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We present a numerical study that investigates the fluid-structure interaction of a flexible

cantilever cylinder with a uniform flow at low Reynolds numbers (Re). A fully coupled

fluid-structure solver based on the three-dimensional Navier-Stokes equations and Euler-

Bernoulli beam theory is employed to examine the coupled dynamics of the flexible

cylinder. Of particular interest is to explore the possibility of flow-induced vibrations at

laminar subcritical Re, i.e., no periodic vortex shedding, and assess the extent to which

such a flexible cylindrical beam could sustain the vibrations at this Re regime. We find that

when certain conditions are satisfied, the flexible cantilever cylinder experiences sustained

vortex-induced vibrations (VIVs), with the frequency of the transverse oscillations match-

ing the first-mode natural frequency of the cylinder. The range of the frequency match,

known as the lock-in regime, is found to have a strong dependence on the Reynolds number

Re, mass ratio m∗, and reduced velocity U ∗. Unlike the steady wake behind a stationary

rigid cylinder, the wake of the flexible cantilever cylinder is shown to become unstable

at Reynolds numbers as low as Re = 22 when system parameters are within the lock-in

regime. A combined VIV-galloping type instability is suggested as the mechanism behind

the sustained unsteadiness in the wake and large-amplitude vibrations of the cylinder at

laminar subcritical Re. These findings attempt to generalize our understanding of flow-

induced vibrations in flexible cantilever structures and have a relevance to the development

of novel bio-inspired flow-sensing devices.
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I. INTRODUCTION

Flow-induced vibrations (FIVs) are omnipresent and play a significant role in numerous fields

such as marine/offshore, civil, biomedical, and aerospace engineering. Considerable research has

been done in recent decades to characterize the underlying mechanism and explore the practical

aspects of flow-induced vibrations in a wide range of domains, including vibration control [1–3],

energy harvesting [4–8], and sensing [9,10] applications. In particular, the phenomenon of flow-

induced vibration in bluff bodies has received much attention in the literature due to the complex

vortex dynamics and nonlinear physics involved in the interaction of a bluff body with fluid flow.

Within this context, the flow-induced vibration of an elastically mounted rigid cylinder has served

as a prototypical model in many experimental and numerical studies [11]. It has been shown that

asymmetric vortex shedding from the wake of an elastically mounted rigid cylinder exerts unsteady

loads that could lead to large-amplitude vibrations in the cylinder. These vibrations are typically
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called vortex-induced vibrations (VIVs) and are characterized by a frequency match between the

frequency of the periodic vortex shedding and vibration frequency of the cylinder [12,13].

When the natural frequency of a freely vibrating cylinder is close to the vortex-shedding

frequency, the VIV phenomenon results in a complex evolution of the shedding frequency, which

deviates from the Strouhal frequency of its stationary counterpart. In this frequency regime, the

vortex formation locks on to the natural frequency of the cylinder, creating a strong coupling

between the cylinder and fluid flow [12]. Several studies have shown that the maximum vibra-

tion amplitude of an elastically mounted rigid cylinder, with only one degree of freedom in the

transverse direction, is O(D) [14], where D is the cylinder diameter. Furthermore, the maximum

vibration amplitude is known to be a function of fluid and structural parameters, including Reynolds

number and mass-damping ratio [15], and has been shown to have a slightly higher value for two-

degree-of-freedom cylinders [16]. Comprehensive reviews regarding the vortex-induced vibration

of elastically mounted rigid cylinders can be found in Refs. [14,15,17–19].

More recently, several studies have focused on the dynamic response of flexible slender structures

at high Reynolds numbers [20–22] to give new physical insight into the phenomenon of vortex-

induced vibration in bluff bodies. Due to the complex interaction of nonlinear wake dynamics

with numerous flexible modes, the vortex-induced vibration modeling and prediction poses seri-

ous challenges for flexible structures. For example, studies on long offshore/marine risers with

pinned-pinned structural support have found that ocean currents excite several vibration modes

and frequencies along the span of risers during VIVs [23–25]. From a short-term perspective,

vortex-induced vibrations could amplify the drag force and exert large dynamic bending stresses on

the structure. These dynamic stresses, in turn, could lead to fatigue failure in these types of flexible

structures in the long term if not controlled properly [26]. In addition to pinned-pinned cylindrical

risers, flexible cantilever cylinders could also experience vortex-induced vibrations. According to

an experimental study on the VIV response of flexible cylinders in the laminar flow regime, the

dynamics of a flexible cantilever cylinder is different from the dynamics of a flexible pinned-pinned

riser during VIVs. A flexible pinned-pinned marine riser has been shown to vibrate at monotoni-

cally increasing frequencies with each eigenmode gradually growing in modal weight as the flow

velocity is increased [27]. However, for a flexible cantilever cylinder, although higher modes are

observed at higher velocities, the cylinder has been shown to oscillate with only one vibration

eigenmode during VIVs [28]. In line with the works done in the field of vortex-induced vibrations,

in our current work, we examine the dynamic response of a flexible cantilever cylinder at low

Reynolds numbers to give new insight into the subject of flow-induced vibration in flexible slender

structures.

Our interest in studying the dynamics of a flexible cantilever cylinder at low Reynolds numbers

originates from the intriguing problem of sensing through whiskers in some mammals, such as

rats and seals. Experimental studies on the mechanical response of isolated rat vibrissae (whiskers)

to low-speed airflow have revealed that air currents of magnitude 0.5 to 5.6 m/s, typically found

in natural environments, generate significant vibrissal motion that carries information about the

direction and magnitude of airflow [29,30]. More interestingly, behavioral experiments have shown

that rats use the information from their whiskers to localize the airflow sources [31]. Similar to

rats, marine mammals such as harbor seals and sea lions have been shown to utilize their whiskers

to locate and track their prey in dark and muddy environments [32]. Harbor seals and sea lions

can sense minuscule hydrodynamic disturbances in water flows and follow a trail left behind in

the wake of swimming fish. An experimental study on a model of a seal whisker has shown that a

seal whisker in the wake of a stationary rigid cylinder undergoes wake-induced vibrations, with the

frequency of the oscillations matching the shedding frequency of the upstream wake [33]. According

to Refs. [33,34], the special morphology and unique structural design of a seal’s whiskers helps

mitigate flow-induced vibrations in uniform flow.

