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Abstract

We use computational modeling to investigate the assembly thermodynamics of a

particle-based model for geometrically frustrated assembly, in which the local packing

geometry of subunits is incompatible with uniform, strain-free large-scale assembly.

The model considers discrete triangular subunits that drive assembly towards a closed,

hexagonal-ordered tubule, but have geometries that locally favor negative Gaussian

curvature. We use dynamical Monte Carlo simulations and enhanced sampling methods

to compute the free energy landscape and corresponding self-assembly behavior as a

function of experimentally accessible parameters that control assembly driving forces

and the magnitude of frustration. The results determine the parameter range where

finite-temperature self-limiting assembly occurs, in which the equilibrium assembly size
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distribution is sharply peaked around a well-defined finite size. The simulations also

identify two mechanisms by which the system can escape frustration and assemble to

unlimited size, and determine the particle-scale properties of subunits that suppress

unbounded growth.

Keywords: self-limited assembly, geometric frustration, free energy cal-

culations, programmable assembly, dynamical Monte Carlo, umbrella sam-

pling, parallel tempering

The self-assembly of subunits into large, but finite-size, superstructures plays a central

role in the functionalities, pathogenesis, and organization of biological systems (e.g. viral

capsids,1–8 bacterial microcompartments9–14 and other shelled cell organelles15–18), and is

becoming a route to design nanostructured assemblies for technological applications .19–29

In contrast, most subunits with cohesive interactions typically undergo thermodynamically

unlimited assembly, for example into a crystal. In these examples self-limitation arises

through ‘curvature control’, meaning that subunits assemble with a preferred curvature

that drives the structure to close upon itself, leaving no boundary for additional subunit

association.

In a second class of self-limited, open-boundary structures, self-assembly terminates at a

well-defined equilibrium size without self-closure, leaving free boundaries at which subunits

can readily exchange with the bulk. Possible biological examples include fiber bundles with

well-defined diameters formed by sickle-cell hemoglobin or fibrin30,31. Recently, it has been

theoretically proposed that self-limited open-boundary assembly can be achieved through

‘geometric frustration’ (GF), in which the preferred local packing of subunits is incompatible

with their preferred large-scale assembly structure.32–34 This incompatibility leads to a misfit

strain energy that grows super-extensively with assembly size until it overwhelms the cohesive

interactions that drive assembly, leading to a finite equilibrium size. For example, theory

showed that twisted fiber bundles can have self-limited diameters because the preferred skew

of the filament-filament interactions is incompatible with the preferred 2D lattice packing
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in the cross-section35–40, while the growth of intra-membrane stretching with lateral size

of 2D crystalline assemblies with incompatible Gaussian curvature can lead to ribbons of

self-limited widths41–47. In these and other examples, it is predicted that the range of

self-limitation is delimited by mechanisms of ‘frustration escape’, whereby defects or elastic

distortions e↵ectively screen the super-extensive frustration cost and permit unlimited (bulk)

assembly.32,34,48

The mechanism of self-limitation by GF is fundamentally distinct from more common

and widely known examples of self-limited amphiphillic assembly into finite-size micelles.49

While assembly may strain molecules in micelles, such strains are intra-molecular (i.e. chain

stretching), and thus the ultimate range of finite diameters is limited by the subunit dimen-

sions (e.g. length of a surfactant). In contrast, GF leads to gradients in inter-subunit strain

that propagate throughout the assembly, and vary in magnitude with the finite size.32,34

Thus, GF-driven equilibrium finite sizes can in principle extend orders of magnitude beyond

the size of subunits or their interaction range.8

Figure 1: Cryogenic electron microscopy images of DNA origami subunits and capsids that
they assemble into. (a) Top view and two side views of subunits. (b) Two subunits bind-
ing to each other. The subunits assemble along their edges through shape-complementary
interactions driven by blunt-end DNA base stacking.19 (c) Icosahedral capsids composed of
n = 20, 60 and 80 subunits. The target structure is defined by the bevel angles of subunit
edges. The images in (a)-(c) were provided by C. Sigl.
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Understanding and engineering the e↵ects of GF on physical assemblies requires connect-

ing the mechanisms and range of strain accumulations, and complex modes of frustration

escape, to particle-scale properties of the misfit building blocks. However, our current un-

derstanding of GF-limited assembly derives primarily from continuum elastic descriptions of

the ground-state energetics, with strong assumptions about the symmetries of aggregates.

While these descriptions establish that in idealized ground states stress buildup could over-

whelm gains of additional subunit binding, such stresses may instead lead to fragmented

and uncontrolled morphologies. It thus remains unknown when such models represent the

thermodynamically relevant aggregates, whether finite-temperature fluctuations enhance or

suppress self-limitation, whether low-symmetry aggregates with defects enable escape from

self-limitation, and what is the physical limit of assembly sizes and conditions where a given

system exhibits self-limitation.

Figure 2: (a) Model energies account for edge stretching, binding of subunits, and bending
across bonds. (b),(c) Subunits have three edge types and each type can only bind to its
own kind. Two of the types (marked with red and blue lines) have the same binding energy
✏b? and preferred dihedrals ✓?0 which set the concave curvature ?. The third type (green

lines) has a di↵erent binding energy ✏bk and its preferred dihedral ✓k0 sets the convex curvature
k < 0.

In this paper, we study a discrete particle model of GF tubule assembly by combin-

ing Monte Carlo simulations with enhanced sampling to determine the equilibrium phase
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diagram of a GF system, accounting for finite temperature and concentration and without

assumptions about assembly pathways, subunit packing geometry, or defects. While we focus

on a particular example, the implications of GF for assembly studied here are generic, and

analogous arguments can be made for systems with diverse sources of GF.8,32,33 Our model

can be realized in experiments based on DNA origami (e.g. Fig. 1) or polymer hydrogel

subunits,19,20,50–52 and we identify experimental control parameters that enable tuning the

finite equilibrium size. Thus, our computational predictions can be directly tested by exper-

iments. Further, our results identify bounds on self-limited assembly, beyond which factors

not accounted for in continuum descriptions allow GFA systems to escape into unlimited

assembly. However, we also identify design strategies to suppress frustration escape, thereby

increasing the parameter range over which self-limited assembly can be achieved.

Results and discussion

Inspired by DNA origami experiments19 that target spherical capsids (Fig. 1) and helical

tubules53 , we consider a minimal model of GF assembly: identical equilateral triangular

subunits that assemble along their edges to form an elastic sheet curled into a tubular

structure (Fig. 2).

The subunit edge shapes favor concave (i.e. self-closing) curvature ? > 0 in the hoop di-

rection, but unlike cylindrical tubular assemblies,50,54 simultaneously favor convex curvature

k < 0 in the other. Thus, this preferred geometry targets a negative Gaussian curvature

KG = ?k < 0, which is incompatible with the uniform triangular lattice favored by the

equilateral subunit geometry. Assuming morphologies to be axisymmetric and defect-free,

an assumption that we test below, assemblies are catenoid-like tubules (‘trumpets’), whose

size and shape is determined by a balance of stretching and bending elasticity.

Frustration is driven by negatively-curved splaying at both free ends of a trumpet, which

leads to a stretching strain of self-closing hoops of subunits that grows in extent along
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the axial length. Assuming all other parameters to be fixed, longer trumpets experience a

larger hoop strain at their ends, and thus are more frustrated. Assuming constant principal

curvatures throughout the trumpet surface, which we show holds in the short trumpet limit,

the radial deflection of the sheet at either end of the trumpet is � ⇡ (1/8)kL2. The

corresponding hoop strain, arising from the increase in the hoop diameter, is " = �/R? ⇡

(1/8)k?L2 where R? = 1/? is the trumpet radius at its central hoop. Thus, the (hoop)

strain grows with trumpet length L as " ⇠ KGL2. Defining Y as the elastic stretching

modulus, the corresponding elastic energy density grows as e(L) ⇠ Y "2 ⇡ Y K2
GL

4, and

the total elastic energy as E(L) ⇡ Y K2
GL

5/?. Notably this scaling is consistent with the

known Föppl von Kárman relation between Gaussian curvature and stress gradients in elastic

sheets32 .

