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A B S T R A C T   

This paper evaluates the impact of assimilating high-resolution surface networks and satellite observations using 
the WRF-GSI-LETKF over central and north eastern Argentina where the surface and upper air observing net
works are relatively coarse. A case study corresponding to a huge mesoscale convective system (MCS) that 
developed during November 22, 2018 was used. The accumulated precipitation associated with this MCS was 
quite high, exceeding 200 mm over northern Argentina and Paraguay. The MCS developed during the Intense 
Observing Period (IOP) of the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes 
with Adaptive Ground Observations (RELAMPAGO) field campaign. The GSI-4DLETKF data assimilation package 
is used to produce analyses by assimilating observations every hour with 10-km horizontal grid spacing and a 60- 
member multiphysics ensemble. Four assimilation experiments are conducted using different sets of observa
tions: CONV, consisting of conventional observations from NCEP’s prepBUFR files; AWS, combining CONV and 
dense automatic surface weather station networks (AWS), SATWND, combining AWS with satellite-derived 
winds, and RAD, including SATWND; and satellite radiances from different microwave and infrared sensors. 
The assimilation of observations with high temporal and spatial frequency generates an important impact on the 
PBL, primarily on the precipitable water content, that leads to the development of deep convection and heavy 
precipitation closer to the observed in this case study. The assimilation of radiance observations produces a 
better development of the convection mainly during the mature state of the MCS leading to an increase in the 
accumulated precipitation. Ensemble forecasts initialized from each experiment were also simulated to evaluate 
their skill to predict precipitation. The hourly assimilation of the observations in AWS, SATWND, and RAD 
helped to improve the precipitation forecast.   

1. Introduction 

Severe weather events cause significant human and economic losses 
around the world. A large number of these phenomena are associated 

with the occurrence of deep moist convection, including tornadoes, 
intense wind gusts, extreme precipitation in short time periods, large 
hail, and lightning. Southern South America has one of the highest fre
quencies in the world of favorable conditions for high-impact 
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meteorological events (Brooks et al., 2003) and large hail events (Cecil 
and Blankenship, 2012), particularly during austral spring and summer. 
This is also confirmed by observational evidence and high impact 
weather reports (Matsudo et al., 2015; Rasmussen et al., 2014). 
Recently, the Remote sensing of Electrification, Lightning, And Meso
scale/microscale Processes with Adaptive Ground Observations 
(RELAMPAGO) field campaign (Nesbitt et al., 2021) has been conducted 
to investigate the mechanisms for convective initiation and the occur
rence of high-impact weather events associated with deep convection in 
central Argentina. 

Forecasting mesoscale meteorological phenomena and particularly 
deep moist convection is a scientific and technological challenge due to 
its limited predictability and the difficulties in diagnosing the state of the 
atmosphere at small spatial and short temporal scales (for example from 
1 to 10 km and on the order of minutes). Mesoscale data assimilation 
(DA) is an approach that can provide appropriate initial conditions for 
high-resolution numerical forecasts (Sun et al., 2014) and thus has 
received increasing attention in the last decades. 

For DA methods to be successful, observing networks with sufficient 
temporal and spatial resolution capable of capturing mesoscale vari
ability should be used (Gustafsson et al., 2018). Assimilating informa
tion on temperature, moisture, and wind in the planetary boundary layer 
(PBL) improves mesoscale model initialization, and several authors have 
reported the resultant beneficial impacts on the PBL structure and the 
location and timing of precipitating systems (e.g. Wheatley and Sten
srud, 2010; Ha and Snyder, 2014; Chang et al., 2017; Bae and Min, 2022; 
Banos et al., 2021; Maejima et al., 2019; Chen et al., 2016). 

Particularly relevant for regional mesoscale DA systems in the region 
of interest is that South America is characterized by a limited number of 
conventional observations (i.e., radiosondes, surface weather stations) 
and operational networks that are not dense enough to capture meso
scale details. In this context, analyzing the potential impact of non- 
conventional sources of observations is essential to improve mesoscale 
numerical weather prediction (NWP) over South America using DA. 
There have been only a few published efforts on regional mesoscale DA, 
but they have all shown promising results (e.g. Dillon et al., 2016; Dillon 
et al., 1058; Goncalves de Goncalves et al., 2015). In particular, Dillon 
et al. (1058) assimilated high resolution surface weather station net
works, GOES-16 satellite-derived winds, and satellite temperature and 
moisture retrievals over central Argentina with positive impacts. Similar 
to Gasperoni et al. (2018); Dillon et al. (1058) included private weather 
station networks which are not incorporated in the operational analysis. 
However, the impact of different observation types on the analysis 
quality has not been addressed. 

The impact of non-conventional high spatial and temporal resolution 
observations, such as satellite-derived winds, has been investigated in 
the context of regional mesoscale DA. Many studies have focused on the 
impact of these observations on the prediction of tropical storms (e.g., 
Wu et al., 2014; Cherubini et al., 2006; Sawada et al., 2019, and many 
others). Most of these studies reported an overall positive impact of the 
assimilation of satellite-derived winds for this type of storm. However, 
some works indicated mixed impacts (e.g. Sawada et al., 2019 reported 
an improvement in the forecast of the track of the storm but a degra
dation in the forecast intensity). As stated in Zhao et al. (2021a,b), the 
impact of assimilating these data on high impact weather events asso
ciated with mid-latitude deep convection over land has received rela
tively less attention. Zhao et al. (2021a,b) assimilated GOES-16 satellite- 
derived winds into a storm-scale three-dimensional variational DA sys
tem during three high impact weather events. They reported positive 
impacts of satellite-derived winds on the characterization of the storm 
environment and improved short range precipitation forecasts. Otsuka 
et al. (2015) and Swapan and Jones (2020) found a slight improvement 
in the short-range precipitation forecast due to the storm-scale assimi
lation of high frequency satellite-derived winds. 

While the assimilation of radiance observations into global models is 
well established (Eyre et al., 2020), the direct assimilation of radiance 

data into regional models, however, still remains a challenge due to the 
sparse data coverage (in the case of polar-orbiting satellite observa
tions), bias correction, and the relatively low model tops used for this 
application. Bao et al. (2015) studied the impact of assimilating cloud- 
cleared microwave and infrared radiance data polar orbiting in
struments on temperature and humidity forecasts over the western USA 
and found a reduction in the temperature bias at low and mid-levels as a 
result of the microwave observations but an opposite effect for infrared 
data. More recently, Zhu et al. (2019) studied the impact of assimilating 
clear sky polar orbiting satellite radiance data within a frequently 
updated regional system and showed an improvement for all variables, 
in particular for relative humidity at upper levels. Wang and Ran
driamampianina (2021) studied the impact of assimilating clear sky 
radiances in the high-resolution Copernicus European Regional Rean
alysis. They reported that satellite radiance observations had a neutral 
impact on the analyses of geopotential height in the lower troposphere, 
while a slightly negative impact on the upper troposphere and the 
stratosphere. They also observed similar results for 3-h forecasts 
initialized from the analysis but a positive impact on 12 and 24 -h 
forecasts. Given these mixed results, there is still room to analyze the 
utility of assimilating radiance observations in a limited-area DA system 
over land. Moreover, to the best of our knowledge, there are no studies 
related to the direct assimilation of radiance observations over South 
America. 