While there are some recent investigations to explain the interaction between the whiskers and

vortex dynamics [35,36], the underlying mechanisms of the hydrodynamic information extraction

from the whisker-vortex interaction and the mechanoreceptor response at the whiskers’ base are not
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FIG. 1. Schematic of the flexible cantilever cylinder interacting with uniform flow.

systematically explored. Moreover, there exists neither a well-accepted hypothesis nor a computa-

tional modeling framework that explains the collective dynamics and vortex-sensing abilities via

a whisker array. In particular, the oscillatory response of whiskers at laminar subcritical Reynolds

numbers, i.e., Re < Recr ≈ 45 [37,38], is an area which requires further research. In our current

work, we investigate the fluid-structure interaction of a flexible cantilever cylinder as a simplified

whisker model using fully coupled numerical simulations. Our goal is to help answer two specific

questions: (1) can we observe sustained vibrations in the flexible cantilever cylinder at laminar

subcritical Re and (2) what is the relationship between the cylinder dynamics and stability of

the wake at this Re regime? Understanding the underlying fluid-structure dynamics of a flexible

cantilever cylinder, inspired by the dynamics of whiskers, is of vital importance for developing

novel flow-measurement sensors [9] and brings us one step closer towards a complete mapping of

the sensing properties of whiskers.

We model the whisker geometry as a cantilever cylinder with a constant circular cross-section and

consider three key nondimensional parameters to examine the dynamics of the cylinder. The

considered parameters are mass ratio m∗, Reynolds number Re, and reduced velocity U ∗ defined

as

m∗ =
4m

πD2ρf
, Re =

ρfU0D

μf
, U ∗ =

U0

fnD
, (1)

where m is the mass per unit length of the cylinder, D is the cylinder diameter, ρf and μf are the

density and dynamic viscosity of the fluid, respectively, U0 is the magnitude of the uniform flow

velocity, and fn is the first-mode natural frequency of the cylinder. The range of the considered

parameters in our current work is within 20 � Re � 40, U ∗ ∈ [2, 19], and 1 � m∗ � 1000, which

cover a practical range of values. A schematic of the flexible cantilever cylinder of length L is

provided in Fig. 1. The cylinder is connected to a fixed support at z = 0. The Young’s modulus

and second moment of area of the cylinder are denoted by E and I , respectively. As shown in

Fig. 1, due to fluid forces acting on the cylinder, it initially deforms in the streamwise direction.

Furthermore, depending on the system parameters, the flexible cylinder could exhibit an unsteady

dynamic response, with periodic vortex-shedding patterns present downstream.

The content of the paper is structured as follows. The governing equations for modeling the

cylinder dynamics and the coupling strategy between the fluid and structural solvers are discussed

in Sec. II. In addition, we provide the results for the grid convergence study at the end of this section.

In Sec. III we cover the results of our study and discuss the dynamic response characteristics of the

cylinder in detail. Finally, we finish the paper with a conclusion in Sec. IV.
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FIG. 2. (a) Schematic of the computational domain with details of the domain size and boundary condi-

tions; (b) isometric view of the M2 mesh with the cylinder highlighted inside the domain; (c) representative

z-plane slice of the unstructured finite element grid with a closeup view of the boundary layer mesh.

II. NUMERICAL METHODOLOGY

This section gives an overview of the employed numerical framework for modeling the fluid-

structure interaction of the flexible cantilever cylinder. To model the cylinder dynamics, a three-

dimensional computational domain, as shown in Fig. 2(a), is implemented. The cylinder is placed

at an offset distance of 15D and 45D from the inflow and outflow surfaces, respectively. A fixed

structural support condition is imposed at one end of the cylinder (z = 0), and the no-slip boundary

condition is applied at the fluid-structure interface �fs. The size of the computational domain is

60D × 30D × L. A uniform flow of velocity uf = (U0, 0, 0) is given at the inflow surface and the

slip boundary condition is applied to the side surfaces �f
side−1 and �f

side−2. For the outflow surface,

the traction-free boundary condition, given by σf · nf = 0, is specified.

The numerical framework has been extensively validated for the flow past a three-dimensional

stationary circular cylinder and the flow past a long flexible cylinder under pinned-pinned structural
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support at high Reynolds numbers with turbulent wake [24]. The validity of the framework in mod-

eling the dynamics of flexible cylindrical structures enables us to accurately model the dynamics

of the flexible cantilever cylinder in the presence of uniform flow at laminar subcritical Reynolds

numbers, i.e., Re < Recr ≈ 45, in our current study. In the following, we present the governing

equations for modeling the cylinder dynamics and discuss the implemented strategy for coupling

the fluid and structural solvers. We also provide the grid convergence study results at the end of this

section.

A. Governing equations

We consider the three-dimensional incompressible Navier-Stokes equations coupled with the

Euler-Bernoulli beam theory to examine the coupled dynamics of the flexible cantilever cylinder.

The governing equation for the Euler-Bernoulli beam is formulated in a Lagrangian reference frame,

and a body-fitted moving boundary approach based on the arbitrary Lagrangian-Eulerian (ALE)

description [39] is considered for the viscous incompressible fluid flow. The body-fitted treatment

of the fluid-structure interface through the ALE description of the flow field enables us to accurately

model the boundary layer over the deformable surface of the cylinder.

1. Navier-Stokes equations for a moving-boundary problem

The unsteady Navier-Stokes equations for a viscous incompressible fluid flow in an arbitrary

Lagrangian-Eulerian reference frame on the fluid domain �f (t ) are

ρf ∂uf

∂t

∣

∣

∣

∣

x̂f

+ ρf (uf − um ) · ∇uf = ∇ · σf + bf on �f (t ), (2)

∇ · uf = 0 on �f (t ), (3)

where uf = uf (xf , t ) and um = um(xf , t ) denote the fluid and mesh velocities defined for each

spatial point xf ∈ �f (t ), respectively, bf is the body force applied to the fluid and σf is the Cauchy

stress tensor for a Newtonian fluid, given as

σf = −pI + μf [∇uf + (∇uf )T ], (4)

where p denotes the fluid pressure, and μf is the dynamic viscosity of the fluid. The first term

in Eq. (2) represents the partial derivative of uf with respect to time while the ALE referential

coordinate x̂f is kept fixed.