Zero-temperature continuum theory arguments, as considered previously,8,41,42 present

a simplified picture of the assembly thermodynamics, under the strong assumption of ax-

isymmetry. For su�ciently short trumpets, the cumulative hoop stretching cost is much

smaller than the unbending cost to flatten the axial curvature. Hence, short trumpets adopt

nearly the target Gaussian curvature, and the free energy as a function of length is given

by the stretching and edge contributions, F (L) s 2⇡�1
?
�
Y K2

GL
5 + 2⇤

�
with ⇤ the line

energy accounting for unsatisfied subunit interactions at the trumpet ends. An equilibrium

self-limited length L⇤ in the canonical ensemble requires a minimumShe in the per-subunit

free energy s F/(�1
? L),8 which is given by L⇤ ⇠=

⇥
⇤/(Y K2

G)
⇤1/5

. Unlike the aforementioned

bundle and ribbon assemblies which undergo unfrustrated, unlimited growth in one direc-

tion, the simultaneously self-closing hoop and frustration-limited length of a trumpet implies

self-limitation with a finite mass, as we demonstrate below.

As edge tension increases, the optimal length grows, until the hoop stretching cost per

unit area overwhelms the cost of unbending (flattening) in the axial direction, ⇡ B2
k/2,

with B the bending modulus. Since the energy density cost of flattening ⇠ B2
k is length

independent and the energy density of stretching ⇠ Y K2
GL

4, the former term dominates in
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Figure 3: Scaling collapse of trumpet elastic energies. The ground state energies of trumpets
in the discrete particle model are shown as a function of their lengths, scaled as suggested by
the arguments described in the text. The color code indicates di↵erent trumpet diameters,
with 2Np subunits in each ring. Each point represents an individual trumpet with given
diameter, length, stretching and bending modulus. There are a total of 1872 points on
the plot, corresponding to trumpets with lengths L 2 [2, 40] rings, Np 2 [8, 40] subunits,
stretching moduli ✏s 2 [50, 500], and bending moduli b 2 [50, 500]. The microscopic moduli
✏s and b were mapped to the continuum moduli following Ref.55 as Y =

�p
3/2

�
✏s and

B =
�
2/
p
3
�
b. The trumpet energies were computed by reducing the system temperature

to zero at fixed topology of the structure as described in the text.
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Figure 4: (a) Cluster size as a function of time for dynamical simulations that respectively
illustrate the three classes of assembly behaviors: cracked, runaway, and self-limited (with
optimal size n⇤ = 130). Snapshots generated with Ovito56 along each trajectory are shown,
with edges color-coded by their ground-state elastic energies. The curvature anisotropy
↵ = k/?, binding anisotropy � = ✏bk/✏

b
?, and chemical potential µ values are shown in

the legend. (b) Per-subunit free energy profiles corresponding to the dynamical simulations
in (a), obtained by umbrella sampling with replica exchange between 36 ensembles with
di↵erent chemical potentials, temperatures, and bias potentials. The regularly spaced local
minima correspond to full ring closures. The arrow indicates the global minimum for the
middle profile (↵ = �0.35, � = 0.5). The other profiles do not exhibit global minima. For all
3 systems, the elastic parameters are ✏s = 150kBT/l20 and b = 300kBT ; the mean binding
energy is h✏bi = (2✏b? + ✏bk)/3 = �6.5kBT ; and the hoop curvature is ? ⇡ 2⇡/(Npl0), which
favors 2Np = 26 subunits in a ring.

8



the small L regime, and assemblies maintain a constant negative curvature. As the length

grows, however, the stretching cost overwhelms bending costs when B2
k ⇡ Y K2

GL
4. This

crossover from stretching- to bending-dominated costs defines a characteristic length scale

Lflat s
�
B/Y 2

?
�1/4

beyond which the trumpet interior ‘flattens’ at the expense of bending

energy due to deviations from the preferred curvature.8 However, beyond this anticipated

flattening of weakly frustrated assemblies, it remains unclear if and under what conditions the

axisymmetric morphologies considered by these continuum arguments represent the relevant

states that self-assemble when symmetries are unconstrained.

To investigate how the combined e↵ects of finite temperature fluctuations as well as low-

symmetry and defective morphologies alter this self-limiting assembly scenario, we adapt a

discrete subunit model previously developed for elastic membranes55 and icosahedral shell

self-assembly.57–61 This approach does not explicitly resolve the small-scale di↵usive mo-

tions of subunits, and thus facilitates the sampling of competing morphologies required to

identify equilibrium self-limited states at finite temperature. The model describes a grow-

ing elastic sheet comprised of identical triangular subunits, which have three distinct edge

types (Fig. 2a). Here, we consider subunits that bind to each other only along like edges.

This choice is based on the principle that a well-designed assembly process has a unique

ground state corresponding to the target geometry. To specify a particular local curvature

geometry as the lowest energy target state (i.e. with a particular preferred local curvatures)

each edge must bind to a specific edge on the neighboring subunit, aligning distinct dihe-

dral angles in particular directions relative to axial and coaxial direction of trumpets (see

SI Fig. S12). In the DNA origami experiments on tubule assembly that inspire our model,

such edge specificity was insured by shape-complementary binding of blunt-end DNA-DNA

interactions along each edge.53

The stability of rings is adjusted via the intra-ring binding energy ✏b?, which is the subunit-

subunit binding energy along the circumference. The inter-ring binding energy, i.e. the bind-

ing strength along the axial direction, is ✏bk. In the following, we fix the subunit compliance
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and the mean binding energy, and vary two dimensionless ratios: i) the curvature anisotropy:

↵ = k/? and ii) binding anisotropy � = ✏bk/✏
b
?.

To test the correspondence between elastic energetics of trumpets in our discrete model

to the continuum arguments described above, first we consider the zero-temperature en-

ergy minima of pre-assembled trumpets of di↵erent lengths, preferred diameters, and elastic

moduli in Fig. 3. These structures were slowly quenched to T = 0 while prohibiting sub-

unit addition or removal or defect formation, so that their topologies remained fixed during

quenching. Their elastic energy as a function of length was then measured in the final, T = 0

state. Fig. 3 shows the results, with lengths scaled by the predicted flattening crossover size

Lflat and energies scaled by the flattening energy cost ⇡ Y K2
GL

5/?. We observe excellent

scaling collapse over a wide range of parameters, and the clear emergence of two regimes:

at small lengths a superextensive cost of the elastic frustration, where E ⇠ L5, and at large

lengths a convergence to an extensive energy where E ⇠ L. This crossover is a fingerprint

of flattening, and demonstrates that the continuum arguments presented above apply to our

discrete model in the zero temperature limit.

We next evaluate assembly dynamics at finite temperatures. Fig. 4a shows exam-

ple trajectories from dynamical simulations for three parameter sets, which qualitatively

illustrate the three structural categories that we observe. At small curvature anisotropies

(green line, labeled ‘runaway’), i.e. approaching an unfrustrated cylinder, ↵ ! 0, small

structures form with the negative Gaussian curvature favored by individual subunits. How-

ever, beyond a certain length the curvature-driven stresses are screened and the trumpet

interior ‘flattens’, pushing the negative Gaussian curvature to a narrow zone near the free

ends. Consequently the length-dependent elastic energy of deformation approaches an exten-

sive bulk term associated with interior flattening plus a length-independent boundary term,

and the trumpet undergoes unbounded longitudinal growth. At large curvature or binding

anisotropies (orange line, ‘cracked’), the trumpets either fail to close or else crack, leading

to disorganized (e.g. branched) but unbounded growth. However, we observe self-limited
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growth at an intermediate range of curvature anisotropy (blue line, ‘self-limited’). Structures

have a catenoid-like geometry (negatively-curved regions of constant positive mean curva-

ture unduloids), and after growing to final size n⇤ exhibit only small thermal fluctuations in

length.