The main objective of this work is thus to contribute to the quanti
fication and comparison of the impact of high resolution automatic 
weather stations, satellite-derived winds, and clear-sky satellite radi
ances, into a mesoscale, frequently-updated ensemble-based regional 
DA system. This is particularly important in the efforts to improve 
mesoscale numerical weather prediction (NWP) over South America 
where the conventional observation network is rather sparse and other 
sources of information could potentially fill certain gaps. In particular, 
this paper focuses on the impact in the context of a mid-latitude meso
scale convective system. To reach this goal, several DA experiments are 
conducted for a case study of a large Mesoscale Convective System 
(MCS) that developed over Southern South America during Nov 22–23, 
2018 during the intense observation period (IOP) of the RELAMPAGO 
field campaign. 

The paper is organized as follows. The DA system, the experimental 
design, and the observations used are presented in Section 2. Results are 
discussed in Section 3 and finally, conclusions are summarized in Sec
tion 4. 

2. Data and methods 

2.1. Case overview 

Previously to the development of this case study, the center and 
north of Argentina was immersed in a warm and humid air mass with 
high values of convective available potential energy (CAPE), as shown 
by ERA 5 Reanalysis (Hersbach et al., 2018) in Fig. 1a. On Nov 22, 2018 
a cold front crossed the center of Argentina (Fig. 1b). This cold front 
triggered isolated convective cells that rapidly grew upscale into an 
exceptionally large MCS (Fig. 1d and e). During that day several surface 
stations reported lightning, strong wind gusts, and heavy rain. To the 
north of the region, a warm and humid environment contributed to the 
development of isolated convection that ultimately grew and merged 
with the MCS (Fig. 1f). The MCS traveled approximately 2500 km from 
south to north, dissipating over Paraguay and Southern Brazil after 42 h. 

2.2. Data assimilation system configuration 

The forecast model uses the non–hydrostatic Advanced Research 
version of Weather Research and Forecasting (WRF-ARW V3.9.1, Ska
marock et al., 2008). The horizontal grid spacing is 10 km (150 × 200 
grid points) in the horizontal and 37 levels in the vertical with the top of 
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the model at 50 hPa. The initial and boundary conditions are provided 
by the Global Forecast System (GFS) analysis (0.25◦ horizontal grid 
spacing and 6-h temporal resolution; National Centers for Environ
mental Prediction, National Weather Service, NOAA, U.S. Department of 
Commerce, 2015). In this case, a single nesting approach is used since 

the resolution gap between the driving model and the regional model is 
not too large (0.25◦ or 25 km approximately to 10 km). This approach is 
also based on recent studies which suggest that using multiple nested 
domains does not necessarily lead to improved precipitation forecasts in 
regional domains, particularly in areas of complex terrain (e.g. Liang 

Fig. 1. ERA5 Reanalysis of sea level pressure (hPa, black contours), 1000–500 hPa thickness (red dashed contours) and convective available potential energy 
(shaded) and GOES-16 channel 13 brightness temperature for a,d) 00 and b,e) 12 UTC Nov 22 and c,f) 00 UTC Nov 23. 

Fig. 2. a) The domain used for the simulations (black box), 
the inner domain used for the experiment comparison (red 
box), the region shown in b) (light blue box), and the loca
tions of Automatic Weather Stations (AWS, green squares) and 
Conventional Surface Weather Stations (CSWS, orange tri
angles). b) Locations of radiosonde launches during RELAM
PAGO. Green dots correspond to radiosondes launched during 
IOP 7, orange triangles are radiosondes launched during IOP 
8, and purple squares are radiosondes launched outside the 
IOP missions. The topography in meters is also shown 
(shaded).   
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et al., 2019; Beck et al., 2004). The domain covers the area indicated in 
Fig. 2 to capture the development of the MCS during the simulated 
period. 

The analyses are generated using the LETKF implementation (V1.3, 
Hunt et al., 2007) of the Gridpoint Statistical Interpolation analysis 
system (GSI V3.8; Shao et al., 2016). A rapid update cycle approach is 
implemented with hourly analysis and a centered assimilation window, 
meaning that all the observations within ± 30 min of the analysis time 
are assimilated. Observations are assimilated in a 4D approach by 
comparing them with the corresponding first guess state at 10-min in
tervals. For radiance observations, the Community Radiative Transfer 
Model version 2.3 (CRTM; Han et al., 2006) is used as an observation 
operator to calculate model-simulated brightness temperatures. 

A 60-member ensemble is used where the initial ensemble mean and 
the mean boundary conditions are taken from the GFS deterministic 
analysis. A set of 60 perturbations are randomly generated to perturb the 
initial state as well as the boundary conditions during the length of the 
experiment. Perturbing the boundary conditions helps to reduce the 
impact of errors in the driving global model and helps to keep a larger 
ensemble spread throughout the domain and during the length of the 
experiment (El Ouaraini et al., 2015). The perturbations are generated 
as scaled differences between two random atmospheric states obtained 
from the Climate Forecast System Reanalysis (CFSR) data with 0.5◦

horizontal grid spacing with a smooth time evolution as in Necker et al. 
(2020) and Maldonado et al. (2021). In this way, the nearly hydrostatic 
and geostrophic equilibrium of larger scales is preserved. The random 
perturbations used are the same across experiments to ensure that the 
differences between experiments are only related to changes in the 
number and type of assimilated observations. 

A multi-physics scheme is used to better represent the uncertainty in 
the model formulation within the DA system. 9 different model config
urations are generated consisting of the combination of 3 moist con
vection schemes (Kain–Fritsch Kain, 2004, Grell–Freitas Grell and 
Freitas, 2013, and Betts–Miller–Janjic Janjić, 1994) and 3 planetary 
boundary layer schemes (Yonsei University Scheme Hong et al., 2006b, 
Mellor–Yamada–Janjic Scheme Janjić, 1994, and Mellor–Yamada 
Nakanishi Niino Nakanishi and Niino, 2009). The distribution of these 
schemes among the 60 ensemble members is outlined in Table 1. The 
multi-physics approach is also introduced in order to represent the un
certainty associated with the more relevant physical processes that are 
not resolved by the model. All ensemble members use the same land- 
surface model (Noah-MP, Chen and Dudhia, 2001), microphysics 
(WRF single-moment 6–class scheme Hong et al., 2006a), and radiation 
processes (RRTMG shortwave and longwave scheme Iacono et al., 2008) 
parameterizations. 

To reduce the effect of spurious correlations in the estimation of error 
covariances, a horizontal localization radius of 180 km and a vertical 
localization radius of 0.4 (in log pressure coordinates) is used as in 
Dillon et al. (1058) for all types of observations. A relaxation-to-prior 
spread inflation (Whitaker and Hamill, 2012) is applied with an infla
tion parameter α = 0.9 following Maldonado et al. (2020) to mitigate 
the impact of sampling errors and to consider model errors not 
accounted for by the multi-model ensemble approach. 

2.3. Observations 

2.3.1. Conventional 
The conventional observations used are part of the Global Data 

Assimilation System (GDAS) data stream. Conventional observations 
included in the Binary Universal Form for Representation of Meteoro
logical Data (PREPBUFR) files generated at the National Centers for 
Environmental Prediction (NCEP) are assimilated. These consist of sur
face observations from 117 Conventional Surface Weather Stations 
(CSWS), ships, and upper-air observations from 13 radiosondes sites and 
aircraft. The orange triangles in Fig. 2a indicate the location of the 
surface stations included in this experiment. The frequency of these 
observations varied between 1 h for surface stations and 12/24 h for 
radiosondes. Wind surface observations over oceans (ASCATW) come 
from scatterometers and are also included in the PREPBUFR files. 