The fluid forcing acting on the beam’s surface is calculated by integrating the surface traction on

the fluid-structure interface �fs. The instantaneous coefficients of lift and drag forces are quantified

as

CL =
1

1
2
ρfU 2

0 DL

∫

�fs

(σf · n) · ny d�, (5)

CD =
1

1
2
ρfU 2

0 DL

∫

�fs

(σf · n) · nx d�, (6)

where nx and ny are the Cartesian components of the unit outward normal vector n.

2. Euler-Bernoulli beam theory for a flexible structure

We consider the flexible cantilever cylinder as a slender structure with relatively small lateral

motions. Therefore, the Euler-Bernoulli beam theory can be applied to model its dynamic response.

Let �s be the structural domain consisting of structure coordinates xs = (x, y, z). We solve the

transverse displacements ws(z, t ) using the Euler-Bernoulli beam equation excited by the distributed

unsteady fluid force per unit length f s. The motion of the flexible cantilever cylinder is governed

by the fluid forces and involves integrating pressure and shear stress effects on the cylinder surface.
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TABLE I. Modal parameters for flexible cantilever beams of constant cross section [40].

Mode number, i λi σi

1 1.87510407 0.734095514

2 4.69409113 1.018467319

3 7.85475744 0.999224497

4 10.99554073 1.000033553

5 14.13716839 ≈1

� 6 (2i − 1)π/2 ≈1

Neglecting the damping and shear effects, we take the equation of motion for the flexible cantilever

cylinder as

m
∂2ws(z, t )

∂t2
+ EI

∂4ws(z, t )

∂z4
= f s(z, t ), (7)

where m = ρsA is the mass per unit length of the cylinder, with A being the cross-sectional area

of the cylinder. Under the cantilever (clamped-free) configuration, the boundary conditions at the

clamped end of the cylinder are given as

ws(z, t )|z=0 = 0,
∂ws(z, t )

∂z

∣

∣

∣

∣

z=0

= 0. (8)

To solve Eq. (7), we consider a mode superposition approach for the dynamic response of the

cylinder. The ith mode natural frequency of the cylinder is given by

fn,i =
λi

2

2πL2

√

EI

m + ma

, (9)

where i is the mode number, ma is the added mass of the fluid per unit length defined as ma =

πD2ρf/4, and λi is the dimensionless frequency parameter for the ith mode of vibration. The λi

values are given in Table I. The modal parameters are based on the values reported in Ref. [40] for

flexible cantilever beams of constant cross section.

The cylinder motion is solved using simple linear vibration analysis. The displacements from

the mean position of the cylinder are assumed to be small and characterized based on the normal

vibration modes found using an eigenvalue analysis. The mode shapes of the cantilever cylinder are

taken as the sums of sine, cosine, sinh, and cosh functions of λiz/L written as

Si(z) = cosh

(

λiz

L

)

− cos

(

λiz

L

)

− σi sinh

(

λiz

L

)

+ σi sin

(

λiz

L

)

, (10)

where Si denotes the mode shape associated with the ith mode of vibration and σi is the nondimen-

sional parameter dependent on the mode number (see Table I for σi values).

3. Treatment of the fluid-structure interface

We need to satisfy the continuity of velocity and traction at the fluid-structure interface. Let

�fs = ∂�f (0) ∩ ∂�s be the fluid-structure interface at t = 0 and �fs(t ) = ϕs(�fs, t ) be the interface

at time t . The required conditions to be satisfied are

uf (ϕs(xs
0, t ), t ) = us(xs

0, t ), (11)

∫

ϕs(γ ,t )

σf (xf , t ) · n d�(xf ) +

∫

γ

t s d� = 0, (12)

024702-6



FLUID-STRUCTURE INTERACTION OF A FLEXIBLE …

TABLE II. Grid convergence study results for the flexible cantilever cylinder at Re = 40, m∗ = 1, and

U ∗ = 11. The values inside the parentheses represent the relative error compared to the results of the M3

mesh. A constant time-step size 
t = 0.001 is employed.

M1 M2 M3

Number of nodes 142 290 285 396 564 672

Number of elements 271 458 547 470 1 086 591

Frequency ratio fy/ fn 1.2522 1.2522 1.2522

Mean streamwise deformation Ax/D 2.6000 (0.26%) 2.5966 (0.13%) 2.5933

rms of transverse vibration amplitude Arms
y /D 0.3188 (1.98%) 0.3134 (0.25%) 0.3126

Mean drag coefficient CD 1.6958 (0.37%) 1.6917 (0.13%) 1.6895

rms of lift coefficient Crms
L 0.0197 (14.53%) 0.0175 (1.74%) 0.0172

where ϕs denotes the position vector that maps the initial position xs
0 of the cylinder to its position

at time t , i.e., ϕs(xs, t ) = xs
0 + ws(xs, t ), t s is the fluid traction vector relating to the fluid forcing as

f s(z, t ) =
∫

�fs t s d�, and us is the velocity of the structure at time t given by us = ∂ϕs/∂t . Here n

is the outer normal to the fluid-structure interface, γ is any part of the interface �fs in the reference

configuration, d� is the differential surface area and ϕs(γ , t ) is the corresponding fluid part at time

t . The above conditions are satisfied such that the fluid velocity is exactly equal to the velocity of

the structure at the fluid-structure interface.

To couple the fluid and structure equations, we use a nonlinear partitioned iterative approach

based on the nonlinear iterative force correction (NIFC) scheme described in Refs. [41,42]. At each

time step, the fluid traction applied to the surface of the cylinder is projected onto the eigenvectors

to find the values of the generalized modal forces. The projected modal forces are then used to

determine the modal amplitudes and displacements for the next time step. To account for the changes

in the cylinder geometry, we explicitly control the motion of each mesh node while satisfying the

kinematic consistency of the discretized interface. The movement of the internal finite element

nodes is chosen such that the mesh quality does not deteriorate as the displacements of the cylinder

become large. For this purpose, we assume the fluid mesh to represent a hyperelastic solid model.

In addition, a standard Lagrangian finite element technique is used to adapt the mesh to the new

geometry of the domain.

