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Abstract. In heat exchangers, an incompressible fluid is heated initially and cooled at the
boundary. The goal is to transfer the heat to the boundary as efficiently as possible. In this paper
we study a related steady version of this problem where a steadily stirred fluid is uniformly heated
in the interior and cooled on the boundary. For a given large Péclet number, how should one stir
to minimize some norm of the temperature? This version of the problem was previously studied by
Marcotte et al. [SIAM J. Appl. Math., 78 (2018), pp. 591-608] in a disk, where the authors used
matched asymptotics to show that when the Péclet number, Pe, is sufficiently large one can stir the
fluid in a manner that ensures the total heat is O(1/Pe). In this paper we Pconfirm their results with
rigorous proofs and also provide an almost matching lower bound. For simplicity, we work on the
infinite strip instead of the unit disk and the proof uses probabilistic techniques.
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1. Introduction. A heat exchanger is a system used to transfer heat between
a fluid and a heat source or sink, for either heating or cooling. These are used for
both heating and cooling processes and have a broad range applications including
combustion engines, sewage treatment, nuclear power plants, and cooling CPUs in
personal computers [WBZ92, QMO02, VP14, SuHS+19, AK18, MDTY18, WWZ+18,
DT19, LL20].

The temperature of the fluid in the heat exchanger evolves according to the
advection diffusion equation

(1.1) O +v-VO—-£kAH=0 in Q,

where Q C R? is the region occupied by the fluid. Here @ is the temperature of the
fluid, & is the thermal diffusivity, and v = v(x,t) is the velocity field of the fluid.
Throughout this paper we will assume the fluid is incompressible and doesn’t flow
through the container walls. That is, we require

(1.2) V-ov=0 inQ and v-n=0 ond.

Some portion of the boundary of 2 may be insulated, and some portion may be
connected to a heat source/sink maintained at a constant temperature. Denoting
these pieces by Ox{2 and 0p(2, respectively, and normalizing so that the temperature
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of the heat source/sink is 0, we study (1.1) with mixed Dirichlet/Neumann boundary
conditions

00 =0 on OnQ2 and =0 on dpQ.

A problem of practical interest is to minimize some norm of the temperature
under a constraint on the stirring velocity field. Note that here we assume (1.1)
is a passive scalar equation—the velocity field v is prescribed and is not coupled
to the temperature profile. The active scalar case entails coupling v to 6 via the
Boussinesq system and leads to Rayleigh-Bénard convection, which has been extensively
studied [Ray16, SG88, Kad01, DORO06].

In order to simplify matters, we set kK = %, assume v is time independent, and
assume the initial temperature 6 is identically 1. In this case we note that

T‘*:ef/ 0(x,t)dt
0

satisfies the Poisson problem

(1.3) —%AT—FU'VT:l

in Q, with boundary conditions

(1.4) T=0 ondpf and opT =0 on ONQ.

Now a simplified optimization problem of interest is to minimize a norm of 7" under a
constraint on the advecting velocity field v.

In the recent paper [MDTY18], the authors studied this minimization problem
when Q C R? is a disk of radius 1 and dx2 = ). Given p € [1,00) and % > 0, let
V’;/’p be the set of all W*? velocity fields satisfying (1.2) such that

(1.5) [vllwre) <X,
and define

ESP(w)E inf ||T7||La.
vev, P

x»

Here T is simply the solution to (1.3)—(1.4), and we introduced the superscript v to
emphasize the dependence of T on v.

Physically when &k = 0 and p = 2, the constraint (1.5) limits the kinetic energy
of the ambient fluid. If the domain 2 has an associated length scale of order 1, the
quantity % is the Péclet number—a nondimensional ratio measuring the relative
strength of the advection to the diffusion. When the Péclet number is sufficiently
large, the authors of [MDTY18] use matched asymptotics to show

1
(1.6) &) <o()
and support their results with numerics.

In this paper we revisit this problem and aim to provide mathematically rigorous
proofs of the bounds in [MDTY18]. Making matched asymptotics rigorous arises
in many situations and has been extensively studied (see, for instance, [BLPT7S,
Kus84, Ngu89, Eva90, All92, PS08]). In this situation, however, the flow considered
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in [MDTY18] leads to a degenerate homogenization problem, for which one cannot
use standard techniques. Instead we reformulate the problem probabilistically and use
asymmetric large deviations estimates to handle the degenerate diffusivity.

To simplify the proofs, we study the problem in a horizontal strip instead of
the disk. For boundary conditions we cool the top of the strip, insulate the bottom,
and impose 2-periodic boundary conditions in the horizontal direction. To prove
the upper bound £)P(% ) we only need to find a velocity field v € VP for which
IT%||e < O(1/%). A natural first guess would be to choose a velocity field that
forms many tall and thin convection rolls, with height O(1), and width/amplitude that
depend on the Péclet number. This, however, turns out to be suboptimal and yields a
bound that is worse than (1.6). To obtain the bound (1.6) one needs to consider tall
and thin convection rolls whose center is very close to the top of the strip. This is the
analogue of the velocity fields used in [MDTY18] and is shown in Figure 2.

To formulate our result precisely, let S =R x (0,1) C R? be an infinite horizontal
strip, pS = R x {1} be the top boundary (where we impose homogeneous Dirichlet
boundary conditions), and xS = R x {0} the bottom boundary (where we impose
homogeneous Neumann boundary conditions). We will impose 2-periodic boundary

conditions in the horizontal direction and identify the function spaces H'(S) and
def

L2(S) with H'(Q) and L?(Q2), respectively, where Q = (0,2) x (0,1).
THEOREM 1.1. There exists a constant C' such that for q € [1, 0],

1
L. 0o (YY) > —.
(17) (W) > o
Furthermore, for every pu > 0, p,q € [1,00], we have
0.p Chh
s ESPNU) < 7 p€E[l,2),
) C.In%
Eg’p(%) <t — pe2,09,

X 2p
U=k
whenever the Péclet number, % , is sufficiently large.

For p,q < oo, the upper bound in (1.8) is suboptimal. Indeed, forthcoming work
of Doering and Tobasco uses methods in [DT19] to show that

(1.9) Sg’p(%) < % for every p,q € [1,00)

and some constant C' = C(p, ¢) and all sufficiently large %. This is an improvement
of (1.8) by a logarithmic factor for p € [1,2), an arbitrarily small algebraic power for
p =2, and a fixed algebraic power for p € (2,00). For ¢ = oo, however, the methods
in [DT19] do not work. In this case we believe that the logarithmic factor in (1.8) is
necessary due to the presence of hyperbolic critical points, but we are presently unable
to prove this.

We do not presently know how to prove any lower bound for £)7(% ) when p < cc.
For p = 0o, however, we can use the Eikonal equation to obtain the lower bound stated
in (1.8) in general domains. We state this result next.

PROPOSITION 1.2. Let d > 2, and let Q C R? be a bounded domain with smooth
boundary OQ. Decompose the boundary as 00 = OpQ U InQ with OpQ # 0. Then

1
0,00 >
(1.10) ESNU) = o for every q € [1, 0]
for some constant C = C(Q) and all sufficiently large U .
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Fia. 1. Tall and thin convection rolls Fic. 2. Skewed tall and thin convection rolls.

Remark. As we will see in the proof (specifically from inequality (2.3), below), the
constant C' = C(q,2) can be computed in terms of the L¢ norm of the solution to the
Eikonal equation in €.

Next we study the behavior of £ ;”’(é” ) when & is large. Physically this corresponds
to minimizing the L? norm of the steady state temperature T" under an enstrophy
constraint on the stirring velocity field. In this case it turns out that using standard
convection rolls (as shown in Figure 1) yields a better upper bound on £;7(&) than
the skewed tall and thin rolls (as shown in Figure 2). We note, however, that we
have no matching lower bound and the skewed tall and thin convection rolls may not
provide the optimal upper bound. Indeed, the branched flows introduced recently
by Doering and Tobasco [DT19] may provide the optimal bound in the enstrophy
constrained case. Unfortunately, due to their complicated geometry, they cannot be
analyzed by the techniques we use. The best! bound we can obtain is as follows.

PROPOSITION 1.3. For every p,q € [1,00], there ezists a finite constant C' = C(q)
such that

Clln &3

(1.11) EyP(&) < ol

whenever & is sufficiently large. One velocity field that attains this upper bound uses
convection rolls with height 1, width &= /°, and amplitude &3/° (see Figure 1).

Even though there may be “nonconvection roll” like flows that could improve
the upper bound (1.11), heuristics show that the bound (1.11) is the best one can
achieve among the class of all “convection roll” like flows. Moreover, for the tall
and thin convection rolls used in proof of Proposition 1.3 one has matching upper
and lower bounds on ||T%||z=, up to a logarithmic factor. Since such convection
rolls arise in the study of magma flow in the Earth’s mantle and various other
contexts [TS02, KJ03, GHZ11, YVL15, OM17], the techniques used in the proof of
Proposition 1.3 may be useful in some of these situations.

For a lower bound, clearly 5;’00(6’) > Sg’oo(é?’), and hence by Proposition 1.2 we
have

> =
> 7 for every q € [1, 0]

L After acceptance of this manuscript, Tobasco [Tob21] proved that the optimal bound is in fact
811’2 ~ O(&~2/3) and not O(&~2/5) as suggested by (1.11).
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for all sufficiently large £. We may be able to improve this by at most a logarithmic
factor using a detailed analysis of the behavior near saddle points. However, as
mentioned earlier, we do not know whether the upper bound (1.11) is optimal and we
are unable to obtain a matching lower bound.

