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Abstract. Ribonucleotide reductases (RNRs) are used by all free-living organisms and many viruses to 

catalyze an essential step in the de novo biosynthesis of DNA precursors. RNRs are remarkably diverse by 

primary sequence and cofactor requirement, while sharing a conserved fold and radical-based mechanism 

for nucleotide reduction. Here, we structurally aligned the diverse RNR family by the conserved catalytic 

barrel to reconstruct the first large-scale phylogeny consisting of 6,779 sequences that unites all extant 

classes of the RNR family and performed evo-velocity analysis to independently validate our evolutionary 

model. With a robust phylogeny in-hand, we uncovered a novel, phylogenetically distinct clade that is 

placed as ancestral to the classes I and II RNRs, which we have termed clade Ø. We employed small-angle 

X-ray scattering (SAXS), cryogenic-electron microscopy (cryo-EM), and AlphaFold2 to investigate a 

member of this clade from Synechococcus phage S-CBP4 and report the most minimal RNR architecture 

to-date. Based on our analyses, we propose an evolutionary model of diversification in the RNR family and 

delineate how our phylogeny can be used as a roadmap for targeted future study.  
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Introduction 

The wealth of genomic and metagenomic sequence data that has exploded in recent years provides a new 

opportunity to reexamine enzyme families using large-scale and robust bioinformatic analyses. A particu-

larly important enzyme family that necessitates such analyses are the ribonucleotide reductases (RNRs). 

RNRs are used by all free-living organisms and many viruses for the conversion of ribonucleotides to 2ʹ-

deoxyribonucleotides in the de novo biosynthesis of DNA precursors (Torrents et al., 2002). RNRs are 

especially fascinating from an evolutionary perspective as they exhibit high diversity in primary sequence 

and cofactor requirement (Lundin et al., 2015), yet they share a common fold and radical-based catalytic 

mechanism for nucleotide reduction (Licht et al., 1996).  

 

Based on current biochemical evidence, the full catalytic cycle is thought to involve three steps in all RNRs 

(Figure 1 – figure supplement 1): cofactor-mediated generation of a thiyl radical at a conserved cysteine in 

the active site, nucleotide reduction, and re-reduction of the active site after turnover (Greene et al., 2020; 

Holmgren and Sengupta, 2010). Despite being a diverse enzyme family, the core structure of the catalytic 

subunit (known as α) is a conserved 10-stranded α/β barrel with the thiyl radical on the so-called !finger 

loop” which connects the two halves of the barrel (Figure 1) (Uhlin and Eklund, 1996). RNRs have been 

biochemically classified into three major groups based on the cofactor used to generate the thiyl radical 

(Figure 1 – figure supplement 1). Class I RNRs use a ferritin subunit (β) to house a stable radical cofactor 

and are further subclassified by the metal content of the cofactor (Cotruvo and Stubbe, 2011; Ruskoski and 

Boal, 2021). For every turnover, the α and β subunits must form a complex to engage in long-range radical 

transfer to the active site (Kang et al., 2020; Seyedsayamdost et al., 2007). In class II RNRs, the thiyl radical 

is generated by a 5ʹ-deoxyadenosyl radical (5ʹ-dAdo•) produced from an adenosylcobalamin (AdoCbl) co-

factor bound within the active site, and thus these enzymes do not require additional subunits (Licht et al., 

1996). In class III RNRs, the thiyl radical is generated by a glycyl radical on the C-terminal domain of the 

α subunit, which itself is generated by a separate activase enzyme that utilizes S-adenosylmethionine 

(AdoMet) bound to a [4Fe-4S] cluster for radical chemistry (Wei et al., 2014b). Once the thiyl radical is 

produced in the active site, nucleotide reduction proceeds via a conserved mechanism for all classes (Licht 

et al., 1996) (Figure 1 – figure supplement 1). In most RNRs, nucleotide reduction is coupled with the 

oxidation of a conserved pair of active-site cysteines (Figure 1 – figure supplement 1) (Booker et al., 1994; 

Mao et al., 1992; Wei et al., 2014a), which are ultimately reduced by a thioredoxin system to enable the 

next round of turnover, although some class III RNRs use formate to directly reduce the active site (Wei et 

al., 2014b). 
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Except for a subset of class II RNRs which are monomeric, all extant RNR α subunits are thought to di-

merize at the αA and αB helices in their active forms. Class I and II RNRs dimerize in anti-parallel orien-

tation at these helices, such that the dimer interface is capped on both ends with a functional insertion known 

as loop 1 (Figure 1B-C, dark green), which is the binding site for nucleotides that control the identity of 

the substrate in the active site (Larsson et al., 2004; Zimanyi et al., 2016). The binding of these so-called 

specificity-regulating effectors is coupled to substrate binding via another insertion known as loop 2 (Fig-

ure 1B-C, red) (Zimanyi et al., 2016). Class I and II RNRs also share another insertion, a long β-hairpin 

motif, between the αH helix and βH strand. Although less is known about the function of this insertion, it 

is thought to be important for binding the radical cofactor (the entire ferritin subunit in the case of class I 

RNRs and the AdoCbl cofactor in the case of class II RNRs) (Kang et al., 2020; Sintchak et al., 2002; 

Thomas et al., 2019). Class III RNRs, on the other hand, dimerize at the αA and αB helices such that they 

are oriented parallel to each other across the interface. This orientation is stabilized by a long helix in place 

of the loop 1 insertion (Logan et al., 1999) (Figure 1D, dark green). Additionally, the class III RNRs contain 

a glycyl radical domain with a zinc finger motif at the C-terminus. In contrast, the C-termini of class I and 

II RNRs that have been characterized are unstructured and contain cysteines to re-reduce the active-site 

cysteines via disulfide exchange (Booker et al., 1994; Mao et al., 1992; Thomas et al., 2019). Thus, overall, 

class I and II RNRs share more structural similarities with each other than they do with class III RNRs.  

