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The objective of this study is to predict the near-future flooding status of road segments based on their own and
adjacent road segments' current status through the use of deep learning framework on fine-grained traffic data.
Predictive flood monitoring for situational awareness of road network status plays a critical role to support crisis
response activities such as evaluation of the loss of access to hospitals and shelters. Existing studies related to
near-future prediction of road network flooding status at road segment level are missing. Using fine-grained
traffic speed data related to road sections, this study designed and implemented three spatio-temporal graph
convolutional network (STGCN) models to predict road network status during flood events at the road segment
level in the context of the 2017 hurricane Harvey in Harris County (Texas, USA). Model 1 consists of two spatio-
temporal blocks considering the adjacency and distance between road segments, while model 2 contains an
additional elevation block to account for elevation difference between road segments. Model 3 includes three
blocks for considering the adjacency and the product of distance and elevation difference between road seg-
ments. The analysis tested the STGCN models and evaluated their prediction performance. Our results indicated
that model 1 and model 2 have reliable and accurate performance for predicting road network flooding status in
near future (e.g., 2-4 h) with model precision and recall values larger than 98% and 96%, respectively. With
reliable road network status predictions in floods, the proposed model can benefit affected communities to avoid
flooded roads and the emergency management agencies to implement evacuation and relief resource delivery
plans

& Ren, 2019). Additionally, road network failures have been identified
as one of the predominant causes of deaths in urban regions during

1. Introduction

Road networks act as the backbone of modern cities to enable the
mobility of goods, information and people (Dong, Yu, Farahmand, &
Mostafavi, 2020a; Pregnolato, Ford, Wilkinson, & Dawson, 2017). Road
network failures particularly during disasters not only drastically reduce
affected communities' access to essential services such as hospitals and
shelters (Dong, Esmalian, Farahmand, & Mostafavi, 2020; Yuan, Liu,
Mao, & Li, 2021), but also brings increasing burdens to the imple-
mentation of search and rescue strategies by emergency management
agencies (Helderop & Grubesic, 2019). Flood impacts on road networks
further cause disruptions in industrial productions, logistics and busi-
nesses (Jenelius, Petersen, & Mattsson, 2006), through both direct im-
pacts (e.g., physical damages to road segments) and indirect impacts (e.
g., congestions in traffic flow) (Brown & Dawson, 2016; Zhang, Cheng,

floods, as vehicles were driven into flooded road segments (Drobot,
Benight, & Gruntfest, 2007). The ability to have foresights regarding
flooding status of road network in the hours to come is critical for not
only the affected communities to avoid flooded roads and reduce losses
but also the emergency management agencies to understand which
communities have lost access to any essential facilities such as hospitals
and groceries (Yuan, Liu, et al., 2021). The capability for predicting the
near-future inundation of roads is an essential part of the predictive
flood monitoring for situational awareness, which is defined as the
capability to have foresights about the near-future (in two to six hours)
flooding status based on the predictions with current flooding status.
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1.1. General flood risk assessment

Existing regional flood risk assessment approaches mainly employ
hydraulic and hydrologic models (Versini, Gaume, & Andrieu, 2010).
Using hydraulic simulation tools, a number of studies have developed
systems to predict road network status during floods (Chang, Chung,
Yang, Hsu, & Wu, 2018). Versini et al. (2010) developed a road inun-
dation warning system (RIWS) to assess flooding risk of the road
network. Based on the RIWS proposed by Versini et al. (2010), Naulin,
Payrastre, and Gaume (2013) have developed a distributed hydro-
meteorological forecasting approach to detect road inundation risks.
Yin, Yu, Yin, Liu, & He, 2016 integrated a hydrodynamic model called
FloodMap-Hydrolnundation2D for simulating overland flow and flood
inundations on road network. With simulated flood scenarios, the study
proposed and employed a new algorithm and proxy to evaluate the flood
impacts on road network. Wang, Yang, Stanley, and Gao (2019)
designed a failure propagation model to explore how local floods caused
large-scale disruption failures in the road network, where the flood
scenarios were simulated by the CaMa-Flood global river flood model.
However, the hydraulic and hydrologic models in these studies are
mainly useful for preparedness and hazard mitigation stages in the flood
risk assessment (Versini et al., 2010), while predictive flood monitoring
for situational awareness (during response stage) requires the predictive
capability to enhance the understanding of the near-future (in two to six
hours) flooding status of road network based on their own inundation
status and the inundation status of their adjacent roads.