To test whether dynamical simulations correspond to equilibrium phenomena, Fig. 4b

shows the per-subunit interaction free energies fn for the three systems introduced in Fig.

4a. The free energies of the runaway and cracked structures monotonically decrease with

n, although they asymptotically flatten for large n since the per-subunit edge energy di-

minishes as 1/n. While both structures escape self-limitation, they do so via very di↵erent

mechanisms. According to the continuum theory arguments above, for runaway trumpets

the elastic energy is screened beyond a penetration length Lflat ⇠ �1/2
? , and flattening of

the trumpet interior becomes energetically favorable. The elastic (bending) energy cost of

flattening is extensive in n and thus avoids the super-extensive cost of progressive stretching

of outer hoops. In contrast, the cracks in high-curvature anisotropy structures incur line en-

ergy costs (from missing bonds), but locally release elastic energy. The elastic and cohesive

energies of longitudinal cracks grow with their length, and hence, beyond the size at which

cracks are stable, the trumpet energy grows extensively. Since either elastic flattening or

crack formation preempt the self-limiting compromise between stretching and edge energy,

they do not exhibit minima in fn.

In contrast, the self-limited structure (blue line in Fig.4b) has a global minimum in fn at

n⇤ = 130, which corresponds to a length of 5 rings. The additional local minima correspond

to structures with 4, 6, and 7 closed rings respectively. Structures consisting entirely of

closed rings are favored due to low edge energy. At larger sizes the free energy minimum

structures exhibit cracks or correspond to multiple weakly-bound trumpets (each of which

is self-limited). Note that structures corresponding to local minima in fn with n < n⇤

can be thermodynamically favored over the global minimum free energy structure at finite

concentrations due to their greater translational entropy, whereas local minima with n > n⇤
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are not favored at any concentration (see Fig. 5 and Ref.8).

Figure 5: Equilibrium cluster size distributions in the canonical ensemble (NV T ) computed
from free energy profiles. (a) Distribution of subunits in n-clusters for � = 0.5 and three ↵
values. To aid visibility, the total concentration � for each curve is set to make the peaks
at the self-limited size and free subunits both visible: ↵ = �0.35 (� = 0.03), ↵ = �0.51
(� = 0.04), ↵ = �0.9 (� = 0.08). (b) Per-subunit free energy profiles corresponding to the
distributions in (a). Arrows indicate global minima (n⇤). The profiles are shifted vertically
by a reference value at n = 50. Note that the relatively small depth of the per-subunit global
minima (⇡ 0.1kBT ) corresponds to a significant basin in the total grand free energy (s n⇤).
(c) Fraction of subunits that are free monomers or in clusters close to the optimal size,

n� n⇤ 2 [�10, 10].

From the free energies fn, we compute the cluster size distribution (fraction of subunits in

clusters of size n, �n = n exp[�n(fn�µeq)]) as a function of the total subunit density �, where

the equilibrium chemical potential µeq is determined by mass conservation � =
Pnmax

n �n.

We set the maximum structure size to nmax = 250 because the umbrella sampling simulations

sampled only up to n = 300; the results are not sensitive to nmax provided that nmax � n⇤

is su�ciently large that �nmax ! 0. Fig. 5 shows the resulting cluster size distributions

and corresponding free energy profiles for three systems with di↵erent self-limiting sizes

n⇤ = 78, 104, 130, corresponding to a sequence of decreasing axial curvature anisotropies ↵.

The increasing sizes of these minima are consistent with continuum theory expectations that

the self-limiting trumpet lengths increase as axial curvature decreases, L⇤ ⇠ �2/5
k . In each

case the distribution is sharply peaked with a maximum at a size that is approximately equal

to the per-particle free energy minimum size n⇤ and is insensitive to the total concentration

�. Analogous to classical aggregation, there is essentially no assembly below a pseudo-critical
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total subunit concentration �⇤; while for � � �⇤ almost all subunits are in assemblies (with

the monomer concentration approximately equal to �⇤). In contrast to classical aggregation

but analogous to curvature-controlled self-limited assembly of spherical micelles or capsids,8

the assembly size distribution remains narrowly distributed around the optimal size n⇤. We

note that our simulation results do not strictly apply for � & 0.1 since the assumption

of dilute noninteracting clusters breaks down; however, this occurs well above the CAC.

Moreover, the CAC can be arbitrarily lowered by increasing binding a�nities.

Figure 6: Equilibrium phase diagram in the ↵� � plane computed from umbrella sampling.
Symbols indicate phases: self-limited (�), cracked (⌅), and runaway (⇥). For the self-limited
phase, symbols are colored and sized according to the optimal size n⇤. Parameter sets are
categorized as cracked if the coe�cient of variation of the open boundary length is larger
than 0.5 at the lowest value of fn; self-limited if they are not cracked and exhibit a global
minimum at fn⇤ with n⇤  250; and runaway if they are neither cracked nor exhibit a global
minimum for n  250. Phase boundaries are qualitatively insensitive to these criteria.
The cracked-runaway phase boundary is drawn as a guide to the eye, while the runaway-self
limited phase boundary is estimated from the scaling argument as ↵ = �s[�/(� + 2)]1/2,
with the value of the unknown prefactor s = 0.6 set by eye. The ↵ = 0 and ↵ = �1 lines
respectively correspond to preferred cylinder and minimal surface geometries, and � = 1
represents isotropic binding strength.

Having established the existence of self-limiting equilibrium assembly at finite tempera-
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ture and concentrations, we now consider the parameters that determine this range and the

self-limited size. Fig. 6 shows the phase behavior and (in the self-limited regime) optimal

size n⇤ computed from umbrella sampling, as a function of the dimensionless parameters

controlling the frustration (negative curvature, ↵) and binding anisotropy (�). We see that,

notwithstanding the e↵ects of thermal fluctuations and escape to low-symmetry morpholo-

gies, equilibrium self-limitation exists over a broad range of model parameters, with n⇤

increasing as ↵ ! 0, that is, as the negative curvature decreases and the preferred geometry

approaches the unfrustrated cylinder. However, the curvature of the free energy profile near

the minimum (d2fn/dn2|n⇤) tends to decrease with n⇤ (see, for example, Fig. 5 b), until the

minimum disappears and the system enters the runaway phase. The shape of the self-

limited/runaway phase boundary can be estimated using the continuum scaling arguments

presented above and setting L⇤ ⇠ Lflat. Using the simplest estimate for the line tension,

⇤ = �✏bk = 3�/(� + 2)h✏bi, gives that in the ↵ � � plane ↵ = �s[�/(� + 2)]1/2 with s an

unknown constant. Fig. 6 shows that, by setting the proportionality factor to a physically

reasonable value s = 0.6, the predicted phase boundary qualitatively describes the separatrix

between the runaway and self-limited phases for � > 0.