B. Grid convergence study

This subsection provides the grid convergence study results for the flexible cantilever cylinder

interacting with a uniform flow. The computational domain, shown in Fig. 2(a), is discretized

into unstructured hexahedral finite element grids with a boundary layer mesh around the cylinder.

We start with a relatively coarse grid denoted by M1 and successively increase the number of

elements by approximately a factor of 2 to achieve the M2 and M3 meshes. An isometric view

of the discretized domain and a z-plane slice of the unstructured grid for the M2 mesh is given

in Figs. 2(b) and 2(c), respectively. For the grid convergence study, the response characteristics of

the cylinder are examined at Re = 40, m∗ = 1, and U ∗ = 11. Grid convergence errors are then

calculated by taking the results for the finest mesh, M3, as the reference case. The values of

the frequency ratio ( fy/ fn), mean streamwise deformation (Ax/D), root-mean square (rms) of the

dimensionless transverse vibration amplitude (Arms
y /D), and the force coefficients (CD and Crms

L ) are

given in Table II. According to Table II, the relative errors using the M2 mesh are less than 2%;

therefore, the M2 mesh is chosen as the suitable grid for our present study. It is worth noting that the

results in Table II are for a computational domain consisting of 16 layers in the spanwise direction.

After performing an independent grid convergence study on the number of spanwise layers, ranging

from 8 to 64, the grid with 16 layers is found to capture the essential three-dimensional features of

the fluid-structure system.
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FIG. 3. Variations of the dimensionless (a) streamwise and (b) transverse vibration amplitude calculated

from the mean deformed position of the cylinder at Re = 40, m∗ = 1, and U ∗ = 7 in the time window tU0/D ∈

[140, 160]. The results are probed at z/L = 1 for gap ratios ranging from δz/L = 0 (no gap) to δz/L = 0.5.

Next, the effect of the gap ratio on the oscillatory response of the cylinder is examined. The gap

ratio is defined as δz/L where δz is the distance from the free end of the cylinder to the top surface

of the domain. Figure 3 shows the amplitude response results for the flexible cantilever cylinder at

Re = 40, m∗ = 1, and U ∗ = 7 for the gap ratios in δz/L ∈ [0, 0.5]. It is found that the gap ratio

has a negligible effect on the cylinder response. The vortical structures around the free end of the

cylinder for the domain with δz/L = 0.5 are shown in Fig. 4. It is observed that the vortices are

predominantly in the xy-plane near the free end of the cylinder. Table III provides a summary of the

response characteristics of the cylinder and hydrodynamic coefficients for the range of studied gap

ratios. We observe that the relative errors for δz/L = 0, 0.125, and 0.25 are less than 2%, compared

to δz/L = 0.5. Moreover, no specific trend in the value of the relative errors is observed as the

gap ratio is increased. For this particular problem, we conclude that the gap ratio effects are not

significant, and the M2 mesh with no gap between the top surface of the domain and the free end of

the cylinder can provide an adequate solution.

III. RESULTS AND DISCUSSION

A. Response characteristics

We first explore the response characteristics of the flexible cantilever cylinder of aspect ratio

L/D = 100 for 20 � Re � 40, U ∗ ∈ [2, 19], and m∗ = 1. We investigate the response charac-

TABLE III. Results for the effect of gap ratio on the dynamics of the flexible cantilever cylinder at Re = 40,

m∗ = 1, and U ∗ = 7. The values inside the parentheses represent the relative error compared to the results of

the domain with δz/L = 0.5. A constant time-step size 
t = 0.001 is employed.

δz/L = 0 δz/L = 0.125 δz/L = 0.25 δz/L = 0.5

Mean streamwise deformation Ax/D 1.1956 (0.61%) 1.1896 (0.10%) 1.1899 (0.13%) 1.1884

rms of transverse vibration amplitude Arms
y /D 0.4937 (1.86%) 0.4902 (1.13%) 0.4923 (1.57%) 0.4847

Mean drag coefficient CD 1.8714 (1.07%) 1.8531 (0.08%) 1.8514 (0.01%) 1.8516

rms of lift coefficient Crms
L 0.3034 (1.44%) 0.3013 (0.73%) 0.3038 (1.57%) 0.2991
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FIG. 4. (a) Isometric and (b) xy-plane view of the vortical structures visualized by the normalized z-

vorticity isosurfaces (ωzD/U0 = −0.224, 0.224) around the flexible cantilever cylinder at Re = 40, m∗ = 1,

and U ∗ = 7. The domain has a gap ratio δz/L = 0.5. Red (blue) indicates regions of positive (negative) vortices.

teristics of the flexible cantilever cylinder in terms of the root-mean-square (rms) value of the

dimensionless transverse vibration amplitude Arms
y /D. As shown in Fig. 5, at Re = 20, the cylinder

remains in its steady deflected position, i.e., Arms
y /D = 0, for the range of studied U ∗. Similarly, this

steady-state response is observed at Re = 22 for U ∗ � 6 and between 24 � Re � 40 for U ∗ � 5

(see Fig. 5). Although the flexible cantilever cylinder exhibits a steady-state response for some

values of U ∗, there is a particular range of U ∗ within which the cylinder undergoes sustained

FIG. 5. Root-mean-square (rms) value of the dimensionless transverse vibration amplitude Arms
y /D at

z/L = 1 as a function of U ∗ at m∗ = 1 for 20 � Re � 40.
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FIG. 6. (a) Variations of dimensionless transverse vibration amplitude calculated from the mean deformed

position of the cylinder (Ay − Ay)/D, probed at z/L = 1, and the lift coefficient CL in the time domain;

(b) power spectra of (Ay − Ay)/D and CL in the frequency domain. The results are gathered in the time window

tU0/D ∈ [200, 300] at Re = 40, m∗ = 1, and U ∗ = 7.

large-amplitude vibrations. The peak of the transverse vibration amplitude in this range is shown to

be within U ∗ ∈ [7, 8] for Re � 22. According to Fig. 5, the peak of Arms
y /D at Re = 22 is at U ∗ = 8

with a value of Arms
y /D ≈ 0.18. However, as Re is increased, the maximum value of the transverse

vibration amplitude is found to increase in magnitude and shift towards U ∗ = 7. For instance,

the peak of Arms
y /D has a magnitude of approximately Arms

y /D ≈ 0.26 at Re = 24, increasing to

Arms
y /D ≈ 0.49 at Re = 40. At Re = 40, the cylinder is shown to experience sustained vibrations

for reduced velocities between U ∗ ∈ [6, 19]; however, for lower Reynolds numbers, the oscillations

are present for a narrower range of U ∗. A more broadband oscillatory response at higher Reynolds

numbers is mainly due to larger inertial fluid forces that overcome the viscous damping effects.