1.2. Flood monitoring for situational awareness

Flood monitoring for situational awareness refers to the real-time or
near real-time monitoring of flooding status (e.g., Yuan, Liu, et al.,
2021). The existing flood monitoring systems use physical sensors to
collect data regarding water elevation in channels and rivers. However,
the number of physical sensors is limited and cannot provide full
observability of the entire regions. In addition, the physical sensors do
not provide insights regarding inundation status of roads. To bridge this
gap, some studies have used crowdsourcing and social media data for
monitoring of flooding status on the road network (Blumberg, Georgas,
Yin, Herrington, & Orton, 2015; Fan & Mostafavi, 2019). Schnebele,
Cervone, and Waters (2014) employed the crowdsourced photos and
volunteered geographic data to monitor road flooding status through a
geostatistical interpolation method in Hurricane Sandy. Blumberg et al.
(2015) utilized hundreds of photos related with Hurricane Sandy from
volunteers to simulate the flood inundations in Hoboken and Jersey City
(USA). Yin, Yu, and Wilby (2016) used the crowdsourced data to vali-
date their simulated flood scenarios and the associated impacts on land
subsidence in Shanghai China. In addition, recent studies have used
social media data to capture road flood status. Chen, Wang, and Ji
(2020) employed Twitter data to evaluate flood impacts on highways
during Hurricane Harvey. Yuan, Liu, et al. (2021) applied Twitter data
to assess road network function losses in Hurricane Florence. Both of
these studies have utilized the highway/road term/name lexicons to
identify the related social media data. Chen et al.'s study focused on 10
highways, while floods impacts on low level roads were not investi-
gated. Yuan et al.” study has identified 13 flood impacted roads in
Wilmington North Carolina. Most road segments' status cannot be
comprehensively monitored with social media data (e.g., Yuan, Liu,
et al., 2021). These studies based on crowdsourcing and social media
data, however, are mainly used for the capture of current or past (a few
hours ago) flooding status of road network and cannot provide pre-
dictions of the near-future flooding status of road network (i.e., whether
a certain road segment would be inundated given the its current inun-
dation status and the inundation status of other roads).
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1.3. Point of departure

The objective of this research is to advance predictive flood moni-
toring for situational awareness of road network status through the use
of spatio-temporal graphic convolutional networks (STGCN) models
with high-resolution traffic data. The proposed STGCN models aim to
make predictions of road segments flooding status based on their own
and adjacent road segments' current flooding status. The number of
studies focusing on predictive flood monitoring of road networks are
rather limited. Among the few studies available in the exiting literature,
Fan, Jiang, and Mostafavi (2020) proposed a contagion model for flood
propagation and recession in the road network of Harris County (Texas,
USA). The study utilized high-resolution traffic data to infer the inun-
dation status of road segments (road segments with no traffic speed were
shown to be inundated). Hence, traffic speed data during floods can be a
reliable indicator for road network status during floods and using
models for traffic flow predictions can be adjusted to derive foresights
about road network flooding status.

Yu, Yin, and Zhu (2018) have adjusted the traditional convolutional
models to graph-structured data (non-Euclid domain) for predicting
traffic congestions at specific road segment level with considering the
road network topology (i.e., spatial road network structure). Inspired by
Yu et al. (2018), this study implements the STGCN models for predicting
the near-future road network flooding status. To resolve the limitations
in the assumptions of undirected graph structure in Yu et al. (2018), we
introduce the elevation difference as an adjacency category to capture
the spatial features of the road network. The implementation of eleva-
tion difference is consistent with flood propagation mechanism in the
road network, as floods would not propagate from road segments at
lower elevations to their adjacent road segments at higher elevations.
This consideration enables defining the direction of graph structures for
our road network. In this study, three architectures are designed for the
STGCN models, which are utilized for predicting the near-future flood-
ing status of the road network at the road segment level. Using the road
network of Harris County (Texas, USA) in the context of the 2017
Hurricane Harvey flooding, we validate our proposed STGCN models.

The remainder of the paper is organized as follows. Section 2 de-
scribes the methods and materials for the design of STGCN models and
how to capture the spatio-temporal features of traffic condition data.
Section 3 provides the road network status prediction results and the
performance of the STGCN models. Section 4 discusses the contributions
and limitations of research findings and concludes this paper.

2. Materials and methods
2.1. Traffic condition prediction model

Road condition prediction (such as traffic prediction) is a time-series
prediction problem, where we can make forecasting of the most prob-
able traffic condition variables such as speed and traffic flow in the
future S time steps with previous N traffic condition observations. The
model was represented by Eq. (1).

’
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where v, € R is an observation vector of speed for M road segments
at time step t and each vector element represents a historical speed for a
road segment; v/ represents the predicted speed vector with highest
probability at time step .

Zhang et al. (2019) has classified these methods into two categories:
model-driven and data-driven. Model-driven methods depend heavily
on prior knowledge of the urban environment (Abadi, Rajabioun, &
loannou, 2015) and the corresponding simulation systems are not easily
generalized to other environments (Manley, Cheng, Penn, & Emmonds,
2014). Data-driven approaches become more popular with the
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increasing availability of urban traffic data. This category generally in-
cludes two parametric and nonparametric approaches (Zhang et al.,
2019). The parametric approaches were mainly applied for predicting
short-term traffic conditions in small road networks (e.g., Adeli & Jiang,
2008; Min, Hu, Chen, Zhang, & Zhang, 2009), and most of them suffer
from large computation load when implemented in large road networks.
Nonparametric approaches study the relationship between the inputs
and outputs to predict traffic conditions and commonly used models
include artificial neural networks (Boto-Giralda et al., 2010) and support
vector regression (Haworth, Shawe-Taylor, Cheng, & Wang, 2014).
These commonly used models have limited prediction accuracy due to
their shallow architectures while traffic conditions have characters
including complex spatial dependence and nonlinear temporal dynamics
(Lv, Duan, Kang, Li, & Wang, 2015).