We also find that anisotropic binding, with lateral interactions stronger than inter-ring

interactions (� < 1), is essential for stable self-limited structures for all parameter ranges

we have simulated. As � ! 1, the structure is su�ciently stabilized by strong inter-ring

interactions that it becomes energetically favorable to break lateral interactions (i.e. form

cracks) to relax the negative-curvature frustration. Additionally, su�ciently strong inter-

ring bonds overwhelm the flattening cost of axial unbending, and thus the threshold ↵ value

for runaway trumpets decreases with increasing �. Hence, in a regime of � . 1, we observe

that the self-limiting assembly is cut-o↵ at the upper size range (low |↵|) by the elastic shape

flattening mechanism, and at the lower size range (high |↵|) by the inelastic mechanism

of longitudinal cracking. As � ! 1, assembly transitions directly from cracked to runaway

structures, without an intervening self-limiting regime. In principle the location of boundary
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between the cracked and self-limited phases could be determined from the binding energy

costs and corresponding elastic energy release associated with crack formation. However, due

to the long-range nature strain fields in the frustrated regime, nucleation of a crack results in

complex non-axisymmetric strains and particle displacements far across the structure that

complicate a simplified analytical estimation.

Conclusions

In conclusion, we demonstrated that geometric frustration leads to equilibrium self-limitation

over a finite, but specific, range of shape-misfit and binding anistropy, when accounting for

entropic e↵ects at finite temperatures and complex, inelastic frustration escape mechanisms

possible in a discrete particle model. Importantly, the two dimensionless parameters that

we focused on, targeted negative curvature and binding anisotropy, are experimentally con-

trollable (e.g. with DNA origami19,20,50 or polymer hydrogel particles51,52). Moreover, our

results identify a design principle: self-limitation requires stronger circumferential binding

than axial binding. In a separate work we will consider a detailed comparison between pre-

dictions of ground-state continuum thermodynamics and the finite-T assembly of our discrete

subunit model to assess the range and utility of analytical theories for guiding the design and

engineering of GF assembly. Finally, equilibrium self-limitation does not necessarily describe

finite-time assembly; e.g. long-lived metastable intermediates (kinetic traps) may arise for

far out-of-equilibrium initial states.62,63 Thus, systematic dynamical simulations are needed

to identify the self-limited regime under finite-time constraints.

Beyond the specific application of geometrically-programmed DNA origami particles, our

study casts light on existing assemblies. Notably, one key model of the dynamical instability

of microtubules is associated with a transition of protofilamentary units to adopt an outward,

trumpet-like curvature. In the context of microtubules, the drive for outward curvature is

assumed to be a non-equilibrium process, driven by hydrolysis of ATP bound to tubulin
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dimers, which in turn destabilizes the lateral binding between protofilalments, facilitating

their rapid depolymerization.64–69 To our knowledge, the equilibrium implications, specifi-

cally the potential to stabilize of finite equilibrium lengths, of this geometric frustration has

not yet been considered. More broadly, our model considers the frustration in elastic mem-

branes that have a preference for negative Gaussian curvature. This general problem has

been studied in the context of tape-like, helicoidal membranes,41,42 which can have finite-

dimensions in one of the two dimensions of the sheet, but grow to unlimited length. Notably,

we show here that by directing one of the two directions to close upon itself, frustration can

stabilize assemblies of finite mass, as opposed to finite spatial dimensions.

Methods

The model is adapted from the discrete subunit model previously developed for icosahedral

shell self-assembly.57–61 Here only edges with the same type can bind to each other, with

binding energies ✏tb for edge-type t = 1, 2, 3. Two of the binding energies, corresponding to

bonds within circumferential hoops, are equal, ✏1b = ✏2b ⌘ ✏b?, while the third is di↵erent,

✏3b = ✏bk, corresponding to axial bonding. The in-plane stretching elasticity of the sheet

derives from a Hookean energy penalty for deviations of each edge from its preferred length

l0, Es = ✏s(l � l0)2/2 with ✏s the edge’s elastic modulus, and l its instantaneous length.

Here, we set ✏s the same for all three edge types. The preferred curvatures and bending

modulus are controlled by a bending potential on dihedral angles along bonds, Ebend =

b

�
✓m � ✓t(m)

0

�2
/2, with m the index of a bound edge pair and ✓t(m)

0 the preferred dihedral

angle across bonds between bound edge pairs of type t(m) (Fig. 2b). Analogous to the

binding energy, we set ✓10 = ✓20 ⌘ ✓?0 and ✓30 ⌘ ✓k0, which respectively set the preferred

principal curvatures ? and k. In the limit of small preferred curvatures, the trumpet

assemblies can be approximated as frustrated elastic shells, with target principal curvatures

? ⇡ ✓?0 /
p
3 and k ⇡ (2✓k0 + ✓?0 )/

p
3 (see SI).
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We perform simulations using a grand canonical (µV T ) Monte Carlo (MC) algorithm.

To model the limit of dilute, noninteracting assemblies (the most experimentally relevant

regime) and to avoid kinetic traps associated with depletion of free subunits,62 we simulate

a single assembling structure in exchange with free subunits at fixed chemical potential

µ. We compute the equilibrium grand potential ⌦n as a function of cluster size n, using

umbrella sampling combined with parallel tempering to e�ciently sample the rugged free

energy landscape. The intra-cluster interaction free energy Fn is then obtained by subtracting

the ideal subunit translational free energy, Fn = ⌦n + µn.8,40,70–73 Technical details are in

the SI. The MC algorithm includes 11 moves (details are in the SI and ref.74) that account

for subunit association/dissociation and structural relaxation of intermediates. We focus

here on equilibrium self-limited states, for which the relative rates for di↵erent moves are

irrelevant. However, the dynamics are not qualitatively sensitive to changing relative values

of the rates (see SI Fig. 9).

The model parameters are the stretching modulus ✏s, the bending modulus b, the binding

energies ✏b? and ✏bk,the preferred curvatures ? and k, the chemical potential µ, and the MC

move attempt rates. Due to the large parameter space, here we set the subunit elastic

properties to ✏s = 150kBT/l20 and b = 300kBT , and the standard state volume to v0 = l30.

In addition, we fixed the average binding energy to h✏bi = (2✏b? + ✏bk)/3 = �6.5kBT and the

positive curvature ? ⇡ 2⇡/(Npl0) so that 2Np = 26 subunits pack in an unstrained ring.

Throughout the paper, we vary two dimensionless parameters: i) the curvature anisotropy:

↵ = k/? and ii) binding anisotropy � = ✏bk/✏
b
?.

Supporting Information. The suporting information available online contains details

on the model and the Monte Carlo algorithm used to obtain the results presented above.

We also present details on the free energy calculations using umbrella sampling combined

with parallel tempering. Finally, we show how the preferred curvatures k and ? map to

the preferred dihedral angles ✓k0 and ✓?0 . In addition to these details, we provide videos of

the 3 trajectories corresponding to the self-limited, cracked and runaway phases of Fig. 4

17



and a video showing the structure evolution under cycling conditions to test the equilibrium

sampling.
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I. THE MODEL

In this section we provide additional details about the model and Monte Carlo simulation that we used to generate
the results in the main text. The model and algorithm are similar to the one used to describe microcompartment
assembly in ref. [1] by Rotsko↵ and Geissler (which we refer to as the RG model henceforth). In particular, we consider
flexible triangular subunits which can bind to each other along edges with a set of preferred dihedral angles that set
the preferred curvatures of the assembling sheet. Monte Carlo simulations are performed in the grand canonical
ensemble at fixed µV T , with µ the chemical potential of subunits in the bath. Each Monte Carlo simulation involves
a single cluster undergoing assembly and disassembly, with subunits taken from or returned to the bath respectively,
as well as structural relaxation moves. We describe specific di↵erences with respect to the RG model below.