 

The ancestor of modern RNRs, and its subsequent evolution into the three known classes has long been of 

interest for its hypothesized importance in transitioning life from an RNA/protein world to a DNA world 

(Lundin et al., 2015, 2009; Poole et al., 2002; Reichard, 1993; Stubbe, 2000; Stubbe et al., 2001; Torrents, 

2014; Torrents et al., 2002). Class I RNRs have been proposed to be the most recently evolved class as they 

require molecular oxygen, which became abundant as the Earth"s atmosphere transitioned from anoxic to 

oxic. In contrast, class III RNRs have been proposed to have emerged before this transition as glycyl radi-

cals and [4Fe-4S] clusters are both extremely oxygen-sensitive (Fontecave et al., 1989) and Fe-S chemistry 

is thought to have a prebiotic origin (Goldman and Kaçar, 2021). The AdoCbl chemistry used by class II 

RNRs, on the other hand, is neither oxygen-dependent nor especially oxygen sensitive. Based on the relative 

oxygen sensitivities and biosynthetic complexities of the different cofactors, class III RNRs have been pro-

posed to be the most ancient of the RNR family (Reichard, 1997; Riera et al., 1997). However, whether 

class III predates class II has been debated when considering cofactor availability (Stubbe, 2000). Indeed, 

cobalamin, AdoMet, and Fe-S clusters have all been proposed to be part of the cofactor set used by the last 

universal common ancestor (LUCA) (Weiss et al., 2016). It has been proposed in an alternative model that 

dimeric class II and III RNRs evolved in parallel from a shared ancestor using class II-like chemistry and 

that class I RNRs then evolved from class II (Lundin et al., 2015). However, this model was derived from 
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a structure-based phylogenetic network (Bryant and Moulton, 2004), which estimates a phylogeny based 

on pairwise structural alignment scores rather than evolutionary modelling on protein sequences with well-

established amino acid substitution models and statistical frameworks. Despite much effort to understand 

the diversity and evolution of RNRs, the reconstruction of a large-scale, unifying phylogenetic inference 

that includes all classes of RNRs has been hindered by the significant computational demand imposed by 

the high sequence diversity of the extant members of the family. 

 

In this study, we used the conserved 10-stranded α/β barrel to anchor highly diverged RNR sequences in a 

structure-based alignment and used maximum-likelihood inference to reconstruct the largest RNR phylog-

eny to-date, consisting of 6,779 α sequences, that unifies all classes. Our comprehensive phylogeny shows 

the parallel development of three major clades, corresponding to the three known classes, with a small, 

phylogenetically distinct clade, which we denote as class Ø (for convenience, pronounced !oh”), placed as 

an ancestral clade to the class I and II RNRs. Using small-angle X-ray scattering (SAXS), cryo-electron 

microscopy (cryo-EM) and AlphaFold2 (Jumper et al., 2021), we show that the class Ø α is the most min-

imal RNR structurally characterized thus far. These observations were corroborated by evo-velocity anal-

ysis, an alignment-independent method that employs protein language models to infer sequence fitness and 

evolutionary trajectories (Hie et al., 2022). Together, our analyses indicate that class III RNRs diverged 

early on and evolved independently of class I and II RNRs, which diverged from an ancestor shared with 

the minimal, class Ø RNRs. Our evolutionary model provides an explanation for the structural similarities 

of the class I and II RNRs and also supports the idea that adaptations to an oxygenated atmosphere appeared 

earlier than initially thought. 

 

Results 

 

Phylogenetic reconstruction and evo-velocity analysis reveal the evolution of three RNR classes and 

a novel clade. 

To study the molecular evolution of the RNR family, we performed comprehensive phylogenetic inference 

on the catalytic α subunits (Figure 2). Unlike sequence analyses, such as sequence similarity network (SSN) 

analysis (Atkinson et al., 2009), which provide insight exclusively on the global similarities shared between 

extant sequences, phylogenetic inference delineates the evolutionary history of related sequences utilizing 

complex models of evolution that account for the rate of mutation of base pairs or amino acids. However, 

large-scale phylogenetic reconstruction on entire protein superfamilies is technically challenging and com-

putationally demanding. Homology is often difficult to detect between extensively diverged proteins, com-

plicating the generation of a robust sequence alignment, without which accurate topological reconstruction 
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and model parameterization cannot be achieved. To overcome these challenges, we adapted a recently de-

veloped workflow (Spence et al., 2021), which uses ensembles of hidden Markov models (HMMs) guided 

by structural information to build an accurate alignment of 6,779 α sequences that spans 5 PFAM families. 