In addition to traditional models of nonparametric approaches, deep
learning models have attracted increasing attention for traffic condition
predictions. Lv et al. (2015) employed a deep learning model for short-
term traffic flow prediction and found their model presented higher
accuracy than other standard machine learning models. However, road
network's physical characters were not captured in their deep learning
model. Considering both temporal and spatial characters of traffic
conditions, Zhang, Zheng, Qi, Li, and Yi (2016) utilized convolution
neural network (CNN) to establish the deep learning model for traffic
prediction. Thereafter, various studies integrated CNN with the recur-
rent neural network (RNN) or long-short-term memory (LSTM) for
spatio-temporal traffic condition predictions (Lu et al., 2020; Polson &
Sokolov, 2017; Yang, Dillon, & Chen, 2016; Yu, Li, Shahabi, Demi-
ryurek, & Liu, 2017). As CNNs only apply to a Euclid domain, all the
mentioned deep learning models performed their predictions of traffic
conditions at grid level, where road networks were divided into a set of
adjacent grids. Traffic conditions of specific road segments were not
available. As road segment status were defined according to their traffic
conditions during floods, these deep learning methods cannot be used
for predictions of status of road segments (e.g., traffic condition). To
resolve the limitations of the CNNs, recent studies have adjusted the
traditional convolutional models to graph-structured data (non-Euclid
domain) for traffic condition predictions (Defferrard, Bresson, & Van-
dergheynst, 2016). There are two main approaches to adjust the tradi-
tional convolutional filters to graph-structured data: extension of the
convolution's spatial definition (Niepert, Ahmed, & Kutzkov, 2016), and
operation with graph Fourier transformation in spectral domain (Def-
ferrard et al., 2016). The former applies to both directed and undirected
graphs, while it has limitations in terms of the selected neighbor quan-
tity (Zhang et al., 2019). The later suits undirected graphs and has no
limitations in terms of the number of selected neighbors. Yu et al. (2018)
have implemented the second approach for traffic speed predictions in
multi-time steps.

Inspired by Yu et al. (2018), this study modeled road network with
traffic condition (i.e., traffic speed) as a graph structure with concen-
tration on structured traffic time series. In the graph network, each
historical traffic speed record v; (nodes) is connected by pairwise
connection, and edges with weights Wj; represent the connection status

&=
N

Fig. 1. Graph-structured traffic speed data (adjusted from Yu et al. (2018)).

Computers, Environment and Urban Systems 97 (2022) 101870

(i.e., spatial features of road network) between road segments, which
was illustrated in Fig. 1. In Yu et al. (2018), Wj; refers to an element of
weight matrix, which was calculated with the adjacency matrix. This
study introduces three adjacency matrix categories. The first adjacency
matrix category was computed with Eq. (2), and was further used for
calculating the first weight matrix for further graph convolutions (Sec-
tion 2.2). In this study, we use the central points of road segments to
represent their locations as nodes. This adjacency matrix can only cap-
ture the 2-D distance characters between road segments, while predic-
tion of road inundation conditions in floods needs to consider the flood
character as flood water can only flow from road segments at higher-
elevation places to that at lower-elevation places. Therefore, our
approach introduces elevation difference to build the second adjacency
matrix, which can be calculated by Eq. (3). In Eq. (3), with road seg-
ments' locations (central points), we use the United States Geological
Survey 3D Elevation program (Mobley et al., 2021) to extract their
elevation data. The second adjacency matrix category is applied to
computing the second weight matrix. Integrating both distance and
elevation difference, we propose the third adjacency matrix as presented
in Eq. (4), which creates the third weight matrix.

N
distances, 5
i distance?.

€ " itjande T >03 )
0

First_Adjacency; =

+o0, if elevation; < 0 and i # j

2
elevation?,
i

Second_Adjacency; = § o~ if elevation; > 0 and i # j 3
0if i =j
Third_Adjacency; = First_Adjacency; x Second_Adjacency, 4

Accordingly, the road graph can be represented by &, = (77, &, W),
where 77, refers to the historical traffic speed of M road segments at
time step t and is represented by a set of nodes, & reflects the connection
status between road segments and a set of edges, and W can be calcu-
lated with the three adjacency matrix categories as defined in Eq. (2-4).
As a result, each historical traffic speed record v, refers to a graph signal
of road graph 7,. With the defined road graph, we implemented the
convolutional neural network (CNN) and deigned the models with the
spatio-temporal graphic convolutional networks to predict road traffic
conditions, and subsequently road status in floods, which are further
discussed in the following sections.

2.2. Description of model architectures

We designed three models with the spatio-temporal graphic con-
volutional networks (STGCN) modified from the original STGCN model
proposed by Yu et al. (2018). The network architectures for these three
models are illustrated in Fig. 2.

Model 1 consists of two spatio-temporal blocks (ST-Conv block) and
a fully connected output layer in the end. Each ST-Conv block consists of
two temporal gated convolution layers at the front and end, and one
spatial graph convolution layer built with the first adjacency matrix
category (Eq. (2)) in the middle. With Model 1, two ST-Conv blocks
process the road traffic data input v;_n1, ..., V¢ (i.e., vehicle speed) to
explore the spatial and temporal dependencies. The output layer cap-
tures the comprehensive features from the processed information to
predict the future road traffic condition v and inundation status.

Model 2 includes an elevation-temporal blocks (ET-Conv block), two
spatio-temporal blocks (ST-Conv block), and a fully connected output
layer in the end. The ST-Conv block possesses the same layers as those in
the Model 1. Each ET-Conv block contains two temporal gated convo-
lution layers at the front and end, and one elevation graph convolution
layer built with the second adjacency matrix category (Eq. (3)) in the
middle. Each ET-Conv block processes the input feature data as ST-Conv
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Fig. 2. Architectures of spatio-temporal graph convolutional network models.

block does in Model 1, and so does the output layer.

