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1. Introduction

In scientific fields ranging from systems biology and systems engineering to social sciences, physical systems and
finance, differential equations are omnipresent and constitute an essential tool to simulate, analyze, predict, and to
ultimately make informed decisions. Due to the wide range of applications, the search for efficient, flexible, and reliable
numerical schemes is still a timely topic despite its long history. Numerical solutions of ordinary differential equations
(ODEs), in particular for initial-value problems (IVPs), are predominantly obtained by a rich variety of finite difference
single/multistep schemes, which lead to both implicit and explicit solvers that are now standard in many programming
languages [1-5]. In contrast, finite element methods for ODEs are much less investigated, despite the works on continuous
and discontinuous Galerkin methods (see [6, Section 2.2] for a brief review) and collocation methods [7]. The same can
be said for delay differential equations (DDEs) as well [8].

Motivation. In this work, we initiate an effort to explore the least-squares finite element method (1sfem) as a viable way
to numerically solve ODEs and DDEs. Before entering into details, we briefly illustrate the strength of the 1sfem using a
simple-looking ODE, which turns out to be challenging for traditional finite difference methods (FDMs) to operate. The
problem of concern here is the following linear IVP

—t
y=y-2" y0)=1 (1)
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Fig. 1. Failure of standard finite difference methods. Left panel: Numerical solutions of y = y — 2e~* with y(0) = 1 using 1sfem solver (black
bold line) and various standard ODE solvers from Matlab’s ODE solver library. The obtained numerical solutions are denoted by y". Right panel: The
point-wise error between the exact solution y,(t) = e~ and the numerical solutions presented in the left panel as obtained from either the 1sfem
or the various Matlab ODE solvers. For all the Matlab’s built-in ODE solvers, the relative and absolute tolerances are set to be RelTol = 108 and
AbsTol = 107%; and the largest allowed step size is MaxStep = 0.1. For 1sfem, we used cubic splines as the basis functions defined on a uniform
mesh of size §t = 0.1.

Note that the exact solution is given by y(t) = e~‘. Remarkably, all Matlab built-in numerical ODE solvers fail on this
example when solution over a relatively long time interval is computed. Whereas, the proposed 1sfem tracks well the
exact solution. In Fig. 1, we present the numerical solutions (left panel) and the corresponding pointwise errors (right
panel) on the interval t € [0, 30] for all these solvers. As can be seen in the left panel, sooner or later, the solutions
from the finite-difference schemes exhibit exponential growth, leading thus to exponentially growing pointwise errors.
In contrast, the maximum error for 1sfem over the whole interval remains below 2 - 107 (see black curve in the right
panel of Fig. 1). It is also worth noting that the setup of the experiment is actually in favor of the built-in solvers, since
we used a uniform mesh size for 1sfem while allowing the build-in Matlab solvers to exhibit smaller or equal step sizes
compared with the mesh size for 1sfem; see the caption of Fig. 1 for further details.

The failure of the FDMs for the above example is actually not surprising. It results from discretization errors which
are amplified exponentially over time since the equation has no stabilizing nonlinear terms to counterbalance the linear
instability. Indeed, assume that at a given time instant s > 0, the true solution y(s) = e~* is perturbed by a small amount
€, that is (s) = e~ 4-¢. Then, by direct calculation using the original equation, one sees that this deviation gets amplified
to eS¢ for all t > s. Since local discretization errors are intrinsic to any FDMs, such deviations are unavoidable.

In contrast to the “localization” nature of FDMs, the aim of an 1lsfem is to find an optimal approximate solution
within a given subspace that minimizes an objective function over the whole time interval of integration (cf. Section 2.1),
hence making such methods much more robust to local discretization errors compared to FDMs. The 1sfem methods are
also flexible in the sense that minor changes are needed when considering different types of dynamical systems, either
governed by ODEs or DDEs and in the contexts of either IVPs or boundary value problems (BVPs), which allows for a
unified numerical implementation for all the cases. In fact, the setup can also handle a broad class of differential algebraic
equations (DAEs) as well, with the associated optimization problems become now constrained optimizations. Moreover,
since the objective function directly controls the discretization error, it can be used as a diagnostic tool for local mesh
adaptivity consideration, a feature crucial for problems involving abrupt local changes or stiffness.

Since their emergence in the early 1950s, finite element methods (FEMs) have become one of the most versatile and
powerful methodologies for the numerical solution of partial differential equations (PDEs). Whereas, for ODEs and DDEs,
the usage of FEMs is much less pursued as mentioned above. Intuitively, this may be related to the facts that the salient
feature of geometrical flexibility of FEMs is dormant in these cases, and that solutions for ODEs and DDEs are oftentimes
smooth, rendering the weak formulation of FEMs less attractive.

However, as already illustrated in Fig. 1, the 1sfem can provide accurate solutions in situations that traditional FDMs
may fail drastically. This is further supported by other examples in Section 4 that the superior performance of the 1sfem
reported in Fig. 1 is not just an exception. These numerical results prompt us to re-evaluate the aforementioned intuition
about the usage of FEMs, at least in the least-squares settings, for ODEs and DDEs.

These investigations are further driven by newly discovered connections between ordinary differential equations and
residual neural networks [9]. Within the field of neural networks where stability is a major concern, recent works are
starting to investigate finite element type solvers [10].

The existing literature on 1sfem is mainly devoted to PDEs; see e.g., [11-14] and references therein. On the theoretic
side, for linear PDE problems, very satisfactory theoretical understandings have already been gained that includes
convergence results and even optimal error estimates [12,14]. Nevertheless, error estimates in the case of nonlinear
PDE problems remain largely open. In contrast, 1sfem for ODEs and DDEs has not received much attention yet, neither
theoretically nor computationally. In this article, we take a first step in establishing 1sfem error analysis for general
nonlinear ODEs, deferring the treatments for DAEs and DDEs to future works.
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Main contributions. In that respect, we consider IVP of nonlinear ODEs for which we establish under suitable conditions
optimal error estimates for 1sfem with piecewise linear elements; see Theorem 3.1. The optimality of the estimate is in
the sense that the error bound established in Theorem 3.1 is of the same order, in terms of the mesh size h, as the finite
element interpolation error recalled in Lemma 3.2. Our main idea centers around an estimate given by Proposition 3.2
associated with an auxiliary system (23). Given an 1sfem solution y" in a finite dimensional subspace X" of the Sobolev
(state) space X = H'(0, T; RY), this latter auxiliary system is obtained by replacing the original nonlinear vector field
F(y) + f(t) in (3) by F(yﬁ(t)) + f(t). Since the latter vector field consists simply of a given time-dependent function for
a given yﬁ, optimal error estimates between the true solution w, and the 1sfem solution wi‘ of the auxiliary system
(23) is well known using the classical Aubin-Nitsche trick [15-17]; see Lemma 3.1 and the estimate given by (25), in
which the dependence on y" are marked via w.[y"] and w"[y"]. However, to establish a suitable control of the difference
" — why"]|| between the 1sfem solutions y" (for the original nonlinear IVP (3)) and w"[y"] (for the auxiliary system
(23)) as given in Proposition 3.2 requires a major effort.

Such an estimate for || yZ - wQ I'yZ] || is established through a series of lemmas that exploit geometric properties revealed
by the first-order optimality condition associated with each minimizer y’; in the subspace X" for the objective function J
given by (4). Indeed, from %](yﬁ + Ty F, f, g)|r:0 = 0 for all v, in X", after some algebraic operations, we can actually
link this necessary condition with w*[yﬁ] through the following orthogonality property (cf. Lemma 3.3):

O = w ", vn— C(5u))x =0, Yoo, e XM, )

where I' is an integral involving the Jacobian matrix of F given by (29). It is this simple, albeit not so obvious, geometric
identity that opens the room for estimation, once I" is further split as the sum of its projection IT,I" onto X" and its
orthogonal complement HhLI"; see Lemmas 3.4 and 3.5.

Although the error analysis presented in this article focuses on piecewise linear elements, numerical evidence provided
in Section 4 indicates that when a piecewise spline basis of degree k is used to form X" and F is Ck¥*'-smooth, then the
error bound scales like h*t'. Rigorous justification of such an error estimate will be addressed in a future work.