Plan of the paper. In section 2 we prove the lower bounds in Theorem 1.1
and Proposition 1.2. In section 3, we use an elementary scaling argument to reduce
Proposition 1.3 to obtaining an upper bound on a degenerate cell problem (Proposi-
tion 3.1). In section 4 we prove Proposition 3.1 using probabilistic techniques, modulo
two lemmas concerning exit from/the return to the boundary layer. These lemmas are
proved in sections 5 and 6. The proofs of these lemmas rely on certain large deviation
estimates, which are relegated to Appendix A. The proof of the upper bound in
Theorem 1.1 is similar to the proof of Proposition 3.1 and is presented in section 7.

2. Lower bounds. In this section we prove the lower bound in Theorem 1.1 and
the generalized version in Proposition 1.2. The main idea in the proof is to consider
an incompressible flow that moves directly toward the cold boundary. Since the proof
in a strip is short and explicit, we present it first.

Proof of the lower bound in Theorem 1.1. Let T be the solution to

1 2

in the strip S with T'=0 dpS and 9,7 = 0 on dnS. Explicitly solving this yields

—2%

_ ¢ 29 (1— I-y
(2.1) T(y) = 55z (1 —e ( y))+7

and hence 0,1 < 0.
We now claim that for any velocity field v such that vo > —%/, the function T is
a subsolution to (1.3)—(1.4). Indeed,

1 1 1
—§AI+ v-VT = —§a§_T+ 020, T < —§6§I - %0,T =1.

The last inequality above followed from the fact that vo > —% and 9,1 < 0.

Thus by the comparison principle, for every v € Vg(;/’oo we must have 0 < T < T".
Hence ||T%||z« = ||T||« and computing ||T||L« using (2.1) yields the lower bound
in (1.8) as claimed. O

In general domains the subsolution isn’t as explicit and needs to be constructed
using the Eikonal equation. The motivation for this idea comes from optimal control
theory. In particular, consider the following control problem: let = € 2, and define

A% {a"(t) | day = u(t) dt + VEdBy, u() € R” is measurable} ,

where B is a standard two dimensional Brownian motion. Given a discount factor
A > 0, the value function

or T t)

Va(z) = iHEfAEm/ e_’\t(@ + 1) dt
at 0

satisfies the discounted viscous Hamilton-Jacobi equation [FS06, Chapter II1.9]

2
gAV)\(l‘) + inﬂ£ (u-VV(x)+ ‘UT +1) = AVy(z) =0,
u€R?
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where, applying the Legendre transform, we get
1
(2.2) - gAV,\(m) + 3 VVA@)P + AVa(@) = 1.

In order words, the optimal flow that minimizes the cost of moving the particle directly
to the boundary gives a value function that satisfies the discounted viscous Hamilton—
Jacobi equation (2.2). Of course, this flow penetrates the boundary of the domain and
S0 is not an element of Vg/,oo_ However, it can still be used to build a subsolution and
prove the desired lower bound (1.10).

Proof of Proposition 1.2. Let v € L>(Q), and let T'= T be the solution of (1.3).
For any € > 0 let 75 be the solution to the following viscous Hamilton-Jacobi
equation:

A=A — e AT + |VT*A =1, z€Q,
T =0, x € 00.

Note that T5* > 0 as 0 is a subsolution to this equation. It is well known (see, for
instance, [Call8, Tra21]) that for every A > 0, 75 converges uniformly as ¢ — 0 to
the viscosity solution of the equation

MNTOA |IVTOA =1, z€Q,
T0A =0, x € ON.

Now letting A — 0, T%* converges uniformly to the viscosity solution of the Eikonal
equation

VT =1, ze€Q,
700 =0, x € 00N.

We claim that 7% = 7 is a subsolution of (1.3) provided ¢ < 1/v||z.
Indeed,

— AT 40 - VT < —AT 4 ¢||v| = | VT

< _AIE,)\ + |VTE,)\

by - - -
+ EIE’* = AT +|VTSN + AT = 1.

Since T5* = 0 on 99, and T is nonnegative, the minimum principle implies 75* < T?
in Q. This immediately implies

1 1 0 A—=0 [ 5
21Tz = glng’Allm 5 1 TOM e 2= 1T 1o -

Thus when ¢ is sufficiently small we have

£~
IT"l[a = ST 2a

1

and obtain
Tvllzeo

Consequently, if ||v|| e is sufficiently large, we can choose ¢ =

1

(2.3) [ ———
2||v|| L=

(7% La .

This immediately implies the bound (1.10) as claimed. d
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3. Upper bound for enstrophy constrained convection rolls (Proposi-
tion 1.3). Our aim in this section is to prove Proposition 1.3. First note that by
doubling the domain and using symmetry and rescaling we can reduce the problem to
proving (1.11) on the domain

def

Sy =R x (—1,1) with OnS2 =10, OpSs =R x {-1,1},
and only using velocity fields v for which
(3.1) vy (z1, —22) = v1(x1, T2) and v, —2) = —va(w1, T2) .

We will now prove the upper bound (1.11) by producing a velocity field v (depending
on &) such that we have

1\2/5
(3.2) 17"l < Clln )™ (5)

for all & sufficiently large. We do this by forming convection rolls with height 1, width
e, and amplitude A, /e? for some small € and large A. (see Figure 1). Moreover, as we
will see shortly, € and A, should be chosen according to

Ac

(3.3) S=6.

To construct v, consider a Hamiltonian H : R? — R such that

(3.4a) H(xy,-1) = H(z1,1) =0,
(3.4b) H(z1, —22) = —H(21,22),
(34C) H(1‘1 + 2, 582) = H(l‘l, 1?2)

for all (z1,72) € R?. To obtain convection rolls of width e and height 1, we rescale
the horizontal variable. Define
1

£ _ E_AE 1 E_AE aQHE
(35) H (.T}]_,.’Eg)—H(?,.fg) and v —?V H —? (81H5> )

and let 7. = T%". By uniqueness of solutions to (1.3) we see that 7. satisfies
T.(x1 + 2¢,22) = Te (21, 2). Thus, it is natural to make the change of variables
x1

(3.6) = — Yo = Ta, and v = (v1,v2) = V;‘H.

In these coordinates we see that T}, . satisfies

1 1
®.7) AV, T - SR T - Lgrm =2

2%

Examining (3.7) we see that in the horizontal direction the diffusion has strength 1.
However, since we impose periodic boundary conditions in this direction, there are no
boundaries that provide a cooling effect directly felt by the horizontal diffusion. In
the vertical direction, the diffusion coefficient is £2, and so the cooling effect from the
Dirichlet boundary S, will be felt in the domain in time O(1/£?). Since our source
(the right hand side of (3.7)) is also €2, we expect that the diffusion alone will ensure
T is of size O(1) as ¢ — 0. This would lead to the bound £;?(&) < C, which is far
from optimal.
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We claim that the convection term reduces this bound dramatically. Indeed,
through convection one can travel an O(1) distance in the vertical direction in time
1/A.. Due to our no flow requirement v - 7 = 0 on 952, one can never reach the
boundary of Sy through convection alone. Thus, the cooling effect of the boundary 9.5
must propagate into the domain through a combination of the effects of the slow
vertical diffusion €29}, and the fast convection A.v - V,. Our aim is to estimate how
much improvement this can provide over the crude O(1) bound that can be obtained
through diffusion alone. This is our next result.

PROPOSITION 3.1. There exists a smooth Hamiltonian H satisfying (3.4a)—(3.4c)
and a constant C such that the following holds. For every v > 0, and A, chosen such
that A. > 1/, we have

In 6\13>
eV A,

for all sufficiently small . Here T. = TV and v is given by (3.5).

(3.8) HTHhu,g(k2(1+

Remark 3.2. We believe the bound (3.8) is true for every smooth, nondegenerate
cellular flow v (with a constant C' = C(v)), provided v > 2. To obtain (3.8) for all
v > 0, our proof requires the velocity field v to be exactly linear near the vertical cell
boundaries. We do not know whether (3.8) remains true for v € (0,2) without this
assumption. We note, however, that choosing v € (0,2) does not lead to an improved
bound as in this range the constant term on the right of (3.8) will eliminate any benefit
obtained from further increasing the amplitude.

Remark 3.3. For simplicity, the velocity field we construct to prove Proposition 3.1
will be chosen to be exactly linear near cell corners. This assumption is mainly present
as it leads to a technical simplification of the proof of Proposition 3.1. Since the proof
of Proposition 1.3 only requires us to produce one velocity field v satisfying (3.2), we
only state and prove Proposition 3.1 for a specific cellular flow, instead of generic
cellular flows.

We prove Proposition 3.1 using probabilistic techniques in the next section. Propo-
sition 1.3 follows immediately from Proposition 3.1 by scaling.

Proof of Proposition 1.3. By definition, we have

. Aoy Ac (evi(y1,y2)
v (21, 22) = — V' H (1, 22) = =l (Uz(yl,yz) ’

and hence

VIUE _ é (e@mm 528y2v1) .

53 (93“ (%) 68y2 (%)

Therefore, as € — 0, we have
A
gzmwwmoni)

e3

Choosing A. = 1/¢¥, we have for large enough &,

(3.9) &= O(%) and e= O(%)
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Combining this with (3.8), we have

||T€||Loc < 0(52 + 51+U/2|1H5|13) )
Rewriting this in terms of & using (3.9) and choosing v = 2 shows

[In &3
||T€||L°° < C (§72/5

This implies (1.11) as desired. d

4. Exit time from tall and thin cells (proof of Proposition 3.1). Our aim
in this section is to prove Proposition 3.1. For ease of notation we will now write
v=2v5, T =T, A= A.. Let Z¢ be a solution to the SDE

(4.1) dZi = Av(Z®)ds + o dBy, where o= ((1) 2) .