Model 3 employs three spatio-elevation-temporal blocks (SET-Conv
block) and an output layer. Each SET-Conv block consists of two tem-
poral gated convolution layers at the front and end, and one spatial-
elevation graph convolution layer built with the third adjacency ma-
trix category (Eq. (4)) in the middle. Similar to the EST-Conv block in
Model 1, each SET-Conv block processes the input data to investigate the
spatial-elevation and temporal dependencies, and the output layer
makes the prediction of future road traffic conditions v' and inundation
status.

2.3. Graph CNNs s for extracting spatial and elevation features

With the defined road graphs, this study employed the graph CNNs to
extract the spatial patterns and features. As defined by Yu et al. (2018),
this research employed * » to represent the graph convolution operator
to multiply a signal .- € ”M with a kernel © as presented in Eq. (5).
Through the involvement of three W categories computed with the three
adjacency matrix categories as defined in Eq. (2-4), spatial patterns and
features including distance, elevation difference and the product of
distance and elevation difference between road segments were captured
by the graph CNNs.

O* 0 =0(L)s =0 (UAU")» = USA)U" » (5)

where L = Iy — D WD 2 = UAUT € RM*M represents the normalized
graph Laplacian matrix; Iy is an identity matrix; D was the diagonal
degree matrix with Dy = > ;Wj; U € RM*M is the Fourier basis and
referred to the matrix of eigenvectors for the normalized graph Lap-
lacian L; A € RMM is denoted as the diagonal matrix of eigenvalues of
the normalized graph Laplacian L; ©(A) also represents a diagonal
matrix.

To reduce the computation load of kernel © with graph Fourier
transform, this step utilizes the Chebyshev polynomials approximation
method (Hammond, Vandergheynst, & Gribonval, 2011). Accordingly,
the graph convolution in Eq. (5) can be adjusted as Eq. (6), where the
computation cost can be reduced (Defferrard et al., 2016).

O%yr=0(L)r~ z/:)l O, T (Z)J (6)
where L = 2L /Amax — In was the scaled Laplacian matrix of L; Ty (Z) €
RM*M peferred to the Chebyshev polynomial of order k evaluated at L; K
denotes the kernel size of graph convolution; 6 € BX refers to the poly-
nomial coefficient vector.

With the approximation of kernel ©, we generate the graph convo-
lutions to capture the spatial and elevation features. Our defined graph
convolution operator *, was based on 1-D signal .- € R, while it can
also be applied to multi-dimensional tensors. For a signal within Cj,
channel, we have a signal matrix X € RY*C and the 2D graph convo-
lution was generalized by Eq. (7), where 7/; € RM,

Cin
V= 0i(L)ri,1 <j < Cou ™
i=1

where Cj; and C,y, are the input and output sizes respectively for their
corresponding feature maps; the Chebyshev coefficients ©; ; € RX
applied to all the Cj; x Cyy vectors. Accordingly, the graph convolutions
for 2-D variables are illustrated by ©* » X, where © € RI<CinCaut_1p the
traffic prediction and road inundation model, the input of traffic speed
contain N time steps and each time step t has historical traffic speed v;.
Each v, is treated as a M x Cj;, matrix, where M refers to the number of
road segments while C;, denotes the number of road condition features.
In our case, we only consider traffic speed as road condition feature so
that Cy, = 1. As we had N time steps, our input signal 2~ € RNV*M*Cin was
a 3-D feature, and the updated graph convolution was generalized in Eq.

(8).
o7 =) 7 ®)

As Fig. 2 (lower right part) shows, there is a 1-D causal convolution
(kernel width as K;) and a gated linear units (GLU) as a non-linearity in
the temporal layer. For the gated CNNs to capture the temporal features,
we have used the same method as described in Yu et al. (2018), which
were not introduced here.
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2.4. Description of convolutional blocks

To integrate both spatial and temporal features, we established the
elevation-temporal convolutional block (ET-Conv block), spatio-
temporal convolutional block (ST-Conv block), elevation-spatio-
temporal blocks (EST-Conv block), and spatio-elevation-temporal
blocks (SET-Conv block). The structures of these blocks are illustrated
in Fig. 2 (left of lower). Specifically, in the ET-Conv block, the elevation
layer is in the middle of two temporal layers to realize the quick prop-
agation of elevation state by temporal convolutions within the graph
convolution. Within each ET-Conv block, we implemented the layer
normalization to prevent overfitting issue. Accordingly, the structures of
ST-Conv and SET-Conv blocks are similar as those of the ET-Conv block,
where quick propagations of spatial and spatial-elevation states are
achieved respectively, and the layer normalization strategy is applied to
both of them. Compared with the structure of the SET-Conv blocks, the
EST-Conv block has four layers, and the spatial and elevation layers are
implemented separately. Similarly, the elevation and spatial layers are
in the middle to connect the two temporal layers, where rapid propa-
gations of elevation and spatial states are achieved, and the layer
normalization is utilized.

As mentioned in Section 2.3, both input and output of these four
convolution blocks are 3-D tensors. With the input Ve RNVMxC (.
channel 1) of block I, we computed the output v/ € R® ~2(K XMl
with Eq. (9).

Vi =T %> ReLU (@l*:; (1",’,,)*,7V’) ) )

where Fflp and F%aw refer to the upper and lower kernel, respectively, in
the block I * denotes gated convolution operator; @' is the graph
convolution kernel in the block [; ReLU(e) represents the rectified linear
units function (Li & Yuan, 2017).