Time histories of the transverse vibration amplitude calculated from the mean deformed position

of the cylinder (Ay − Ay)/D at z/L = 1 and the lift coefficient CL are given in Fig. 6(a). We

observe that the cylinder response in the transverse direction is in-phase with the variations of

the lift coefficient at Re = 40, m∗ = 1, and U ∗ = 7. Moreover, the peak of the dimensionless

transverse vibration frequency fy/ fn is shown to match the peak of the dimensionless lift coefficient

frequency fCL
/ fn in the frequency domain at fy/ fn = fCL

/ fn = 1 [see Fig. 6(b)]. This frequency

match indicates the presence of the lock-in phenomenon at U ∗ = 7. We consider the lock-in regime

as a region wherein 0.9 � fy,CL
/ fn � 1.1. To specify the range of the lock-in regime with respect

to U ∗, we have provided the variations of the dimensionless transverse vibration frequency fy/ fn

and the dimensionless lift coefficient frequency fCL
/ fn at m∗ = 1 for Re = 22, 30, and 40 in Fig. 7.

According to Fig. 7, at Re = 22, the cylinder is in the lock-in regime for U ∗ ∈ [8, 9], extending to

U ∗ ∈ [7, 10] at Re = 30 and to U ∗ ∈ [6, 9] at Re = 40.

Figure 8 represents the variations of the cross-sectional drag and lift coefficients, given by Cd

and Cl, respectively, in the time domain, along with the power spectra of the force and amplitude

coefficients in the frequency domain, at Re = 40, m∗ = 1, and U ∗ = 7. As shown in Fig. 8(a), the

drag coefficient varies in time and across the cylinder span. We find that the mean value of the

cross-sectional drag coefficient is Cd ≈ 2.31 at z/L = 1; however, this value is found to reduce to

Cd ≈ 1.57 at z = 0. For a stationary rigid cylinder interacting with a uniform cross-flow at Re = 40,

the drag coefficient has a uniform distribution along the cylinder span, with a value of Cd ≈ 1.55

[43]; however, for the flexible cantilever cylinder at the same Re, the value of the fluctuating drag
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FIG. 7. Variations of the dimensionless transverse vibration frequency fy/ fn, probed at z/L = 1, and the

dimensionless lift coefficient frequency fCL
/ fn with respect to U ∗. The results are gathered at m∗ = 1 for

Re = 22, 30, and 40.

coefficient is shown to vary along the length of the cylinder. Although the magnitude of Cd increases

by moving towards the free end of the cylinder, the magnitude of the fluctuating cross-sectional drag

coefficient Cd − Cd reaches near zero at z/L ≈ 0.6 [see Fig. 8(b)]. Nevertheless, the magnitude of

the dimensionless streamwise vibration amplitude calculated from the mean deformed position of

the cylinder (Ax − Ax)/D is shown to increase monotonically moving from the fixed end to the free

end of the cylinder. The variation of the cross-sectional lift coefficient across the cylinder span is

shown in Fig. 8(c). We observe that the unsteady lift coefficient has a single frequency with a ratio of

fCl
/ fn = 1 across the length of the cylinder. Similar to the magnitude of the streamwise vibrations,

the magnitude of the transverse vibrations is found to monotonically increase by moving from the

fixed end to the free end of the cylinder [see Fig. 8(d)].

An isometric view of the cylinder undergoing large-amplitude oscillations in the lock-in regime

at Re = 40, m∗ = 1, and U ∗ = 7 is illustrated in Fig. 9(a). A figure-eight-shape motion trajectory is

observed across the cylinder length. These trajectories are shown to grow in magnitude by moving

towards the free end of the cylinder. The scalograms of the dynamic response of the cylinder in the

streamwise and transverse directions, given in Figs. 9(b) and 9(c), respectively, suggest standing

wave patterns in both the streamwise and transverse directions. Based on the scalograms of the

cylinder given in Fig. 9 and the power spectra of the force and amplitude coefficients provided in

Figs. 8(b) and 8(d), the dimensionless streamwise vibration frequency fx/ fn is twice that of the

dimensionless transverse vibration frequency fy/ fn along the cylinder span. The frequency ratio

of fx/ fy = 2 explains the figure-eight-shape motion trajectory of the cylinder shown in Fig. 9(a).

Finally, we have provided the motion trajectories of the free end of the cylinder at Re = 40, and

m∗ = 1 for U ∗ ∈ [6, 9] in Fig. 10. A figure-eight-shape motion trajectory is observed for all values

of U ∗ in the lock-in regime.

Next, we explore the power transfer between the fluid flow and the vibrating cantilever cylinder.

Figure 11 shows a time history of the instantaneous power transfer from the fluid flow to the flexible

cantilever cylinder in one period of the cylinder motion, i.e., T = 1/ fn. The dimensionless power

transfer coefficients in the streamwise and transverse direction are defined as (Cd − Cd )u/U0 and

(Cl − Cl)v/U0, respectively. Here Cd and Cl represent the mean value of the cross-sectional drag

and lift coefficients, while u and v are the cross-sectional streamwise and cross-flow velocity of the

cylinder, respectively. A complex interaction between the flexible cantilever cylinder and the wake
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FIG. 8. (a) Variation of the cross-sectional drag coefficient Cd along the cylinder span in the time domain;

(b) power spectra of (Ax − Ax )/D and Cd − Cd in the frequency domain. (c) Variation of the cross-sectional lift

coefficient Cl along the cylinder span in the time domain; (d) power spectra of (Ay − Ay)/D and Cl − Cl in the

frequency domain. The results are gathered in the time window tU0/D ∈ [80, 120] at Re = 40, m∗ = 1, and

U ∗ = 7.

dynamics due to the spatial-temporal variations of fluid forces is shown to result in a cyclic power

transfer in and out of the cylinder. Knowing the fluid forces and vibration response of the cylinder,

the hydrodynamic coefficients in-phase with the cylinder velocity are obtained using the following

equations:

Cdu(z) =

2
T

∫

T
[Cd(z, t ) − Cd(z)]u(z, t ) dt

√

2
T

∫

T
u(z, t )2dt

, (13)

Clv(z) =

2
T

∫

T
[Cl(z, t ) − Cl(z)]v(z, t ) dt

√

2
T

∫

T
v(z, t )2 dt

, (14)

where Cdu and Clv represent the hydrodynamic coefficients in-phase with the streamwise and

cross-flow velocity of the cylinder, respectively. Figure 12 illustrates the distribution of Cdu and Clv
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FIG. 9. (a) Motion trajectory of the flexible cantilever cylinder (illustrated by black lines); the red filled

dots represent the mean position of the cylinder nodes and the red line corresponds to the cylinder’s steady

deflected position. (b) Scalogram of the vibrations in the streamwise direction. (c) Scalogram of the vibrations

in the transverse direction. The results are gathered at Re = 40, m∗ = 1, and U ∗ = 7 in the time window

tU0/D ∈ [200, 300].

along the cylinder span at Re = 40, m∗ = 1, and U ∗ = 7. We assume that Cdu = Clv = 0 at z/L = 0.

According to Fig. 12, over one period of the cylinder motion, Clv is positive within z/L ∈ (0, 0.8)

and negative in z/L ∈ (0.8, 1). The positive values of the hydrodynamic coefficients indicate a

positive net work done by the fluid flow on the cylinder in each direction, while the negative values

are interpreted vice versa. As shown in Fig. 12, the magnitude of Cdu varies less significantly along

the cylinder span compared to the magnitude of Clv. In addition, Cdu is shown to have positive

values approximately between z/L ∈ (0.5, 0.85) and negative values elsewhere. Based on the values
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FIG. 10. Motion trajectory of the flexible cantilever cylinder probed at z/L = 1 for Re = 40, m∗ = 1, and

U ∗ ∈ [6, 9].

provided in Fig. 12, we can associate the self-sustained vibrations of the cylinder with the positive

values of Clv over z/L ∈ (0, 0.8).

B. Wake dynamics during lock-in

A comparison between the wake of a stationary rigid cylinder, and the wake of the flexible

cantilever cylinder at z/L = 0.5, Re = 40, m∗ = 1, and U ∗ = 7 is given in Fig. 13. We show that

the wake of the stationary rigid cylinder is steady and symmetric with respect to the wake centerline

at Re = 40; however, for the flexible cantilever cylinder, the wake is unstable at the same Re. To

FIG. 11. Instantaneous power transfer between the flexible cantilever cylinder and fluid flow in the

(a) streamwise and (b) transverse directions. The cylinder is an energy sink (source) in regions with positive

(negative) values. The results are gathered at Re = 40, m∗ = 1, and U ∗ = 7 over one period of the cylinder

motion, i.e., T = 1/ fn. ti is the intial sampling time.
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FIG. 12. Distribution of the hydrodynamic coefficients along the cylinder span at Re = 40, m∗ = 1, and

U ∗ = 7.

illustrate, we have examined the z-vorticity (ωz) contours at different cross sections of the flexible

cantilever cylinder. As shown in Fig. 14, the wake of the cylinder is steady at z/L = 0 where it

is connected to the fixed support; however, by approaching the free end of the cylinder, the flow

starts to become unstable, and periodic vortex-shedding patterns are observed downstream. This

finding suggests that there is a connection between the cylinder motion and wake stability at laminar

subcritical Re.

The z-vorticity isosurfaces of the three-dimensional wake structures at Re = 30 and m∗ = 1 are

given in Fig. 15 for U ∗ = 3, 7, and 15. For the given Re and m∗, U ∗ = 3, 7, and 15 represent the

pre-lock-in, lock-in, and post-lock-in regimes, respectively. We find that the flow field in the wake

of the flexible cantilever cylinder is steady at U ∗ = 3 (pre-lock-in) and U ∗ = 15 (post-lock-in);

however, an unsteady wake is observed at U ∗ = 7 (see Fig. 15). The phase diagram of the wake

stability as a function of Re and U ∗ at m∗ = 1 is given in Fig. 16. According to the phase diagram,

given in Fig. 16, we find that at Re = 20, the flow field is steady for all U ∗ values; however, as

Re increases, the wake is found to become unstable for a particular range of U ∗. The flow field in

the wake of the flexible cantilever cylinder is shown to lose its stability at Re = 22 for U ∗ ∈ [7, 9].

This range is shown to become wider for higher Re. For example, at Re = 30, this range is between

U ∗ ∈ [6, 13], increasing to U ∗ ∈ [6, 19] at Re = 40. One thing to note here is that there is a critical

U ∗ ∈ [6, 7], which marks the initiation of the wake unsteadiness for 22 � Re � 40. This critical

U ∗ also marks the lower bound of the lock-in regime, as discussed in Sec. III A. According to these

findings, we conclude that the range of the wake unsteadiness at laminar subcritical Re is closely

correlated with the range of the lock-in regime. The wake structures around the flexible cantilever

cylinder at Re = 40 and m∗ = 1 are given in Fig. 17 for 5 � U ∗ � 14. We observe that in the pre-

lock-in regime at U ∗ = 5, a steady wake flow is present behind the cylinder; however, for U ∗ � 6,

the wake is found to become unstable, with two alternate vortices being shed from the cylinder

wake in each cycle (see Fig. 17). In addition, the wake structures in the vicinity of the cylinder’s
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FIG. 13. Comparison of the z-vorticity contour for (a) the flexible cantilever cylinder and (b) its stationary

rigid counterpart at z/L = 0.5, Re = 40, m∗ = 1, U ∗ = 7, and tU0/D = 200.

fixed end are found to be steady and symmetric for all values of U ∗. This observation suggests that

the vorticity patterns vary across the cylinder span. In addition, the streamwise vortices, which start

to appear at Re ≈ 180 [44] for the flow around a stationary rigid cylinder, are not observed over the

span of the flexible cantilever cylinder for the range of studied Re.