 

Phylogenetic reconstruction was performed by maximum-likelihood (ML) inference. Tree searches were 

performed with 10 replicates under the sequence evolution model LG+R10 (Kalyaanamoorthy et al., 2017; 

Le and Gascuel, 2008), which was selected by Akaike and Bayesian information criteria (Dridi and 

Hadzagic, 2019) on a representative subset of the full 6,779 RNR sequence dataset. To test the robustness 

of our phylogenetic hypotheses against model diversity, we inferred an additional 10 replicates of tree-

search under an alternative general amino acid replacement matrix (WAG+R10) (Whelan and Goldman, 

2001). Each of the 10 phylogenies inferred under LG+R10 failed rejection by the approximately unbiased 

(AU) test (Shimodaira, 2002) conducted to 10,000 replicates (lowest P-value = 0.283), including those 

whose branch supports failed to converge. All 20 inferences, irrespective of evolutionary model, converged 

on a similar phylogenetic topology. To further test the robustness of our results, we repeated our analyses 

at a redundancy threshold of 55% sequence identity, which yielded a topology with the same cladistic 

groupings as the full inference (Figure 2 – figure supplements 1 and 2), indicating that the likelihood sur-

face of the evolutionary relationships of RNR α subunits has a well-defined global maximum that we had 

reached in our tree-searches. This was corroborated by high branch supports (ultrafast bootstrap approxi-

mation 2.0 and approximate likelihood ratio tests) for major bifurcations in each independent reconstruc-

tion, including deep nodes at the midpoint root of each tree (Figure 2B). The topology that is presented in 

Figure 2 had the highest branch supports at key nodes of interest in RNR evolution. 

 

Consistent with our current understanding of RNR evolution, all reconstructed topologies that converged 

and failed rejection by the AU-test resolved the three biochemical classes of RNRs as monophyletic line-

ages (Figure 2, blue/yellow/red). Additionally, we find strong support for classes I and II diverging from a 

single common ancestor that shared an ancestor with the class III RNRs. We identified a novel clade of α 

sequences that diverged from the last common ancestor (LCA) of classes I and II, which we denote as the 

class Ø clade (Figure 2, green). We note that there are two trees inferred from the LG+R10 dataset that do 

not resolve class Ø as a separate clade, where instead these sequences are a monophyletic clade diverging 

from class II sequences. Topology testing shows that although these trees are valid hypotheses, the ∆ log 

likelihood values indicate that they are the least likely trees of the 10 trees inferred under the LG+R10 

model. Moreover, when we repeated phylogenetic reconstruction with a different sequence redundancy 

threshold, the topology with class Ø as an ancestral clade to classes I and II was reproduced independently 

(Figure 2 – figure supplement 2). In the topology with the best statistical support, the branch that separates 
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the LCA of classes Ø, I, II from class III is the midpoint of the phylogeny. Rooting on this branch places 

class III as the most ancestral, followed by the emergence of the LCA of classes Ø, I, II and the subsequent 

divergence of classes I and II. Midpoint rooting is the best available method to understand the diversifica-

tion of all RNRs in this instance, given that the tree unifies all classes of RNRs in the in-group and is well-

balanced despite the diversity of sequences. The consistency in the location of the midpoint in the full-

dataset phylogeny and the reduced redundancy phylogeny (Figure 2 – figure supplements 1 and 2) further 

validates the choice to root on the midpoint.  

 

As phylogenetic inference is susceptible to biases introduced by taxon sampling (Pollock et al., 2002), 

model parameterization and assumptions, sequence alignment (Simmons et al., 2011), and tree-search and 

because our choice to midpoint root the phylogeny assumes a constant evolutionary rate, we also used a 

recently described phylogeny-independent method known as evo-velocity analysis to test our phylogenetic 

hypotheses (Hie et al., 2022). Evo-velocity is a machine-learning analysis based on the principles of natural 

language processing (NLP) (Hie et al., 2022). NLP models such as ESM-1b, a >650,000,000 parameter 

NLP model trained on UniProt50 amino acid sequences (Rives et al., 2021), can embed query sequences in 

a high-dimensional space where likelihoods can be numerically computed as proxy fitness scores on a graph 

network. By assuming that the inherent directionality of the embedded sequence graph-network moves in 

the direction of evolution, as evolution compels proteins towards more fit (i.e., more probable in the NLP 

model) sequences, sequences with low learned probabilities can be interpreted as starting points in evolu-

tionary trajectories. Evo-velocity thus bypasses many of the assumptions of phylogenetic inference as it is 

alignment independent, does not require model parameterization or tree-search, and has previously been 

used to validate conclusions based on superfamily-scale phylogenetic inference (Hie et al., 2022; Spence et 

al., 2021). 

 

When projected onto a two-dimensional basis (see Methods), the ESM-1b embedded RNR graph network 

(Figure 3) shares many common topological features with the full family phylogeny (Figure 2). Class III 

RNRs (Figure 3A, red) belong to a diverged cluster of sequences that have evolved independently of class 

I and II sequences (Figure 3A, blue/yellow). Conversely, class I and II are joined over the same sequence 

space, indicating a common recent ancestor. The class Ø sequences occupy the interface between classes I 

and II (Figure 3A, green), consistent with their phylogenetic placement as ancestral to the class I/II lineage. 