Organization. This article is organized as follows. We first recall in Section 2 the basic setup of 1sfem in the context of
IVP for nonlinear ODE systems. Besides its functional framework recalled in Section 2.1, for later usage we also present
in Section 2.2 a result concerning the convergence of 1sfem solutions to the true solution; see Theorem 2.1. While the
treatment makes a direct usage of a general convergence result on the approximation of abstract nonlinear equations
(cf. [18, Theorem 3.3, p.307] and [12, Theorem 8.1]) some detailed calculation is required to recast the problem into the
functional form dealt with in [ 18, Theorem 3.3, p.307] and also to check the required assumptions therein. We provide thus
a proof of this convergence theorem in Appendix A for the sake of clarity. The associated optimal error analysis reviewed
above is then dealt with in Section 3. The algorithmic aspects are then presented in Section 4 (cf. Algorithm 1) along with
numerical results for various concrete examples that confirm the error bounds obtained in Section 3 and also provide
numerical evidence for possible extension to higher-order basis elements. We also discuss within this section suitable
modifications for adaptive time stepping. Finally, Section 5 provides a brief conclusion and potential future directions.

2. Preliminaries

As a preparation for later sections concerning the error estimates (Section 3) as well as the numerical treatments
(Section 4), we briefly summarize the basic setup for 1sfem of first-order ODEs and then recall a classical convergence
result for the 1sfem solutions. For ease of reference, a table of the main symbols used in this work is provided in Table 1.

2.1. Formulation of 1sfem

We provide in this subsection a brief account of the 1sfem for first-order (nonlinear) ODE systems; and refer to
[14, Chap. 3] for more details. Given a fixed T > 0, consider the following initial-value problem (IVP) in R¢ for some
deN:

Yy =FQy)+f(t), te(0,T],
¥0)=g,

where F: R? — R? is a given smooth and possibly nonlinear function, f is a function in L2(0, T; RY), and g is a given vector
in RY. Precise smoothness on F will be specified later on, and additional regularity on f will be added when optimal error
estimates are considered in Section 3.

Before proceeding, it is worth mentioning that all the results of both the current section and Section 3 hold for more
general systems of the form y’ = F(t,y) + f(t) as well. Indeed, by introducing an auxiliary scalar equation p’ = 1
supplemented with p(0) = 0, and considering the new variable z = (p, T, we getz’ = F(z)+f(t)with F(z) = [1, F(p, y)]"
and f = [0, f]". This latter system for z is an equivalent formulation of the original problem and fits into the form given
by (3).

Throughout the article, we denote the classical Sobolev space H'(0, T; R?) by X, which consists of L*(0, T; R?) functions
whose first-order weak derivative is also in L2(0, T; R%). X will be equipped with a norm that is equivalent to the usual

(3)
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Table 1
List of main symbols.
X The Sobolev space H'(0, T; RY) equipped with the inner product (7) and the corresponding
induced norm (8)
X" A finite element subspace of X
Iy The interpolation operator from X to X"
I, The orthogonal projection from X to X"
Idx The identity map on X
mt Orthogonal complement of ITy: T = Idx — Iy
Vs Solution to the variational formulation (5) of the IVP (3)
yh 1sfem approximation of y, in the subspace X"; i.e., solution of (6)
w,[y"] Solution of the auxiliary system (23)
why"] 1sfem approximation of w,[y"] in the subspace X"

A generic element in X or the solution of (A.5) depending on the context

v A generic element in X

B The subset in R? defined by (14), which contains both y,(t) and the 1sfem solution y"(t) for
all t in [0, T] and all sufficiently small h

¢ Embedding constant for the continuous embedding from X to C([0, T]; R¢)
¢ Embedding constant for the continuous embedding from X to L%(0, T; RY)
(- ) The standard dot product on R?

-1l The Euclidean norm on RY

Il llop The operator norm for a d x d matrix, i.e., [[M|lop = SUp,cpa ;=1 IMz||

LY, Z) The set of bounded linear maps from a Hilbert space Y to a Hilbert space Z

H'-norm; see (8). Recall that a function y € X is called a strong solution of (3) if y(0) = g, and y’ = F(y) + f(t) for almost
every t € (0, T).

The 1sfem for the IVP (3) relies on a variational reformulation of the ODE system, which seeks for y, € X that
minimizes the following objective function

JWsF.f.8) = 31Y = FO) = flla .y + 3117(0) — g1I%, (4)
where || - || denotes the Euclidean norm on RY. Note that if the IVP (3) admits a unique strong solution in X, then this
solution is also the unique solution of the following unconstrained minimization problem:

Find argmin J(y; F,f, g). (5)

yeX

Given any finite element subspace X" of X, with h denoting the maximal length of the finite elements, the 1sfem for the
IVP (3) consists of solving the following analogue of the unconstrained minimization problem (5) restricted to X":

Find argmin J(/"; F, f, g). (6)
thXh

Let us introduce the following inner product on X, which is naturally related to the objective function J defined in (4),
ie,

T
(w, v)x = / W0, V'(0) dt + (W(0), v(0), Vu,veX, ™)
0

where (-, -) denotes the dot product in RY. The norm on X induced by the above inner product (-, -)x will be denoted by
Il - llx, which is often referred to as the energy norm in the literature, namely,

1/2

T
lullx =/ {u, u)x = (/ (u'(t), u'(t)) dt + (u(0), u(0)>> , ueX. (8)
0

One can check by using basic Sobolev inequalities that the D - |lx-norm is equivalent to the usual Sobolev norm on
H'(0, T; RY) defined by [|ul;1 = (”u”fz(O,T:Rd) + ||11/||fz(0’7w))1 ?. Note, there exist positive constants ¢; and ¢, such that
for all u € X it holds that ¢q[Jullx < [lullg1 < c2lullx.

For later usage, let us also introduce two embedding constants. First note that since H'(0, T; RY) is continuously
embedded into C([0, T]; RY), see e.g., [ 19, Theorem 8.8], then X equipped with the norm defined in (8) is also continuously
embedded into C([0, T]; RY). Throughout this article, we denote by ¢ the associated embedding constant, where ¢ is the
smallest constant such that!

max |lu(t)|| < €llullx, YueX. 9)
te[0,T]

1 Foreachu e X, we always consider its continuous representative in the corresponding equivalent class. There exists a unique such representative
for each u € X; cf. [19, Theorem 8.2].
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We denote also by € the embedding constant for the continuous embedding from X to L?(0, T; RY), which is the smallest
constant such that

lull 2,120y < Clullx, VueX. (10)
2.2. Convergence of the 1sfem solutions

To prepare for the error analysis carried out in Section 3, we summarize in this subsection a convergence theorem for
the 1sfem solutions as the dimension of the subspace X" in (6) increases. The treatment makes a direct use of a general
result on approximation of abstract nonlinear equations; cf. [18, Theorem 3.3, p.307] and [12, Theorem 8.1].

We work with a sequence of finite element subspaces {X" c X}, with h denoting the maximal length of the finite
elements, such that

lim |i(idy — Iu)vllx =0, ¥veX, (11)
where IT,: X — X" denotes the orthogonal projection onto X" under the inner product (-, -)x defined in (7).
We denote by DF the Jacobian matrix of F, and by || - ||op the operator norm of a bounded linear map from RY onto
itself.

Theorem 2.1. Consider the IVP (3). Assume that f € I[?(0, T; RY), F : RY — R? is C> smooth, and (3) has a unique strong
solution y, in X. Assume also that ||DF(y.(t))llop is sufficiently small for all t € [0, T]. Let O be any given open neighborhood
of y, in X, and {X" C X} be a sequence of finite element subspaces satisfying (11). Then problem (6) has a unique solution yZ
in O for all sufficiently small h, and yZ converges in X-norm to the solution y. of (5) as h is reduced to zero,

li «—Vllx = 0. 12
hlg})lly Vallx (12)

Since some detailed calculation is required to recast the problem into the functional form dealt with in [18, Theorem
3.3, p.307] and also to check the required assumptions therein, we provide a proof of the above theorem in Appendix A
for the sake of clarity.

With the above convergence result available, we are ready to address the associated error analysis. In particular, we
show for the case of piecewise linear elements that the 1sfem achieve optimal rate of convergence, which is the rate
dictated by the interpolation error.

3. Optimal 1sfem error estimates for nonlinear ODEs

In this section, we derive an optimal error estimates for the 1sfem solutions for first-order nonlinear ODE system of
the form (3). The results are obtained for piecewise linear finite elements. Under suitable assumptions, it is shown that
the error bound for 1sfem solutions is proportional to the square of the mesh size, which is of the same order as the
interpolation error for piecewise linear finite elements.