With these findings, the two essential requirements for the wake unsteadiness at laminar subcrit-

ical Re are (1) the flow needs to have sufficiently large inertia to overcome the viscous damping and

(2) the system parameters need to be in the lock-in range to sustain the unsteadiness in the wake. In

the following, we discuss the relationship between the cylinder motion and stability of the wake in

detail.

C. Relationship between the cylinder motion and wake unsteadiness

In this subsection we discuss the relationship between the cylinder motion and stability of

the wake at laminar subcritical Re. We suggest a combined VIV-galloping-type instability as

the possible cause of the wake unsteadiness for Re < Recr. Galloping is a velocity-dependent

and damping-controlled fluid-structure instability, which is generally observed in geometrically

asymmetric structures [45]. Although the flow field around an asymmetric structure is uniform in

magnitude and direction, cross-flow movements of the asymmetric body alter the magnitude and

direction of the incident flow with respect to the body coordinate system. This change, in turn,

alters the fluid forces acting on the body and could trigger galloping instability. A deviation from

symmetric cross section in transmission lines due to ice formation [46] or in marine cables due to

marine organisms [47] are some examples of the galloping instability in engineering structures.

Galloping is known to cause large-amplitude sustained oscillations in elastically mounted and
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FIG. 14. Isometric view of the z-plane slices of the z-vorticity contour for the flexible cantilever cylinder

at Re = 40, m∗ = 1, and U ∗ = 7, with the slices at z/L = 1, 0.5, and 0 shown in the right-hand side.

flexible structures [45]. In contrast to vortex-induced vibrations, galloping instability is induced

by a relative body motion rather than the unsteady fluctuations of the flow field; hence it can occur

even for steady attached flows. When the transverse force acting on a flexible or elastically mounted

body increases in the direction of motion, it adds movement to the body, and the body will displace

further until the opposing stiffness or damping overcomes the movements, or the transverse force

decreases when the movement is increased.

For the flexible cantilever cylinder interacting with fluid flow, the body is free to deform in the

streamwise and transverse directions. Although displacements in the streamwise direction do not

contribute to the stability of the wake [48,49], relative movements in the transverse direction break

the wake symmetry, altering the fluid forces acting on the cylinder. This symmetry breakdown, in

turn, induces galloping-type instability by creating negative damping in the combined fluid-structure

system. The low-speed galloping-type instability, together with the frequency lock-in, is most

arguably the mechanism that leads to sustained unsteadiness in the wake and large-amplitude

vibrations of the flexible cantilever cylinder at laminar subcritical Re.

To better understand the relationship between the cylinder motion and stability of the wake at

laminar subcritical Re, we have provided the z-vorticity contours at the midsection of the cylinder

at Re = 40, m∗ = 1, and U ∗ = 7 in Fig. 18. As seen in Fig. 18, the wake region is steady and

symmetric at tU0/D = 60; however, for tU0/D ∈ [65, 75], the relative motion of the cylinder cross

section in the transverse direction, breaks down the wake symmetry. This symmetry breakdown,

in turn, exerts a transverse load that further increases the cylinder motion. Finally, the coupling
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FIG. 15. Wake structures visualized by the normalized z-vorticity isosurfaces (ωzD/U0 = −0.224, 0.224)

for the flexible cantilever cylinder at Re = 30 and m∗ = 1. Red (blue) indicates regions of positive (negative)

vortices.

between the unsteady wake and the cylinder movements leads to large-amplitude vibrations for

tU0/D � 80. In the following, we investigate the effect of mass ratio m∗ on the dynamics of the

flexible cantilever cylinder and further examine the wake structures in the lock-in regime.

FIG. 16. Phase diagram of the wake stability as a function of Re and U ∗ at m∗ = 1. Here ◦ denotes a steady

wake, while ∗ represents an unsteady wake behind the flexible cantilever cylinder.
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FIG. 17. Wake structures visualized by the normalized z-vorticity isosurfaces (ωzD/U0 = −0.224, 0.224)

for the flexible cantilever cylinder at Re = 40 and m∗ = 1. Red (blue) indicates regions of positive (negative)

vortices.

D. Effect of mass ratio

We next investigate the response of the cylinder at four different mass ratios, namely, m∗ =

1, 10, 100, and 1000 at Re = 40 for U ∗ ∈ [2, 19]. The results for the rms value of the dimensionless

transverse vibration amplitude Arms
y /D with respect to U ∗ are given in Fig. 19. For the range of

studied mass ratios, we find that the cylinder stays at its steady deflected position, i.e., Arms
y /D = 0,

for U ∗ � 5. This steady response is present for the whole range of U ∗ at m∗ = 1000. However,

a discrete change in the dynamic response of the cylinder is observed for higher U ∗ values at
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FIG. 18. Z-plane slices of the z-vorticity contour for the flexible cantilever cylinder at Re = 40, m∗ = 1,

and U ∗ = 7 in the time window tU0/D ∈ [60, 85]. The slices are gathered at z/L = 0.5.

m∗ = 1, 10, and 100. A sudden jump in the amplitude response of the cylinder is observed at

U ∗ = 6, 7, and 8 for mass ratios m∗ = 1, 10, and 100, respectively. As shown in Fig. 19, the peak

of Arms
y /D is at U ∗ = 7 for m∗ = 1 and 10, and at U ∗ = 8 for m∗ = 100. The maximum value of

FIG. 19. Root-mean-square value of the dimensionless transverse vibration amplitude Arms
y /D at z/L = 1

as a function of U ∗ at Re = 40 for m∗ = 1, 10, 100, and 1000.
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FIG. 20. Variations of the dimensionless transverse vibration frequency fy/ fn, probed at z/L = 1, and the

dimensionless lift coefficient frequency fCL
/ fn with respect to U ∗. The results are gathered at Re = 40 for

m∗ = 1, 10, and 100.

Arms
y /D is found to be approximately 0.49, 0.47, and 0.39 at m∗ = 1, 10, and 100, respectively. By

further increasing U ∗, a gradual decrease in the value of Arms
y /D is observed at m∗ = 1; however,

for m∗ = 10 and 100, this value is shown to decrease rapidly for U ∗ > 8. For U ∗ � 11 at m∗ = 10

and U ∗ � 10 at m∗ = 100, the cylinder is shown to remain in its steady deflected position.