Across the three models (upper of Fig. 2), an additional temporal
layer is assigned after two EST-Conv blocks in Model 1, so are the
assignment after one ET-Conv block and two ST-Conv blocks in Model 2,
and the attachment after three SET-Conv blocks in Model 3. This tem-
poral layer projects the outputs of the last EST-Conv block in Model 1,
and that of the last ST-Conv block in Model 2 and the last SET-Conv
block in Model 3. Thereafter, we utilize the final outputs FO € RM*¢
from these three models, respectively, with a linear transformation
across the ¢ channels to make predictions of traffic speed for the M road
segments (Eq. (10)).

vV =FOw+b (10)

where w € R° referred to a weight vector and b was the bias. The pre-
dicted speed will be used as proxy for the inundation status of roads as
we will explain the following sections.

2.5. Model evaluation

We implemented a two-step evaluation for the proposed STGCN
models. For the model evaluations, we introduced a binary value to
assign the road segment statuses. Fan et al. (2020) have found that the
null average speed appeared only in the flood period (i.e., Hurricane
Harvey) within the IRINX traffic dataset. In this study, we denoted the
road segments with null average speed as flood inundated roads in our
training dataset. However, the implementation of the STGCN models
requires the features from the training dataset (i.e., average speed)
without null values (Yu et al., 2018). To resolve this issue, we utilized
the feature scaling function (sklearn library in Python) to normalize our
training dataset. Accordingly, there is no null average speed from the
predictions of the STGCN models so that we cannot use null average
speed to validate the prediction results (i.e., road segment flooding in-
undations). Hence, we defined a traffic speed threshold through the
comparison of the average speed of road segments and their
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corresponding historical average speed. If the ratio of observed/pre-
dicted traffic speed and historical traffic speed is below such threshold,
we denoted the observed/predicted road segment status as flooded
(Pregnolato et al., 2017). Otherwise, road segment status is assigned as
not flooded (i.e., 0). In the first step, we compared the predicted road
segments status with their corresponding observed status and employed
two metrics including the mean absolute error (MAE) and root mean
square error (RMSE) to evaluate the performances of these models. The
computations of the MAE and RMSE until time step t were conducted
using Eq. (11—-12). Since most road segments in Harris County were not
flooded in Hurricane Harvey (Fig. 4), MAE and RMSE may not fully
reflect the model performances for flooded road status predictions.
Therefore, we implemented the second-step model performance evalu-
ation with concentration on the predictions of flooded road segments. In
the second step, we employed the precision and recall to evaluate the
performances of our three models for identifying the flooded road seg-
ments by Eq. (13-14).

M ’
Z|rsH - rs,,i{

MAE, = % a1

12

where rs;_{ referred to the predicted status for road segment i at time
step t; rs;_; was the observed status for road segment i at time step t; S
was the number of time steps.

true positive

Precision, = — — (13)
true positive + false positive

true positive

Recall, = 14

true positive + false negative

where true positive denotes the situation where the models correctly
predicted the flooded segments; false positive refers to the outcome
where the models incorrectly predicted the flooded road segments,
while false negative is for instanced that where the models incorrectly
predicted the not flooded road segments.

3. Results
3.1. Data description of study context

To illustrate the implementation and performance of the proposed
graph convolutional networks for road status prediction in floods, we
employed high resolution data related to traffic conditions of the roads
in Harris County, Texas, during Hurricane Harvey in 2017. Hurricane
Harvey made landfall in Harris County on August 26 and caused severe
floods. The floods continued from August 27, 2017 to September 4,
2017. Accordingly, we defined our study timeline from August 26, 2017
to September 4, 2017, where we collected the traffic condition data for
19,712 road segments in Harris County from the private company INRIX
which collects location-based data from both sensors and vehicle. The
INRIX traffic data includes two parts. The first part contains the road
segment IDs, their average traffic speed at 5-min interval and corre-
sponding historical average traffic speed. The traffic data from INRIX
covers all available road roads—from interstates to intersections, and
from country roads to neighborhoods. In the second part of the IRINX
data, each road segment's identification information such as name,
segment ID, direction, geographic locations defined as its head and end
coordinates, intersection or not, and length, is also available from the
INRIX data set. By matching the road segments IDs in parts one and two
in the IRINX traffic dataset, we can get spatio-temporal traffic data of
each road segment. In this study, we use the traffic data from August 27,
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2017 to September 1, 2017 as our training dataset, and that at 2:00 am,
4:00 am, and 6:00 am on September 2, 2017 as our testing dataset.
Flooded road segments due to Hurricane Harvey can be identified by
detecting the road segments with NULL values for their average traffic
speed. As the STGCN models cannot accept null average speed as inputs,
we normalized the null average speed for our training dataset with
feature scaling function. For the predictions from the STGCN models, we
calculated the ratio between predicted traffic average speed and their

average speed 0
historical average speed x 100%, and set the

threshold as 10% to denote road segments experiencing very low speed.
If the ratio is lower than 10%, the road segments could be flooded (still
passible). For road segments with predicted average speed <10% of
their historical average speed, we found that >95% of them actually
have NULL values from the from IRINX traffic data. Hence, the 10%
threshold can be effectively used to identify flood status of road seg-
ments. Also, the maximum daytime vehicle speed allowed is 70 miles/h
(i.e.,, 112.7 km/h) in Harris County, Texas (City of Houston, 2021).
Accordingly, maximum average speed for our defined threshold is 11.3
km/h (10% of 112.7 km/h). Using the vehicle speed -flood water depth
function in Pregnolato et al. (2017), we computed the water depth for
11.3 km/h is 30.7 cm, which can be sufficient to stall a commonly used
cars (excluding high water trucks), which also justifies using 10% as a
threshold to denote road flooding inundation status.