Let us first introduce the following assumption about the IVP (3):

(A1) f:[0,T] — R? is absolutely continuous, f’ belongs to L*(0, T; R%), and F: R — R? is 3 smooth. The IVP (3) has a
unique solution y, in X.

Except the strengthened smoothness and integrability requirements on f, the other parts in Assumption (A1) are the same
as those required in Theorem 2.1.

In Theorem 2.1, a smallness assumption is also made on, ||DF(y.(t))|lop. the operator norm of the Jacobian matrix
DF along the solution trajectory y,. For the derivation of error estimates, this technical assumption needs to be further
strengthened and augmented to require that both [|DF|op and the local Lipschitz constant of F are sufficiently small over
a bounded set in RY that contains the solution y, as well as the 1sfem solutions for all time t € [0, T].

We make precise these smallness assumptions on F below for the sake of clarity. Let us first note that the smallness
of |IDF(y.(t))llop required in Theorem 2.1 is made precise in its proof given by Appendix A. It suffices to require that (see
(A.24))

1

: (13)

sup_[IDF(y.(t)llop < — — —
reto.m] \/ZTZ + T+ &+ /(2T2 + T + €2)2 + 2T¢2(1 + 2T)

where ¢ denotes the embedding constant for the continuous embedding from X to L%(0, T; R?); cf. (10).

To present the needed augmentations of (13), we first establish some notations which will be used throughout this
section. We take the neighborhood O of y, in Theorem 2.1 to be an open ball in X centered at y, with some radius r > O,
which is denoted by B(y,, r). Let h > 0 be chosen such that for each h e (0, h), the 1sfem problem (6) has a unique
solution yﬁ in B(y,, 1); the existence of such an h is guaranteed by Theorem 2.1.
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With the embedding constant ¢ that ensures (9), we define then

B=J{per!: Ip-y(0)l <er}. (14)
tel0,T]

Since y" stays in B(y,, r) C X for all h € (0, h), it holds that [[y"(t) — y.(t)|]l < €lly® — y«llx < €r, namely,
y'(t)e B, Vhe(0,h), tel0,T]. (15)
The aforementioned smallness assumptions on F are as follows:

(A2) Assume that (13) holds. Let r > 0 be arbitrarily given and h > 0 be chosen so that the 1sfem solution y" € X" stays
in the ball B(y,,r) C X for all h € (0, h). Let B be the subset in RY defined by (14) that contains both y,(t) and the
1sfem solutions y’;(r) for all h € (0, h) and all t € [0, T]; cf. (15). Assume that the local Lipschitz constant of F over
B satisfies

Lip(F|x)T
ip(F|ss) -1 (16)
V2
and that its Jacobian matrix satisfies
1
sup [[DF(2)llop < =, (17)
zeB ¢

where | - ||op denotes the operator norm of a bounded linear map from R? onto itself, and € is the same as given in
(13).

Of course, all the three conditions (13), (16), and (17) in (A2) can be summarized into one assumption of the form
Sup,cq |IDF(z)llop < C with C taken to be the right-hand-side (RHS) of (13). However, we prefer to keep them separate
in the hope for future improvements since they are used in separate parts of the proof.

The main result of this section is summarized in the following theorem.

Theorem 3.1. Given a sequence of subspaces {X" C X} satisfying (11) and spanned by piecewise linear basis functions, let us
consider for each X" the least-squares finite element approximation (6) of the nonlinear IVP (3). Assume the assumptions (A1)
and (A2) hold. Let h be as given in (A2). Then, there exists a constant C > 0 independent of h such that the 1sfem solution yZ
of (3) satisfies:

Iy" = yill2.r:pe) < CH% Y he(0,h). (18)

We first recall a well known error estimate for the special case of the IVP (3), in which F is identically zero. We consider
for the moment

y' =f(t), te(0,Tl,

y(0)=¢g. (19)
In this case, its solution is obviously given by

Vilt) =g+ fotf(s) ds, tel[0,T]. (20)
For a given finite element subspace X", the corresponding 1sfem approximation y" is obtained by solving

argmin 315" — fllq 7.za) + 3 17(0) — gII*. (21)

yh exh

Lemma 3.1. Consider the problem (19). Assume that f : [0, T] — RY is absolutely continuous and f’ belongs to L*(0, T; R%).
Assume also that X" is spanned by piecewise linear basis functions. Then, for each such X", there exists a unique 1sfem solution
that solves (21), which is given by 72 = IT,y,, where y, is the solution of (19) and IT, denotes the orthogonal projection from
X onto X". Moreover, there exists a positive constant C independent of h such that

~ o~ v
17 = Vell2o.rmy < CH2 IVl 2(0,7:pa- )

Although the above results are classical, we provide in Appendix B some elements of the proof for the sake of
completeness.

Note that since the [?-error of piecewise linear interpolation for general function in H*(0, T; R%) is of the order h?
(cf. Lemma 3.2), the above result shows that the corresponding 1sfem provides the optimal convergence rate for the
special case (19). However, the proof of Lemma 3.1 admits no straightforward extension to the general nonlinear case.
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To bridge the gap between the setting of Lemma 3.1 (dealing with F = 0) and that of Theorem 3.1 (dealing with
general nonlinear F), we introduce now an auxiliary system that will serve as a pivot in the estimates presented below.
We consider, for a given 1sfem solution y" of the IVP (3), the following auxiliary system

w' = FyNe) +f(£), te(0,TI,
w(0)=g.

First note that the IVP (23) fits into the form of (19) since F(y*(t)) f(t) is known once y is given. Lemma 3.1 is
thus applicable. It follows that (23) always admits a unique 1sfem solution wh[y ] under the assumption of Lemma 3.1.
Moreover, denoting by w,[y"] the solution of (23), it holds that

(23)

wiiyl] = Myw,[yL, (24)
and that
||w*[y2] - w’;[yZ]”LZ(o,T;Rd) =< Ch2||(w*[yi])//||L2(o,T;Rd)~ (25)

We aim to derive the following estimate of [|y" — w![y"]l|;2(g 1.za)-
Proposition 3.2. For each given X", the following estimate holds for the 1sfem solution y* of the nonlinear problem (3) and
the 1sfem solution w[y"] of the problem (23):

c h
(wiye])" 20,7k n2, (26)
1—¢supze% IDF(2)llop

Iy — wilylx

)v(vhere C > 0 denotes a universal constant independent of h, and € denotes the embedding constant between L*(0, T; RY) and
. We present next a few lemmas that will be used in the proof of the above Proposition.

Lemma 3.2. Let X" be a subspace of X spanned by piecewise linear basis functions. Given any f € X, denote by I,f the

interpolant of f in X". Then, there exists a positive constant C independent of h such that the following inequalities hold for all
f in the subspace H%(0, T; RY) C X:

If = Iflli20.7:re) < Ch? ”f//”LZ 0,T;R%)> (27a)
If" — (Ihf)/”LZ(O TiRY) = Chllf” ||L2(0 T;Rd)> (27b)
If — Mufllx < ChIf" 20,7y (27¢)

The first two inequalities above are classical; see e.g., [ 14, Section 2.5] for a proof. The estimate (27c) follows from
(27b) by noting that

If = Muflix < If = Ifllx = If" — Unf ) ll2g0.1:m9)- (28)

The first inequality in (28) holds because for any f € X, its projection IT,f minimizes the residual error ||f — v"||x among
all v" € X", Note also that since t = 0 is an interpolation point of the piecewise linear finite element subspace X", it holds
that f(0) — If(0) = 0. The second equality in (28) follows.