Here B is a standard two dimensional Brownian motion. For convenience let Z¢ =

(Z§,75), and let
(4.2) ™ =inf{t|Z5, ¢ (-1,1)}

be the first exit time of Z° from the strip Sz. (Here the notation Z5 , refers to (Z3)¢, the
value of the process Z5 at time t.) By the Dynkin formula we know 7T.(z) = e2E*7*.

Before delving into the details of the proof of Proposition 3.1, we now briefly
explain the main idea. Consider many tracer particles evolving according to (4.1).
First, we note that particles near 9Ss get convected away from 953 in time O(1/A).
In this time, these particles can travel a distance of O(e/v/A) in the vertical direction
through diffusion. Thus, if we can ensure particles get to within a distance of O(e/ \/Z)
from 0S5, then they will exit quickly with probability at least pg for some small pg > 0
that is independent of e.

We claim that in the boundary layer, every O(1/ \/Z) seconds? tracer particles
will pass within a distance of O(g/v/A) from dS. Every pass has an O(e) probability
of being within £/v/A away from 0S5, and so a probability O(e) of exiting from 9S5.
This suggests

. e (1-¢)2  (1—¢)%3¢ ) ( )
(4.3) zSéJSPQET <1+\F+ N + A + Cl+5\f
which is dramatically better than the crude O(1/£%) bound obtained by using diffusion
alone.

A second look at the above argument suggests that (4.3) should have a logarithmic
correction. Indeed, the flow v has hyperbolic saddles at cell {—1,0,1} x Z, which
causes a logarithmic slow down of particles close to it. As a result, we are able to
prove the following bound on E7°.

PROPOSITION 4.1. Let v > 0 and A > 1/e¥. There exists a cellular flow v and a
constant C' such that

|Ine|'3

i)

(4.4) sup E*7° < C (1 +
zE€Ss

holds for all sufficiently small €.
2The diffusion may carry particles into the interior of the cell before they exit at 9S2. These

particles will now take O(l/\/Z) time to return to the boundary layer, which is why the time taken
here is O(1/+/A) and not the convection time O(1/A).
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Of course Proposition 4.1 immediately implies Proposition 3.1.

Proof of Proposition 3.1. Since T(z) = €2 E*7¢, the estimate (4.4) implies (3.8)
as desired. |

We now describe the flow v that will be used in Proposition 4.1. As remarked
earlier, we expect Proposition 4.1 to hold for any generic nondegenerate cellular flow.
However, the specific form we describe below simplifies many technicalities. For
notational convenience, we will now restrict our attention to the rectangle

(4.5) Q= (0,2) x (=1,1).

Assumption 1. The function H: R* — [—1,1] is C? with ||H| ¢z < 100 and is
2-periodic in both 27 and x9. The level set {H = 0} is precisely (R x Z) U (Z x R).
Moreover, H(1/2,1/2) = 1, H(3/2,1/2) = —1 and these both correspond to non-
degenerate critical points of H. All other critical points of H are hyperbolic and lie
on the integer lattice Z2.

Assumption 2. There exists ¢g € (0,1/10) such that for

(46) Q() dZEf (—200, 200)2
we have
T1T2 (z1,72) € Qo
_ (1—.’51)1’2 (:Cl,SUQ) GQo-l-(].,O),
(4.7) H(xy,22) = r1(1— 1) (1. 22) € Qo+ (0.1).
(1—.’1’,‘1)(1—1‘2) (1‘1,3'}2) €Q0+(1,1)

Assumption 3. There exists a constant hg such that for x € {|H| < ho} and
ie{1,2},

sign 07 H = —sign H .
Assumption 4. In the region {|H| < ho} N (i + (—¢,¢)) X R, where i € Z,
(48) (911}2 = 7812H = O

Apart from nondegeneracy and normalization, the main content of the first
assumption is that H only has one critical point in the interior of every square of side
length 1 with vertices on the integer lattice. This is the main geometric restriction
imposed on the Hamiltonian H. Assumptions 2-3 are not necessary, but lead to
technical simplifications of the proof. Finally, Assumption 4 is only required for the
exit time bounds we obtain (Lemma 4.2, below) to be valid when A < 1/&2. Notice
that in the proof of Proposition 1.3 we only use A ~ 1/&2, and so Assumption 4 is not
essential. We elaborate on this in Remark 4.3, below.

Now we split the proof of Proposition 4.1 into two steps: estimating the time
taken to reach the boundary layer and then estimating the time taken to exit from
the boundary layer. In time 1/A, the process Z¢ will typically travel a distance of

"=

in the vertical direction. Given « > 0 define the boundary layer (see Figure 3) B, by

By =B d:“{uﬂ < %}
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Fic. 3. Boundary layer By (dark blue) and boundary layer Bs (union of light and dark blue).

LEMMA 4.2. Let v > 0 and suppose A > 1/e”. There exists a constant C' such
that
C[ln6|*3
(4.9) sup E*7° < Clnol™ .
ZEBl EVCK

Here By denotes the closure of By.

Remark 4.3. In the proof of Lemma 4.2 we will see that if H doesn’t satisfy
Assumption 4, then Lemma 4.2 is only valid if v > 2 (see Remark A.5, below). It
turns out that choosing v < 2 provides no additional advantage in the proof of
Proposition 4.1. This is because when v < 2, the constant term on the right of (4.4)
dominates, and we get no improvement on E*7€.

LEMMA 4.4. For a > 0 define
(4.10) e =15 = inf{t > 0| Z € 0B,}

to be the first time the process Z7 hits OB.. There exists a constant C, independent
of a, such that

sup E*n, < C
z€Bg,
for all sufficiently small €. (Here BS, is the complement of By,.)

A proof of Lemma 4.4 using a blow-up argument can be found in [IS12]. We present
a different proof of this fact (in section 6, below) by constructing a supersolution based
on the Freidlin averaging problem [FW12].

Momentarily postponing the proofs of Lemmas 4.2 and 4.4, we prove Proposi-
tion 4.1.

Proof of Proposition 4.1. If z & By, the strong Markov property and Lemmas 4.2
and 4.4 imply

E*7° = Enf + (7° —nf) = E* (i + (7° — n5) | F:)
[In 5|13>
VA /T

If z € By, then Lemma 4.2 directly implies (4.11). Thus in either case we have (4.4),
as desired. O

(4.11) <C+E* sup E ' r° < C’(l +
Z’EBl
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5. Exit from the boundary layer (Lemma 4.2). In this section, we will
prove Lemma 4.2. We will fix v > 0 and suppose A > 1/e” as in the hypothesis of
Lemma 4.2 throughout this section. Furthermore, for notational convenience, we will
now drop the explicit ¢ dependence from Z¢ and A.

The main idea behind the proof of Lemma 4.2 is to focus our attention on
trajectories in the boundary layer B, until they leave the bigger boundary layer Bs.
Our first lemma estimates the chance of starting in 31 and exiting the strip Ss, before
exiting the bigger boundary layer Bs.

LEMMA 5.1. There exists a constant C > 0, independent of €, such that

Ce
. 3 z € (4 2
(5 1) zlenlg1 P (T < 775) |1H 5|12

for all sufficiently small €.

Our next lemma estimates the amount of time the process takes to exit the bigger
boundary layer Bs (the union of the light and dark blue regions in Figure 3).
LEMMA 5.2. There exists a constant C' such that
< C|ln o]

5.2 sup E*nt <
(5.2) sup By 1

for all sufficiently small €.

Finally, we estimate the time taken for the process to return to the boundary
layer B; starting from the boundary of the bigger boundary layer Bs. Since trajectories
may travel further inward this step is slower in comparison and takes O(|lnd|/+v/A).

LEMMA 5.3. There exists a constant C' such that there exists an €y, where

[In 0]
5.3 sup E*n] < C—
(5.3) Sup By N

foralle < gg.
Momentarily postponing the proofs of Lemmas 5.1-5.3, we prove Lemma 4.2.

Proof of Lemma 4.2. In this proof, the constant C' may vary from line to line but
does not depend on . We first define two sequences of barrier stopping times,

o, =0, Go =inf{t > o( | Z; € 0Bs},
o, =inf{t >6,_1|Z; € 0B:}, &n =inf{t >0}, | Z{ € 0Bs} .
We have

e
E*7r° = / P*(r° > t)dt
0
el ol o
:EZZ// 1{7—5>t}dt< ZEZ]'{TE>G;1—1}(U':1_U’:1_1)
n=1"%n_1 n=1

n=1

8

’
P*(r*>0/,_,) sup E*o}.
z'€0B;

(5.4)

N
[

n

We will now estimate each term on the right.
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First, by the strong Markov property and Lemmas 5.2-5.3 we have
(& / Cllné
(5:5) B0l = E*(50+ BZ "nf) <E*(n5 + swp B75) < l/% |

z'€0Bs
for every z € 9B;. To estimate P*(7° > o},), we use Lemma 5.1 and the fact that
o] = 6o = 1§ to obtain

Ce
sup P*(r€ 2 0/)< sup P*(7°* > nf)=1— inf P*(r*<nf) <1 — ——.
268%1 ( 1) 2681;1 ( 775) 208, ( 775) (ln 5)12

Now, by the strong Markov property,
sup P*(7° > 0},) = sup E* (1,5, }EZE("itfl)l{T?J/})
z€B1 z€B1 nt !
< sup E*1lgen,r 3 sup P¥(r° > o)
z€B; n B,
Ce
<(1- 7>E21 o 1.
( (In6)'2 {rezoy, 4}
Hence by induction
Ce \n
5.6 P2 0,) < (1- )
(5.5) s Ptz o) < (1 e
for all n € N.
Using (5.5) and (5.6) in (5.4) yields
C|ln 6] Ce \»
Ez © S (1 - ) 9
TS/ nz:% In 6[12
finishing the proof. a

5.1. Proof of Lemma 5.1. In this subsection, we will give the proof of
Lemma 5.1. Let the coordinate processes of Z be Z; and Zs, respectively (i.e.,
7Z = (Z1,7Z5)). Define +; to be the deterministic curve satisfying the ODE

(57) 8,5% = A’U(’}/t) .