Evo-velocity analysis also identified multiple roots in the RNR family (Figure 3B, dark purple). This is 

likely a consequence of sequences diverging over geological timescales and lacking intermediate phyloge-

netic information between major groups. The multiple roots belong to each of the major lineages, signifying 

independent evolution down distinct trajectories. However, pseudotime velocity, a proxy for phylogenetic 
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depth (Haghverdi et al., 2016), clearly captures the interface of class I and II sequences (including class Ø) 

as the most ancestral within that lineage (Figure 3C). The congruence between phylogenetic and evo-

velocity analyses supports our hypotheses on the evolution of extant RNRs. The projection of class Ø se-

quences onto the ancestral interface of classes I and II additionally provides evidence that they indeed hold 

a pivotal position in RNR evolution.  

 

Class Ø RNRs are predominantly found in marine bacteria and cyanophages 

The class Ø clade consists of RNRs from both bacteria and phages, many of which are phototrophs. Nearly 

half of the sequences in the clade were obtained from cyanophages (Figure 4A, bolded species) or uncul-

tured phages, while the remainder were obtained from marine bacteria, including those collected in the Tara 

Oceans Expedition (Tully et al., 2018). Performing a BLAST search of photosynthetic genes, such as psbA 

and psbD, against the genomes (of which many are incomplete) of the 35 bacteria and phages listed in the 

clade yielded 11 hits (Figure 4A, species in green).  

 

The classification of the cyanophage sequences observed in this clade (Figure 4A, bolded species) has been 

previously debated (Harrison et al., 2019). These RNRs from cyanosipho- and cyanopodoviruses were ini-

tially annotated as class II, based on studies of the Prochlorococcus phage P-SSP7 genome, which contains 

two consecutive genes that were proposed to represent a split RNR with homology to class II RNRs 

(Dwivedi et al., 2013; Lindell et al., 2005; Sullivan et al., 2005). More recently, it was discovered that these 

two genes encode for an RNR ɑ subunit and a small ferritin-like protein and were thus reannotated as class 

I (Harrison et al., 2019). However, in the phylogenetic analysis reported in this previous study, the cy-

anophage ɑ sequences fell in either the class I or class II clades depending on the stringency for homology 

used for grouping the sequences. This result contrasts with our work, where the class Ø clade is phyloge-

netically distinct from the other major clades (Figure 2). Additionally, we find that all completely se-

quenced operons with a class Ø RNR ɑ gene (24/35 in Figure 4A) contain a small ferritin-like gene (anno-

tated with InterPro family number for the ferritin-like superfamily IPR009078) immediately downstream 

(Figure 4 – figure supplement 1), and thus, we find that this feature is not exclusive to cyanophages. Inter-

estingly, an all-vs-all pBLAST search of every class Ø sequence against all class I sequences in our phy-

logeny detects poor homology (E-value > 0.05) (Figure 4B, blue), while querying class Ø RNRs against 

class II returns hundreds of significant hits (E-value < 10E-10) (Figure 4B, yellow). Thus, by sequence 

homology, class Ø RNRs appear to be more class-II like despite being associated with a ferritin-like gene 

that is reminiscent of class I RNRs, which supports the phylogenetic results indicting they are a distinct 

class.  
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Class Ø RNRs are minimal and share features of class I and II enzymes. 

The class Ø lineage consists of α sequences with an average length of 412 amino acids, which are signifi-

cantly shorter than those of the class Id catalytic subunit that were previously described as having a minimal 

architecture with a median length of 565 amino acids (Rose et al., 2019). Like the class Id α sequences, the 

class Ø sequences all lack a ~100-residue ATP-cone motif at the N-terminus, which is used for allosteric 

regulation of overall activity in many other RNRs (Meisburger et al., 2017). Additionally, the class Ø C-

terminus contains a double cysteine motif, which is likely used for reducing a pair of active-site cysteines 

that are oxidized following every turnover. Of the 24 class Ø sequences that are complete at the C-terminus, 

10 contain a CXXC motif and 14 contain a CXC motif (where aspartic acid is the most common middle 

amino acid). The sequences that appear to be incomplete at the C-terminus largely belong to uncultured 

phages. The C-terminal CXXC motif is a common feature of class I RNRs (found in 1737 of 2022 class I 

sequences in our dataset), but the CXC motif is rare among both class I and II RNRs. Only seven class I 

sequences and one class II sequence in our dataset appear to have a CXC motif. The prevalence of this 

motif makes the class Ø RNRs unlike class I or II RNRs. Interestingly, the CXXC-containing sequences 

are most ancestral within the class Ø clade, while the more recently evolved sequences have the CXC motif.  

 

To examine the structural features of the class Ø RNR, we used a combination of AlphaFold2, SAXS, and 

cryo-EM to characterize the Synechococcus phage S-CBP4 α subunit. Importantly, this α sequence is highly 

representative of the clade, scoring an E-value of 1.2E-228 on an HMM sequence profile of each class Ø 

sequence. In the absence of nucleotides, our SAXS profiles are consistent with a monomer-dimer equilib-

rium (Figure 4 – figure supplement 2) where the S-CBP4 α subunit is predominantly monomeric at low 

protein concentrations (≤4 μM). Addition of substrate (guanosine diphosphate, GDP) does not shift this 

equilibrium, but the presence of the corresponding specificity effector (thymidine triphosphate, TTP), 

strongly favors dimerization (Figure 4 – figure supplement 2A-B). This result is consistent with TTP bind-