Table 2 lists all the observation types (i.e., surface pressure, tem
perature, specific humidity, and wind) available for each source, 
together with their associated errors. The observation errors were 
specified following the GSI default configuration. In some cases, the 
error varies with height and depends on the specific platform (aircraft 
and satellite-derived wind). In terms of quality control, a gross check 
was performed by the observation operator by comparing the innovation 
(the difference between the observation and the model-simulated 
observation based on the first-guess) with a predefined threshold that 
depends on the observation error (also included in Table 2). 

Table 1 
Generation of the 60-member multi-physics ensemble as a combination of 
Cumulus and PBL parameterizations.  

Cumulus PBL 

MYJ MYNN2 YSU 

BMJ 5, 14, 23, 32, 41, 50, 
59 

8, 17, 26, 35, 44, 
53 

2, 11, 20, 29, 38, 47, 
56 

GF 6, 15, 24, 33, 42, 51, 
60 

9, 18, 27, 36, 45, 
54 

3, 12, 21, 30, 39, 48, 
57 

KF 4, 13, 22, 31, 40, 49, 
58 

7, 16, 25, 34, 43, 
52 

1, 10, 19, 28, 37, 46, 
55  

Table 2 
Characteristics of the assimilated observations: The code for each observation 
type and its source, the available variables, the observation error, and the gross 
check thresholds used.  

Code Platform Variable Error Gross 
check 

CSWS 
AWS 

Surface weather 
stations 

Pressure 1–1.6 hPa* 3.6 hPa 
Temperature 1.5 K 7 K 
Specific 
humidity 

20% 8 gKg−1 

Wind 2.2 ms−1 6 ms−1  

ADPUPA Radiosondes Pressure 1.1–1.2 
hPa** 

4 hPa 

Temperature 0.8–1.5 K* 8 K 
Specific 
humidity 

20% 8 gKg−1 

Wind 1.4–3 
ms−1* 

8 ms−1  

AIRCFT Aircrafts Temperature 1.47–2.5 
K+

7 K 

Wind 2.4–3.6 
ms−1+

6.5–7.5 
ms−1+

ASCATW Advanced 
Scatterometers 

Wind 1.5 ms−1 5 ms−1  

SFCSHP Ships and Buoys Pressure 1.3 hPa 4 hPa 
Temperature 2.5 K 7 K 
Specific 
humidity 

20% 8 gKg−1 

Wind 2.5 ms−1 5 ms−1  

SATWND Satellite-derived 
winds 

Wind 3.8–8 
ms−1*+

1.3–2.5 
ms−1+

*Observation error varied with height. 
**Observations above 600 hPa are rejected. 
+Observation error depends on the report type. 
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2.3.2. AWS networks 
Data from 866 Automatic Weather Stations (AWS) that are part of 17 

public and private surface networks over Southern South America are 
also assimilated. The dataset used in this study has been obtained from 
the RELAMPAGO Data Set repository (Garcia et al., 2019). These sta
tions are indicated as green squares in Fig. 2a. They have higher spatial 
coverage than the CSWS and a sampling frequency of 10 min in most 
cases. All stations measure temperature, but only 395 stations provide 
humidity, 422 provide pressure, and 605 provide wind information. 
Observation errors used to assimilate these observations are the same as 
for the CSWS (see Table 2). 

2.3.3. Satellite-derived winds 
Satellite-derived wind observations are also included in the PRE

PBUFR files available every 6 h, and consist of estimations from GOES- 
16 (using the visible, infrared, and water vapor channels) and 
METEOSAT 8 and 11 (using the visible and water vapor channels). Due 
to the domain covered by each of these satellites, GOES-16 is the pri
mary source of satellite-derived winds (99% of the observations). 
Observation errors used to assimilate these observations follow the GSI 
default configuration and are indicated in Table 2. 

2.3.4. Satellite radiances 
Satellite radiances available through the GDAS data stream, con

sisting of infrared and microwave observations, are used in this study. 
This includes the Advanced Microwave Sounding Unit - A (AMSU-A), 
Microwave Humidity Sounder (MHS), and 2 multispectral sensors; the 
Atmospheric Infrared Sounder (AIRS) and the Infrared Atmospheric 
Sounding Interferometer (IASI) over several satellite platforms (see 
Table 3). Since the regional domain is located in the mid-latitudes and 
the satellite platforms of interest are on polar orbits, each sensor scans 
the area only twice a day with a spatial coverage depending on the 
satellite swath. For this reason, the number of satellite observations 
varied significantly among cycles. In particular, the multispectral sen
sors provided between 100 and 1000 observations for every scan every 
12 h, contributing 88% of the total amount of assimilated radiances in 
our experiment. The vertical location of each radiance observation was 
estimated as the model level at which its weighting function was 
maximized as calculated by CRTM. The multispectral sensors have good 
vertical coverage and are able to sense from the lower troposphere up to 
the lower stratosphere. 

The channels adopted for assimilation and their associated errors 
were defined taking into account the low model top (50 hPa). The data 
preprocessing, which is an essential step in the assimilation of radiances, 
was performed within the GSI system for each sensor specifically. First, a 
spatial data thinning is applied using a 60 km grid following Singh et al. 
(2016); Jones et al. (2013), and Lin et al. (2017), where the observations 

to be assimilated are chosen based on their distance to the model grid 
points, the observation quality (based on available data quality infor
mation), and the number of available channels (from the same pixel and 
sensor) that passed the quality control. Also, observations over the sea 
are preferred to those over land or snow (Hu et al., 2018). 

The thinned observations were then bias corrected. The bias 
correction (BC) has an air-mass dependent and an angle-dependent 
component (Zhu et al., 2014) and it is calculated as a multi-linear 
function of N predictors pi(x), with associated coefficients βi. Then, 
the bias corrected brightness temperature (BTbc) can be obtained as: 

BTbc = BT +
∑N

i=0
βipi(x) (1) 

GSI has a constant offset bias correction term (p0 = 1) and the 
remaining predictors are the cloud liquid water content (CLW), the 
temperature lapse rate at the pressure of maximum weight, the square of 
the temperature lapse rate at the pressure of maximum weight, and the 
emissivity sensitivity. Scan angle-dependent bias is modeled as a 4th- 
order polynomial (Zhu et al., 2014). 

In the GSI system, the βi coefficients are trained using a variational 
estimation method which solves the βi that provides the best fit between 
the simulation and the observations. The coefficients were initialized at 
18 UTC Nov 18, 2018 with the GFS system coefficients. The assimilation 
system was configured to use a constant background error variance of 
0.01 to avoid large adjustments in the estimated coefficients at each 
time. 

In our experiments, only clear-sky observations are used. For mi
crowave radiances, observations potentially contaminated by clouds are 
detected using the scattering and Liquid Water Path (LWP) indexes 
(Weston et al., 2019; Zhu et al., 2016). For the infrared channels, cloud 
contaminated observations are detected using the transmittance profile 
calculated within the CRTM algorithms. Moreover, GSI checks the dif
ference between the observations and simulated brightness temperature 
with height to detect cloudy pixels. Additionally, the GSI quality control 
for infrared sensors looks for observations over water with a large zenith 
angle (over 60◦) to reject channels near the visible range that can be 
contaminated with reflection. It also performs an emissivity check for 
observations over land for both infrared and microwave radiances. 