We again need a few results to prove Lemma 5.1.

By symmetry and the reflection principle, when Z wanders into the lower half
of the domain (0,2) x (—1,0), its behavior is mirrored by —Z, which is again on the
upper half of the domain (0,2) x (0,1). Hence, without loss of generality, we may
restrict our attention to the upper half of the domain and all the lemmas below are
stated in this context.

The first result we state is a “tube lemma” estimating the probability that the
process Z stays within a small tube around the deterministic trajectories. This
is well studied and many such estimates can be found in the literature (see, for
instance, [FW12]). The standard estimates, however, work well for times of order
1/A. Due to the degeneracy, and the hyperbolic saddles near cell corners, we need an
estimate that works for time scales of order [Ind|/A. We state this estimate here.
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LEMMA 5.4. Let z9 € (0,2)x(0,1)N(Qo/2+ (4, k)), where (j, k) € {0,1,2} x{0,1}
and Qq is as in (4.6). Let v satisfy (5.7) with v = zo, and define

def .

(5.8) T=mf{t >0]|y:—1<dor|nms—1=coor|y:—1 =co}.

Then there exists €y so that for every e < &g,

T

We{1,2}) > ¢

PZ"( sup |Zir — il < e

0<t<T [In o] A

Here we recall that 017 = 1 and 095 = € are the diagonal entries in the matrix o
in (4.1).

Remark 5.5. By a direct calculation, we can check that T < |Ind|/A.

The proof of Lemma 5.4 uses the Girsanov theorem and is greatly simplified by the
fact that H is exactly quadratic near cell corners. Since it is similar to the standard
proofs, we present it in Appendix A.

Once Lemma 5.4 is established it quickly gives an estimate on the probability of
getting within a distance of O(1/v/A) away from cell boundaries.

LEMMA 5.6. Let zo € By N (0,2) x (0,1). There exist constants C, M > 0 such
that for small enough €,

C

5.9 P () c > ——.
(5.9) ( o< 774M) I 0]2

Here, Ao & inf{t > 0| Z, € {dist(z,090") < M/VA}}.

Proof. Note first that by Taylor expansion of H, for small € there exists M > 0
such that dist(zp,d9) < M/v/A for all z, outside the corners Qo/2 + (j, k), where
(j, k) € {0,1,2} x {0,1}. So now, we assume zg € Qo/2 + (j, k) for some (j,k) €
{0,1,2} x {0,1}. For brevity, we only present the proof when zy € Qo/2, as the other
cases are identical.

If dist(z,00) < 1/vA we are done, so we now suppose zg € Qg/2 with
dist(z0,09’) > 1/v/A. Let v be the deterministic trajectory defined by (5.7) with
Y0 = 20, and let T be as in (5.8). Note that since dist(zg, Q') > 1/v/A we cannot
have |yo 7 — 1| < §. Thus, either |y, — 1] = ¢g or |y2,7 — 1| = ¢o. In either case there
exists a constant M such that |yo,7 — 1| < M/VA or |y1,7 — 1| < M/V/A, respectively.
Now using Lemma 5.4 we obtain (5.9) as desired. 0

Remark 5.7. For notational convenience, we assume that M = 1 for the rest of
the paper.

Another consequence of Lemma 5.4 is a lower bound on the probability of reaching
O(0) away from the top boundary before reentering the cell interior.

LEMMA 5.8. Let Q‘zop = (1 —2¢p,142¢o) x (1 —46,1) be a box of height 40 at the

def . S5

top of the cell corner. Let A = inf{t > 0] Z; € Qy,,
C > 0 such that

}. Then, there exists a constant

(5.10)

P> (X <nj) >

inf .
zoe(l—é,l-li-r}s)x(l—co,l) (In §)2
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Proof. Let T = inf{t > 0| |72, — 1| < &} be the time the deterministic process
hits the top boundary layer with width §. By Lemma 5.4, there exists a constant
C > 0 so that

O C
PZ"(su Zit—vid] < —20 . vie 1,2)27.
O<t£T| it ’72,t| /7“115'14 { } (ln 5)2

Aszpe (1—96,1406) x (1 —co,1), 71,7 € (1 — o, 1 + ¢o). Therefore,
{ Sup [ Ziy — it < —ie
0<t<T \/m
from which (5.10) follows. d
15\Text, we bound the probability of exiting from the top when trajectories start

in Qfp-

LEMMA 5.9. There exists a constant py > 0 such that

vie {1,2}} € {5 > A},

5.11 inf  P* (75 <n5) = po.
(5.11) o ( 7)

Proof. Let T = 1/A. When A is sufficiently large, we note that given Xy = zg €
Qfop, there exists n > 1, independent of €, such that the deterministic flow ~; starting
at zo still remains in the top edge of the boundary layer {|H| < né}N(0,2) x (1 —nd, 1)
for time T'. Define 4; by

0 = Au(Fy) ,

where u = (u1, ug) is chosen to satisfy the condition 4 = (y1,¢,2,¢), where ~y; ; is the
first coordinate of v, and 43, is some continuous function such that

2,0 = V2,0, |v2—u2| <2nd, and Yo7 2 no .

An example of such 7 is ¢ = (71,4, V2,1 + 2Andt). By continuity of Z, we have

B3 = { sup [Zz1 — o, < 5} c{r <ni}.
0<t<T

Now a standard large deviation estimate will show that P*°(E3) > p. for some constant
C. that vanishes as ¢ — 0. In order to prove Lemma 5.9, we need to remove this
¢ dependence. We do this here using the fact that in this box |01v2] < O(g) and
|vg —uz| < O(F). We claim that if we go through the standard large deviation estimate
with these additional assumptions, the constant p. can be made independent of ¢.
Since the details are not too different from the standard proof, we carry them out
in Lemma A.3 in Appendix A, below. Hence, we see that there exists a constant pg
(independent of zg, ) so that

PZO(E3) = Do,

proving (5.11). d

N def .

LEMMA 5.10. Let A =inf{t > 0| Z, € (1—6,146) x (1—co,1)}. There exists a
constant C' > 0 such that

5.12 inf P (\A<ni) > .
( ) zo€{dist(2,00)<1/VA} ( 774) (In¢)8
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Proof. We give the proof where zy € {dist(z,09) < 1/v/A} N (0,1) x (0,1). The
analysis is similar for 2o € {dist(z,99) < 1/v/A}N(1,2)x(0,1). Define the regions O,
ey |:|5 by

o (1 ke Ly (e L),
1

as shown in Figure 4. If dist(zp, ') < 1/v/A, then 2z, must be in one of the boxes O,
..., Os. Suppose first zg € ;. Let v(¢) be the deterministic trajectory such that

Yo = 20, 1o L inf{t >0:7:=1— 00/2} < m/A for some m > 1, and

o 2 € g
E, d=f{ sup | Z14 — v1.4] < Nt | Za.t — Y2.4] < 73 | Z1m,| < Q\C/Z : }
\t\ 0

0<t<To
By continuity, we have that
Ey C {5\ < ni} )
We claim

(5.13) P> (X <n5) = P*(Ey) > Ce,

?4 %’5

0B,

!
)

Fi1G. 4. 9B, and [J;.
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where C' > 0 independent of zg. The proof of (5.13) is presented with the other tube
lemmas we use in Appendix A. We in fact prove a more general estimate (Lemma A.4
applied to the deterministic flow), from which (5.13) follows.

Now, let zg € Oy, define Oag = TaN[1—cp, 1] x [0,2/\/2], and let A\ = inf{t > 0’
7y € DQR}. Proceeding as in the case for [y with (¢) being the deterministic trajectory
so that v(0) = 2o, T4 = inf{t > 0| y1; = co/2}, we have

1
5.14 P (A <1E ZPZO(su Zp— 7| < —=
( ) ( 1 774) 0§t<pT1| t 'Vt‘ \/Z

To see why the last lower bound is true, we consider by It6 formula,

)=c.

T1
sup E®|Z; — y)* < 24||v|en / E® sup |Z; —y|* + (€ + )Ty,
0<t<Ty 0 0<t<Ty

which, by Gronwall’s inequality and Assumption 1, implies
sup E*|Z; —y|? < (1 + )Ty
0<t<T,

Inequality (5.14) follows by Chebychev’s inequality.
Now let M = inf{t >0 ’ Zy € Dl}. Using Lemma 5.4 and the Markov property,
there exists a constant C' (independent of zg) so that

C
5.15 P> ()N <nf) > P (\ <n5) inf P (N <nj) > )
(5.15) (N <n5) (A < n3) nf (N <n5) 0)2
Combining (5.13), (5.15) and using the Markov property gives
P*(A<nj) = PN <nj) inf P*(A<mnj) > _Ce :
4 Y el 47 (Ins)2
Repeating this argument again for [z, ..., s we see that we obtain an extra
C/|In |? factor every time we pass a corner. Combining these estimates gives (5.12) as
claimed. O

We are now ready to give the proof for Lemma 5.1.