ing the specificity site to stabilize the same dimeric form adopted by class I and II α subunits. Using solution 

conditions that saturate nucleotide binding (200 μM TTP, 200 μM GDP), we obtained a cryo-EM map of 

the S-CBP4 α2 dimer to 3.46-Å resolution (Fourier shell correlation, FSC = 0.143) (Figure 4C, Figure 4 – 

figure supplement 3). An atomic model (residues 22-426 out of 470) was refined against the cryo-EM map 

using an AlphaFold2 prediction as the starting model (Table 1). The final refined model was highly similar 

to the starting model with a root mean square deviation (all-atom RMSD) of 1.44 Å. The elongated shape 

of the S-CBP4 α2 dimer observed by cryo-EM (Figure 4D, red dashed curve) explains the distinct flattened 

region in our experimental SAXS profile between q ~ 0.05 - 0.15 Å-1 (Figure 4D, blue curve), and excellent 

model-data agreement is observed over the full q-range when the disordered N- and C-termini are included 

in the model (Figure 4D, black dashed curve and blue curve). 
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Overall, the S-CBP4 α subunit displays the most minimal RNR architecture discovered to-date with few 

insertions about the catalytic barrel (Figure 4 – figure supplement 4). The minimal set of insertions includes 

traits shared by class I and II RNRs, such as loop 1, where we find cryo-EM density for bound TTP (Figure 

4E). Additionally, the S-CBP4 α subunit contains a long β-hairpin following the βH strand of the catalytic 

barrel that in class II RNRs is thought to be important for cofactor binding (Sintchak et al., 2002) and in 

class I RNRs is thought to be important for interactions with the β subunit (Kang et al., 2020). Although 

we do not observe density for the C-terminus past the βJ strand of the catalytic barrel, two consecutive 

tyrosine residues (Y420 and Y421) on βJ are well-resolved and stacked adjacent to the catalytic cysteine 

(C185) at the tip of finger loop (Figure 4F). In class I RNRs, this stacked arrangement of the tyrosine dyad 

is required for long-range proton-coupled electron transfer (PCET) between the β subunit and the catalytic 

cysteine (Greene et al., 2017) (Figure 4 – figure supplement 5A). By comparison, inspection of existing 

structures (Larsson et al., 2010; Sintchak et al., 2002) suggests that in class II RNRs, the space between the 

βJ strand and the finger-loop cysteine forms a pocket to accommodate the adenosyl group of the cobalamin 

cofactor (Figure 4 – figure supplement 5B). We note that the appearance of the double tyrosine motif does 

not necessarily indicate that an RNR ɑ sequence belongs to class I. In fact, there are class II sequences with 

this motif, but structure prediction of these sequences indicate that the double tyrosine motif is placed out-

side of the binding pocket for adenosyl group, rather than filling this space (Figure 4 – figure supplement 

5C). Finally, we observe a disulfide between active-site cysteines (C30 and C196) that in class I and II 

RNRs serve as reducing equivalents during nucleotide reduction (Figure 4G). Consistent with an oxidized 

active site, cryo-EM density for the substrate is not observed. This in turn explains why residues 13-20 are 

disordered in our cryo-EM model, as it is predicted to form a helix involved in substrate binding (Figure 

1A, gray helix adjacent to left star). 

 

Although the class Ø ɑ subunit contains a tyrosine dyad poised for PCET like class I ɑ subunits, the class 

Ø ferritin-like sequences are significantly shorter (average length of 240 amino acids) than those of bona 

fide class I β subunits (average length of 346 amino acids). Querying each complete class Ø ferritin-like 

sequence returns only a single homologous sequence over the whole length of the alignment (all hits E-

value > 1E-4, excluding one) when searched against PFAM families PF00210 (ferritin-like proteins, 17,981 

entries) and PF00268 (class I RNR β subunit, 9,898 entries). However, based on AlphaFold2, which detects 

more than sequence homology, class Ø ferritin-like proteins resemble class I β subunits with shorter inser-

tions and termini (Figure 4 – figure supplement 6A-D). As in class I β subunits, the class Ø proteins are 

predicted to contain a core ferritin fold consisting of two helix-turn-helices (Figure 4 – figure supplement 

6A and 6C, red/pink and yellow/green), each contributing an E/D + EXXH metal-binding motif (Ruskoski 
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and Boal, 2021). Additionally, while most class I β sequences have a tyrosine serving as the site of the 

radical downstream of the first metal-binding motif (Figure 1 – figure supplement 1), class Ø ferritin-like 

proteins contain a redox-inert residue (Phe or Leu) at this site, much like class Ic RNRs (Bollinger et al., 

2008; Cotruvo and Stubbe, 2011) (Figure 4 – figure supplement 6E). Class Ø ferritin-like sequences also 

contain a C-terminal tyrosine (Y239 in Figure 4 – figure supplement 6A), which in class I RNRs is involved 

in inter-subunit radical transfer (Y356 in Figure 4 – figure supplement 6C). However, the C-termini of the 

class Ø ferritin-like proteins are unusually short, terminating at the residue downstream from this tyrosine, 

and lack the ~10-residue extension that class I β subunits use for binding to the α subunit. Thus, although 

the class Ø ferritin-like proteins are likely to use a similar radical-generating mechanism as class I β subu-

nits, they may interact with the α subunit different manner to enable PCET. However, ongoing biochemical 

work to confirm this has thus far been nontrivial as the class Ø ferritin-like proteins can be unstable in the 

absence of metals, most likely because of their small size. This makes characterization of metal dependence 

more challenging as it means that the metal composition cannot be easily varied. Further investigation will 

be the focus of future work. Regardless, the class Ø α structure illustrates how the class I and II RNRs may 

have inherited shared traits from a common ancestor.  