1. Energies

In the trumpet model, each three edges of the triangular subunits are of di↵erent types, t(p) = 1, 2, 3, for edge
index p and each edge can only bind to an edge of the same type on a neighboring subunit.
The total energy of the system is given by

E =
3nsX

p

E
p
stretch +

1

2

X

hpqi

(Epq
bend + E

pq
bind) (1)

where the first sum goes over all edges, with ns the number of subunits in the cluster. The second sum only goes over
bound edges (i.e. non-boundary, adjacent edges, so there are 2nb terms in the sum, with nb as the number of bonds).
The 1/2 factor corrects for double counting.
The stretching energy is defined as:

E
p
stretch = ✏s

(lp � l0)2

2
(2)

where ✏s is the stretching modulus, lp is the instantaneous length, and l0 is the stress-free (rest) length of an edge.
For the trumpet model we set the stretching modulus and rest length equal for all edges.
The bending energy is quadratic in deviations from the preferred dihedral angle:

E
pq
bend = b

⇣
✓
pq � ✓

t(p)t(q)
0

⌘2

2
(3)

with p and q adjacent edges and t(p), t(q) the edge types. b is the bending modulus and is set equal for all edge

types. ✓
t(p)t(q)
0 is the preferred dihedral angle between edges with types t(p) and t(q). Since only edges of the same

types are allowed to bind to each other, t(p) = t(q) ⌘ t for all adjacent edge pairs pq, and ✓
t(p)t(q)
0 ⌘ ✓

t
0. Two of the

types are set to have the same, positive preferred dihedral ✓10 = ✓
2
0 ⌘ ✓

?
0 and the third one is set to have a di↵erent,

negative preferred dihedral ✓30 ⌘ ✓
k
0 .

The binding energy between two edges p and q (with the same type t(p) = t(q) = t) is given by

E
t
bind = ✏

t
b (4)

Similar to the preferred dihedrals, the two binding energies corresponding to the ✓?0 edges are set equal to ✏
1
b = ✏

2
b ⌘ ✏

b
?

and the third is set di↵erent, to ✏
3
b = ✏

b
k. A stronger (i.e. more negative) ✏

b
? favors intra-ring binding whereas ✏

b
k is

responsible for inter-ring binding.
In addition to the above terms, each subunit has at its center of mass a spherical excluder of radius 0.2l0 to prevent

subunit overlaps. Finally, to prevent extreme distortions of subunits, maximum edge length fluctuations are limited
to l0/2 < l < 3l0/2.

2. Coarse-graining

Our model is motivated by the triangular DNA origami subunits developed in Sigl et al.[2], in which subunits bind
through lock-and-key ‘patches’ along subunit edges in which attractive interactions are generated through blunt-end
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stacking of unsatisfied nucleotides. Therefore, in our model we define attractive bonds along subunit edges (rather
than at vertices as in the RG model). In particular, attractive bonds occur at each shared pair of subunit edges
with the same type. Because the interactions in the experimental system are driven by nucleotide stacking, they
are extremely short-ranged in comparison to the subunit size (the subunit edge lengths are approximately 60 nm).
Therefore, in our simulations we avoid resolving the short length scale fluctuations in separation distance between
bound edges and their associated vertices by coarse-graining as follows.
A microstate i is defined as the position of all the 3ns vertices of ns subunits: i ! (~x1, ~x2, ...~x3ns) The grand

canonical probability density of finding the system around state i is

f(i) =
P (~x1, ~x1 + d~x1; ...; ~x1, ~xns + d~xns)

d~x1d~x2...d~x3ns

=
1

Z⌦

e
�nsµ

�9ns
e
��Ei (5)

where µ is the chemical potential and �
3 is the standard state volume. This probability density has the dimensions

of 1/volume3ns corresponding to all the 3ns vertices of the subunits. Due to bonds, however, some pairs of vertices
are confined within a binding volume va. We consider a square-well potential so that the binding energy is constant
within this volume. Analogous to Ref. [1], we can then coarse-grain to avoid resolving intra-bond fluctuations. We
assume that fluctuations of bound edges are su�ciently small that each pair of vertices at either end of a bound edge
pair are constrained within a binding volume va. Note that we constrain vertices rather than edges so that the coarse-
grained microstate can be represented in terms of positions of vertices rather than edges, which is easier to implement
computationally. In the coarse-grained system, a coarse microstate is specified by the coordinates corresponding to the
independent vertex degrees of freedom (with 1 degree of freedom for each bound vertex group and unbound vertex):
� ! (~x1, ~x2, ...~xnv), where nv is the number of independent bound vertex groups and free vertices. The probability
of such a coarse-grained state is given by the net weight of all the corresponding fine-grained microstates:

⇢(�) =

Z

{va}
f(i)dnVB~x (6)

where nVB is the number of vertex-bonds and is given by nVB = 3ns � nv. For simplicity, we take the limit in which
3
p
va is small in comparison to the length scale over which the elastic energy varies, so that the energy is constant

within the bound volume va. Then f(i) is a constant, and the probability density is given by

⇢(�) =
1

Z⌦
v
nVB
a

e
�nsµ

�9ns
e
��E� (7)

where E� is the total energy of state � (including stretching, bending and binding energies). The coarse graining
process is illustrated in Fig. 1.
Di↵erences from the RG model [1]. First, in our model attractive bonds are defined along shared edges, while

attractive bonds are counted at grouped vertices in the RG model. Thus, in our model the number of bonds nb for a
given configuration is equal to the number of shared edges, whereas in the RG model it would be equal to the number
vertex bonds, nVB. However, the Hamiltonian for the elastic energy of the triangulated sheet and the corresponding
Monte Carlo algorithm are much more straightforward to define in terms of a set of vertex positions rather than edge
positions and orientations. Therefore, in our simulations we track vertex positions, by following the coarse-graining
procedure described above. The distinction between attractions at edge- or vertex-pairs does not lead to qualitative
di↵erences between our model in the RG model, but it does imply that the binding a�nity values ✏b and the binding
volume va must be treated as independent parameters in our model, since in general the number of bound vertices is
not identical to the number of bound edges. Note that both definitions (bonds along edges or bonds at vertex pairs)
involve approximations to the rotational and translational entropy penalties associated with subunit binding, since
they assume a constant entropy penalty for each vertex degree of freedom that is lost within a bound vertex group,
independent of the local environment (i.e., the number of bonds that a given subunit has) [3, 4].
Second, because we are modeling independent triangular subunits binding along edges, each unbound edge in the

graph (those edges at the boundary of the structure) correspond to a single physical subunit edge, while bound edges
(those in the structure interior) each correspond to two physical subunit edges. Therefore, in our model we set the
stretching modulus for a bound edge to be twice that of a free edge. In the RG model all edges have the same
stretching modulus.

3. Implementation and data structure

The simulation is implemented on top of the OpenMesh library [5]. Subunits are implemented as triangular mesh
elements. OpenMesh uses the halfedge data structure which is suitable to implement triangles with directed normals
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FIG. 1. Coarse-graining of an example cluster configuration. In this configuration, the number of subunits is ns = 5, the number
of initial (before coarse-graining) vertices is 3ns = 15, and the number of vertices after coarse-graining is nv = 7. The red circles
indicate bound vertex groups, and the number of vertex degrees of freedom that have been eliminated by coarse-graining in
this configuration is nVB = 1 + 3 + 2 + 2 = 8 = 3ns � nv. Motivated by DNA origami subunits in Sigl et al. [2], the attractive
interactions (i.e. ‘bonds’) in this model occur along edge-pairs of the same type shared by two subunits. In this configuration
there are nb = 4 bonds.

FIG. 2. The halfedge data structure used by OpenMesh. Each edge is represented by two directed edges. Boundary edges are
no exception and thus are represented by a non-boundary halfedge and a boundary halfedge (in green). This latter is irrelevant
for our model. Directed edges allow for the unambiguous definition of face normals, for e�cient iterations of the element’s
neighborhood as well as boundary iterations.