Proof of Lemma 5.1. Let zy € By and denote Dy & {dist(z,(?Q’) < 1/\/2},

Dy = (1—6,1+6) x (1 —co,1), and D3 = (1 —2co, 1+ 2c9) x (1 —48,1). As 0§ < g
when zy € By, by Lemmas 5.6-5.10 and the Markov property, we have that
P (17 <n5) 2 B L re<pey Linensy Lo <ng L5
= E* 1 <ngy B (1{75<n§}1{;\<n§}1{/\<"§} ’ 50)
— E% 1{)\O<n§}EZ>\O (1{75<n§}1{5\<n§}1{)‘<’7§})
2 E* 1\, <ney zliéljgl E* (1{/\<n§}1{7\<ng}1{ff<n§}>

2 BV pgangy b E7 Liscgey Jnf B¥ Loy inf B 1(re <)

22€D2
Ce
~ Ingjiz’
where C' is independent of zy. Taking the infimum over zp, we achieve the desired
result. O
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5.2. Proof of Lemma 5.2. In this subsection, we give a proof of Lemma 5.2.
The strategy then will be similar to that of the proof of Lemma 5.1 as will will estimate
the probability for a typical particle to successfully enter the inner region after each
time it goes around the boundary layer Bs. To do this, we first need a few results.

LEMMA 5.11. Let 0y = Bs N {xa € [co, 1 — co]}. There exists a constant py such
that

1
1 inf P (n < =) >po.
(5.16) mf (n5< A) Do

Proof. Since we restrict our attention to the region of the boundary layer on the
sides, for each € > 0 there exists an interval R, with length |R.| = 1/v/A such that

dist(RE X [co, 1 — ¢o], Bs N {2 € [co, 1 — co}}) =

-

Let M be independent of ¢ such that

R. X [co,1 — o] U (85 N{zs € [c, 1 — CO]}) C (1 ) X [co, 1 — co]

M M
14—

VA VA
and zo € ;. By Lemma A.4 applied to the deterministic curve v (given by (5.7))
with vg = zg, we have

(s <)

M €
>on( sup [Zis— il < —=, sup [Zoy— vl < —=,Z11 6R>>p0,
= 0<t<1/A 5 UL /*A 0<t<1/A > AN /;A »Lo €] =
where pg is independent of zy as desired. ]

LEMMA 5.12. Let Ay = inf{t >0 ’ Zyy € {co, 1 — co}} and zo € Bs — 1. Then

(5.17) lim inf P*
5—>OBS_|:|1

N 5|ln 4| ClnA
(o< 57) 21— S

Proof. Let ¢ > 2 be some large number to be chosen later, and let Zp be the closest
point on {H = A~Y9} to 2. Let d = Alzy — Zo| and 7; be the deterministic curve
(defined by (5.7)) with 9 = Z5. Note that, by Assumptions 1-2,

c

(5.18) < A2

b=

By the It formula, we have
Z 2 J2 ' 1 2 2
E*\|Z; — v <ﬁ+2A||UHCI E*|Z, —~v|°ds+ (1 +e)t.
0
By Gronwall’s inequality and Assumption 1, it follows that

d2
E*|Z, —y|* < (ﬁ el _|_€2)t)€200At.
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Now, let Tp = inf{t > 0: v2;, € (2¢c0,1 — 2¢0)}, and note that Ty < DIn A/(Agq) for
some constant D > 0. By (5.18), we have

o\ _ 100/ C o DILAY s00p1m 4/
20 _ > - < - - n q
P <|ZT0 VTo| 2 10) <2 (AQq (e == )e
< CA20P/a=1p A
Picking ¢ such that 200D/q — 1 < —1/2, we have
Co ClnA
To) >
As q>2, Ty <5|lnd|/A. Therefore, by the continuity of Z, it follows that

(5.19) P (121, = yr,| <

M},

{ZQ,TU € [2¢0,1 — 200]} C {;\2 <25

Combining this with (5.19), we deduce

5|ln5|> > 1 ClnA

lim inf PzO(X2< - ~

e—0 Bs—0,
as desired. 0
We are now ready for the proof of Lemma 5.2.

Proof of Lemma 5.2. Step 1. We first claim that for each zg € By and € > 0, there
exists a constant C' > 0, independent of zg and ¢, such that

5
5.20 pP* sup H(Z)| > —) >2C.
( ) (O<t§6|1n6\/,4‘ (Z2)] \/A)

To prove this, suppose for contradiction there exists a sequence {z,, &, }> ; such
that

b)
5.21 lim P*» sup H(Z)| > —=) =0.
( ) =00 (ogtgs\lnﬂ/A' (Z2)] \/Z)

Let Cy be the lower bound in Lemma 5.11 and denote 5\1 = inf{t >0 | Zy € ﬁl}. By
Lemma 5.11 and the strong Markov property,

5
PZ"( sup H(Z)| > —)
ogtgeuna\/A' (20 VA

> E™ (EZ"(1{sup0<t<;1\H(zmgjz}1{x1<5|ln6|/A}1{ng<il+1/A} |fi1))

— F'%n Z+
=F (l{supog@l\H(zt>|<%}1{i1<5|1n5\/A}E Ml{n;<1/A}>

> E#n (1{

s ) inf E1
swpocics, [H(Z0I< 5 | {h<simel/a}) e ™ T {ns<1/a}

N 5|ln5|)-

> CoP* (sw |H(Z)| < —=3h < .

5
;
0<t< VA

The second equality follows from the fact that ng > A1 under the event

5
sup |H(Zy)| < —=¢.
{O<t<:\1 ' VA}
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We claim that for large enough n, we have

5 = 5/In 4§ 1
P sup [H(Z)| < =5k < )=3,
0<t< \/Z A 2

which contradicts our assumption (5.21). To see that this lower bound is true, we first
note that z; ¢ [y by Lemma 5.11. Thus, we only consider the case z, € Bs —
Recall Ay = inf{t > 0| Za2; € {co,1 — co}}. Observe that

Lisupge,es, 1H(Z0I< 251 L3 <5l 6143

{supogtg;\1 é\/%} {A2<5|Ind|/A}

By (5.17) and (5.21), we can pick n large enough such that

5 - 5|In §
PZ“( sup |H(Z)| < —=:h <
0<t<h VA A )
5 - 5|In §| 1
> P sup H(Z)| < —=; X\ < > —.
(o<t<6\1n5|/,4| (Z)] VA’ ? A ) 2

This is a contradiction, proving (5.20) as desired.

Step 2. Once (5.20) is established, we can estimate Eng as the expected time to
success of a Bernoulli trial using a similar argument as in the proof of Lemma 4.2.
Explicitly, let At = 6[lnd|/A, and observe that by (5.20),

5
PZO(n§<At):PZ°( sup  |H(Z)| >

— ) > C.
0<t<6[In §|/A \/Z)

By the strong Markov property and estimate (5.20), we have that for i > 1,

P> (n5 > iAt) = E*E® (1gpesingy e >(i—vaey | Fa—nat)
= E* Lo nan BX0 08 100 0
S E®lpesi-1an sup E* 1 >nny

z€B

= F~ 01{775> (i—1 At}(l — 1nf PZ(T]5 < At))

= FE~* 01{7]5> (i—1 At}( ) (1_0) )

where C is the constant in (5.20). Therefore,

[eS) 0 1AL
E*n5 = / P (15 > 1) dt < Z / P (ns > t) dt
0 (

i—1)At
o
) ; 6|ln d|
ALY Po(nE > iAl) < AtY (1-0) < ———
; (15 > 1 Z (1-C)A
from which (5.2) follows immediately. 0

5.3. Proof of Lemma 5.3. In this subsection, we restrict our attention to a
particular cell (0,1) x (0,1) as the analysis is similar for (1,2) x (0,1). Thus, assume
for simplicity that |[H| = H. By Assumption 3, 92H < 0 for i € {1,2}. Let z € B
and denote U (z) = E*n;. Then, U, solves the following equation:
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Fic. 5. A, R (green), RY (red), and Ry (blue).

—0?U,. — 202U, + Av - VU, =1 in (0,1)% — By,
(5.22) { Lre 2ve ° (0.1)" =B,

U. =0 on (0,1)*N 0B, .

In order to prove Lemma 5.3, we construct an explicit supersolution to (5.22), inde-
pendent of e. Recall by Lemma 4.4

S = sup||Us||p~ < o0.
e>0
Let d; < 1 be a small constant that will be chosen later, and define

A:{ijsuﬂém}

RQZAﬂ{yE[Co,l—CQ]}, and Ry =A-—Rs.

Denote by (0, h) the curvilinear coordinate, where = ©(x1,x2) is the “angle” and
h = H(xy1,x2) the level of the Hamiltonian H (See section 6). Let f (to be specified
later) be a smooth periodic function of © that satisfies

0 <inf f <supf < oo,
(5.23) —oo < inf f(©) <sup f/(©) < -1 on Ry,
and sup|f”| < co.

Then, consider the function

¢=x1+X2,

where

e S HH and 1O Wl

d - AH VA

By construction, ¢(0, H) > 0 on A. We claim that for an appropriate f, ¢ is a desired
supersolution.
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LEMMA 5.13. Let U, be the solution to (5.22). Then, there exists a function f

that satisfies the requirement (5.23) so that for small enough dy,

o>U. onA.

Postponing the proof of this lemma, we now give the proof of Lemma 5.3.

Proof of Lemma 5.3. By construction, on Bs — B; and for small enough &, we

have % < dyi. Therefore, when H = 5/\/1

S 5 5 [ fllz> _ |Ind
<———F=h{— )+ < —
OST4 VA n(\/A) VA S VA
It follows that
[In 0]
Ez £ — U < g AN
771 (Z) ¢(Z) \/Z

for every z € 0Bs5, as desired.

d

Proof of Lemma 5.13. Step 1. Recall that v = VX H and H > 1/v/A. We have

that
A C) f(©)
Vie = =2 VO+ LVH,
1f"(©) /'(©) /(©)
08z = 5 (T @0 - 2R ane0uH + L2 070)
1/2f(©) RACII
+Z< (o) - L 81H)
1/1"(©) 2 _o/"(©) f'(©) o
> 5 (2 @e) -2l oo + 20k,
and
1 /f"(®) f'(©) /'(©)
b > £ (12000 — 2122 0,000 + 2030
Therefore, by (5.23) and H > 1/V/A,
2 (/"(©) ¢
(5.24) — (0 +€03)x2 > ‘Z( e (61981H+682982H)) -7
Step 2. On the other hand,
S
Vxlz—d—(l—&-lnH)VH
1
and
S S (9,H)?
_ 2 e 2 -
Ohx = JORH(nH 1)+ 7

We note that there exists a function p = p(z) > 0 such that

VO = p(x)V*H = p(z)v(),
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and Ay < p < Az on {|H| < ¢o} for some 0 < A\; < Ap. Therefore, by (5.24) and

H>1/VA,
— ¢ —edip+ Av-Vo

S S (H)?  [(O)VH
. > = = -
(5.25) GO (nH 1) + == TR
2/ f(0) c
- 2 (55 (0100 H + 0,00, H) ) - S
Recall

RQZAO{ZQG[CO,l_CO]} and Ry =A-—Ry.