 

Discussion 

As RNR sequences have been diverging for billions of years, pair-wise sequence identity is frequently low 

(<15%), and sequence homology is often undetectable between distant members of the enzyme family. It 

is therefore challenging to produce an accurate sequence alignment of all RNR classes, without which a 

phylogenetic inference cannot be performed. Thus, although various models for RNR evolution have been 

proposed by biochemical reasoning (e.g., based on the availabilities and oxygen sensitivities of the cofac-

tors), prior to our work, phylogenetic inference had only been performed on a very small scale. Early studies 

included an inference of 8 class II sequences (Jordan et al., 1997) performed with Clustal W (Thompson et 

al., 1994) and an inference with a dataset of 96 class I, II, and III sequences (Torrents et al., 2002). In the 

latter study, Torrents and co-workers used a neighbor-joining (NJ) algorithm to build a tree using a Poisson 

model, which assumes that all amino acids have equal probability of change (Torrents et al., 2002). The NJ 

approach can be understood as a way to build a tree by creating nodes between pairs of sequences that are 

considered close by a certain metric for distance, which in this case is determined by the Poisson sequence 

evolution model. This approach differs significantly from modern methods of tree inference in which the 

tree topology is determined by the sequence evolution model itself (Minh et al., 2020) often in replicate. 

Furthermore, the sequence availability at the time was too sparse to capture the true diversity of the RNR 

family, and the dataset lacked class Ø sequences, monomeric class II sequences, as well as many subclasses 

of the class I sequences. 
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Since then, small-scale inferences have been performed on subsets of the RNR family on either the ɑ or β 

subunit with datasets ranging between 10s to 100s of sequences in size (Dwivedi et al., 2013; Lundin et al., 

2010; Martínez-Carranza et al., 2020; Rose et al., 2019; Rozman Grinberg et al., 2018; Sakowski et al., 

2014). Among these, the work of Lundin and co-workers has been the most comprehensive with respect to 

consideration of the different RNR classes (Lundin et al., 2010). The growth of sequence information, 

however, also meant that greater diversity had to be accounted for by phylogenetic methods, and therefore, 

phylogenetic inference had not been performed on all RNR classes simultaneously since the seminal work 

of Torrents, et al. In its place, a structure-based phylogenetic network was constructed via an NJ algorithm, 

where the distance between two sequences was estimated by pairwise structural alignment scores (Lundin 

et al., 2015). Under the assumption that this network estimates a phylogenetic tree, different possible roots 

were considered, and although none led to monophyly of the RNR classes, it was proposed that the class I 

RNRs emerged from the dimeric class II RNRs.  

 

In this study, we succeeded in performing a large-scale phylogenetic reconstruction of the entire, highly 

diverse RNR family for the first time by using structural information to aid the sequence alignment proce-

dure. To test for alternative hypotheses, we performed maximum-likelihood inference using two different 

amino acid replacement matrices in replicate (10 trees for each model) and repeated the inference with a 

different sequence redundancy threshold to test for the effect of taxon sampling on tree topology and evo-

lutionary conclusions. Key bifurcations featured high branch supports and reproducibility in replicate tree 

inferences, allowing us to make robust interpretations, which were further supported by evo-velocity anal-

ysis, a recently introduced method that is independent of multiple sequence alignments (Hie et al., 2022). 

In contrast to previously proposed models (Lundin et al., 2015), our unified RNR phylogeny supports the 

evolution of three major, monophyletic clades corresponding to the three biochemically known classes as 

well as a new phylogenetic clade, which we denoted as class Ø. Together, our bioinformatic analyses sup-

port an evolutionary trajectory in which the O2-sensitive class III RNRs are the earliest to diverge, and the 

class Ø clade shares an ancestor with the LCA of the O2-dependent class I and O2-tolerant class II RNRs. 

It is important to note that all evolutionary models, including ours, are hypotheses, and it is impossible to 

know the true historical trajectory of mutations. Nonetheless, we can say that the evolutionary conclusions 

we present in this work were derived from the most advanced approach that is currently possible, and with 

the strongest statistical support and congruence across multiple independent methods. This work highlights 

the advances we have seen in bioinformatic methods while also providing a roadmap for the many important 

questions that remain. 
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Most notably, our phylogeny revealed the novel class Ø clade, which is exclusively (among characterized 

organisms) associated with marine microbes, such as cyanophages and photosynthetic bacteria. Bioinfor-

matically, we showed that the class Ø ɑ subunit shares significant sequence homology with class II se-

quences, while also containing in its gene neighborhood a gene for a ferritin-like protein that resembles the 

class I β subunit. Structurally, we further showed that the class Ø ɑ subunit defines the minimum set of 

features shared by class I and II RNRs, including the orientation of the two monomers in the dimer, speci-

ficity site at loop 1, and the β-hairpin. It was previously hypothesized that the LCA of RNRs may have 

possessed class II-like biochemistry based on the Precambrian bioavailabilities of iron and cobalt and the 

abiotic synthesis of porphyrin rings (Lundin et al., 2015). An alternative hypothesis is supported by our 

phylogeny, which places the class I mechanism as ancestral to, or having diverged in parallel with, that of 

class II. Although we cannot classify the mechanism of radical generation in the class Ø RNRs in the ab-

sence of biochemical data, our phylogeny suggests that a class II-like enzyme resembling the extant class 

Ø sequences recruited a ferritin-like protein into the catalytic machinery, before diverging into class I RNRs 

(which retained a ferritin subunit for catalysis) and class II RNRs (which specialized in cobalamin usage). 