(Fig 2). The directed halfedges allow for a clockwise iteration through the boundary of a triangle, which makes the
two faces of the triangles distinguishable. Only halfedges with opposite orientations can bind together, making it
impossible to form a Mobius strip, for example. The data structure and the resulting iterators in OpenMesh allow for
an easy and e�cient iteration over the neighborhood of mesh elements (vertices, edges and faces). The implementation
of mesh element rearrangements is less straightforward, but we implemented it via the insertion and removal of virtual
triangles. In addition, OpenMesh allows for the storage of various properties on mesh elements, allowing storage of
edge types and face types stored on the elements. To improve readability in the upcoming sections, we will not
represent halfedges separately.

II. THE MONTE CARLO MOVES

In this section we detail the Monte Carlo moves of the simulation. Our algorithm has 11 moves: vertex displace-
ment, simple subunit insertion/deletion, wedge insertion/deletion, wedge fusion/fission, crack fusion/fission, and edge
fusion/fission.
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FIG. 3. Vertex move. A vertex is randomly displaced and the move is accepted according to the usual Metropolis probability.

Detailed balance. For the transition between state � and �0 detailed balance corresponds to [1, 6]:

P (�)⇥ ↵(� ! �0)⇥ pacc(� ! �0) = P (�0)⇥ ↵(�0 ! �)⇥ pacc(�
0 ! �) (8)

where ↵(� ! �0) is the probability of generating a � ! �0 move attempt (trial), pacc(� ! �0) is the probability of
accepting the move, and P (�) = ⇢(�)dnv(�)~x is the equilibrium probability of finding a system in a voxel of volume
dnv(�)~x.

Next, we use Eq. (8) to define the acceptance criteria for each MC move. The acceptance criteria are derived in
detail for the wedge fusion/fission move; the steps to follow are the same for all other moves.

A. Vertex displacement

In this move, a vertex is randomly selected, a random uniform displacement is drawn, and the vertex is displaced
to its new position according to:

x ! x+ U(�dmax, dmax) (9)

y ! y + U(�dmax, dmax) (10)

z ! z + U(�dmax, dmax) (11)

with dmax the maximum displacement. The move is accepted with a probability pacc = exp(��E/kBT ) where �E

is the (bending plus stretching) energy change due to the displacement. The parameter dmax can be adjusted during
a burn-in period to optimize convergence to equilibrium. Generally optimal values are on the order of the typical
length scale of thermal fluctuations dictated by the elastic energy, leading to acceptance probabilities on the order of
50%. In our simulations typical values are between dmax = [0.01l0, 0.1l0]. The vertex displacement move is illustrated
in Fig 3: the number of subunits ns, number of vertices nv, number of vertex bonds nVB and number of bonds nb

remains unchanged during this move.

B. Simple insertion / removal

1. Simple insertion

In this move, an edge is randomly selected from the set of all boundary edges, where a new subunit will be attached.
The number of such boundary edges is ne. Subunits can be inserted in nr di↵erent rotations, where nr is the number
of distinct rotational states for a subunit which has one edge aligned with the edge of a neighboring subunit. For
our triangular subunits with three distinct edge types, nr = 3. In our algorithm, during insertion of a subunit its
rotational state is chosen randomly from the set of three possibilities. If the aligned edge is not complementary to
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the type of the boundary edge, then the move is rejected. In this work, the two edges must be of the same type to be
complementary.
The positions of two of the new subunit’s vertices (those at either end of the edge being bound) are set equal to

the positions of the corresponding vertices of the boundary edge to which it is binding. The third vertex position is
randomly chosen from within a volume vadd centered at the equilibrium position of the new vertex.
Thus, the attempt probability for a simple insertion is given by:

↵(i ! j) = neki⌧nr ⇥
1

nenr(vadd/d~x)
. (12)

Then, applying Eq. (8) and the attempt probability for the reverse move (simple deletion, presented next, Eq. (14)),
the acceptance probabilities for a simple insertion is

pacc(i ! j) = min


1,

v
2
avadd

�9
exp[�(�Ei!j � µ)/kBT ]

�
. (13)

�Ei!j is the energy change due to the move and includes the stretching energy of the newly inserted subunit, its
bending energy along the shared edge, and the binding energy due to the creation of an extra bond. During this
move, one new (edge) bond and two new vertex bonds are created; i.e. nb ! nb + 1 and nVB ! nVB + 2. Moreover,
the number of vertices in the structure increases by one, nv ! nv + 1.

2. Simple removal

The reverse move to simple insertion is simple removal. Subunits that can be deleted with this move are those
with two boundary edges. The number of simply removable subunits is nsr. One of these is selected randomly, so the
attempt probability is

↵(j ! i) = nsrki⌧ ⇥ 1

nsr
(14)

and, using Eq. (8) and Eq. (12), the acceptance probability is

pacc(j ! i) = min


1,

�
9

v2avadd
exp[�(�Ej!i + µ)/kBT ]

�
(15)

During this move, the structure loses one (edge) bond and two vertex bonds; nb ! nb � 1 and nVB ! nVB � 2. The
number of vertices in the structure decreases by one, nv ! nv � 1.
If there are multiple species with chemical potentials µk, detailed balance must be satisfied for each species, indi-

vidually. Moreover, each species can have di↵erent insertion rates kki .
To keep ↵ < 1, we ensure that the insertion rate ki constrained by

neki⌧nr < 1 (16)

nsrki⌧ < 1 (17)

In equilibrium, one can use adaptive rates, i.e. reduce ki on the run if the above condition is not satisfied. In that
case, sampling is not taken for the ensuing several time steps. Alternatively, the rates may be set to a low enough
value from the beginning and only tested on the run to ensure that the ↵ < 1 condition is satisfied. This latter
technique is appropriate for dynamical runs as it keeps the rates constant throughout the simulation.
Moreover, we must ensure that vadd is large enough so that the vertex does not leave the vadd volume during

structural relaxation moves; otherwise the insertion/deletion moves would not be reversible and the detailed balance
would be violated. For a better convergence, one could choose a gaussian distribution N (~r) for the position of the
new vertex instead of a uniform distribution 1/vadd. In this case, this distribution has to be accounted for in the
acceptance probabilities pacc(i ! j) and pacc(j ! i).

C. Wedge insertion/removal

1. Wedge insertion

Wedges are positions in the structure where a triangle can be inserted via attaching to two edges (Fig. 5). In a wedge
move, we pick randomly from the set of available wedge positions in the structure, and pick a random orientation for
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FIG. 4. Simple insertion and removal.

the new subunit. Denoting the number of wedge positions in a given structure as nw, the attempt probability for a
wedge move is

↵(i ! j) = nwki⌧nr ⇥
1

nrnw
(18)

In contrast to the simple insertion move, there is no need for random vertex displacement in a wedge move because
all three vertices of the new subunit are fixed by the three vertices of the wedge position. Combining Eq. (18) and
the attempt probability for wedge removal (Eq. (20)), The acceptance probability for a wedge insertion is

pacc(i ! j) = min


1,

v
3
a

�9
exp[�(�Ei!j � µ)/kBT ]

�
. (19)

During a wedge insertion, two edge bonds and three vertex bonds are created; i.e., nb ! nb + 2 and nVB ! nVB + 3,
but the number of vertices is unchanged, nv ! nv. �Ei!j includes the binding energy of the two newly formed
bonds, the two bending energies along the two newly bound edges and the stretching energy of the newly inserted
subunit.