We would like to estimate the above quantity in R; and Rs.
Step 3. For Ry, we decompose this set further:

R%:Rlﬁ{C()nggl*Co} and R?:leRtll.

In R?, there exists a constant C' such that |[VH|? > C. Therefore, by (5.23), (5.25),
and H > 1/VA,

"(O)|VH|?
070 - <30+ Av-vo> LNV, gy p,
A\ Cinf "(e
2 1 11 211 ‘f( )| _CHf/HLOO )

By (5.23), we could then pick d; small, independent of ¢, to make the following hold:

—2¢ —ed3p+ Av- Vo > 1

in RY.
On the other hand, in R?, we have |VH(z1,22)|? = 27 + 23. Therefore, by the
Cauchy—Schwarz inequality,

[VH[?) _

2 2 2
- @:_f/(@)m>2mf|f/|_

(526) f/(6) H 21722 Ry

~1'(©)

Also, note that in R} it holds that |9;00;H| = (0;H)? for i = 1,2. Thus, by (5.23)-
(5.26) and H > 1/v/A, we choose f such that \; infg,|f’| > 2 and € small enough to
get

— ¢ —c02¢+ Av- Vo

/ 2 /
> —Mp - %(%(a@aﬂﬂ@@aﬁ)) - \/CZ
L _F'OIVHP? 21 f(O)VHP  C
z o " Al e ’ JA
F1(O)|VH 2 C
- H ‘( - ﬁ) VA
> hiptlf | = > 1
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Thus, we have just shown that there exists a function f that satisfies (5.23) so
that in Ry,

~02¢ —edip+ Av-Vo > 1.
Step 4. In Ro, there exist constants C7, Co so that

0<Cy <CIVH? < (0:H)?.
We then look at

— ¢ —edip+ Av-Vo

S 2 S (81H)2 f/(@)|vH|2
> —0H(InH +1)+ — _ B
A = C
5 S Cy|VH|? P
02 SCl ,
> o R . o
- C’ldl( dy Aol Nl (RQ)) C

Pick dy smaller if needed to get
—Oop — €02+ Av-Vop>1 in Ry.

Step 5. Combining Steps 3 and 4, we have shown that there exists a function f
such that

—Oop — 03¢+ Av-Vp>1 inA.

By construction, ¢ > U. on {H =d;} U{H = ﬁ} The comparison principle then
tells us that

¢>U. inA

as desired. 0

6. Proof of Lemma 4.4. In this section, we give the proof of Lemma 4.4.
This fact has been obtained in more generality by the PDE method by Ishii and
Souganidis [[S12]. Our method proof, still PDE-based, is different than that in [IS12].
Although the argument is new for our particular situation, it is an adaptation of the
method in [Kuml8], where the author studies the Freidlin problem for first order
Hamilton—Jacobi equations.

It is convenient to work in the so-called curvilinear coordinates (h,8), in one cell.
Let Qf = (0,1)2 — 'y, where Ty is the closure of one trajectory of the gradient flow
of H starting on the boundary of the unit square. On Qf we define the curvilinear
coordinates by setting h = H(z), § = O(x), where O solves

Ve -VH =0,

in Qf, normalized so that the range of © is (0,2). In this coordinate system, h(z)
determines the level set of the Hamiltonian to which x belongs and # describes the
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position of = on this level set. Since VO and V1 H are parallel, there must exist a
nonzero function p such that

VO = pV+iH.

By reversing the orientation of © if needed, we may assume, without loss of gener-
ality, that p > 0. Let J = 01 H0;© — 02 H010 be the Jacobian of the coordinate
transformation, and note

J=p[VH]?, |V6|=p|VH|.

Let v be the solution to (5.7) with 9 = « and T be the time period of 7. Note T
only depends on h = H(z) and is given by

L

de|,
e 1] 4

(6.1) T(h) & int{t > 0: y(t, ) = 2} = ff@{

where |d¢| denotes the arc-length integral along the curve {H = h}.
Let S(z) = inf{t|~y(t,z) € Ty} be the amount of time ~ takes to to reach Ty
starting from z. This time is not a continuous function of x. Therefore, in order to

make it continuous, we modify it to the following continuous function:

2 | S() if S(z) > T(H(x))/2,
(62) Sta) = {—S(:r:) +T(H(z)) if S(x) < T(H(z))/2.

As we have restricted our attention to one cell, we can assume H € [0, 1]. Define
the coefficients Dy and Dy on [0, 1] as follows:

1 |01 H |2
6.3a Di(h) = —]{ de|,
1 2 H
6.3b Ds(h) = —7{ L 1del.

Note that by the Gauss—Green theorem, we have

h 2
afH(x)dx:/ 7{ 0t |de| dh .
1y

T(h)Dy(h) = — /

{H>h} H=ny |VH|
Therefore,

d
(6.4) SH(TW)Dy (1) = T()Da(h).

We are now ready to show the proof of Lemma 4.4.

Proof of Lemma 4.4. As before, we restrict our attention to a particular cell (0, 1)2
as the estimate is the same for other ones.

Step 1. Let U(z) = E*7¢ and Q. = (0,1)2 — B,. Then, U, is the solution to the
equation

1 2
—S 0. — %agUE Y Av-VU.=1 onQ,
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with boundary condition

U.=0 on 0f,.

Lemma 4.4 will follow immediately from the uniform bound
SupHUE”Loo(Qi) <C.
€

To see why this bound is true, let us consider the solution U to the ODE

—D1(h)O}U — Do(h)OpU =4,
U@ =4.

Note that U is bounded. To see this, we use (6.4) to rewrite the equation
b

T(h)

Observe that T'(h)Dy(h) = O(1—h) and T'(h) — Ty > 0as h — 1; T'(h) =~ O(|ln h|) and

Dy(h) = O(1/|Inh|) as h — 0 (see Chapter 8.2 in [FW12]). Using these asymptotics,
we deduce

O, (T(h)Dl(h)E)‘hﬁ) —4.

_ 4 1 _ h 4 1
00 = s /h T(s)ds,  U(h) = A BT / T(r) drds,

and

1T |y < C.
Step 2. Note that U o H is a function on Q. Let

g=0;(UoH),

and we see that

T(H(x))
i) oy [ st =4,

where T is defined in (6.1). Define

where S is defined in (6.2). Note that
(6.5) v(z) - V() = g(z) — §(x) = g(x) +4.

To see this, consider
5(v(s,2))
ctls.o) == [ (st a) — gla(s.) de

= - / Sm (92(t,2)) = 5(x) ) dt .

Differentiating in s and evaluating at s = 0, we get (6.5).
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Step 3. Let
of = 1 1 2
G. U0 H+ g, L6:758f7%8§+Av~V,
and note
1., - 1, &%, - g2
LEGE:—581(U0H)—ﬂalgo—56‘2(U0H)—ﬂ82tp+g(x)+4

1 9 g2 2 /77 e 2
:7ﬂ81(‘07582(UOH)7ﬂ6280+4:66+47

where e. = —5L0%p — %8%([7 oH) — %85@. Since U is smooth and e. converge
uniformly to 0 as € — 0, there exists an ¢¢ such that for all € < g¢, L.G. > 1 and
G: > U on 09.. By the maximum principle, G, > U on €).. Finally, observe that
sup,||GellL~ < 0o, which implies what we want. |

7. Upper bound for energy constrained flows (Theorem 1.1). In this
section our aim is to prove the upper bound in Theorem 1.1. As in the proof of
Proposition 1.3, we will consider the doubled strip S; = R x (—1,1) with Dirichlet
boundary conditions and only use velocity fields v satisfying (3.1). Our aim is to find
v € VP satistying (3.1) such that

Chh
4

for all sufficiently large %. The flow we use is an analogue of the one used by Marcotte
et al. [MDTY18] adapted to the periodic strip and is shown in Figure 2. It consists of
1/e convection rolls of width e, height 1 skewed so that the center of the roll is only
0 away from the top boundary. Here €, > 0 are small numbers that will shortly be
chosen in terms of the Péclet number % .

Let v € (0,1), 6 = ¢**¥, and H: R? — R be defined by

1Tz <

H($1, 1‘2) d:Ct Hl(l‘l)HQ(xg) 5
where Hi: R — R, Hy = Hy.: [0,1] — R are Lipschitz functions such that

Hiy(z1 +2) = Hi(71), Hy(—z2) = Ha(z2),

1
Z1, T € |:O7§> )
13
Hl(xl): 1_1:1’ T € |:§7§>7
3
—24x1, x1 € [572> .

and

T2, To € [71 +2571 726],
O, T =41.