2.3.5. Validation dataset 
To evaluate the performance of the ensemble-based DA system pre

sented in this article, the following observational datasets were used:  

• ERA5 hourly data on pressure levels from 1959 to present (Hersbach 
et al., 2018). The variables of interest (air temperature, humidity and 
wind) were interpolated to the model grid to compare them with the 
analysis of each experiment.  

• The Multi-Network Composite Highest Resolution Radiosonde Data 
(UCAR/NCAR - Earth Observing Laboratory, 2020) from the 
RELAMPAGO field campaign database consisting of high-resolution 
radiosondes launched from several locations during the IOPs along 
with the operational radiosondes. Only the soundings that did not 
enter the assimilation system were used for validation. The experi
ment period covers IOP missions 7 and 8, during which 74 radio
sondes were launched in a small area near the center of the 
experimental domain (Fig. 2b).  

• The Satellite precipitation estimation IMERG Final Run with 0.1◦

spatial resolution and 30 min temporal resolution (Huffman et al., 
2018) was used as a reference state to validate the skill of 1-h fore
casts to represent the precipitation over the domain.  

• Radar observations are used to perform a qualitative and visual 
assessment of the convective features. The data comes from 9 radars 
located in the domain and is provided by the Argentine C-band 
Doppler dual-polarization weather radar network (de Elía et al., 
2017) with a temporal frequency of 10 min. For this work, only the 

Table 3 
List of the available sensors over several platforms, the number of accepted 
channels for the assimilation, and the percentage of assimilated observations 
calculated over all radiance observations and all cycles.  

Sensor Platform Assimilated channels Percentage over total 

AIRS AQUA 52 31.63%  

AMSUA NOAA15 2 3.31% 
NOAA18 2 4.45% 
METOP-A 2 2.08%  

IASI METOP-A 66 52.72% 
METOP-B 68 3.47%  

MHS NOAA19 2 0.68% 
METOP-A 3 0.8% 
METOP-B 3 0.85%  
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maximum reflectivity in the column (COLMAX) closest to the anal
ysis time was used. 

2.4. Experimental design 

To investigate the impact of different observations upon the analysis, 
four DA experiments were performed using different observation sets 
(Table 4). The CONV experiment uses only conventional observations 
from PREPBUFR. In a second experiment, referred to as AWS, all the 
observations included in CONV are assimilated plus the 10-min fre
quency surface observations from AWS. In the third experiment, referred 
to as SATWND, the observations from the AWS experiment along with 
the satellite-derived winds are assimilated. Finally, a fourth experiment 
referred to as RAD assimilates all available clear-sky radiances from 
sensors onboard polar orbiting satellites as described in Section 2.3.4. 

The horizontal distribution of the average number of assimilated 
observations per cycle in each experiment is shown in Fig. 3. The larger 
number of assimilated observations over the center and east of the 
domain corresponds to the AWS observations. In Fig. 4a the number of 
assimilated observations over time is shown. Local maxima at 12 and 00 
UTC found mainly in CONV are attributed to operational soundings. The 
strong variability in the number of radiance observations per cycle is 
also noticeable and depends on the satellite coverage. The maxima at 
13–14 and 01–02 UTC in RAD correspond to the contribution of the 
multispectral sensors. The vertical distribution of the mean number of 
observations per cycle (Fig. 4b) shows a maximum in low levels due to 
the AWS observations. Satellite-derived winds are maximized at the 
upper troposphere (between 500–250 hPa). Above 850 hPa, most of the 
observations correspond to radiance observations. 

All the assimilation experiments start at 18 UTC Nov 20, 2018 and 
continue until 12 UTC Nov, 23 (totaling 67 h/assimilation cycles). The 
initial 60-member ensemble is generated as explained in Section 2.2 
from a spin-up run without assimilating observations performed be
tween 12 UTC and 18 UTC Nov, 20 (Fig. 5). 

Ensemble forecasts initialized from the different analysis experi
ments at 00 and 06 UTC Nov 22 were performed to evaluate the impact 
of the different observing networks on short range precipitation fore
casts. Both forecasts are integrated until 12 UTC Nov 23. All forecasts 
use the same domain and ensemble configuration as the analysis. The 
boundary conditions for the ensemble members are generated by adding 
random perturbations to the GFS deterministic forecast (0.25◦ hori
zontal grid spacing and 6-h temporal resolution; National Centers for 
Environmental Prediction, National Weather Service, NOAA, U.S. 
Department of Commerce, 2015). 

2.5. Verification methods 

A set of metrics are selected to evaluate different aspects of the 
analysis obtained in the experiments conducted in this paper. These 
aspects include a validation of how the uncertainty is quantified in the 
first-guess and in the analysis, and how different experiments fit an in
dependent set of observations that are not assimilated. 

To evaluate the statistical consistency of the uncertainty quantifi
cation in the ensemble system the Reduced Centered Random Variable 
(RCRV, Candille et al., 2007) is used which is defined as: 

RCRV =
m − xo
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

o + σ2
√ (2)  

where xo is the assimilated observation and its error σo, the ensemble 
mean of the analysis in observational space m, and the standard devia
tion σ of the ensemble. The RCRV is the ratio of the distance between the 
observations and the forecast and its expected standard deviation 
assuming the statistical independence between the forecast error (esti
mated from the ensemble spread) and the observation error. The 
average of RCRV computed over all the analysis cycles represents the 
bias of the ensemble mean with respect to the observations normalized 
by the estimated uncertainty: 

meanRCRV = E[RCRV] (3) 

If the ensemble has a positive bias, meanRCRV will be positive, on the 
opposite, if the ensemble has a negative bias, meanRCRV will be nega
tive. The standard deviation of the RCRV or sdRCRV is defined as: 

sdRCRV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
M − 1

∑M

i=1
(RCRVi − meanRCRV)

2

√
√
√
√ (4)  

where M is the ensemble size. The sdRCRV measures how large is the 
distance between the forecast and the observations with respect to the 
expected distance (given by the combination of the ensemble spread and 
the observation error). Assuming that the observation error is accurately 
estimated, an sdRCRV > 1 indicates that the ensemble is under
dispersive (i.e. the distance between the observations and the forecasts is 
larger than expected), and an sdRCRV < 1 indicates that the ensemble is 
overdispersive (i.e. the distance between the observations and the 
forecasts is lower than expected). A consistent system will have no bias 

Table 4 
Observation types assimilated in each experiment.  

Obs type CONV AWS SATWND RAD 

Conventional (PREPBUFR) × × × ×

Conventional (AWS)  × × ×

Satellite-derived winds   × ×

Radiances    ×

Fig. 3. Horizontal spatial distribution of the mean available observations per 
analysis cycle for the a) CONV, b) AWS, c) SATWND, and d) RAD experiments 
calculated over 2.5◦ boxes. 
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(meanRCRV = 0) and a standard deviation equal to 1 (sdRCRV = 1). 
The fit of the first-guess and analysis to a set of independent obser

vations, the high-resolution radiosondes from RELAMPAGO, is 
computed based on the Root Mean Square Error (RMSE) and the BIAS: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(Xi − Oi)

2

√
√
√
√ (5)  

BIAS =
1
N

∑N

i=1
(Xi − Oi) (6)  

where O and X stand for independent observations and the simulations 
respectively, and N is the sample size. 