Lemma 3.3. Let y’; be the 1sfem solution of the nonlinear problem (3) as specified in Theorem 3.1. Let w,[y"] be the solution
of the auxiliary problem (23). We define

t
r(t;v" = / DF(y"(s))v"(s)ds,  te[0,T], v" e X" (29)
0
Then, the following identity holds
Wl —wyi, V"= r(")x =0, Vo' exh (30)

Proof. The equality (30) is just a reformulation of the first-order necessary condition for y" to be a solution of the
minimization problem (6). Indeed, note that this latter condition is given by

T
/ (") = FOy") = £, (Y — DEG" ") dt + (y(0) — g, v"(0)) = 0, V v" € X", (31)
0

see (A.14) in Appendix A. Note also that

t
wal =g+ [ FOA)+1(5) ds
0
Then, (30) follows from (31) by simply noting that (w,[y"])(t) = FQy(t))+f(t), I''(t; v") = DER(£)(E), wi[y"1(0) =
and I'(0; v") = 0. O
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The above identity (30) serves as the starting point of our estimates for the term y" — w![y"]. For this purpose, we
split I defined by (29) as

I(t;0") = Myt v") + I 0(t; o), (32)

where [T} = Idy — IT,.
To simplify the notations, we also denote

y =y —w.. (33)
Using (32) and (33) in (30), we obtain
(y o' = (50" = G, 00" = (Ty, T (s oMy, Vool e XM (34)

The estimation of the RHS in the above identity will be considered in Lemma 3.4; and the left-hand-side (LHS) will be
considered in Lemma 3.5.

Lemma 3.4. Let I" and y be defined in (29) and (33), respectively. Let h be as specified in Theorem 3.1. Then, there exists a
constant C > 0 independent of h, such that for any h € (0, h), it holds that
Ty, Ty TC-5 0] < Clwalyi) iz rpa 10"lIxE?, ¥ 0" € XM, (35)

Proof. The result follows essentially from the estimate (27c) in Lemma 3.2. First note that since y = y’; — w*[yﬁ] and
yh e X", we have Ty = M- (y! — w.[y"]) = —IT;- w,[y"]. This together with (27¢) implies that

1Ty llx < Chll(ws Y1) lli2(0.7-p0)- (36)
Again by (27c¢), we have also
17 ( 5 0")llx < CRIT" (-3 0" 20,1, a)- (37)

It remains to estimate || I""( - v");2(o.1.pd)-
Since I'(t; v") = DF(y"(t))v"(t), we get for almost every ¢ in [0, T] that

I'(t; v") = [D*F(0)(E) T () + D ()" (1)) .

Then,
T
’ 712
"5 0" g gy = / | ID2FGAENAE)Y 1" (E) + DFAE) " (1)) || dt. (38)
' 0
Note that
T 5 T
/ [ID*FOAONYAE) T (1)) dt < / ID*FQAO)WEOY 12, 10" ()1 dt
0 0 ; (39)
< (max 10'17) [ IDPFOAOAON IR, dt
t€[0,T] 0
where || - ||op is the operator norm of a matrix (cf. Table 1). To proceed further, note that for any z € RY, the Hessian
D?F(z) is a bounded linear map from R? into L(R¢, R¢). We denote by |||D2F(z)||| the operator norm of D?F(z). Namely,
ID’F@)|| = sup  ID*F(2)wllop. (40)
weRd, JJw|=1

Since F is assumed to be C3, ||D?F(z)|| is bounded for all z on any bounded set of RY. Let % be the subset in R? defined
by (14). We get then

T T
[ ez, ae < swp o [ itore d
0 ze 0
< sup ||D?F(2)||* Iy" 12 (41)
ze®B
< sup [|D2F@)||*(r + ly.llx ).
zeB

where the last inequality follows since y’; € B(y, r) for all h € (0, h); cf. Assumption (A2). Using (41) in (39) and noticing
that max;cpo,r) [0V"(£)]l < €[[v"|Ix (cf. (9)), we get

T 2
/ ID*FOAAON 'O de < (e sup [[DF@|r -+ Iyslei) (42)
0 ze

8
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Note also that

T T
/ [DEG O ()Y | dt < / IDFGAENIZ, I () 12 dt
0 0

(43)
< sup |[DF(2)I[2, 1" 13-
zeB
By using (42) and (43), we get from (38) that
175 0" 20 7:pa) < CllV"Ix, (44)

where the constant C > 0 depends on sup,cq [[DF(2)lop, SUP,c |||D2F(z) , Iv«llx and the embedding constant ¢, but is
independent of h. The desired estimate (35) follows now from (36), (37) and (44). O

The term (y, v" — IT,I"(-; v"))x on the LHS of Eq. (34) can be handled using the following lemma.

Lemma 3.5. Let ¢ > 0 be the embedding constant between L*(0, T; RY) and X. If

€sup [DF(2)llop < 1, (45)
zeB

then there exists a unique v" € X" satisfying
V' — Iyl =y — wilyl]. (46)
Moreover, it holds that

" Ix < Iy! — w1l (47)

1— Esupze% ”DF(Z)”op

Proof. Note that the map ¥ :v" — IT,I°(-; v") is a bounded linear map from X" onto itself. To guarantee the existence

of a unique D" that satisfies (46), we only need to show that Idy» — ¥ is invertible. By the definition of I" in (29), we have
19 @n)llx = I 5 0l < max IDFGENop 0"z 1ise

< Esup [DF@)lopllv"lIx, Vo" € X",
zeVB

We get then
llon — ¥ (vn)llx = (1 — Esup [DF(2)[lop)llvnllx. V" € X", (48)

zeB

SincgEsupze% IDF(z)llop < 1 by our assumption, it follows that the operator norm of Idy» — ¥ is bounded below by
1 — €sup,cy IDF(2)llop. It is thus indeed invertible. The estimate (47) follows directly from (46) and (48). O

We are now in position to prove Proposition 3.2.

Proof of Proposition 3.2. With 9" chosen so that (46) holds and recall the definition of y given by (33), we get
(r, 0" = (5 0)x = O — walyl vl — wllylDx. (49)

By rewriting y" —w, [y"] as y! —w.[y!] = (y" — w[y"]) + (w"[y"]— w.[y"]), and recalling from (24) that w’[y"] —w.[y"] =
—IT;-w,[y"] lives in the orthogonal complement of X", we obtain

Wl — w iyl — wliDx = 08 — wiDL Yt — wiDix = llyh — wlyiI-
Using this identity in (49), we get

(., " = IWI(-0")x = Iyl — wiDMI3- (50)
Note also that by taking v" = ?" in (34), we have

(y. 0" = I (- 0")x = (I y, I 0(-:0")x. (51)
Now, it follows from (50), (51), and (35) that

Iy — wly21IE < CllwIy21) 0,154y 0" xR, (52)
Recall also from Lemma 3.5 that

1
P"lx < ly} — wily2lx. (53)

1 — €sup, ey IDF(2)lop
The desired estimate (26) follows from (52) and (53). O
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In the proof of the main theorem given below, we require an upper bound of the term ||(w,[y"])"|| 12(0,1;rd) Appearing
on the RHS of (26). This bound should be furthermore independent of the 1sfem solution yﬁ. We derive now such a bound.
For this purpose, we make use of the solution to the IVP

w' = F(y.(t) +f(t), te(0,TI,

w(0)=g. (54

Lemma 3.6. Let r, h, and B be as specified in Assumption (A2). Let w,[y.] be the solution of (54). Then, for each h € (0, h),
the solution w*[yﬁ] of the problem (23) can be estimated as:

1001521 iz 750y < 1121) o700y + SR IDE o (7 + 21l )- (55)
ze

Proof. Note that by using the triangle inequality,
||(w*[.VZ])//||L2(o,T;Rd) =< ||(w*[}’£] - w*[y*])//”LZ(o,T;Rd) + ||(w*[y*])//||l_2(o,r;Rd)y (56)

we only need to estimate the term ||(w. [y’,:] - w*[y*])”an(o,T;Rd). Since w*l'yg] and w,[y.] are respectively the solutions
to the IVPs (23) and (54), we have

(WYY — (waly]) = FO/!) — F(ya). (57)
Then,
(wily"] — wily.])" = DF/")Y!Y — DF(y.)(y.) (58)
which leads to
I (wely2] — wily )7 li20.7:80)
= DF(Y")!Y — DF(y.)Ws) lli20.7:x4)
< IDFYM)YE = y) 20078y + I(DFQ!) — DF.))Y) 20,180

< sup IDF(&)llop (1062 = Y lzo 180, + 210 o7 (59)
ze

< sup [IDF(2)lop ( IV = llx + 21v-lx)
zeB

< sup [DF(2)lop (1 + 21y Ix)-
zeB

In deriving (59), we have used the facts that ||y2 — Y«llx < r since yz € B(y,, r) and that B contains both y,(t) and y’;(r)
for all t € [0, T]; see (14) and (15). The desired result (55) follows from (59) and (56). O