Considering the computation costs when using the graph

historical average speed with
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convolutional networks, we divided the road network of Harris County
into five clusters according to the distribution of channels to the wa-
tersheds (Dong, Yu, Farahmand, & Mostafavi, 2020c). The distribution
of the five clusters for the road segments was illustrated in Fig. 3. We
trained our proposed models with traffic condition data from August 26,
2017 to September 1, 2017 (i.e., seven days) in each road cluster, and
evaluated their performances by aggregating all the predicted results in
the whole county.

3.2. Prediction results

With our defined traffic speed threshold, this study denoted the road
status with our predicted and observed traffic speed respectively. As
indicated in Section 2.5, we first used the mean absolute error (MAE)
and root mean square error (RMSE) to evaluate the performances of our
proposed STGCN models for the prediction of road segment statuses
including flooded and not flooded. Considering the timeline of our
training dataset is from 00:00:00 am on August 27, 2017 to 11:59:59 pm
on September 1, 2017, this study made the predictions of status for each
road segment at 2:00 am, 4:00 am, and 6:00 am on September 2, 2017 (i.
e., two to six hours after 11:59:59 pm on September 1, 2017). Using the
testing dataset at 2:00 am, 4:00 am, and 6:00 am on September 2, 2017,
we computed the corresponding MAE and RMSE. The MAE and RMSE
for these predictions with the three models are presented in Table 1.

The RMSE of the three STGCN models for the road status predictions

Clusters of watershed regions
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B Cluster 2
.~ |Cluster 3

B Cluster 4
| Cluster 5

Newov ille

Souces Esri HERE. Garmin USGS, Intermap INCREMENT P NAGEM E2riUscda MEHI€si China [Hong
Kong). Esri Kores (Esri (Thaland) NGCC. © OpenStreetMap cont uicrs. and 17e GIS User Communty

w\. Texas City

Fig. 3. Distribution of five clusters for the road segments in Harris County.



F. Yuan et al.

Table 1

Performance comparison of three STGCN models for traffic speed prediction.
STGCN MAE RMSE
models

2:00 am 4:00 am 6:00 am 2:00 am 4:00 am 6:00 am
Model 1 0.00238 0.00236 0.00409 0.04881 0.04853 0.06397
Model 2 0.00211 0.00220 0.00277 0.04598 0.04690 0.05263
Model 3 0.00272 0.00287 0.00344 0.05220 0.05358 0.05866
Fan et al. - - - - 0.020* -
(2020)

" This value was based on the grid analysis of road network. Each gird refers to
a square of 400-m length and includes many road segments.

at 4:00 am (i.e., 4-h prediction) is larger than that in Fan et al. (2020).
However, their predictions of road statuses were at grid level. Each road
grid is a square of 400-m length and contained many road segments.
When one road segment is flooded, the grid with this road segment is
denoted as flooded. However, our predictions are for individual road
segments and the prediction accuracy is better than that in Fan et al.
(2020). Specifically, Table 1 shows there were no significant variances
in both MAE and RMSE from 2:00 am to 4:00 am for all the three STGCN
models, while we can see the notable increases in these two metrics from
4:00 am to 6:00 am, particularly for Model 1 and Model 3. In addition,
the values of both MAE and RMSE for Model 2 were less than their
corresponding values for Model 2 and Model 3, which indicates that
Model 2 had higher prediction accuracy. Hence, Model 2 performed
more stable than the other two models for the general road segment
statuses predictions across the three time points on September 2, 2017.
As most road segments were not flooded during Hurricane Harvey in
Harris County, MAE and RMSE may not accurately reflect the perfor-
mances of the STGCN models for identifying the flooded road segments.
Model performance evaluations with focusing on the prediction of
flooded road segments were conducted in step 2.

In step 2, we focused on the predictions of flooded road segments and
calculated the precision and recall for our proposed STGCN models. The
results were illustrated in Table 2. According to Table 2, for the pre-
dictions of road status at 2:00 am and 4:00 am, Model 2 has demon-
strated higher values for precision and recall, which means Model 2
outperformed Model 1 and Model 3. This result was consistent with that
for traffic speed predictions in Table 1. Specifically, for the precision of
Model 2 at 2:00 am and 4:00 am, the precision values equaled to 1.000,
which meant there was no incorrect prediction of the flooded road
segments and all the predictions of flooded road segments were correct.
The recall values at 2:00 am, 4:00 am, and 6:00 am are not equal to 1.0.
This result demonstrates that there are some flooded road segments
which are not correctly captured by the Model 2.

Fig. 4 illustrated the true positive, false negative and false negative
for the road segments from the predictions by Model 2. The light blue
nodes represented the normal road segments. As the precision values at
2:00 am, 4:00 am, and 6:00 am were equal or almost equal to 1.00, there
are almost no road segments with incorrect predictions as flooded.
Accordingly, there is no road segment with false negative result (i.e., red
nodes) in Fig. 4. Also, road segments with true positive results (green
nodes in Fig. 4) reflected the correctly predicted flooded road segments.
The recall values ranged from 0.98 to 0.99, which indicated that around
2% of flooded road segments are predicted as not flooded by Model 2

Table 2

Performance comparison of three STGCN models for road status prediction.
STGCN Precision Recall

1
models 2:00 4:00 6:00 2:00 4:00 6:00
am am am am am am

Model 1 1.000 1.000 0.998 0.987 0.987 0.986
Model 2 1.000 1.000 0.998 0.991 0.989 0.982
Model 3 1.000 1.000 0.997 0.929 0.923 0.919
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(yellow nodes in Fig. 4).