Figure 20 shows the frequency response of the system in terms of the dimensionless transverse

vibration frequency fy/ fn and the dimensionless lift coefficient frequency fCL
/ fn at Re = 40 for

m∗ = 1, 10, and 100. We show that for all three mass ratios, there is a frequency match between

the frequency of the transverse vibrations fy, frequency of the lift coefficient fCL
, and the first-mode

natural frequency of the cylinder fn for a specific range of U ∗. This range is within U ∗ ∈ [8, 9] at

m∗ = 100 and within U ∗ ∈ [7, 10] at m∗ = 10. At m∗ = 1, the lock-in regime is within U ∗ ∈ [6, 9];

however, the cylinder is shown to oscillate in frequencies higher than its first-mode natural frequency

at larger U ∗ values. Based on our findings, the range of the lock-in regime becomes narrower as m∗

is increased. This behavior is due to stronger inertial coupling and added mass effects at lower mass

ratios. It should be noted that for Reynolds numbers beyond Recr ≈ 45, interactions between the

unsteady wake and the cylinder motion could lead to sustained vibrations in the flexible cantilever

cylinder at mass ratios of O(100–1000), which are not examined in our current work. A qualitative

representation of the cylinder motion trajectories at z/L = 1 and Re = 40 with respect to U ∗ is given

in Fig. 21 for m∗ = 1, 10, and 100. It is shown that as m∗ is increased, the motion trajectory of the

cylinder in the lock-in regime shifts from a figure-eight-shape trajectory at m∗ = 1 to a dominated

motion in the transverse direction at m∗ = 100. To examine the effect of mass ratio on the wake

structures behind the flexible cantilever cylinder, we have provided the z-vorticity isosurfaces around

the cylinder at Re = 40 and U ∗ = 8 for m∗ = 1, 10, and 100 in Fig. 22. We observe that for all three

m∗, two alternate vortices are shed from the cylinder wake in each cycle. Thus, the mass ratio m∗

does not affect the vortex-shedding patterns behind the flexible cantilever cylinder in the lock-in

regime.

E. Connection to whisker dynamics

To help understand the role of fluid-structure interactions in the problem of sensing through

whiskers, we relate our results for the flexible cantilever cylinder, as a canonical model of a whisker,
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FIG. 21. Motion trajectory of the flexible cantilever cylinder with respect to U ∗ at z/L = 1 and Re = 40

for m∗ = 1, 10, and 100. The dot symbol (·) represents a steady response.

FIG. 22. Wake structures visualized by the normalized z-vorticity isosurfaces (ωzD/U0 = −0.224, 0.224)

for the flexible cantilever cylinder at Re = 40 and U ∗ = 8. Red (blue) indicates regions of positive (negative)

vortices.
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to real-world observations in rats’ and seals’ whiskers. According to a recent experimental study,

an isolated rat whisker in uniform fluid flow experiences sustained vibrations for Re < 50 [29].

The vibration frequencies of a rat’s whisker in fluid flow have been found to match the resonance

frequencies of the whisker, indicating the presence of the lock-in phenomenon [29]. Within the

range of studied parameters for the flexible cantilever cylinder, our results for m∗ = 1000 at Re = 40

could be used to interpret the dynamics of a rat’s whisker at laminar subcritical Re. According to our

findings, a rat’s whisker interacting with the uniform flow at m∗ = 1000 is unlikely to experience

flow-induced vibrations for U ∗ ∈ [2, 19]. This is mainly due to weak inertial coupling and added

mass effects at this m∗. For a rat’s whisker in uniform flow, we anticipate the presence of vortex-

induced vibrations at higher modes of vibrations for reduced velocities of O(100).

For the case of a seal whisker in flowing water, we characterize the oscillations as a VIV-

dominant mechanism due to interactions between the whisker and surrounding flow in the lock-in

regime. Our results for the dynamic response of the flexible cantilever cylinder at m∗ = 1 could

be used to interpret the dynamics of a seal whisker in low-speed laminar water flows. Under

similar conditions, a seal whisker is anticipated to have lower vibration amplitudes compared to

the vibration amplitude of the flexible cantilever cylinder. This characteristic is mainly due to the

seal whisker’s undulated geometry that helps reduce fluid forces during VIVs [33,34]. There is a

need for further investigation on how hydrodynamic disturbances, i.e., vortex trail, interact with

the whisker array and how weak hydrodynamic signals are transmitted to the whisker base for the

vortex-sensing abilities.

IV. CONCLUSIONS

In this paper, we have investigated the fluid-structure interaction of a flexible cantilever cylinder

at laminar subcritical Re. Through numerical simulations, we assessed the dynamic response of the

cylinder as a function of reduced velocity U ∗, for Reynolds numbers between 20 � Re � 40 and

mass ratios between 1 � m∗ � 1000. We found that for Re = 20, the flexible cantilever cylinder

remains in its steady deflected position for the whole range of studied U ∗ and m∗. However, for

22 � Re � 40, the cylinder was shown to experience sustained oscillations when certain conditions

were satisfied. We showed that the frequency of the transverse vibrations matches the frequency

of the periodic lift force during the oscillations. Moreover, these two frequencies were found to

be approximately equal to the first-mode natural frequency of the cylinder for a particular range

of U ∗. This specific range, known as the lock-in regime, was shown to be strongly dependent on

the Reynolds number Re and mass ratio m∗; at laminar subcritical Re, the range of the lock-in

regime was shown to decrease by increasing m∗ and increase by increasing Re. Finally, we identified

two requirements for the wake unsteadiness at laminar subcritical Re: (1) the flow should possess

sufficiently large inertia to overcome the viscous damping effects and (2) the system parameters

should be in the lock-in range. When these two conditions are satisfied, the cylinder experiences a

combined VIV-galloping type instability, leading to sustained large-amplitude vibrations at laminar

subcritical Re. The presented systematic analysis can help improve our understanding of the lock-in

mechanism in flexible cantilever structures. Further research is required towards a parametric

investigation of the dynamic response of the cylinder at reduced velocities of O(100), where

potential multi-lock-in phenomenon and flutter-type instabilities could be present. In addition, the

effects of structural nonlinearities should be considered from a practical viewpoint for different

flow incidence and a broader range of Re and U ∗ to fully understand the dynamic instabilities of the

coupled system.
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