HQ(!L‘Q) = {

Moreover, we assume Hp, Hy are such that H has only one nondegenerate critical
point in the square (0,2) x (0,1). Stream lines of such a Hamiltonian are shown in
Figure 2.
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Given ¢ > 0, define the rescaled Hamiltonian H¢ by
e ot A A e
H6($17x2) d:fH<x1,$2), and set v° dof Teyglye = Z£ <82H ) .
€

Let 7. = T"" be the solution to (1.3)-(1.4) with drift v°.
By the uniqueness of solutions we see that 7T satisfies T (z1 + 2¢, x2) = Tc(x1, x2).
Thus, we change variables and define
€1

ylz?, Yo = To, and v:V;‘H.

In these coordinates we see that T, satisfies

1 1
—92T. — 5528§2TE =¢?

(7.1a) Av -V, T, — 5%,

with boundary conditions

(7.1b) To(yr +2,92) = Te(y1,92) and  To(y1,1) = Te(y1,—1) = 0.

To estimate the size of T, consider the associated diffusion process Z¢ = (Z%, Z5),
defined by the SDE (4.1). And let 7¢ (defined in (4.2)) be the exit time of Z from the
doubled strip S,. By the Dynkin formula, we know 7. = £2 E7¢, and so estimating ET¢
will give us a bound on T.. This is our next proposition.

PROPOSITION 7.1. Given a Hamiltonian H in the above form, choose A, = 1/&",
v= V;-H, There exists a constant C' = C(v) such that

|l
(7.2) sup E*7° < [Ine]
2€Q) As

for all sufficiently small €.

The reason for the bound (7.2) is as follows. In time O(|lne|/A.), deterministic
trajectories of the flow v will move most interior points to O(§) away from the 9p.Ss. In
this region, the drift has speed O(A./d) so particles in this region have O(§/A.) time
to diffuse vertically before getting carried away from the boundary 0pSs. Within this
time, particles can diffuse a vertical distance of O(e4/d/A.). By choice of § = &2 /A,
we know £4/d/A = §. Therefore, particles a distance O(d) away from 9p Sy exit So
with nonzero probability, before being carried away from dpSs by the flow. Now using
the strong Markov property we can estimate E7° by the expected time to success of
repeated Bernoulli trials, leading to (7.2). Before carrying out these details, we first
show how it can be used to finish the proof of Theorem 1.1.

Proof of the upper bound in Theorem 1.1. Clearly it is enough to prove (1.8) for
q = 00. Let v be the flow from the Hamiltonian in Proposition 7.1 and A, =¢7%. We
note that

=t =02 (5 4 55)") =02 (5 + k) =000,

where

2
241, 1<p<1iz,
/
p:
2 -1 2
1+u+7( + 1) ), D= +V.
p 14+v
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Let T, be the solution to (7.1a)—(7.1b), and note that by Dynkin’s formula,
T. = e2Et¢. Thus, by Proposition 7.1

Ce?|lneg| Chn%
A S g

[Tl <
If p < 2, then by choosing v > 0 small enough we can ensure p < (2+v)/(1+v). In
this case 2 + v = p’ and hence

Chn%
7

1Tl <

On the other hand, if p > 2, then for any u > 0 we can choose v > 0 small enough to
ensure

finishing the proof. 0

It remains to prove Proposition 7.1. The key step is to show that starting from
any point in Se, the probability Z¢ hits the boundary dpSs in time O(|lne|/A;) is
bounded away from 0. This is our next lemma.

LEMMA 7.2. Let A. = €7 %. There exists constants po = po(v) € (0,1) and
K = K(v) € N, independent of €, such that

K|l
(7.3) inf P? (7‘5 < | ng|) > po

for all sufficiently small € > 0.

Using Lemma 7.2 one can prove Proposition 7.1 by treating the exit from the strip
as repeated Bernoulli trials.

Proof of Proposition 7.1. Letting t; = iK|ln¢|/A., we note

sup P*(7° > t;) = sup E*(E*(Lresy, lrese, | Friy))
zeQ zeQY

= sup Ez(1T5>ti_1PZfi—1 (’7'(s } (tl — tifl)) < (]. —po) sup PZ(TE } tifl),
zeQ/ 2eQ!

and hence

sup P*(7° > ¢;) < (1 —po)i.
zEQ!

Consequently,

E*rs = / P15 2 )dt <Y (tig1 —t:)P*(r° > t;)
0

i=0
K|lne| & . Kllneg|
< 1—po)' =
As ZZ:;( 0) pOAs
for every z € ). This yields (7.2) as desired. d
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It remains to prove Lemma 7.2, and this constitutes the bulk of this section. We
will subsequently assume A, = ¢7, and for notational convenience simply write A
instead of A..

Let k1, defined by

(7.4) k1 Zinf{t > 0] Zf € (0,2) x (1-26,1)},
be the first time Z7 hits the set (0,2) x (1 —24,1).
LEMMA 7.3. Let 0 < hg < ¢g be a small constant independent of €, and define

Rho =N (B;CLU U(l 700,14’60) X (Co,l 760)).

Suppose hg is small enough so that Bﬁo N(1—=rco,1+¢o) x (co, 1 —cp) is nonempty.
There exists constants Cy > 0 and p; € (0,1) such that
Co
7.5 inf P (m<=0) >p.
(7.5) 20CHtn, 1 A p1
The proof of Lemma 7.3 is based on a standard tube lemma argument and is presented
in Appendix A.

LEMMA 7.4. Let hy be as in Lemma 7.3, Ty = inf{t > 0 : o4 € {2¢c0,1 — 2¢0}},
and Ty = min{Ty, |In A|/A}. Then

ClnA
7.6 inf PZO(Z 1— 92,142 - )2177
(7.6) Big N(0.2) (0,c0) 7, € (1= 2e0, 1+ 260) x {co, 1 = co) AL2
and
(7.7)
ClnA
inf P (z 0,2¢0) U (2 = 20, 2 T—c)) >1— =22
Bhoﬁ(0,2)>l<rgl—c0,1—26) ( 7€ (( »2¢0) U ( €0, )) x (co, CO)) Al/2

Proof. We only show the proof for (7.6) as (7.7) holds also by symmetry. Let
q > 2 be some large number to be chosen later, and let Z; be the point in the set
{H € (A=1/a, ho)} which is closest to zp. Let d= Alzp — Zp| and 4 be the solution
to (5.7), with 79 = Z. Note that if zy is already in {H € (A=, hg)}, then d = 0.
Also, by Assumption 1,

d C
(7.8) 7S A1/ -

By It6 formula, we have

72
E>|Zy —y)* < 1

By Gronwall’s inequality, it follows that

t
+2A||v\|cl/ |2, —yoPds + (1+ )t
0

d2
E*|Z; — 7| < (ﬁ + (14 sQ)t)e"’”””clAt ,

Now, let T = inf{t > 0| v2,+ € (2¢c0,1 — 2¢o)} and note that T < D1n A/(Agq) for some
constant D > 0. By (7.8), we have

Co 100/ C »wDInAyN DinA
PZo( T — > 7) < 7<7 1 7) vl DInA/q
|Zr =yl = 35 2 Y RALRE 10 )¢

ClnA

2Dvl| 1 /g1
<eaPMle /st in A < =
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provided ¢ is chosen so that 2||[v||c1D/q —1 < —1/2. We have

>> ClnA

o C
(7.9) P °(|ZT — | < = TR

10

Since the trajectories of Z are continuous,

C
{Zr, € (1 = 2co,1+2cp) x (co,1 —co)} 2 {|ZT — 7| < *O},

10
from which (7.6) follows. d
LEMMA 7.5. There exist constants D > 0, ps € (0,1), independent of € so that
Diln A|
7.10 inf P (k< ) 2o
(710 g Pl < =) 2

Proof. Denote
O = (1 —2co, 1+ 2¢0) X (co,1 — o),
Ly ES Bho N {.232 S (O,Co)} R
Us = Br, N ((0, 200) U (2 — 200)) X (CQ, 1-— Co) ,
4 B Bho n {3?2 S (1 — Cp, 1)} .

First, if 29 € By, NO;, we are done, by Lemma 7.3.

Suppose now that zg € . Let 77 be as in Lemma 7.4. By Lemmas 7.3 and 7.4
and the strong Markov property we note

D D
PZO( <= T)>PZ°Z 0,) inf PZ1< gf)
K1 2 + 11 ( T € 1) legml K1 A

C'lnA)p1 .

(7.11) > (1 -

Suppose now that zy € (. Denote ky = inf{t > 0| Z1, € {2¢0,2 — 2¢0}}. By a
similar argument as in Lemma 7.4, there exists p € (0,1) such that

|1nA|) <

inf P?° (Kg < A =

zo€els

There are two possibilities:
1. There exists a ph, independent of &, such that

InA
P (Z, €Oy < AN 5 4
In this case, we can apply the same argument as in (7.11) to arrive at the
desired result.

2. Otherwise, there exists a constant pj, independent of ¢, such that

InA
PZU(H(ZKQ)>h1;H2< |er1 |) > ph

for some h; independent of . We can then apply Lemma 7.3 to get the desired
result.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/26/22 to 128.2.112.77 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1958 GAUTAM IYER AND TRUONG-SON VAN

The same argument works when zy € 04, and this completes the proof
of (7.10). d

LEMMA 7.6. There exists a constant p3 € (0,1) such that

g
7.12 inf PZO( e < 7) > ps.
( ) zoe{z\l§>lf25} T A p3

Proof. Denote T3(z) = inf{t > 0] ~2,; <1—40,7 = 2}, and let

def

T4 = Tg(z) .

inf
{z|z2>1-26}
By the definition of H we see that Ty > Cd/A for some constant C. In time Cd/A
the process Z diffuses a distance of O(e4/d/A) = O(J) vertically and hence should hit
the top boundary with a probability that is bounded away from 0. That is, we should
have

(7.13) P> (75 <Ty) > ps,

which immediately implies (7.12). The inequality (7.13) can be proved using a tube
lemma (Lemma A.3) and is the same as the proof of Lemma 5.9. |

Proof of Lemma 7.2. Given Lemmas 7.3, 7.5, 7.6, the proof of (7.3) is identical
to that of Lemma 5.1. ]

Appendix A. Tube lemmas. In this appendix, we prove several tube lemmas
and estimate the probability a diffusion stays close to the underlying deterministic flow.
Many such estimates are standard and can be found in books (see, for instance, [FW12]).
However, in our situation, we require estimates where the diffusion coefficient is
degenerate in one direction and the amplitude of the drift is large. While the proofs
follow standard techniques, the estimates themselves aren’t readily available in the
literature, and we present them here.