For the comparison of the first-guess precipitation with the IMERG 
precipitation estimates, the Fractions Skill Score (FSS, Roberts, 2008) is 
computed for different neighborhood length scales and thresholds: 

FSS = 1 −

∑N

i=1
(Pxi − Poi)

2

∑N

i=1
(Pxi)

2
+

∑N

i=1
(Poi)

2
(7)  

where Poi is the fraction of grid points in the i −th sampling area in which 
the observed accumulated precipitation is greater than a specified 
threshold. Following Roberts et al. (2020), Pxi is calculated from the 
ensemble probability precipitation over the same threshold in each grid 
point by averaging over the i −th sampling area. The FSS was computed 
from the accumulated precipitation over 6 h rolling windows by adding 
the 1-h accumulated precipitation forecasts over 6 consecutive assimi
lation cycles. 

Fig. 4. a) Number of assimilated observations per cycle and b) time averaged number of assimilated observations per cycle divided into 50 hPa-depth vertical layers 
for the CONV (blue squares and line), AWS (light blue dots and line), SATWND (orange triangles and line) and RAD (red diamonds and line) experiments. 

Fig. 5. Diagram of the analysis cycles between 18 UTC Nov 20, and 12 UTC Nov 23 plus spin up period of 6 h. The zoomed section shows the hourly assimilation that 
is performed within a one-hour centered window and new boundary conditions from GFS every 6 h. The two IOP missions from the RELAMPAGO field campaign and 
the ensemble forecast initialized at 00 and 06 UTC Nov 22 are shown. 
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2.6. Computation procedures 

All the experiments were performed at the National Center for At
mospheric Research (NCAR) supercomputer Cheyenne (Computational 
and Information Systems Laboratory, 2019). All the analyses in this 
paper were conducted using the R programming language (R Core Team. 
R: A, 2020), using data.table (Dowle and Srinivasan, 2020) and metR 
(Campitelli, 2020) packages. All graphics are made using ggplot2 
(Wickham, 2009) and the paper was rendered using knitr and rmark
down (Xie, 2015; Allaire et al., 2019). 

3. Results 

3.1. Ensemble consistency 

To investigate the ability of the first-guess ensemble mean to fit the 
observations taking into account the uncertainties of the forecast and the 
observations, the meanRCRV and the sdRCRV is calculated for the RAD 
experiment. As this experiment assimilates all types of observations used 
in this work, it is possible to analyze the consistency of the ensemble by 
comparing it with each type of observation. Fig. 6 shows the sdRCRV for 
surface observations box-averaged to a 2.5◦ grid. The sdRCRV for wind 
observations (Fig. 6a) is close to 1 suggesting a good agreement between 
the ensemble spread, the forecast error, and the observation error. For 
the temperature (Fig. 6b), the results are similar except that for some 
areas in the west of the domain the sdRCRV can be as high as 4.5. These 
higher values of sdRCRV can be associated with systematic errors arising 
from high differences between the model surface and the observations. 
Small scale circulations associated with the complex terrain and not well 
resolved by the model can also contribute to increase the distance be
tween the forecast and the observations. These aspects are usually not 
captured by the ensemble spread unless a well tuned space dependent 
inflation scheme is used thus leading to greater sdRCRV values. 

Fig. 7 shows the mean and standard deviation of the RCRV for the 
upper-air observations. Fig. 7a and b show the RCRV statistics for 
soundings (ADPUPA) and aircraft (AIRCAR and AIRCFT). Both ADPUPA 
and AIRCFT show a generally good agreement between the ensemble 
spread and the observation error. As sounding observations and their 
associated errors are known to be reliable, this result indicates that the 
ensemble has an appropriate spread. AIRCAR presents an irregular 
profile with sdRCRV values that suggest that the error for this type of 
observation is overestimated. ADPUPA and AIRCAR present a 
meanRCRV profile near zero at middle and upper levels. At low levels, 

the meanRCRV profile is positive, showing a cold bias present in the 
model, a characteristic already studied in Ruiz et al. (2010) and Dillon 
et al. (1058). 

Satellite-derived winds observations vary in number depending on 
the satellite and the level. In Fig. 7c only the RCRV calculated with at 
least 100 observations for each satellite and level is included. At low 
levels, where there are not many observations available, the profiles of 
meanRCRV and sdRCRV show a larger departure from the expected 
behavior with a negative bias, and a possible overestimation of the 
observation error. Wind estimations derived from water vapor channels 
are abundant above 500 hPa where their bias is close to zero. The only 
exception are the EUMETSAT observations which contribute very little 
in the region. 

The mean RCRV profiles calculated from the radiance observations 
(Fig. 7d) show almost no bias and the same happens if the meanRCRV is 
calculated over each channel of each sensor (not shown). This indicates 
that the bias correction algorithm works as expected. The sdRCRV values 
are less than 1 for all sensors possibly due to an overestimation of the 
observation errors to reduce the influence of potentially erroneous 
observations. 

Overall, these results indicate that the ensemble spread is consistent 
with the short-range forecast error and that systematic errors are rela
tively small for most of the observation types used in this work. More
over, these results suggest the relaxation-to-prior spread inflation 
parameter α = 0.9 is adequate for the system. 

3.2. Impacts of assimilated observations 

This section presents the impact of assimilating different observation 
types on variables which are particularly relevant for the occurrence of 
deep moist convection. The analysis is performed over a smaller domain 
(red box in Fig. 2a) to focus on the region most directly affected by the 
MCS. Fig. 8a–c show the analysis difference between experiments in the 
spatially averaged vertical profile of temperature. By averaging the 
differences between two experiments the systematic impact produced by 
different observing systems on the analyzed state can be isolated. During 
the first day, the assimilation of AWS observations results in a colder 
PBL. This cooling effect has a clear diurnal cycle, being stronger during 
nighttime (Fig. 8a). During the second day of the experiment, the impact 
of AWS observations extends into the middle and upper troposphere 
coinciding with the mature stage of the MCS. The warm difference 
shown in AWS-CONV between 500 and 200 hPa is produced by the 
development of stronger convection in AWS compared to CONV. This is 
a good example of how low-level information provided by surface 
weather stations can rapidly spread into the troposphere in the presence 
of deep moist convection. Although the mid-to-upper circulation can 
have an important impact on the organization and evolution of the MCS 
over the region, the satellite-derived winds did not have an appreciable 
impact on the mean temperature and humidity (Fig. 8b–e), possibly due 
to the large observation errors used for the assimilation. During the first 
day of the experiment, the assimilation of radiances produces a warming 
effect in the PBL which partially compensates for the cooling effect of 
AWS observations (Fig. 8c). No clear systematic impact is found above 
the PBL during this period. During the second day, the impact of radi
ance observations is found through the troposphere with a distribution 
that is similar to the impact found in the AWS experiment but with the 
opposite sign. 

Comparing the specific humidity in the experiments (Fig. 8d–f), the 
impact of assimilating AWS with fine spatial and temporal resolution is 
most substantial at low levels (Fig. 8d). The PBL in the AWS experiment 
is consistently moister than in the CONV experiment, particularly at 
nighttime. The increase in low-level moisture by a denser surface 
network is consistent with previously reported dry biases in the WRF 
model over the region (Casaretto et al., 2022; Matsudo et al., 2021; Ruiz 
et al., 2010). The moistening of the PBL is mainly driven by the 
covariance between temperature and specific humidity within the PBL. 