We are now in position to prove the main theorem of this section.
Proof of Theorem 3.1. First note that by the triangle inequality, we get
lys = Villizrzdy < 1ye = walyi 2 rmey + lwalyi] = w20,y + w2V = YL lli200,7,30)- (60)

To estimate the first term ||y, — w*[y’;]lle(o_T;Rd) on the RHS of (60), we integrate Eqs. (3) and (23) to obtain
t
I9.(6) — w (O] < / IF(v,(s)) — FOM ()] ds
0
t
< Lip(Fla) f Iy.(s) — '(5)] ds (61)
0

¢ 1/2
< Lip(F|s)Vt (/ [y+(s) — Y"(s)II? dS> , telo,T],
0

where we applied Hoélder’s inequality in the last step above. We get in turn that
Lip(F|)T I
Iys — wely! 20 720) < ——=—¥s — YL ll2(0.7:50)- (62)
12(0,T;RY) /2 12(0,T;RY)

The second term [|w.[y"]—w![y"]ll;2(¢..g¢) in (60) can be estimated by using (25), and the last term | w[y"]—y! |l 20 1.z
can be estimated by using (26) together with

I Y™ = Yol 20r:zay < Clwiiy!] — y2x, (63)
10
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where € denotes again the embedding constant between [*(0, T; RY) and X.
Gathering the above estimates for the three terms on the RHS of (60), we get
Lip(F | )T
Iy = Vilizoras < = 2. =yllaorze +C(1+
where we have absorbed the factor ¢ on the RHS of (63) into the constant C when applying the estimate (26).
In the above inequality, by using the estimate (55) for ||(w*[yﬁ])”||Lz(0,T;Ra), we get after rearranging terms that

hy\// )
¢ * SO 64
i e— ”DF(Z)HOP)II(w*D/ 1 ll2o.7:2) (64)

Lip(F|s)T -
1— =2 ) e — Y ll2g0mimey < Ch2, (65)
V2
where
~ 1
C::C(l+ ~ )( ’ rdy + sup ||DF(z r+2 ) 66
1~ Esupoy IDF@)lop (W [yI) l12(0,7;m0) Zeg IDF(2)llop ( y.llx) (66)

with w,[y.] denoting the solution of (54). Since it is assumed that W < 1 (see (16)), the desired result (18) follows
by taking C therein to be E/(l - Lip(F|%)T/«/§). O

4. Numerics

In this section we focus on numerical aspects of 1sfem by discussing algorithmic details and confirming the analytical
insight gained in previous Sections 2 and 3 through numerical experiments. We discuss modifications such as adaptive
time stepping and constrained systems, i.e., differential algebraic equations. Our proposed method is summarized in
Algorithm 1.

Algorithm 1 (1sfem for IVPs)
1: function y" = 1sfem(G(-, -), g, [to, T], X")

2:  construct finite element basis for y"(-; -)and ("Y(-; -) of X"
3: choose discretization t of time interval
4:  compute

X, € argmin 7(x) = 311(") (& %) — G(t, y"(&; 0))I1* + 311Y"(0; x) — gl I*
X

50 setyl =y"(-;x,)
6: end function

A Matlab implementation of Algorithm 1 with equidistant control points is available at github.com/matthiaschung/
Isfem and is intended for developing an understanding of the performance of 1sfem method for ODEs. As inputs 1sfem
requires the RHS of the first order ODE G, the interval of interest [to, T], and the initial condition y(ty) = g,

¥ =G(t,y), tel(t,Tl,
Y(to) =g.

Additionally, one may select a desired finite element space X". Algorithm 1 return the function ¥ = yn(-; x,) determined
by the optimized finite element coefficients x, with respect to the corresponding finite element basis.

Various numerical choices need to be made in Algorithm 1. First, the approximation quality of our method depends
greatly on the choice of the finite element space X" and its corresponding control points 7 in line 2. Sections 2 and 3
provides convergence results for piecewise linear basis functions, however, we may choose higher order basis functions.
Common choices for the basis function include piecewise polynomials and polynomial splines [20,21]. Other options are
exponential splines, which may better capture the exponential behavior manifested by certain differential equations;
see [22]. An interesting alternative are Hermite splines [23], which are able to take advantage of derivative information
provided naturally by the differential equation and reducing computational costs. Note that, the choice of the finite
element basis may depend on the imposed smoothness of the underlying dynamical system, i.e., G. Equidistant control
points may be selected if no further information on y are available, however, one may also select control points if
knowledge on y (or its derivatives) are available.

To numerically evaluate and minimize J of Eq. (6), quadrature is required to approximate the L?>-norm. Hence, with
respect to the quadrature rule we discretize the interval [ty, T] with t = [to, t1, ..., t,—1, T]T, see line 3. Choosing a
quadrature rule (such as Gauss-Legendre and Gauss-Lobatto, [24]) which is consistent with the finite element space X"
may provide computational advantages. The added benefit of using such a quadrature rule is that the resulting ¢2-norm
approximation 7 has the potential to be exact in certain polynomial settings.

(67)

11
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Fig. 2. Illustration of convergence rates of 1sfem methods for B-spline bases of degree k (k=1,..., 5) in comparison to the mesh sizes h for the

ODE y' = —y with t € [0, 1] and y(0) = 1. The numerically observed convergence rates are 1.9972 (for k = 1), 3.0066 (for k = 2), 3.9204 (for k = 3),
4.9456 (for k = 4) and 5.9409 (for k = 5).

The main computational effort lies in line 4. Line 4 defines a common (regularized) nonlinear least squares problem.
Notice that, if G is sufficiently smooth, gradient and Hessian based optimization methods can be utilized.

Hence, gradient based methods and also Newton type methods are natural choices (assuming sufficient smoothness
of the system). However, V,J and V2] need to be readily available or be obtained by algorithmic differentiation
techniques [25]. It is worth mentioning, that 1sfem seeks for a global minimizer y; of (6). However, for non-convex
problems the proposed optimization methods may not ensure convergence to the global minimizer. Strategies to prevent
local minimizer are required, e.g., multi-start or global optimization methods [26].

Rate of convergence for higher order finite elements. To illustrate and empirically valid the convergence rates discussed
in Sections 2 and 3, we first consider the linear initial value problem y’ = —y, with t € [0, 1] and y(0) = 1. We use a
B-spline bases for X" of degree k = 1, ..., 5 with varying equidistant discretization of the finite elements, i.e, h = 1/N
with N = 1,...,20 to compute the finite element approximation yZ. Fig. 2 depicts the errors ||yﬁ — y|l with respect
to the varying mesh sizes h in a log-log space. The slopes of each graph reveal the power of the expected convergence
rates of our method. For instance the slope using linear B-splines is 1.9972 confirming the quadratic convergence rate
(Theorem 3.1). The other rates are 3.0066 (for k = 2), 3.9204 (for k = 3), 4.9456 (for k = 4) and 5.9409 (for k = 5),
respectively. These results lead us to conjecture that the optimal 1sfem error bounds scale like O(h**1) for finite element
bases of degree k. By inspecting the proofs in Section 3, we expect many of the ingredients presented there to be extended
naturally, although some aspects such as higher-order analogues of Lemma 3.6 may require additional efforts. We plan
to address such an extension in a future work.

To confirm the results for nonlinear ODEs we consider the simple logistic growth y’ = y(1 — y) with y(0) = 1/10 and
t € [0, 10]. We compare our 1sfem method with B-spline bases of degree 1, 2, and 3 (1sfeml, 1sfem2, and 1sfem3) to
Runge-Kutta 3 (rk3) and Runge-Kutta 4 (rk4), see Fig. 3. The numerically observed convergence rates for this logistic
growth model are 2.001, 3.4928, and 4.0470 for the 1sfem methods and 2.9731, 3.9820 for the Runge-Kutta methods,
respectively. The observed rates for 1sfem confirm again the obtained theoretical estimate for degree k = 1 case and
corroborate the conjectured optimal bound ©(h**1) for higher-degree bases (with 1sfem2 providing actually better rate
than conjectured for this particular example). One can also compare 1sfem3 with rk4, since both methods show a
convergence rate close to the theoretical rate r = 4. Fig. 3 reveals that the constant C in the associated error bound
Ch* is smaller in the case of 1sfem3 than that of rk4 for the considered example.

Linear ODEs. In case of linear ODEs the 1sfem’s main computational burden of solving the optimization problem in line 4
of Algorithm 1 simplifies to a linear least-squares problem whose solution can be obtained e.g., by solving the associated
linear normal equations.