Throughout this appendix we consider the SDE

(Al) dZt = A’U(Zt) dt + O'dBt y
where
(A2) [vllze <1, ||Dv[lr~ <1,

(A.3) o= (0y)) = ((1) g) .

For notational convenience we will often denote the diagonal entries with just one
subscript and write o; for 0;; (i.e., 01 =1 and oy = ¢€).

LEMMA A.l. Fiz A\, >0, and define T'="Tg 4 and R = Ra ) by
det B

def
(A4) TEZ, R_(l—

ENY
VAT VA
Let 29 € R, u € C*(R?), and let 7 be the solution to the ODE

)x(l—g, 1).

O = Au(Fy) dt  with 79 = 2o
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and T = {7(t) | t € [0, T]} be the image of 5. Denote

5 /T > |ui(ﬁ(t)) —ui(¥ = 11950ill oo (1)
L= "— + dt.
T2, i—1,2( ng oV A )

Then for some o > 0 we have

A A 1
PZ“(su oW Z, — 7 oog—)}P(su Boog—)ex <—a L —fL)
o<t£T| (Zy — ) 7 t§¥| a ) P T 5lr

for all sufficiently large A. Here the notation |z| denotes max;|z;].

Remark A.2. A similar upper bound also holds but is not needed for purposes of
this paper.

Proof. Define the process Z by
dZ, = Au(%,) dt + o dB, with Zo=z.
Define
h(t) = Au(Fe) = v(Z0),

h(t) = o7 'h(t)
(A.5) M, = exp / h(s)dB, — 3 /Ot h(s)? ds)
and a measure P so that

dP = My dP.

By the Girsanov theorem (see, for example, Theorem 8.6.6 in [Pks03]), the process
A e t A~
B = / h(s)ds + B
0
is a Brownian motion with respect to the measure P up to time 7. Since
dZ = Av(Z)dt + o dBy,
by weak uniqueness we have

E*f(Z) = E* f(Z) = E* f(% + 0B,) = E* (f(5 + 0B,) M,)

for any test function f. Thus

A
p* (sup|a_1(Zt

sup —¥)loo < ﬁ) = E® <]—KMT)a

where

A
Kd:e{su B \—}.
sup|Bileo < 72
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Now let v = (2/P*(K))"/2, and let K be the event

K {(/OTﬁ(t)dBt)2 < aQ/OTﬁ(t)th}.

By Chebychev’s inequality and the It6 isometry, we see

A 1 P> (K
P20<Kc)<7: ( )7
le’ 2
and hence
A P (K
P*(KNK)> 2( )
Thus

\

(A.6) > PZUZ(K) inf exp(—a (/OT h(t)? dt)1/2 - ;/OT h(t)? dt) .

To estimate the exponential, note that on the event K we have

hi(t Al N - -
s = PO 2540 i) + 030 — (30
7 7
AVA Alui(Fe) — vi(5)|
(A7) <=2 00l e oy +
j K2
for every ¢ = 1,2. Combining (A.7) with (A.6) completes the proof. |

LEMMA A.3. Using the same notation as in Lemma A.1l, we now additionally
assume

Uj||ajvi||L°°(R+f

)
(A.8) max < Oy,
1€{1,2} g g;
T 42 z =~ \|2
A% ui () — vi ()|
(A.9) > /0 t02 Vlodt < C2.

i=1,2

Then there exists C1 = C1(Co, A, 8) > 0 such that

A
PZ(’(su o HUZ — ) oo < —=
()<t£T| ( t ’}/t)| \/E

Proof. Following the proof of Lemma A.1 and using (A.8)—(A.9) in (A.7) gives

)201.

T
/ R(6)|2 dt < 2C2(1 + A\Bd).
0

Combined with (A.6) the lemma follows. |

Next, we show the following estimate for the side boundary layer.
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LEMMA A.4. Let zy € B, = B, — [co,1 —co] x [0,1] and n € N; Z; be a stochastic
process satisfying (A.1)-(A.3) and y; be a deterministic process satisfying

Opye = Av(y)  with v = 2.
Let T, R be as in (A4), let T = {~(¢t) |t € [0,T]} be the image of v, and assume
(A.10) O1vg =0 mI+R.
For M >1, let R. C [1— M/vA,1+ M/vA] be a Borel set and T = m/A for some

m € N. Then, there exists a constant C = Cy, pr and €9 > 0 such that for all € < gy,

2M 5 -
PZO( sup |Z1: — vl < —=, sup |Zoy — ol < =, Z1ir—mr € Ra)

0<t<T VA ogt<T VA
2M -
. 2 m,n < ) .
(A-11) ConP (Bl < 2 Bur € Re)

As before we write Z = (Z1, Z3), v = (71,72), and the notation Z; ; and ~;; denote
the values of the coordinate processes Z; and +;, respectively, at time .

Proof. We follow the proof of Lemma A.1 and explicitly substitute o7 = 1 and
o9 = €. Our conclusion (A.11) will follow provided we can show

(A.12) /OT h(t)?dt < C

for some finite constant C', independent of €. To bound this, we use the upper
bound (A.7) and observe that the second term on the right hand side is identically
0 since u = v. For the first term, the only term that may grow faster than v/A is
when ¢ = 2 and j = 1. In this case, the assumption (A.10) guarantees that this term
is identically 0. Now squaring and integrating from 0 to T' = m/A proves (A.12) as
desired. ]

Remark A.5. If the velocity field v does not satisfy (A.10), then Lemma A.4 still
holds provided A is chosen so that A > 1/&2. To see this we note that (A.7) implies

T
“ Cm
h(t)*dt < — .
| i< G
If A > 1/£2, the right hand side of this is bounded independent of ¢, and so the
remainder of the proof of Lemma A.4 remains unchanged.

Finally, we prove Lemmas 5.4 and 7.3, which were used in the proofs of Theorem 1.1
and Proposition 1.3. Both proofs follow along the lines of the above tube lemmas.

Proof of Lemma 5.4. We only consider the case where zg € Qo/2. The other
cases are similar. First, recall that, by a direct calculation, we can check T < [In d|/A.
Therefore, for small enough ¢, under the event {|Z; ; — ;.| < ;(|ln §|A)~/2 for all t <
T,i=1,2}, we must have Z; € Qo for t < T. Thus,

(A].v?)) ’Ul(Zt) = Zl,t and ’I)Q(Zt) = —Zg’t .
Now define

dZ, = A v g + o dB;
va(Vt)
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and write

e - Zy) Y1t — Zl t —B1y
A.14 h(t “A(Ul(%) vl(f)A( R | t)
( ) ®) vo (1) — v2(Zy) —Yot + Zoy eBa ¢
As before, we define i and a new measure P by

A , 1 0 -B

h(t) < o h(t) = h(t) = A b

=) = (5 1)) p0=4( 50

dP = Mr dP,

where

def b 1 [t
M, exp(—/ h(s)dB, — 5/ h(s)st)
0 0

for 0 <t < T. By the Girsanov theorem, the process
A t A
B, / ii(s)ds + B,
0

is a Brownian motion with respect to the measure P. Therefore, by the uniqueness of
weak solutions of SDEs, we have

E(f(Z) = E(f(Z:)) = E(f(71,t + B1,t,72,¢ +€Bay))
E(f(v1,t+ Bit, V2, +€Boy)My).

Hence
0;

v/ |IndlA

1{\Bt\m<(\ln6|A>*1/2 Vt<T}MT> '

Pw(|Zi,t_7i,t|< Vt<T7i:1,2)

Now, we have that, by the Ito formula,

t t t
/ h(s)dBs = —A/ Bi..dBi . +A/ By..dBy,,
0 0 0

A
= 5(_3%,:& + Bg,t) .

Therefore,
A t
My > exp(~ 5 (B, + B3 - 4° [ (B, + B ) ds)
0

Therefore, as T < |Iné|/A, under the event

e ].
Kd:f{|Bt|oo < ng}

V/[Ind|A

we must have

MT>eXp<— 2) >C.

b
2|ln 0|
Since P(K) = 1/|In§|?, this finishes the proof. d
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Proof of Lemma 7.3. Let zg € Ry, and Ty = inf{t > 0|+, > 1 — §}, where v is
the solution to (5.7) with g = z9. A direct calculation shows that there exists Cy for
which Ty < Cp/A. Furthermore, when x5 € (0,1 — 24), we have that

. aQH(CB) . Hl(il}l)
Therefore, following the proof of the tube lemma (Lemma A.1), we find that the
function h(t) there satisfies

7 H (7175)—H1(’71t+31t)>
h(t) = A (HOn, et Bl
ol =4 e

Therefore, under the event {supt<T0|Bt| <V1y; Bar, = O}, it is true that

To .
(A.15) / |h(t)|2 dt < C.
0
We have that

e C
Ky 2 {sup|Z, =l < Vi Zom, > 1-26) € {m < 2}
t<Ty A

Following the proof of Lemma A.1, by Girsanov’s theorem and (A.15), there exists
p1 € (0,1) such that

P> (Ky) > CP<SUP|Bt| < V1o Bar, 2 0) Zp1,
t<Ty

from which (7.5) follows immediately. O
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