In Fig. 4, we can see that road segments with false negative (yellow
nodes) are mainly distributed to the east of Harris County (cluster 5 in
Fig. 3) at 2:00 am, and that at 4:00 am and 6:00 am are mainly located in
the northeast (cluster 4 in Fig. 3) and north (cluster 1 in Fig. 3),
respectively. In addition, from 4:00 am to 6:00 am, the number of road
segments with true positive results (green nodes) has decreased in the
east of Harris County, which could indicate that flood recession
happening in that area. Thus, with the near-future road status pre-
dictions obtained the STGCN models, emergency management agencies
and crisis response managers could anticipate which areas could lose
access and inform residents to avoid roads with potential inundation.

3.3. Model adjustment

To examine the performance of the STGCN models in terms of road
network flood status predictions, this section predicts the road status for
the remaining three days (i.e., 72 h) from September 2, 2017 to
September 4, 2017. The predicted road status is compared with the
observed status from the IRINX dataset to compute the precision and
recall at 4-h intervals for the three STGCN models. The results are pre-
sented in Fig. 5.

In the left part of Fig. 5, precision curves for the three STGCN models
have shown the similar trends. Variances in precisions for these models
presented relative stability in the first 48 h, while a significant decrease
appeared at 52-h point. This is reasonable as the first 48-h traffic data (i.
e., since 11:59:59 pm on September 1, 2017) were more dependent on
our training dataset than the traffic data at the 52-h point. The varying
dependence reflects the temporal features of the traffic data so that the
closer to the timeline of training dataset (i.e., 11:59:59 pm on September
1, 2017), the future traffic condictiones will be more dependent on the
training dataset. This phenomenon indicated that all these three STGCN
models have demonstrated certain stabilities in terms of precisions for
road segment statuses predictions in the 48 h. Also, the precision values
for these models are very close in the 48 h. However, precisions of the
STGCN models are not stable after 48 h and their values have seen
significant variances across the three models. Hence, the results
demonstrate that the three STGCN models were reliable tools for
correctly identifying flooded road segments with higher precisions (i.e.,
>98%) in 48 h, while their performances were not stable after 48 h.

In the right part of Fig. 5, recall curves also show similar trend for the
three STGCN models. For Model 1 and Model 2, their recall curves
indicate relative stability across the 72 h and show only one slight
decrease at 52-h point. The recall curve of Model 3 only presents sta-
bility from 16-h point to 48-h point and shows a notable decrease at 56-h
point. Also, we can clearly see the better performance of Model 1 and
Model 2 than Model 3 in terms of their recall values. This situation re-
veals that Model 1 and Model 2 had less incorrect predictions of not
flooded road segments than Model 3. Thus, we conclude that Model 1
and Model 2 had better performance than Model 3 as they had better
stability and less incorrect predictions of flooded road segments as not
flooded.

Juxtaposing both figures in Fig. 5, we find that the selection of proper
STGCN models for identifying flooded road segments needed to consider
both model stability and their precisions and recalls. The performance of
the models has shown sharp drops of stability in both precision and
recall at 52-h step, and significant variances in precisions have appeared
after 48-h time step. This phenomenon indicated that all these three
STGCN models have demonstrated certain stabilities in terms of pre-
cisions for road segment statuses predictions in the 48 h, and their
performances will pose more uncertainty and less reliability after 48 h.
Considering the temporal features of traffic data, this situation can be
expected as the traffic data at 52-h point is less dependent on the
training dataset than the traffic data in the 48 h from 11:59:59 pm on
September 1, 2017. The model performance stability within 48 h could
also be caused by the long duration of flood recession on the road
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Fig. 4. Examples of road status predictions at 2:00 am (4a), 4:00 am (4b)

network. Flood water on the road segments can stay for hours and days,
and flood status of the road segments cannot change quickly within
several hours. However, we cannot quantitatively validate this expla-
nation due to the lack of temporal ground-based truth for road segment
status during Hurricane Harvey. The higher precisions and recalls
ensure less incorrect predictions of flooded road segments and not
flooded road segments, respectively. With similar stability of precisions
(i.e., three STGCN models in 48 h), we needed to select the STGCN
models with higher recalls (i.e., Model 1 and Model 3).

4. Discussions and conclusion

Predictive flood monitoring for situational awareness of road
network can help the affected communities to avoid flooded roads and
the emergency management agencies to identify the communities losing
access to any essential facilities. This study adjusted and tested the
STGCN models to predict road network flooding status at road segment

, and 6:00 am (4c) with the STGCN Model 2 (node represents a road segment).

level based on their own and adjacent road segments' current flooding
status. The inundation status of roads is inferred from high resolution
traffic data. This study considered with flood propagation characters (i.
e., flood water can only propagate from high-elevation places to low-
elevation places) into the STGCN models, where graph and gated
CNNs were applied for capturing spatial features of road network (dis-
tance and elevation differences among road segments) and temporal
features of historical traffic data, respectively. The three STGCN models
were tested on the high-resolution traffic data during Hurricane Harvey
in Harris County. The results show the capability of the models for the
prediction of near-future road network flooding status.

