)
def

= Ã−1h(t) =

(

1 0
0 1/ε

)

h(t) = A

(

−B1,t

B2,t

)

,

dP̂ = MT dP ,

where

Mt
def

= exp
(

−
∫ t

0

ĥ(s) dBs − 1

2

∫ t

0

ĥ(s)2 ds
)

for 0 ⩽ t ⩽ T . By the Girsanov theorem, the process

B̂t
def

=

∫ t

0

ĥ(s) ds + Bt

is a Brownian motion with respect to the measure P̂ . Therefore, by the uniqueness of
weak solutions of SDEs, we have

E(f(Zt)) = Ê(f(Z̃t)) = Ê(f(µ1,t + B1,t, µ2,t + εB2,t))

= E(f(µ1,t + B1,t, µ2,t + εB2,t)Mt) .

Hence

P
x
(

|Zi,t − µi,t| ⩽
Ãi

√

|ln ¶|A
∀t ⩽ T , i = 1, 2

)

= E
x
(

1{

|Bt|∞⩽(|ln δ|A)−1/2 ∀t⩽T
}MT

)

.

Now, we have that, by the Itô formula,
∫ t

0

ĥ(s) dBs = −A

∫ t

0

B1,s dB1,s + A

∫ t

0

B2,s dB2,s

=
A

2
(−B2

1,t + B2
2,t) .

Therefore,

Mt ⩾ exp
(

−A

2
(B2

1,t + B2
2,t) − A2

∫ t

0

(B2
1,s + B2

2,s) ds
)

.

Therefore, as T ⩽ |ln ¶|/A, under the event

K
def

=
{

|Bt|∞ ⩽
1

√

|ln ¶|A
∀t ⩽ T

}

,

we must have

MT ⩾ exp
(

− 1

2|ln ¶| − 2
)

⩾ C .

Since P (K) ≈ 1/|ln ¶|2, this finishes the proof.
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Proof of Lemma 7.3. Let z0 ∈ Rh0
and T0 = inf{t > 0 | µ2,t ⩾ 1 − ¶}, where µ is

the solution to (5.7) with µ0 = z0. A direct calculation shows that there exists C0 for
which T0 ⩽ C0/A. Furthermore, when x2 ∈ (0, 1 − 2¶), we have that

v(x1, x2) =

(

∂2H(x)
∂1H

)

=

(

H1(x1)
±x2

)

.

Therefore, following the proof of the tube lemma (Lemma A.1), we find that the

function ĥ(t) there satisfies

|ĥ(t)| = A

(

|H1(µ1,t) − H1(µ1,t + B1,t)|
|B2,t|

)

.

Therefore, under the event
{

supt⩽T0
|Bt| ⩽

√
T0 ; B2,T0

⩾ 0
}

, it is true that

(A.15)

∫ T0

0

|ĥ(t)|2 dt ⩽ C .

We have that

K1
def

=
{

sup
t⩽T0

|Zt − µt| ⩽
√

T0 ; Z2,T0 ⩾ 1 − 2¶
}

¦
{

»1 ⩽
C0

A

}

.

Following the proof of Lemma A.1, by Girsanov’s theorem and (A.15), there exists
p1 ∈ (0, 1) such that

P
z0(K1) ⩾ CP

(

sup
t⩽T0

|Bt| ⩽
√

T0 ; B2,T0 ⩾ 0
)

⩾ p1 ,

from which (7.5) follows immediately.
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