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at 4:00 am (i.e., 4-h prediction) is larger than that in Fan et al. (2020). 
However, their predictions of road statuses were at grid level. Each road 
grid is a square of 400-m length and contained many road segments. 
When one road segment is flooded, the grid with this road segment is 
denoted as flooded. However, our predictions are for individual road 
segments and the prediction accuracy is better than that in Fan et al. 
(2020). Specifically, Table 1 shows there were no significant variances 
in both MAE and RMSE from 2:00 am to 4:00 am for all the three STGCN 
models, while we can see the notable increases in these two metrics from 
4:00 am to 6:00 am, particularly for Model 1 and Model 3. In addition, 
the values of both MAE and RMSE for Model 2 were less than their 
corresponding values for Model 2 and Model 3, which indicates that 
Model 2 had higher prediction accuracy. Hence, Model 2 performed 
more stable than the other two models for the general road segment 
statuses predictions across the three time points on September 2, 2017. 
As most road segments were not flooded during Hurricane Harvey in 
Harris County, MAE and RMSE may not accurately reflect the perfor
mances of the STGCN models for identifying the flooded road segments. 
Model performance evaluations with focusing on the prediction of 
flooded road segments were conducted in step 2. 

In step 2, we focused on the predictions of flooded road segments and 
calculated the precision and recall for our proposed STGCN models. The 
results were illustrated in Table 2. According to Table 2, for the pre
dictions of road status at 2:00 am and 4:00 am, Model 2 has demon
strated higher values for precision and recall, which means Model 2 
outperformed Model 1 and Model 3. This result was consistent with that 
for traffic speed predictions in Table 1. Specifically, for the precision of 
Model 2 at 2:00 am and 4:00 am, the precision values equaled to 1.000, 
which meant there was no incorrect prediction of the flooded road 
segments and all the predictions of flooded road segments were correct. 
The recall values at 2:00 am, 4:00 am, and 6:00 am are not equal to 1.0. 
This result demonstrates that there are some flooded road segments 
which are not correctly captured by the Model 2. 

Fig. 4 illustrated the true positive, false negative and false negative 
for the road segments from the predictions by Model 2. The light blue 
nodes represented the normal road segments. As the precision values at 
2:00 am, 4:00 am, and 6:00 am were equal or almost equal to 1.00, there 
are almost no road segments with incorrect predictions as flooded. 
Accordingly, there is no road segment with false negative result (i.e., red 
nodes) in Fig. 4. Also, road segments with true positive results (green 
nodes in Fig. 4) reflected the correctly predicted flooded road segments. 
The recall values ranged from 0.98 to 0.99, which indicated that around 
2% of flooded road segments are predicted as not flooded by Model 2 

(yellow nodes in Fig. 4). 
In Fig. 4, we can see that road segments with false negative (yellow 

nodes) are mainly distributed to the east of Harris County (cluster 5 in 
Fig. 3) at 2:00 am, and that at 4:00 am and 6:00 am are mainly located in 
the northeast (cluster 4 in Fig. 3) and north (cluster 1 in Fig. 3), 
respectively. In addition, from 4:00 am to 6:00 am, the number of road 
segments with true positive results (green nodes) has decreased in the 
east of Harris County, which could indicate that flood recession 
happening in that area. Thus, with the near-future road status pre
dictions obtained the STGCN models, emergency management agencies 
and crisis response managers could anticipate which areas could lose 
access and inform residents to avoid roads with potential inundation. 

3.3. Model adjustment 

To examine the performance of the STGCN models in terms of road 
network flood status predictions, this section predicts the road status for 
the remaining three days (i.e., 72 h) from September 2, 2017 to 
September 4, 2017. The predicted road status is compared with the 
observed status from the IRINX dataset to compute the precision and 
recall at 4-h intervals for the three STGCN models. The results are pre
sented in Fig. 5. 

In the left part of Fig. 5, precision curves for the three STGCN models 
have shown the similar trends. Variances in precisions for these models 
presented relative stability in the first 48 h, while a significant decrease 
appeared at 52-h point. This is reasonable as the first 48-h traffic data (i. 
e., since 11:59:59 pm on September 1, 2017) were more dependent on 
our training dataset than the traffic data at the 52-h point. The varying 
dependence reflects the temporal features of the traffic data so that the 
closer to the timeline of training dataset (i.e., 11:59:59 pm on September 
1, 2017), the future traffic condictiones will be more dependent on the 
training dataset. This phenomenon indicated that all these three STGCN 
models have demonstrated certain stabilities in terms of precisions for 
road segment statuses predictions in the 48 h. Also, the precision values 
for these models are very close in the 48 h. However, precisions of the 
STGCN models are not stable after 48 h and their values have seen 
significant variances across the three models. Hence, the results 
demonstrate that the three STGCN models were reliable tools for 
correctly identifying flooded road segments with higher precisions (i.e., 
>98%) in 48 h, while their performances were not stable after 48 h. 

In the right part of Fig. 5, recall curves also show similar trend for the 
three STGCN models. For Model 1 and Model 2, their recall curves 
indicate relative stability across the 72 h and show only one slight 
decrease at 52-h point. The recall curve of Model 3 only presents sta
bility from 16-h point to 48-h point and shows a notable decrease at 56-h 
point. Also, we can clearly see the better performance of Model 1 and 
Model 2 than Model 3 in terms of their recall values. This situation re
veals that Model 1 and Model 2 had less incorrect predictions of not 
flooded road segments than Model 3. Thus, we conclude that Model 1 
and Model 2 had better performance than Model 3 as they had better 
stability and less incorrect predictions of flooded road segments as not 
flooded. 

Juxtaposing both figures in Fig. 5, we find that the selection of proper 
STGCN models for identifying flooded road segments needed to consider 
both model stability and their precisions and recalls. The performance of 
the models has shown sharp drops of stability in both precision and 
recall at 52-h step, and significant variances in precisions have appeared 
after 48-h time step. This phenomenon indicated that all these three 
STGCN models have demonstrated certain stabilities in terms of pre
cisions for road segment statuses predictions in the 48 h, and their 
performances will pose more uncertainty and less reliability after 48 h. 
Considering the temporal features of traffic data, this situation can be 
expected as the traffic data at 52-h point is less dependent on the 
training dataset than the traffic data in the 48 h from 11:59:59 pm on 
September 1, 2017. The model performance stability within 48 h could 
also be caused by the long duration of flood recession on the road 

Table 1 
Performance comparison of three STGCN models for traffic speed prediction.  

STGCN 
models 

MAE RMSE 

2:00 am 4:00 am 6:00 am 2:00 am 4:00 am 6:00 am 

Model 1 0.00238 0.00236 0.00409 0.04881 0.04853 0.06397 
Model 2 0.00211 0.00220 0.00277 0.04598 0.04690 0.05263 
Model 3 0.00272 0.00287 0.00344 0.05220 0.05358 0.05866 
Fan et al. 

(2020) 
– – – – 0.020* –  

* This value was based on the grid analysis of road network. Each gird refers to 
a square of 400-m length and includes many road segments. 

Table 2 
Performance comparison of three STGCN models for road status prediction.  

STGCN 
models 

Precision Recall 

2:00 
am 

4:00 
am 

6:00 
am 

2:00 
am 

4:00 
am 

6:00 
am 

Model 1 1.000 1.000 0.998 0.987 0.987 0.986 
Model 2 1.000 1.000 0.998 0.991 0.989 0.982 
Model 3 1.000 1.000 0.997 0.929 0.923 0.919  
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