2. Wedge removal

The reverse move of wedge insertion is wedge removal. In a wedge removal, we randomly choose one of the removable
wedges from a given structure. With the number of removable wedges as nwr, the attempt probability is

↵(j ! i) = nwrki⌧ ⇥ 1

nwr
. (20)

Using Eq. (18), the acceptance probability for a wedge removal is then

pacc(j ! i) = min


1,

�
9

v3a

exp[�(�Ej!i + µ)/kBT ]

�
. (21)

We have the following constraints on rates ki for wedge insertion/removal:

nwki⌧nr < 1 (22)

nwrki⌧ < 1 (23)

As for simple insertion and removal, in the case of multiple species, detailed balance is satisfied for each species
separately for wedge insertion/removal.

D. Wedge fusion / fission

1. Wedge fusion

In this move, a fusable wedge is closed, without inserting a new subunit (Fig 6). That is, the two vertices on either
side of the wedge opening are merged into a single vertex. Fusable wedges are vertex pairs that i) form a wedge (as
in the case of wedge insertion) and ii) are within a separation distance of lfuse.
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FIG. 5. Wedge insertion and removal.

Denoting the number of fusible wedge positions as nw, in each MC step, a wedge fusion is attempted with probability
nwkwf⌧ , where kwf is an adjustable parameter controlling the relative probability of attempting wedge fusion. Then,
a wedge position is selected randomly from the set of all nw fusible wedges. The attempt probability is thus

↵(i ! j) = nwkwf⌧ ⇥ 1

nw
. (24)

Using Eqs. (24) and (26), the acceptance probability for fusion moves is

pacc(i ! j) = min


1,

va

vfuse
exp(��Ei!j/kBT )

�
(25)

where vfuse = (4⇡/3)(lfuse/2)3 is the volume of a sphere with diameter lfuse, and �Ei!j is the energy change due to
the fusion, including changes in bending, stretching, and binding energies. A fusion move increases the number of
edge bonds and vertex bonds by one, nb ! nb+1 and nVB ! nVB+1; the factor of va appears in Eq. (25) to account
for the latter.

2. Wedge fission

Wedge fission, in which a wedge is opened, is the reverse of the wedge fusion move. Fissionable edges are those
edges that can be split along their boundary vertex to obtain a wedge. Denoting the number of such edges as nf, the
probability of attempting a wedge fission move during an MC step is nfkwf⌧ . If a fission move is attempted, then an
edge is selected randomly from the nf fissionable edges. The position of one of the new vertices is selected randomly
within the sphere of volume vfuse centered at the original position of the merged vertices, and the other new vertex
is placed in the opposite direction from the original position, at the same distance. Thus, the attempt generation
probability is

↵(j ! i) = nfkwf⌧ ⇥ 1

nf(vfuse/d~x)
(26)

and the acceptance probability is

pacc(j ! i) = min


1,

vfuse

va
exp(��Ej!i/kBT )

�
(27)

We verify that detailed balance holds between wedge fusion and fission as follows. There are two cases to consider:

1. (vfuse/va) exp(��Ej!i/kBT ) < 1 , (va/vfuse) exp(��Ei!j/kBT ) > 1

In this case, pacc(i ! j) = 1 and pacc(j ! i) = (vfuse/va) exp(��Ej!i/kBT ). Then

Pi ⇥ ↵(i ! j)⇥ pacc(i ! j) =
1

Z⌦
v
nV B,i
a exp[�(Ei � µns,i)/kBT ]

1

�9ns,i
⇥ dnv,i~x⇥ kwf⌧ (28)
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FIG. 6. Wedge fusion and fission.

and

Pj ⇥ ↵(j ! i)⇥ pacc(j ! i) =
1

Z⌦
v
nV B,j
a exp[�(Ej � µns,j)/kBT ]

1

�9ns,j
⇥ dnv,j~x (29)

⇥ kwf⌧d~x/vfuse ⇥ (vfuse/va) exp(��Ej!i/kBT )

(30)

Using: �Ej!i = Ei�Ej , ns,i = ns,j (because the move leaves the subunit number unchanged), nV B,i = nV B,j�1
(one vertex bond is broken upon fission) and nv,i = nv,j +1 (an extra vertex is being born upon fission), we see
that the two are equal and detailed balance holds.

2. (vfuse/va) exp(��Ej!i/kBT ) > 1 , (va/vfuse) exp(��Ei!j/kBT ) < 1

In this case, pacc(i ! j) = (va/vfuse) exp(��Ei!j/kBT ) and pacc(j ! i) = 1. Then

Pi ⇥ ↵(i ! j)⇥ pacc(i ! j) =
1

Z⌦
v
nV B,i
a exp[�(Ei � µns,i)/kBT ]

1

�9ns,i
⇥ dnv,i~x⇥ kwf⌧ (31)

⇥ (va/vfuse) exp(��Ei!j/kBT ) (32)

and

Pj ⇥ ↵(j ! i)⇥ pacc(j ! i) =
1

Z⌦
v
nV B,j
a exp[�(Ej � µns,j)/kBT ]

1

�9ns,j
⇥ dnv,j~x (33)

⇥ kwf⌧d~x/vfuse
(34)

Using again �Ej!i = Ei � Ej , ns,i = ns,j , nV B,i = nV B,j � 1 and nv,i = nv,j + 1, detailed balance holds.
Note that detailed balance is satisfied regardless of the values of kwf⌧ or vfuse, but as with all of the move frequencies

these parameters can be optimized during burn-in to accelerate convergence to the equilibrium distribution P (i). In
our simulations, we find that the optimal value of vfuse is on the order of the optimal value of dmax for analogous
reasons: if vfuse is too small there will be very few vertex pairs identified as fusable, so nw will be low. If vfuse is too
large, there will be many fusion candidates but most fusion attempts will be rejected due to the large elastic energy
change necessary for the merging deformation.
Most importantly, we note the constraint on the parameters kwf⌧ to ensure that generation probabilities do not

become larger than unity. Because each attempt is generated as a three step process, using three probabilities, one
has to ensure that all those probabilities are less than 1. Specifically,

nwkwf⌧ < 1 (35)

nfkwf⌧ < 1. (36)
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FIG. 7. Crack fusion and fission.

E. Crack fusion / fission

1. Crack fusion

Crack fusion closes a crack within the structure; i.e., two adjacent pairs of edges are merged (Fig. 7). Cracks
are identified as 4-edge-length holes inside the structure. If the vertices of the hole are labeled A, B, C, D then the
polygon ABCD forms a closed loop (see Fig. 7). The crack can be closed by either merging vertices A and C (and
correspondingly edges CD to DA and AB to BC) or by merging vertices B and D (and correspondingly edges AD
to AB and CD to CB). Each 4-edge-length loop thus defines two potential fusable cracks. However, an additional
condition for a crack to be fusable is that its merging vertices must be within a distance lfuse (A and C or D and B
in this example). In this work, we have set the crack fusion volume to be the same as that for wedge fusion to reduce
the number of parameters, but it is not necessary that they be the same.and the acceptance probability is

pacc(i ! j) = min


1,

va

vfuse
exp(��Ei!j/kBT )

�
(37)

There are two edge bonds and one vertex bond formed during a crack fusion.

2. Crack fission

The reverse move for crack fusion is crack fission. With the number of potential cracks as ncf:

↵(j ! i) = ncfkcf⌧ ⇥ 1

ncf(vfuse/d~x)
(38)

pacc(j ! i) = min


1,

vfuse

va
exp(��Ej!i/kBT )

�
(39)

As for the case of wedge fusion/fission, the crack fusion attempt frequency parameter kcf is constrained by the
conditions maintaining probabilities smaller than unity:

nckcf⌧ < 1 (40)

ncfkcf⌧ < 1 (41)

(42)

F. Edge fusion / fission

1. Edge fusion

During this move two non-neighbor edges are fused (Fig. 8). Fusable edges are non-neighboring edge pairs whose
corresponding vertices are within a separation distance lfuse. Since edges are directed, they can only fuse such that,
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FIG. 8. Edge fusion and fission.

after fusion, they point in the opposite direction. Assuming the edges to be fused are A ! B and C ! D (see Fig.
8), vertex A will merge into vertex D and vertex B will merge into vertex C. Edges are counted as fusable if A is
within a distance lfuse to D and B is also within a distance lfuse to C. The attempt probability is analogous to that
for wedge and crack fusion/fission,

↵(i ! j) = nekef⌧ ⇥ 1

ne
(43)

with ne the number of fusable edges and kef the edge fusion frequency parameter. The acceptance probability is

pacc(i ! j) = min

"
1,

✓
va

vfuse

◆2

exp(��Ei!j/kBT )

#
(44)

During edge fusion, one edge bond and two vertex bonds are created.