More precisely, let us consider the n dimensional initial value problem

Y(t)=A(t)y(t)+ b(t) and y(ty) =g and t € (to, T]. (68)
Assuming we choose the same finite element basis for each state
@(t) = [$1(t), da(t), ... pm(O)], (69)

12
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Fig. 3. Illustration of convergence rates of 1sfem utilizing B-spline bases of degree 1, 2, and 3 in comparison to Runge-Kutta 3 and 4 for the logistic
equation y' = y(1 —y), with y(0) = 1/10 and t € [0, 10]. The numerically observed convergence rates are 2.001, 3.4928, and 4.0470 for the 1sfem
methods and 2.9731, 3.9820 for the Runge-Kutta methods, respectively.
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Fig. 4. Solution of Eq. (74) for three different values of K, and with y(0) = 1. By decreasing K, the rapid change of dynamics of y become more
prominent around t = 1.

then the function of the finite element space are given by y(t, x) = (¢(t)" ® I,)x with some coefficients
x=[xj, .. XX K XX T (70)

where ® denotes the Kronecker product and I, the identity matrix. The least-squares problem now reads
T
min 1 / r(e, )71, x) de + 1 |y"(to, x) — g (71)
X tO
with r(t, x) = Z(t)x — b(t), where Z(t) = ¢'(t)T ® I, — A(t)(¢(t)" ® I,,). With the further abbreviations

T
Q= / Z(t) dt, p:/ Z(t)'b(t)dt, and R=¢(ty) ® . (72)

0
The 1sfem solution of (68) is obtained by the normal equations

(Q+R"Rx, =p+R'g, (73)

and y"(t) = (¢(t)" ® I,)XQ + RTR)~'(p + R"g), assuming Q + R'R is invertible. Hence standard linear algebra libraries
may be utilized to solve a linear system of differential equations efficiently.

Adaptive discretization of the finite elements. So far we have not discussed how to select control points t of our finite
element space X" and assumed they are pre-selected, e.g., equidistant. Alternatively, control points may be selected
adaptively by (for simplicity) repeated evaluation of line 4 with refined control points t. Notice, 1sfem naturally provides
error estimates through the residuals r = (y")(t; x,.) — G(t, ¥"(t; x,)). In its simplest form new control points 7;’s may be
introduced by selecting discretization points t;’s at locations with large residuals r;.

j
We illustrate this procedure by considering the model

A (74)
Kn+y
13
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Fig. 5. Absolute error between various ODE methods and the true solution for Eq. (74) with K, = 0.005 and y(0) = 1. Our lsfem method is
highlighted in black bold, other standard Matlab ODE solvers in default settings are illustrated as labeled in Fig. 6.

— ] sfem
—— ode45
200 | — ode23
odel13
—— odelbs
—— ode23s
ode23t
—— ode23tb

0 0.5 1 1.5 2 2.5 3
t

index of control point

Fig. 6. Time location of the corresponding control point for 1sfem (black bold) in comparison with time location of the discretization index of FDMs,
for Eq. (74) with K, = 0.005 and y(0) = 1. Notice that all methods, especially 1sfem and all the stiff FDM solvers, select small step sizes around
t = 1 where the kink in the true solution occurs (cf. Fig. 4). At the same time, the three non-stiff solvers ode45, ode23, and ode113 also require
a fine discretization beyond t = 1 even though the solution dynamics is “quiescent” there (see again Fig. 4). Note also that the curve for ode23s
almost overlaps with ode23tb. All Matlab ODE solvers are in default settings with default error controls.

with y(0) = 1, t € [0, 3]. The solution is implicitly given by y + Kp, Iny = 1 — t. Eq. (74) is a simplified model frequently
appearing in the field of enzyme kinetics, [27,28]. Here K, > 0 refers to the Michaelis-Menten constant determining the
reaction rate. For small K, e.g., K, = 0.005, stiff ODE (74) exhibits a decay with a sharp “kink” around t = 1, see Fig. 4,
resulting in difficulties for numerical ODE solvers to preserve non-negative concentrations. Adaptive refinement of this
particular area is crucial. We initialize 1sfem with four equidistant control points (order 3 and 8 Gauss Legendre points)
and refine the control points t of our finite element basis until each residual element reaches an absolute tolerance of
10~“. The error of 1sfem with respect to the true solution and in comparison of standard Matlab is depicted in Fig. 5
while Fig. 6 shows the number of discretization points vs. the location of these points. We observe that 1sfem adaptively
adds control points around 1 and maintains an absolute error below 5- 10~ throughout the time interval while requiring
47 control points.

In comparison, stiff ODE solvers such as ode15s, ode23s, ode23t, and ode23tb also adaptively refine around t = 1
and the total time steps used are similar to the number of control points for 1sfem except ode15s, with the latter taking
more time steps than the other stiff solvers as shown in Fig. 6. Note also that the curve for ode23s almost overlaps
with ode23tb in Fig. 6 and is thus not visible. In terms of errors, the 1sfem performs better over the interval [0, 1] in
which the dynamics is “non-trival”, and the stiff solvers perform better over the interval [1, 3] in which the dynamics is
“quiescent”; see Figs. 4 and 5. Overall, 1sfem performs similar to stiff FDM solvers, while maintaining a slightly lower
L?-error. Meanwhile, non-stiff ODE solvers such as ode23, ode45, and ode113 refine less around t = 1 but need a
significantly more number of discretization points beyond t > 1 to maintain numerical accuracy.

Finally, as another example to demonstrate the role of adaptive discretization, we consider the unforced Van der Pol
oscillator, which evolves according to the second-order differential equation

Y —c(1=y*)Y +y=0, (75)

where ¢ > 0 is a parameter. It is known that (75) admits a unique stable limit cycle for any ¢ > 0 [29, Section 3.8]. As ¢
increases, the equation becomes more and more stiff due to the presence of sharp gradients in the limit cycle; see panels
(a)-(c) of Fig. 7.

To apply 1sfem (and for comparison ode15s), we rewrite (75) as a first-order system for (y, z) where z = y'. In panels
(a)-(c) of Fig. 7, we show by red curves the solution y obtained from 1sfem for three different ¢ values, with the initial

14
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(a) Time series (¢ = 1) (b) Time series (¢ = 3) (c) Time series (¢ = 10)
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Fig. 7. Panels (a)-(c): The 1sfem solution of the Van der Pol oscillator (75) for three different values of the parameter ¢ and with initial data
(¥(0),y'(0)) = (2, 1) (red dashed curve). Panels (d)-(f): The phase portraits in the coordinates (y, y') for the corresponding solutions shown in panels
(a)-(c). A high-precision reference solution obtained from ode15s is also shown for each case (black solid curve).

data fixed to be (y(0),y’(0)) = (2, 1). The corresponding phase portraits in the coordinates (y, y’) are shown in panels
(d)-(f) of Fig. 7. Like the enzyme kinetics model above, the adaptive refinement in 1sfem for the Van der Pol oscillator
automatically allocates more control points in the time windows where sharp gradients take place, since sharper gradients
typically lead to larger residual values when the control points located around the sharp gradient are not dense enough.
For the results presented in Fig. 7, the 1sfem’s adaptive refinement is terminated when the residual at all control points
are below 10~ for both y and y'. Since there do not exist analytic solutions of (75) for general initial data, as a reference
solution, we also showed by the black curves the corresponding solutions obtained from the Matlab built-in stiff FDM
solver ode15s, for which the relative and absolute tolerances are both set to be 10~1°. As can be observed, the 1sfem
solution matches well with this high-precision reference solution.

5. Conclusion and discussion

In this work, we considered the least-squares finite element method (1sfem) for systems of nonlinear ordinary
differential equations and established under suitable conditions an optimal error estimate for this method when piecewise
linear elements are used (Theorem 3.1). In contrast to the “localization” nature of finite difference methods, the 1sfem
aims to find an optimal approximate solution within a given subspace that minimizes an objective function over the
whole time interval of integration. The 1sfem can thus be less prone to the accumulation of local discretization errors
compared to finite difference methods.