Fig. 6. First guess sdRCRV calculated for surface observations (from PREPBUFR 
and AWS) of a) wind, and b) temperature averaged over 2.5ºboxes for the RAD 
experiment. Observations were aggregated every hourly cycle for the entire 
experiment period. 
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In the experiment and over the center of the domain, this covariance 
remains negative, increasing low-level moisture as the observations 
introduce negative temperature corrections. As for the temperature, the 
systematic impact of satellite-derived winds on moisture is small 
(Fig. 8e). Fig. 8f shows that radiances reduce low-middle level moisture 
during the first day of the experiment. The drying effect extends to 
lower-middle levels during the second day of the experiment coinciding 
with the development of the MCS between 00 and 12 UTC Nov 22. 

The impacts on the wind components are shown in Fig. 9, along with 
the corresponding averaged wind component in the experiment with the 
largest number of assimilated observations (for example, Fig. 9a shows 
the zonal wind difference between AWS and CONV and the zonal wind 
for AWS). The assimilation of AWS produces a more easterly wind and a 
less northerly wind at low levels during the first two days of analysis 
(Fig. 9a and b). There is a diurnal cycle in the impact of surface weather 
stations on the meridional velocity (Fig. 9d) with a stronger reduction of 
the northerly wind during night hours. This indicates that surface ob
servations are reducing the intensity of the low level jet present in the 
pre-convective environment. After 18 UTC Nov 22, the opposite effect is 
observed when the MCS is moving through the domain to the northeast. 
After the initiation of the convective cells, the systematic impact on the 
wind field is larger at mid and upper levels (Fig. 9d and f). During Nov 
22 and 23 the impact of assimilating AWS observations produces an 
increase of northerly wind in upper levels. This could be a consequence 
of a stronger MCS with an increased polar side upper level outflow. 
Although satellite-derived wind observations produce the largest impact 
in mid-to-upper levels where the number of observations is largest; the 
systematic impact is overall smaller than the one produced by assimi
lating data from AWS (Fig. 9b and e). The reason of the small impact 
observed in SATWND could be associated to the large observation error 
used for satellite-derived wind observations. 

The assimilation of radiances produces a reduction in the westerly 
wind compared with respect to SATWIND in low and upper levels 
(Fig. 9c). For the meridional wind, these observations produce an 
enhancement on average of the northerly low-level flow of 1ms−1, 
opposite to what is generated by the assimilation of AWS observations 
during the nights, between 03 and 12 UTC, previous to the development 
of the MCS (Fig. 9f). At upper levels and during Nov 22 and 23 the 

average impact of assimilating radiances is a decrease in the wind speed. 
The meridional wind field at 200 hPa at different times shows that the 
outflow from the MCS is even more intense than in the other experi
ments, while the southerly wind ahead of the MCS also increases pro
ducing an average reduction of the northerly wind (Fig. 9f). 

The difference between the ensemble mean analyses and ERA5 
(Hersbach et al., 2018, ‘) are also compared in Fig. 10, which supports 
Figs. 8 and 9. Specifically, Fig. 10a shows a warm bias in low levels (i.e. 
CONV is warmer than ERA5) that decreases in Fig. 10b when the AWS 
observations are assimilated. In the same direction, Fig. 8a shows a 
negative difference between AWS and CONV meaning that the AWS 
observations are cooling the low levels. Comparing with RAD-ERA5 
(Fig. 10d), there is a small increase in the warm bias, associated with 
the warming produced by the radiance observations as shown in Fig. 8c. 
A similar effect can be observed for specific humidity, AWS observations 
partially correct the dry bias present in Fig. 10e and the assimilation of 
radiance observations reduces the positive impact of AWS. The impact 
on the wind components is minor and only the meridional wind is 
included in Fig. 10i–l, i–l, which show that the radiance observations are 
mainly responsible for the positive impact observed in the analysis by 
reducing the distance RAD-ERA5, particularly during the mature stage 
of the MCS. Overall, the adjustments due to assimilating radiance and 
AWS observations lead to an ensemble mean analyses closer to ERA5. 

To investigate how changes in the PBL can modify the pre-convective 
environment, the analysis mean horizontal distribution of the low level 
northerly flow (for the first 7 sigma levels), precipitable water, low level 
temperature, and CAPE are compared. At 00 UTC Nov 22 (after 30 
assimilation cycles) the first convective cells were developing over the 
southern region of the domain along the cold front. Fig. 11a shows the 
precipitable water (shaded) and the vertically averaged low-level 
meridional wind component (contours). It shows that the moist 
tongue extending over the northern part of the domain is enhanced by 
the assimilation of denser surface observations. The moisture increase is 
particularly strong at the southern tip of this tongue, just ahead of the 
cold front where convection initiation was taking place. AWS and 
SATWND experiments are very similar, with values of precipitable water 
over 55 kgm−2 north of 30◦S and a similar vertical distribution of specific 
humidity (not shown). RAD has lower precipitable water content than 

Fig. 7. Vertical profiles of first guess meanRCRV (dashed line) and sdRCRV (solid line) for a) temperature and b) wind of sounding and aircraft observations, c) 
satellite-derived wind observations, and d) brightness temperature observations for the RAD experiment. Observations were aggregated every hourly cycle for the 
entire experiment period. 
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AWS and SATWND, but higher than CONV. The distribution of moisture 
at low levels in RAD seems to be the result of the combination of the 
moistening effect of assimilating AWS – partially compensated by the 
assimilation of radiance observations – and a reduced meridional 
moisture transport due to the weaker northerly flow over the center of 
the domain compared to CONV. 

The analyzed distribution of temperature and moisture in the PBL 
(Fig. 11b) resembles the characteristics observed in the temperature 
profiles (Fig. 8a–c) where AWS produces a colder PBL than CONV while 
the PBL in RAD is warmer than in SATWND. On average the PBL in AWS 
and SATWND is colder than in CONV, while RAD shows a warmer PBL 
than AWS due to the assimilation of radiance observations. A warmer 
PBL increases the potential instability and helps to generate a suitable 
environment for the development of deep convection. Fig. 11c shows the 
most unstable convective available potential energy (MCAPE, shaded) 
and the 0 to 6 km wind shear. The values of MCAPE in CONV do not 
exceed 2000 J Kg−1 while the rest of the experiments show maximum 
MCAPE over 4000 J Kg−1. MCAPE in the RAD experiment is lower 
compared to AWS or SATWND. This is consistent with less humidity in 
the PBL with respect to these experiments but may be partially 
compensated by a slightly warmer PBL in the RAD experiment. The 0–6 
km wind shear is more intense in AWS, SATWND, and RAD reaching 
values over 15 m s−1 at the southern tip of the region with positive 
MCAPE values. Moreover, in this same region, these experiments show 
larger MCAPE values than CONV. Note that wind shear over 15 m s−1 is 

associated with the development of more intense and organized MCSs 
(Chen et al., 2015) and also with conditions favorable for supercells 
(Markowski and Richardson, 2010). 