2. Edge fission

Edge fission is the reverse move of edge fusion. nef is the number of breakable edges, that is, those edges that have
both vertices on the boundary and which would not result in breaking the structure apart.

↵(j ! i) = nefkef⌧ ⇥ 1

nef(vfuse/d~x)2
(45)

The factor 1/(vfuse)2 arises because we must select a random position for each pair of vertices, independently. The
acceptance probability is then

pacc(j ! i) = min

"
1,

✓
vfuse

va

◆2

exp(��Ej!i/kBT )

#
. (46)

To maintain probabilities within unity, the edge fusion frequency parameter kef is constrained by

nekef⌧ < 1 (47)

nefkef⌧ < 1. (48)

III. UMBRELLA SAMPLING, PARALLEL TEMPERING, AND FREE ENERGY CALCULATIONS

1. Bias potentials.

The grand potential (up to an n-independent constant kBT lnZ⌦), ⌦n, can be computed as ⌦n = �kBT lnP (n)
where P (n) is the equilibrium probability of observing n subunits in the structure. While P (n) can in principle be
computed by tabulating a histogram of cluster sizes during an unbiased simulation, in practice only the high-probability
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cluster sizes will result in statistically significant sampling. To improve sampling, we perform umbrella sampling, with
independent windows in which a harmonic bias potential Ub = kumbrella(n� n0)2/2 that restrains the cluster size to
remain near n0, with kumbrella the strength of the bias potential, and each window can have di↵erent values of n0 and
kumbrella. We perform simulations in which histograms corresponding to the biased probability distribution Pbias(n)
are measured; the biased histograms are then combined and unbiased using the Weighted Histogram Analysis Method
[7] to obtain ⌦n. We used the Bayes-WHAM implementation by Ferguson [8].
The interaction free energy Fn is then given by Fn = ⌦n + µn, with µ the chemical potential. Importantly,

measurements performed at di↵erent chemical potentials µ should result in the same Fn, since Fn represents the
cluster interaction free energy which is independent of the bath concentration. However, di↵erent imposed values of µ
will ‘tilt’ the free energy landscape and thus favor sampling di↵erent values of n for a given bias potential. Therefore,
it is useful to combine the imposed chemical potential into the bias potential as:

Ub(n, n0) = kumbrella
(n� n0)2

2
� µ(n� n0) (49)

The n0 in the linear term does not a↵ect the computed value of Fn (which depends only on @Ub/@n) but is convenient
for numerical reasons in solution of the WHAM equations. The simulation is then performed with a Hamiltonian
H(�) = E(�) + Ub(n, n0).

2. Parallel tempering

Convergence of umbrella sampling calculations is poor when there are slow degrees of freedom in addition to reaction
coordinate being biased (which is the cluster size n in our case). Moreover, because our reaction coordinate is discrete,
sampling may be poor in cases where the underlying free energy landscape has a jump which is large in comparison to
kBT over a single subunit. Therefore, to improve sampling, we performed parallel tempering between di↵erent umbrella
sampling windows and replicas at di↵erent temperatures. In particular, we simultaneously performed simulations with
3 di↵erent temperatures, 4 umbrella spring constants kumbrella and 3 chemical potentials µ (36 replicas in total). Swaps
between these replicas were attempted randomly, with the Metropolis acceptance criteria to ensure detailed balance
([6]). In principle, results from all of these windows could be combined within WHAM, but in practice combining
di↵erent temperatures is impractical for a histogram-based method such as WHAM and instead requires use of ‘binless’
WHAM (e.g. [9, 10]). Therefore, we separately used WHAM to compute free energy profiles at each of the three
temperatures. For the results in the main text, each free energy curve (and corresponding minimum point) result
from exchanging between 36 replicas with kBT = {1, 1.1, 1.25}, µ = {�6.5,�5.5,�5}, kumbrella = {1, 1.5, 2, 2.5}.
Technically, a non-unit temperature is equivalent to rescaling the elastic moduli, binding energies, chemical potential
and the umbrella spring constant by the same factor, however, it is easier to implement with having the temperature
as a separate parameter.

IV. MAPPING TO TARGET CURVATURES FROM LOCAL DIHEDRALS

Here we briefly outline the mapping between preferred dihedrals between adjacent triangular edges and the target
values for target (triangulated) surface. Notably, the target shape prefers a non-zero Gaussian curvature that is incom-
patible with the equilateral edge lengths, and hence, we deduce the values of the target curvature from unfrustrated
strips along nearest neighbor rows of triangles. Consider for example, a row shown in Fig. 9(a) corresponding to an
alternating sequence of dihedrals, ✓i and ✓j . The curvature along this row is defined by considered the circle defined
by three consecutive vertices along the row, see the green, blue and yellow points in Fig. 9(a) . These points define a
vector R(✓i, ✓j) that points from the central vertex to the center of curvature, such that the local radius of curvature
is its length. As the local discrete approximation to the curvature of these edges is R(✓i, ✓j)/|R(✓i, ✓j)|2, the discrete
approximation of the normal curvature of a surface spanned by the triangular faces is given by,

(✓i, ✓j) =
n ·R(✓i, ✓j)

|R(✓i, ✓j)|2
=

2
p
3(sin ✓i + sin ✓j)

�
cos ✓i + cos ✓j + cos ✓i cos ✓j � 2 sin ✓i sin ✓j � 3

�

`0

⇥
4 cos ✓i + 4 cos ✓j � 8 cos(✓i � ✓j) + 3 cos(2✓i) + 3 cos(2✓j)� 6

⇤ (50)

where n is the normal to the central triangle, and `0 is the preferred edge length. For small angles this row curvature
reduces to the simple form

(✓i ⌧ 1, ✓j ⌧ 1) '
p
3(✓i + ✓j)

2`0
. (51)
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FIG. 9. Schematic for defining target curvatures from preferred dihedrals of triangular subunits. (a) shows the definition of
target curvature along a row of triangles with consecutive dihedrals, ✓i and ✓j , based on the circle defined by 3 consecutive
vertices, shown as green, blue, and yellow points. The vectors R(✓i, ✓j) and n denote the distance from the central vertex to the
center of curvature and the normal to the triangular face, respectively. (b) shows a schematic relating the two target principle
curvatures, ? and k, to the row curvatures of the triangular mesh, one of which lies along the principle ? direction, while
the other two are shown as the dashed black curves.

Based these row curvatures, we can relate them to the principle curvatures k and ? using Euler’s relation,

(✓i, ✓j) = k(êk · êij)2 + ?(ê? · êij)2, (52)

where êk and ê? are the principle directions of curvature and êij is the direction of the row of alternating ij bonds
in the tangent plane. For trumpets, the dihedrals in the hoop (?) direction are equal to a common ✓2, such that

? = (✓2, ✓2), (53)

while the directions of the ✓1 and ✓2 are rotated by 2⇡/3 with respective to this principle direction giving,

k =
4(✓2, ✓1)� (✓2, ✓2)

3
. (54)

This alignment of the target row curvatures and principle curvature directions is shown schematically in Fig. 9(b).
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