As reviewed in Section 1, a key ingredient in our derivation of the optimal estimate is a geometric (orthogonality)
property derived from the first-order optimality condition associated with the minimizers of the underlying optimization
problems; see Eq. (2). Numerical results presented in Section 4 not only support our main theoretical result presented
in Theorem 3.1, but also provide strong indication that error bound of the form O(h¥*1) will hold if higher-order spline
basis elements of degree k (k > 2) were used. In Section 4, we also discussed details related to the associated algorithmic
aspects (Algorithm 1) as well as suitable modifications for adaptive mesh refinement to handle ODEs whose solutions may
experience abrupt local changes. It is also worth mentioning that residual neural networks appear to be of such nature
and we will dedicate future research towards such applications, [9,10].

Finally, we mention that the procedure presented in Algorithm 1 can be easily adapted to handle a broad class of
differential algebraic equations (DAEs) [4,30,31] as well. One just needs to add the corresponding algebraic equations
as constraints to the associated optimization problems. The numerical setup can also be easily extended to handle ODE
boundary value problems and delay differential equations. On the application side, due to its robustness in handling
stiff problems, we anticipate the 1sfem to be effective for e.g., low dimensional parameterized systems, such as those
frequently appearing in parameter estimation problems for systems biology applications [32-35], in which the underlying
ODE system can be either stiff or non-stiff as the parameters are varied. Those extensions and applications are beyond
the scope of this work and will remain for future communications.
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Appendix A. Proof of Theorem 2.1

We start by rewriting the respective first-order optimality condition associated with the minimization problems (5)
and (6) into an abstract form u + 7 o G(u) = 0 for (5) and u" + IT,7 o G(u") = 0 for (6), where 7 is a bounded linear
operator and G is a smooth nonlinear operator defined below, and ITj, is the orthogonal projection onto X" appearing in
(11). These equations are in the same functional forms dealt with in [18, Theorem 3.3, p.307]. Once this reformulation is
done, we just need to check that all conditions required in [18, Theorem 3.3, p.307] are satisfied and that the solutions
for u" 4+ 1,7 o G(u") = 0 guaranteed by [18, Theorem 3.3, p.307] are indeed minimizers of (6). The reformulation is dealt
with in Lemma Appendix A.1, and the remaining steps are carried out afterwards.

As a preparation, we define the linear operator 7 to be the solution operator associated with the special case of (3) in
which F is identically zero. That is,

710, T;: RY) x RY = X, T(f,g) = ¢, with £(t g—i—/f Yds, Vt € [0, T]. (A1)

Note that 7 thus defined is obviously a bounded linear operator. It follows directly from the Riesz representation theorem
(see e.g., [36, Appendix D] and [37, Section 16.2]), that £ = 7(f, g) defined above is the unique element in X satisfying

(£, vx—/ (f(t) ) dt 4 (g, v(0)), VveX. (A.2)

Note also that this identity is the first-order necessary condition for £ to be a solution of (5) when F is absent; cf. (A.8).
Assume that F is C' smooth. For any (f, g) in L*(0, T; RY) x RY, we define now a nonlinear operator G as follows:
g:X — (0, T; R xR, g(u) = (f(w), Ew)), (A3)
where for each u in X, (f(u), g(u)) is defined by

~

T
[f(I(t) = —F(u(t)) — f(t) - / [DF(u(s)]" (v — F(u) = f(s)) ds, Vt € [0,T],
(A4)

)= —g— / [DF(u(s)]™ (i — F(u) — £(s) ds.

To see that (f( ), £(u)) thus defined is indeed an element in L%(0, T; R) x R%, note that since u € X and F is assumed to be
C!, we have w = v’ —F(u)—f € [*(0, T; RY) and DF(u) is continuous on [0, T]. One can then show that fo (DF(u))"w ds is
finite and the function t > ¥(t) == ft (DF(u))"wds is in L2(0, T; RY). As a result, f maps X into L2(0, T; RY) and & maps
X into RY,

The rationale behind the definition of G will become apparent in the proof of the following lemma.

Lemma Appendix A.1. Consider the IVP (3). Assume that f € [?(0, T; R%) and F : RY — R? is C'. Let 7 and G be defined
by (A.1) and (A.3), respectively. Then, any strong solution of (3) also satisfies the following nonlinear problem

u+Tog(u)=0. (A5)
Similarly, denoting by IT,:X — X" the orthogonal projection onto X, any solution of (6) also satisfies
u' + M, 7o gu™) = 0. (A.6)

Proof. We organize the proof into two steps. Step 1 deals with the original problem (3); and Step 2 deals with its 1sfem
formulation.

Step 1. Note that since y, solves (3), it is a minimizer of the objective function J given by (4). As a result, y, satisfies
the following first-order necessary condition:

d
0w+ v F.f.8),_,=0. VveX (A7)

By using (4) in (A.7), we obtain the following integral equation to be satisfied by y.,:

T
/ (' — F(u) — f, v — DF(u)v) dt + (u(0) — g, v(0)) = 0, YveX, (A.8)
0
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where DF denotes the Jacobian matrix of F.
In order to rewrite (A.8) into the form u + 7 o G(u) = 0, let us introduce:

T T
QU vifg) = [ = Fw) ~F.DF)de + [ ()£, v de + (g, w0, (A9)
0 0
which is defined for any u, v in X, f in L2(0, T; R%) and g in R?. Note that, with the above definition of Q and the definition
of the inner product on X given by (7), (A.8) can be rewritten as
(u,v)x —Q(u,v;f,g)=0, VveX. (A.10)
To proceed further, we note that Q(u, v; f, g) defined in (A.9) satisfies

T
Q(u,v;f,g)+f (flu), vy dt + E(u),v(0)) =0, VYuveX, (A11)
0

where (f(u), 2(u)) is an element in [2(0, T; RY) x R? given by (A.4).

The above identity (A.11) can be derived from integrating by parts the first term in the definition of Q(u, v; f, g) given
n (A.9). Indeed, denoting w = 1’ — F(u) — f and by noting that (v/ — F(u) — f, DF(u)v) = (w, DF(u)v) = (DF(u)v)Tw =
v (DF(u))"w, we have

T T
/(w,DF(u)v)dt:/ v (DF(u)) wdt
0 0

T T
=—/ qu(/ (DF(u))des) (A12)
0 t

- </T(DF(u))Tw ds, v(0)> + /T<[T(DF(u))Tw ds, :/) de,
0 0 t

where we used integration by parts to obtain the last equality above. Now, replacing the first term on the RHS of (A.9)
with the RHS of (A.12) and using the definition of (f(u), g(u)) given by (A.4), we obtain (A.11).
Thanks to the identity (A.11), an element u in X satisfies (A.10) if and only if

r
.ok = [ (Fonv)de+ (Fwv0), Vuex (A13)
0
Recalling the equivalent characterization given in (A.2) of the linear operator 7 defined by (A.1), we get from (A.13) that
u=T(—f(u), —&(u)), or equivalently, u + 7(f(u), g(u)) = 0.

At the same time, by the definition of G in (A.3), we have (F(u), g(u)) = G(u). Using this relation in u + T(?(u), g(u)) =0,
we obtain the desired form u + 7 o G(u) = 0 for the first-order optimality condition (A.8).

Step 2. Now, we consider the 1sfem problem (6) which aims to approximate the variational formulation (5) of (3).
Note that any solution y’; of (6), if exists, satisfies the analogue of (A.8) with v therein restricted to X". That is

T
[ 08 = RO — £ = DR de+ 00) g 00D = 0, VoP € X (A14)
0
We can then follow the same derivation of (A.5) from (A.8) to obtain that y" is a solution of the following nonlinear
problem defined on X":
u+ Thog =0, u'exh, (A.15)
where G is the same as defined in (A.3), and 7":1%(0, T; RY) x RY — X" is defined by

T'(f,g)=u" if and only if

T A.16
W' WMy = / (f, "Yyde + (g, v"(0), Vo' exh (A16)
0

Comparing (A.15) with (A.6), it remains to show that
Th = 1,7 (A.17)
To see this, for any (f, g) € L*(0, T; RY) x RY, we get from (A.2) and (A.16) that
(TU.8) —T"(f.g). v)x =0, Yvex"
Namely, 7(f,g) — 7"(f, ) belongs to the orthogonal complement of X"; that is 7" = IT,7. The proof is complete. O
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Thanks to Lemma Appendix A.1, we have thus reformulated the first-order optimality condition associated with each
of the minimization problems (5) and (6) into the desired form given by (A.5) and (A.6), respectively.