This study employs variation in traffic speed as an indicator of flood
status on road segments and provides a reliable approach for predicting
the near-future (two to six hours to come) road network flooding status
at road segment level. Compared with a very recent study which
employed traffic speed to predict flood propagations in urban road
network at grid level (Fan et al., 2020), the STGCN models can make
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Fig. 4. (continued).

predictions for specific road segments' flooding status with considering
both spatial features of road network and temporal features of traffic
data. Among the three STGCN models, we can see Model 1 and Model 2
have reliable performance for predicting road network status in the
future 48 h (00:00:00 am of September 2, 2017, to 11:59:59 pm of
September 3, 2017) during Hurricane Harvey. Their precisions and re-
calls are larger than 98% and 96% in the first 48 h as we used the binary
variables to define road inundation status based on our threshold. The
results indicate the STGCN models can provide reliable predictions of
road network flooding status in 48 h.

For the implementation of practice, this research resolves the data
limitation issue for near-future predictions of road flood inundation
status. We introduced the high-resolution traffic data as proximity of
road flood inundation status as this dataset could become available in a
short time (e.g., one to two hours) so that we can use them to predict
near-future (i.e., in two to six hours) road flood inundation status. The
affected communities can use the dataset or refer to the predicted road
network flooding status in the future two to six hours to select their
routes to places or other essential services (e.g., hospitals and shelters)
by avoiding the roads with high probability of being inundated by the
flood. As existing studies have shown that driving vehicles through flood
inundated roads is among the first cause of deaths in urban floods
(Drobot et al., 2007; FitzGerald, Du, Jamal, Clark, & Hou, 2010; Jonk-
man & Kelman, 2005), our results can help affected communities to
avoid driving into flood inundated roads and further reduce deaths. On
the other side, the emergency management agencies can implement
such tools for the design of crisis response strategies (e.g., search and
rescue activities). For instance, the emergency management agencies
may have limited high water vehicles and boats to perform relief
resource distribution and rescue so that they need to know which areas
they can use these facilities and which areas they can use regular ve-
hicles. Also, our results can benefit the emergency management agencies
with enhanced situational awareness of communities losing accessibility
to essential facilities such as hospitals. For the communities losing
accessibility to hospitals, the emergency management agencies can use
census data to check if there are mainly elder living in that community
and further provide medical resource and support to them.

This study contributes to the body knowledge related to smart flood
resilience. The increasing availability of big data and advanced de-
velopments in artificial intelligence have called up the concept of smart
flood resilience (Jongman, 2018). Smart flood resilience can be

described as using data, models, and artificial intelligence approaches to
help people better respond and react to floods through enhanced pre-
dictive flood exposure and risk mapping before floods (Dong, Esmalian,
etal., 2020; Dong, Yu, et al., 2020c), automated rapid impact assessment
during floods (Yuan, Li, Liu, Zhai, & Qi, 2021; Yuan & Liu, 2018a; Yuan
& Liu, 2018b; Yuan & Liu, 2019; Yuan & Liu, 2020), infrastructure
failure prediction and monitoring before and during floods (Dong, Yu,
et al., 2020a; Fan et al., 2020), and smart situational awareness in
response and recovery during and after floods (Podesta, Coleman,
Esmalian, Yuan, & Mostafavi, 2021; Yuan, Esmalian, Oztekin, & Mos-
tafavi, 2021; Yuan, Li, & Liu, 2020; Yuan, Li, Zhai, Qi, & Liu, 2020; Yuan
& Liu, 2018c; Zhai, Peng, & Yuan, 2020; Zhang, Yao, Yang, Huang, &
Mostafavi, 2020). Therefore, our research contributes to the infra-
structure failure prediction and monitoring during floods with concen-
trating on road network for augmenting smart flood resilience.

A limitation in this study is the heavy computation cost when using
STGCN models to train our dataset and further make predictions of road
network status during floods. Although Defferrard et al. (2016) have
introduced the Chebyshev polynomials approximation to reduce the
computation complexity, future efforts to reduce the computation load
for applying our proposed STGCN models are still in need. Based on our
current study concentrating on predicting the near-future flooding status
of road network, future research can consider the predictions of con-
gestions within the road network during floods. Lastly, the definitions of
traffic speed threshold to denote road segment status during floods may
vary across regions and flood events. This study used 10% as the
threshold for road inundation indicator after a detailed review of his-
torical traffic data and reported flooded road segments in Harris County
during Hurricane Harvey. However, this threshold may not be generally
applied to other flood events and other study regions. Future imple-
mentations of the STGCN models for road network status predictions in
other regions and flood events should pay attention to the sensitivity of
model outputs to this threshold value. Also, current predictions only
include only two status of road segments (flooded and not flooded),
while predictions of road segments with varying severity levels of flood
inundations could more effectively and efficiently support crisis re-
sponses. Due to lack of ground-based flood impact data such as varying
flood water depth across different areas, our model cannot be validated
with varying thresholds to denote different severity levels. Our future
work will try involving with more different dataset such as precipitation,
topographic and hydraulic features to achieve the predictions of varying
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Fig. 5. Prediction performances of the three STGCN models for road status in floods at 4-h intervals. 5a: precision; 5b: recall. Hour 4 h is 4:00 am on September 2,
2017, while hour 72 h is 0:00 am on Sep 5, 2017.

severity levels of flood impact for the road segments. Another potential approach can be generalized to other flood events and regions with
research direction could be the investigation of the correlation between proper traffic datasets for model training. The model and its predictions
road types (e.g., Interstate Highways, Highways, Major Arterials, Col- can support the affected communities and emergency management
lectors and Local roads) and inundation status after flooding events. agencies' response activities.

Despite the limitation, this study provides a new model to predict
near-future road network flooding status using fine-grained traffic data
from which inundation status of roads could be inferred. This modeling
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