3.3. Validation against independent observations 

First, the impact of assimilating different observation types in terms 
of the representation of the MCS and its associated precipitation is 
analyzed. Fig. 12a shows the hourly accumulated precipitation as esti
mated by IMERG, and the probability matched mean (PM) (Clark, 2017) 
for the first-guess hourly accumulated precipitation as averaged be
tween 67◦W and 54.5◦W as a function of time and latitude in the 
different experiments. The heaviest precipitation (over 12 mmh−1) starts 
during the afternoon of Nov 22 and continues during Nov 23 after the 
end of the simulated period (Fig. 12a). In all the experiments, the 
accumulated precipitation in the short-range forecasts is under
estimated. This is particularly evident in CONV (Fig. 12b), where the 
convection initiation is delayed and occurs further north with respect to 
the observed initiation. AWS, SATWND, and RAD better capture the 
timing and location of convective initiation (Fig. 12c–e). AWS and RAD 
show a more fragmented distribution compared with SATWND, possibly 
due to the development of less organized convection during Nov 22. 
After 18 UTC Nov 22, RAD shows improvements in the precipitation rate 
and its distribution compared to the other experiments as a result of 
enhanced development of the convection. 

Fig. 8. Difference between analysis ensemble mean experiments a) and d) AWS-CONV, b) and e) SATWND-AWS, and c) and f) RAD-SATWND for the spatially 
averaged vertical profiles of temperature (a, b, and c, in K) and specific humidity (d, e, and f in g kg−1) calculated over the inner domain (red box in Fig. 2a) for each 
analysis cycle. 
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The FSS is computed to quantify the spatial match between the 
observed precipitation and the first-guess hourly accumulated precipi
tation for the different experiments (Fig. 13). For each threshold and 
spatial scale, Equation @red(eq:eq7) is applied in 6-h rolling windows 
throughout the experiment period. All experiments show similar values 
of FSS during the initiation of the convection before 06 UTC Nov 22 
except for RAD which performs better than the rest of the experiments 
during this period. This indicates that radiance observations have a 
positive impact on the analysis. The FSS for CONV is the lowest 
compared to the rest of the experiments and the differences are larger 
during the mature stage of the MCS. AWS and SATWND show similar 
FSSs indicating that satellite-derived wind assimilation has little impact 
on the precipitation for this case study. The assimilation of radiances led 
to an overall improvement of the 1-h forecast precipitation, particularly 
for the 25 mm threshold during the period of heaviest precipitation on 
Nov 22 (Fig. 13b and d). The enhancement is also important at the 
developing stage of the MCS (between 00 and 12 UTC Nov, 22 and also 
for spatial scales above 500 km, not shown). 

To complement the analysis, Fig. 14 shows the observed maximum 
reflectivity in the vertical column (COLMAX) and the ensemble mean 
COLMAX for the CONV and RAD experiments at different times between 
10 and 19 UTC Nov 22. These experiments were chosen because they 
represent the analysis with the minimum (CONV) and maximum (RAD) 
number of assimilated observations. In addition, they are the worst 

(CONV) and best (RAD) performing experiments in terms of the 1-h 
precipitation forecast skill (Fig. 13). Overall, none of the short-range 
forecasts capture the mesoscale details in the reflectivity distribution. 
This is partially expected considering the coarse horizontal grid spacing 
(10 km), which is not enough to appropriately represent the strength of 
the convective band associated with the MCS. RAD better represents the 
observed features of the system showing a stronger and more organized 
MCS than CONV, over the domain center at 10 and 13 UTC (first and 
second columns in Fig. 14). The convective cells that initiate after 16 
UTC along the warm front in the northeast part of the domain are well 
captured by both experiments but are better represented in terms of 
strength in RAD. In addition, CONV captures the location of the MCS, 
but the convection seems to be less organized and much weaker than in 
RAD. Before and after the times shown in Fig. 14, the agreement be
tween location of the observed convective cells and the simulated in the 
experiment is quite good in the regions where radar data are available, 
especially for RAD. 

Finally, Fig. 15 shows the RMSE and bias calculated by comparing 
the experiments with radiosonde data from the RELAMPAGO missions, 
IOP 7 from 15 to 21 UTC Nov 21 (including 30 radiosondes), and IOP 8 
from 14 to 20 UTC Nov 22 (including 22 radiosondes). 

IOP 7 (Fig. 15a–d) provides a good characterization of the pre- 
convective environment during the first day of our experiments. The 
area where the observations were taken was characterized by mostly 

Fig. 9. Difference between analysis ensemble mean experiments a) and d) AWS-CONV, b) and e) SATWND-AWS, and c) and f) RAD-SATWND for the spatially 
averaged vertical profiles of u wind (a, b, and c, in m s−1) and v wind (d, e, and f in m s−1) calculated over the inner domain (red box in Fig. 2a) for each analysis 
cycle. Black contours correspond to u wind and dashed contours to negative v wind for (a) AWS, (b) SATWND, and (c) RAD and v wind for (d) AWS, (e) SATWND, and 
(f) RAD since those experiments are the ones with more assimilated observations in each panel. 
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clear skies and a low-level northerly flow associated with warm and 
moist advection. In general, the experiments show a similar RMSE and 
bias for all the variables. AWS observations were able to reduce the 
RMSE for temperature and dew point temperature in the PBL and reduce 
a small dry bias. However, in this region (Fig. 2b) b) and for this period, 
AWS increments (Fig. 9d) degrades the zonal wind between 7 and 12 km 
increasing the bias and RMSE (Fig. 15c). 

For IOP 8 (Fig. 15e–h), the densely observed area was behind the 
MCS, but far enough from it to not be directly affected by its mesoscale 
circulation. This area was also behind the cold front and affected by low- 
level cold advection. The assimilation of AWS, SATWND, and RAD re
duces the cold bias and RMSE for temperature between 5 and 12 km and 
the RMSE in the PBL compared with CONV (Fig. 15e). The reduction of 
bias and RMSE is also important for dew point temperature (Fig. 15f) 
with SATWND showing the biggest impact followed by AWS and RAD. 
The zonal wind is overestimated in the analyses and only RAD shows an 
improvement with respect to CONV in the upper troposphere (Fig. 15g). 
At low levels the meridional wind (Fig. 15g) presents a negative bias, 
indicating an underestimation of the southerly wind behind the cold 
front principally in AWS, SATWND, and RAD. In fact, low level biases in 
these experiments are higher than in the CONV experiment, indicating a 
detrimental effect of the additional observations (possibly associated 

with the effect of AWS). 

3.4. Ensemble forescast validation 

This section analyzes the 60-member ensemble forecast initialized at 
00 and 06 UTC Nov 22 from each experiment that runs for 36 and 30 h 
respectively, until 12 UTC Nov 23. The FSS is again calculated for the 
ensemble forecasts in 6-h rolling windows for the same thresholds and 
spatial scales as for the first-guess hourly accumulated precipitation to 
quantify the skill of the forecasts to predict precipitation (Fig. 16). CONV 
forecasts perform very poorly in terms of the FSS compared with the 
experiments that include other sources of observations. AWS, SATWND, 
and RAD show improvements in the FSS values, particularly for the 
higher threshold (Fig. 16b and d). Moreover, the late initialization at 06 
UTC performs better for AWS, SATWND, and RAD than the forecast 
initialized at 00 UTC, highlighting the positive impact of the observa
tions assimilated between 00 and 06 UTC. 