Note that (A.5) and (A.6) fit into the abstract formulation of [18, Theorem 3.3, p.307] (see also [12, Theorem 8.1]). For a
given nonsingular solution y, of (A.5), [18, Theorem 3.3, p.307] delineates conditions to ensure the existence of a solution
for (A.6) for all sufficiently small h that converges to y,.>

A solution y, to (A.5) is called nonsingular if the linear operator Idy + 7 o DG(y,): X — X is invertible with bounded
inverse; namely,

(Idx + 7 o DG(y,))™" € L(X, X), (A.18)

where Idy denotes the identity map on X, and L(X, X) the set of all bounded linear operators on X. As will be shown
below that, for the problem at hand, the condition (A.18) is ensured by the smallness assumption on the operator norm
of the Jacobian matrix DF(y,(t)) for all t in [0, T].

Proof of Theorem 2.1. From what precedes, to prove Theorem 2.1, it remains to check that

(i) all the conditions required in [18, Theorem 3.3, p.307] are satisfied, ensuring thus the existence of a solution y" of
(A.6) for all sufficiently small h; and that
(ii) the solution y’; of the first-order optimality condition (A.6) obtained from (i) is indeed a minimizer of (6).

We proceed in two steps below.
Step 1. Introducing the space Y := [%(0, T; RY) x RY, the conditions required in [18, Theorem 3.3, p.307] are:

(C1) y, is a nonsingular solution to (A.5) in the sense that (A.18) holds.

(C2) G:X — Y is C% smooth, and D?G is bounded on all bounded subsets of X.

(C3) There exists a subspace Z of Y, with continuous embedding, such that DG(u) € L(X,Z), YueX.
(C4) limyo (T — T")(f. g)llx =0, V(f.g)eY.

(€5) limy—o |7 — Tz x) = 0.

Verification of (C1). To guarantee (A.18), it suffices to show that
17 0o DG(Yi)llix.xy < 1. (A19)

To this end, for any given v in X, let us denote w = 7 o DG(y,) v. By a direct calculation using the definition of 7 and G
given respectively in (A.1) and (A.3), we get

t
w(t) = - / DF(y,(s))u(s) ds
Ot T
- f / [DF( (e )1 (v/(2) — DF(y.(x)o(x)) dr s
0 s

T
- f [DF( (1T (1/(5) — DF(y.(s)u(s)) ds. € €[0T,
0

Introducing

M := sup [DF(y.(s))lzp: (A.20)

s€[0,T]

we obtain by a direct estimation based on the Holder’s inequality that

<w(0)7 w(0)> =< ZTM(”U/”fZ(O’T;]Rd) + M”U”fz(O,T;Rd)) (A 2_1)

< 2TM(1 + &M) v},
and that
T ~ ~
/ (w'(6), w'(0)) dt < M(2€* + AT? + 4T*&*M)||v]l%. (A22)
0

Recalling that w = 7 o DG(y,) v, we get from (A.21) and (A.22) that
I 7 0 DGy, ) vllZ < 2M(2T? + T 4 € + T&*(1 + 2T)M)|jv][3. (A.23)

2 The formulation of [18, Theorem 3.3, p.307] concerns actually a parameterized family of (A.5) in which the nonlinearity ¢ depends on an
additional scalar parameter A. Since there is no such a parameter in our setting, it can be viewed as a special case for which X is taken to be a
constant here.
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Since T is fixed, we get || 7 o DG(y,) v|lx < ||v||)2( for all v in X when M satisfies
2M(2T? 4+ T + & + T&(1 4 2T)M) < 1.
That is

M = sup |DF(y.(s))ll

2
op
s€(0,T]

1 (A24)

< - — — .
2T2 + T 4+ @ 4+ /(2T? + T + )2 + 2T¢2(1 + 2T)

We have thus verified (A.19) when supsc(o 7} IIDF(y+(s))llop is small such that (A.24) holds. Consequently, Condition (C1)

holds under this smallness assumption on DF.

Verification of (C2). This condition can be checked by a long but straightforward calculation using the explicit form of G
given by (A.3)-(A.4) and the assumption that F is C> smooth.

Verification of (C3). We take Z := H'(0, T; RY) x RY. Note that Z is compactly embedded into Y. Condition (C3) follows
then from a direct but lengthy calculation based again on the explicit form of G given by (A.3)-(A.4). It suffices to assume
F to be C? smooth to check this condition.

Verification of (C4). Recall from (A.17) that 7" = IT,7. Condition (C4) follows immediately because ||(Idx — ITy)ullx
converges to zero as h goes to zero for all u € X as a property of the finite element subspaces X".

Verification of (C5). As pointed out in [ 18, Theorem 3.3, p.307], Condition (C5) is a consequence of Condition (C4) (and the
uniform boundedness theorem) when Z is compactly embedded into Y, which is the case here for Z = H!(0, T; RY) x R%
See also [12, Lemma 8.7].

All the conditions in [18, Theorem 3.3, p.307] are thus verified. It follows then from this theorem that for any given
neighborhood O of y,, the problem (6) has a unique solution y’; in O for all sufficiently small h; and the convergence
result (12) holds.

Step 2. It remains to show that y’,: obtained from Step 1 above is indeed a minimizer of (6). For this purpose, it suffices
to show that

d2

VT F gl = 0, ¥ v e X"\(0). (A.25)

Note that

d? W
@](y* + TV, va’g)’.[:o
T
= / (=D?FYM(0))(w(t), v(t), 1Y (t) — FOR() — f(1)) de
0

T
+ /0 (v'(t) — DFY™(0)u(t), v'(t) — DFY™(£))u(1)) dt + (v(0), v(0)),

where D?F(y/(t)) denotes the Hessian of F evaluated at y/(t), which is a bilinear function mapping RY x R? to R9.
A straightforward estimation leads then to

d? ~
GO+ TuF gl = vl ( 1—2¢ sup [IDF(YX(t))llop
o1 (A.26)

— &( sup [IDPFOAON)IGEY = FOR) = Fllores )
t€[0,T]

where |[D?F(y.(t))|| denotes the operator norm of the bilinear map D?F(y.(t)), € and € are the embedding constants

defined at the end of Section 2.1.

Since it has been shown in Step 1 that yZ converges in X-norm to y, (cf. (12)) and X is continuously embedded into
C([0, T]; RY), we get

li L(6) = Y'(t)| = 0. A27

lim max ly«(t) =y (Ol (A27)
[t follows that

lim sup [[DF(Y"())llop = sup [IDF(ys(t))llop. (A28)

h—0tefo,1] te[0,T]

The convergence results (12) and (A.27) together with the smoothness of F also imply that
lim 1(72) = FO/2) = Fllizo.rmey = 104) = Fe) = fllizo,rime) = 0, (A29)
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where the second equality holds since y, is a strong solution of the IVP (3).

Thanks also to (A.27), we know that sup,o 1y |[|D?F(y"(¢))||| is uniformly bounded with respect to h. This uniform
boundedness together with (A.28) and (A.29) implies that for all nonzero v in X", the right-hand side of (A.26) is positive
when h is sufficiently small provided that

1
sup [IDF(y«(t)llop < —=- (A.30)
tel0,T] 2¢

We have thus verified (A.25) under the condition (A.30) by taking h sufficiently small. The proof is now complete. O
Appendix B. Proofs of Lemma 3.1

Note that (21) always has a solution since X" is finite dimensional and the objective function is bounded below by
zero. The fact ?’; = IT,y, is the unique solution to (21) follows directly by inspecting the associated first-order optimality
condition. This condition can be obtained from (A.8) by setting F to zero and restricting v to X", and it reads as follows

T
f (Y —f. (") dt + GH0) — g, v"(0) =0, Vo' e X", (B.1)
0

Using the expression of the solution ¥, given by (20) and the definition of the inner product (-, -)x given by (7), we can
rewrite the above condition as

G =Y. M =0, Vo' exh (B2)

Hence, ¥ — ¥, lives in the orthogonal complement of X". We get thus, ¥ = IT,y..

For the error estimate (22), see e.g., [ 14, Section 2.7.3] for a proof that relies on the classical Aubin-Nitsche trick. The
proof presented therein deals with the special case g = 0 and for state space dimension d = 1. For d > 1, since the vector
field is independent of the unknown variable, we can carry out the estimate component by component, which reduces
the problem to the case d = 1. The general case of g # 0 can be handled by consideringz =y —g. O
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