The usage of a ferritin-like protein in class Ø RNRs is supported by the observation of a stacked YY dyad 

in the active site of our cryo-EM structure, which suggests that long-range radical transfer is an important 

component of catalysis in these enzymes. However, the short C-terminus of the class Ø ferritins and the 

prevalence of the CXC motif in the ɑ C-terminus suggest that there are key differences with the class I and 

II RNRs. Future biochemical characterization will require identification of the correct metallocofactors for 

activity and possible reducing partners. 

 

Based on our results, we present the following model for the evolution of the RNR family. The LCA of the 

RNR catalytic subunit likely shared the most biochemical resemblance to extant class III RNRs. Increasing 

oxygen availability selected for the divergence of the RNR family into the anaerobic LCA of class III and 

the oxygen-tolerant LCA of classes Ø – II, from which the minimal class Ø RNRs diverged. Class I and II 

RNRs sharing an ancestor would suggest that multiple strategies to adapt to the presence of oxygen evolved 

in parallel, rather than sequentially. Interestingly, we find sequences from the earliest diverging cyanobac-

terium, Gloeobacter, near the root of the class II clade in our phylogeny. Gloeobacter are notable for lacking 

thylakoid membranes and have been called !the missing link” between anoxic photosynthesis, which in-

volves Fe-S chemistry, and oxygenic photosynthesis (Nakamura et al., 2003; Saw et al., 2013). Thus, along 

with the emergence of cyanobacteria (Schirrmeister et al., 2013), it is possible that class II RNRs evolved 

well before the Great Oxygenation Event (GOE). If so, this would imply that class I RNRs also emerged 

before the Earth"s atmosphere became permanently oxidizing. In fact, recent work suggests that oxygen 

availability was sufficient for the birth of O2-producing and O2-utilizing enzymes to occur well before the 
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geochemically defined GOE (Jabłońska and Tawfik, 2021). Such an evolutionary model could explain how 

O2-dependent class I RNRs can share an ancestor with class II RNRs. In this respect, it is especially intri-

guing that class Ø RNRs are associated with cyanophages and photosynthetic bacteria. 

 

Outlook 

With a unifying RNR phylogeny, we propose an evolutionary model with implications for the early emer-

gence of molecular adaptations to oxygen. Our phylogeny also directs new avenues of study. We expect 

biochemical studies of the class Ø clade to provide insight into how an ancestral radical-generating mech-

anism may have diverged into class I and II mechanisms. We also anticipate that by analyzing the exten-

sions and insertions about the catalytic barrel, we will gain a greater understanding of how allosteric and 

catalytic mechanisms evolved within the RNR family. Finally, with a phylogenetic inference, it is conceiv-

able that we will be able to reconstruct ancestral sequences and gain detailed insight into evolutionary 

trajectories. In all, our unifying RNR phylogeny will guide future studies to fill important gaps in our ever-

evolving understanding of this family of complex enzymes.  

 

Methods  

Sequence collection and SSN analysis 

A dataset of 105,904 sequences belonging to families PF02867, PF08343, PF13597, PF00317, PF17975, 

and PF08471 was downloaded from the PFAM server (El-Gebali et al., 2019). The computational com-

plexity of phylogenetic reconstruction increases exponentially with the number of taxa sampled in the in-

ference. A sequence redundancy threshold of 85% was imposed on the dataset, and redundant sequences 

were clustered and represented as a single sequence in CD-HIT (Fu et al., 2012) to both balance taxon 

sampling across divergent lineages and reduce the computational complexity of the inference. Because the 

PFAM database typically features many sequences that are truncated, incomplete or are part of larger multi-

domain proteins, we removed all sequences that were smaller or larger than 400 or 1100 residues (the 

expected upper and lower bounds for RNR sequences based on prior data and characterized proteins), re-

spectively. An all-vs-all pBLAST search was performed for each sequence in the dataset using default 

search parameters and an E-value threshold of 10E-240. The search result was visualized as a force-directed 

graph network in Cytoscape (Hie et al., 2021; Shannon et al., 2003). The final non-redundant dataset con-

sisted of 12,968 sequences.  