The satellite-derived wind observations show a clearly positive 
impact on the forecast, in contrast to what was seen when comparing the 
1-h forecast with independent observations in terms of precipitation. 
Conversely, the radiance observations resulted in a neutral to a slightly 
negative impact on the forecast as opposed to what was seen when 

Fig. 10. Difference between the analysis ensemble mean experiments and ERA5 for the spatially averaged vertical profiles of air temperature (K, a–d), specific 
humidity (g Kg−1, e–h) and meridional wind (m s−1, i–l) calculated over the inner domain (red box in Fig. 2a) for each analysis cycle. 
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comparing the 1-h forecast to IMERG estimations. The reason why the 
forecasts initialized from RAD degrade over time needs to be further 
study. However, it is possible that the assimilation of observations 
associated with channels affected by the surface is contributing to the 

degradation of the PBL in the analysis and subsequently in the forecasts. 
Lim et al. (0836) observed limited impact when assimilating AIRS ob
servations and attribute this result to the use of surface channels where 
the uncertainties associated with emissivity are large. 

Fig. 11. a) Precipitable water (shaded, kg m−2) and average northerly wind over the first 7 sigma levels (from the surface up to approximately 800 hPa, contours, 
m s−1), b) Average potential temperature for the PBL (first 10 sigma levels), and c) Maximum CAPE and ̃ 0–6 km wind shear over 15 and 30 m s−1 for each 
experiment. All fields correspond to the analysis ensemble mean for 00 UTC Nov 22. Grey filled contours correspond to topography over 1500 meters above sea level. 
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4. Conclusions 

Southern South America is a particularly interesting region due to 

the heterogeneity in topography and coarse resolution of the operational 
observing network (considering both surface based and upper air ob
servations). This, combined with a climatology characterized by 

Fig. 12. Hövmoller diagram of probability matched mean hourly accumulated 1-h forecast precipitation for each latitude band estimated by IMERG (left) and 
simulated (right), for the ensemble mean of each experiment, averaged over a longitude range between 67◦W and 54.5◦W. Contours drawn every 0.5 mm h−1, 
starting at 0.5 mm h−1. 

Fig. 13. FSS calculated over 1-h forecast precipitation accumulated in a 6-h moving window for 1 mm (a and c) and 25 mm (b and d) thresholds, on 10 km (a and b) 
and 100 km (c and d) scales, for the first-guess of CONV (blue line), AWS (light blue line), SATWND (orange line) and RAD (red line) experiments. 
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frequent organized convective events makes mesoscale DA particularly 
challenging. This paper investigates, for the first time in South America, 
using a case-study approach, the impact of different observation systems 
on the performance of an ensemble-based mesoscale regional DA sys
tem. This case study corresponds to a massive MCS that developed over 
Southern South America on Nov 22, 2018 during the RELAMPAGO field 
campaign. In particular, the impact on the analysis quality of assimi
lating frequent and relatively dense surface observations, satellite- 
derived winds, and satellite clear-sky radiances from multiple sensors 
is explored. 

Firstly, the consistency of the ensemble was evaluated to ensure a 
good agreement between the ensemble spread and the observational 
errors with respect to the distance between the ensemble mean and the 
observations. While conventional observations departures are consistent 
with the ensemble spread and assumed observation errors, satellite- 
derived winds and radiance observations departures are lower than 
expected. The latter could be the result of an overestimation of the 
observation errors which is usually introduced to avoid the detrimental 

impact on the analysis of poor quality observations. In this case study, all 
the observation types considered (i.e. automatic weather stations, sat
ellite derived winds and clear-sky radiances from polar orbiting satel
lites) improves the quality of the analysis and of the short range forecast 
with respect to the conventional observation network. In terms of the 
analysis, automatic weather station observations, which have high 
spatial and temporal resolution, produced impacts mainly within the 
PBL but which occasionally extends throughout the troposphere during 
the periods where moist convection is stronger within the domain. These 
observations also helped to reduce the warm and dry bias present in the 
model, producing an analysis closer to the ERA5 reanalysis. During the 
pre-convective environment, assimilating surface temperature, dew 
point temperature, and meridional wind improved the analysis at low 
levels when compared with observed soundings. In particular, when 
these observations are assimilated, precipitable water content and low 
level meridional circulation led to the enhancement of deep convection 
and heavy precipitation which is closer to observations. 

Positive results were also found when assimilating radiance 

Fig. 14. Maximum reflectivity in the column (COLMAX in dBZ), observed (upper row) and 1-h forecast probability matched mean column maximum reflectivity for 
CONV (second row) and RAD (third row) at 10 UTC (first column), 13 UTC (second column), 16 UTC (third column), and 19 UTC (fourth column) Nov 22, 2018. 
Black circles in first row show the observation range of each radar. 

P.B. Corrales et al.                                                                                                                                                                                                                             



Atmospheric Research 281 (2023) 106456

16

Fig. 15. RMSE (solid line) and Bias (dashed line) of a) temperature (K), b) dew point temperature (K), c) u wind (m s−1) and d) v wind (m s−1) calculated by 
comparing the analysis of each experiment with the RELAMPAGO soundings during IOP 7 and IOP 8. The blue line corresponds to CONV, the light blue line to AWS, 
SATWND is represented with an orange line, and RAD with a red line. 

Fig. 16. FSS calculated over a 6-h moving window for 1 mm (a and c) and 25 mm (b and d) thresholds, on 10 km (a and b) and 100 km (c and d) scales, for the 
forecasts initialized from CONV (blue line), AWS (light blue line), SATWND (orange line), and RAD (red line) experiments at 00 UTC (solid line) and 06 UTC (dashed 
line), Nov 22. 
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observations, which produced a better development of the convection 
and its associated outflow circulation, mainly during the mature stage of 
the MCS, leading to increased accumulated precipitation compared to 
the case in which these observations are not assimilated. However, these 
observations weakened the impact of automatic weather station obser
vations within the PBL, slightly increasing the warm and dry bias with 
respect to ERA5. While this needs to be further studied, it could be 
related to the assimilation of channels affected by the surface or sub- 
optimal bias correction. Comparing the experiment with independet 
soundings, the assimilation of radiances improved mid and upper level 
wind. 

The assimilation of satellite-derived wind did not produce a notice
able impact on the analysis. This is possibly due to the relatively small 
number of observations in low levels available for this case study and 
their large observation error. However, there are improvements in the 1- 
h forecast accumulated precipitation distribution. A more comprehen
sive analysis is necessary to understand the mechanisms behind the 
impact of these observations on longer range forecasts. 

The evaluation of the performance of independent ensemble pre
cipitation forecasts initialized from the analyses during Nov 22 showed 
that the forecasts initialized from AWS, SATWND, and RAD were able to 
forecast the precipitation substantially better than CONV. In particular, 
continuous assimilation of satellite-derived wind and radiance obser
vations improved the latest initialization but only satellite-derived wind 
observations produced a positive impact that persisted throughout the 
forecast. Why the forecast initialized from RAD did not perform better 
than SATWND needs to be further study. 

To summarize, in this case study we found that the assimilation of 
surface observations with high spatial and temporal resolution, satellite- 
derived winds, and clear-sky radiances from polar orbiting satellites had 
an overall positive impact on the development of the studied MCS and its 
associated precipitation. Moreover, ensemble forecasts initialized from 
the analysis showed promising results for predicting extreme severe 
precipitation events. In the future, we will further analyze the impact of 
these observations upon short-range forecasts over longer periods and 
evaluate the assimilation of other sources of observations such as GPS 
radio occultation data and radiances from geostationary orbiting satel
lites like GOES-16. 

Code and data availability 

A version-controlled repository of the code used to create this anal
ysis, including the code used to download the data can be found at 
https://github.com/paocorrales/mesoda. The derived data that support 
the findings of this study are also openly available in Zenodo at http://d 
oi.org/10.5281/zenodo.7015913, version 0.9.2. 
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