 

Sequence alignment 

As RNR sequences have been diverging for billions of years, pair-wise sequence identity is frequently low 

(<15%), and homology is often undetectable between distant members of the superfamily. Conventional 
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alignment algorithms failed to align these large and diverse datasets, which were evaluated against struc-

tural alignments of phylogenetically diverse RNRs. Instead, we employed our recently reported workflow 

(Spence et al., 2021) that uses ensembles of HMMs that are iteratively trained on increasingly diverse se-

quences until the full diversity of the dataset is captured. The initial HMM in this workflow captures resi-

dues that are tolerated at each site of the consensus RNR fold. This HMM was built from a non-redundant 

structural alignment of 9 diverse RNR crystal structures (1h78, 4coj, 3o0m, 6cgm, 1pem, 5im3, 3hne, 3s87, 

and 2x0x) that had been aligned in MUSTANG (Konagurthu et al., 2010) HMMs were built using the 

HMMBuild application of the HMMer suite (Finn et al., 2011). Sequences from each SSN cluster were 

scored against a cluster-specific HMM, which was generated in HMMer from all sequences within that 

cluster. The E-value that a sequence scores against the HMM of the cluster that it belongs to therefore 

serves as a metric for how representative that sequence is to the overall cluster. The most representative 

sequence from each sequence cluster in the SSN was aligned to the initial structural HMM (755 sequences).  

 

This !representative” alignment, and a corresponding maximum-likelihood (ML) phylogenetic tree that was 

reconstructed in IQ-TREE (Minh et al., 2020) was used as a seed alignment and guide tree, respectively, 

for the full alignment of all non-redundant RNR sequences. The final sequence alignment was performed 

in UPP from the SEPP alignment package (Nguyen et al., 2015). As this alignment workflow exploits 

structural information, residues that are not crystallographically resolved or residues that do not align, such 

as non-conserved insertions and N-/C- terminal extensions (including the ATP cone), are not included in 

the alignment. The full alignment was manually refined by removing non-conserved insertions (typically 

single residue insertions conserved in fewer than 1% of sequences) and poorly aligned sequences that are 

unlikely to be functional RNRs. The final alignment features 6,779 RNR sequences.  

 

Phylogenetic reconstruction  

The RNR superfamily phylogeny was reconstructed by ML from the full RNR alignment. Phylogenetic 

inference was performed using IQ-TREE2.0 (Minh et al., 2020) on the Australian National Computing 

Infrastructure (NCI) GADI supercomputer and BioHPC servers at the Cornell Institute of Biotechnology. 

Stochastic tree-search was conducted with a stochastic perturbation strength of 0.2 to a maximum of 2000 

iterations. Convergence was defined as 200 iterations of tree-search that failed to improve the current best 

tree. Branch supports were measured by ultrafast bootstrap approximation 2.0 (Hoang et al., 2018) and the 

approximate likelihood ratio test, each conducted to 10,000 replicates. The sequence evolution model, LG 

replacement matrix (Le and Gascuel, 2008) with a 10 category free-rate rate heterogeneity model 

(Kalyaanamoorthy et al., 2017), was determined by ML using ModelFinder (Kalyaanamoorthy et al., 2017) 

as implemented in IQ-TREE2.0 on the representative sequence alignment. To test the robustness of our 
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hypotheses against model uncertainty, we performed an additional 10 replicates of ML tree-search using an 

alternate general amino-acid replacement matrix (WAG+R10) (Whelan and Goldman, 2001). The AU-test 

conducted to 10,000 replicates was used to compare all tree topologies (Shimodaira, 2002). To further test 

the robustness of our hypotheses against taxon sampling, we performed an additional and independent phy-

logenetic reconstruction on a sequence dataset with redundancy removed to 55% sequence identity. As with 

the full inference, the 55% redundancy phylogeny was inferred in IQ-TREE 2.0 under LG+R10.   

 

ESM-1b evo-velocity modeling  

Protein natural language processing (NLP) models can provide valuable and phylogeny-independent evo-

lutionary insight (Alley et al., 2019; Hie et al., 2021; Rives et al., 2021). The 6,779 sequences in our dataset 

were embedded as high-dimensional vectors in the ESM-1b protein language model (Rives et al., 2021)  

and projected onto a two-dimensional directed network graph with uniform manifold approximation and 

projection (UMAP) (McInnes, L., Healy, J., Saul, N., & Großberger, L., 2018). Likelihoods along each 

edge in the network graph were computed and visualized as a vector field. Under the assumption that like-

lihoods inferred from the NLP model are correlated with evolutionary fitness, the vector field !flows” in 

the direction of evolution, and pseudotime velocity is correlated with phylogenetic depth (Hie et al., 2021). 

 

Expression and purification of Synechococcus phage S-CBP4 α subunit  

The gene for the α subunit of Synechococcus phage S-CBP4 RNR was synthesized by Genscript with a 

His6-SUMO (smt3) tag at the N-terminus and cloned into a pET-28c+ vector in between the NcoI and XhoI 

cloning sites. His6-smt3-tagged-α was grown overnight at 37 ˚C with 200 rpm shaking in 100 mL of LB 

medium supplemented with 50 µg/mL kanamycin. Large-scale growth was initiated by adding 10 mL of 

saturated starter culture to six 1 L volumes of kanamycin-supplemented LB medium incubating at 37 ˚C 

with 200 rpm shaking. At an OD600 of 0.4, IPTG was added to a final concentration of 0.4 mM, and cultures 

were shaken at 37 ˚C 200 rpm for 6 hours. Cells were harvested by centrifugation at 4 ˚C (15 min at 3,500 

x g), frozen in liquid nitrogen, and stored at -80 ˚C. 

 

All steps of purification were completed at 4 ˚C. The cell pellet was placed on ice and thawed for 30 min 

prior to resuspension in Buffer A: 50 mM sodium phosphate, pH 7.6, 300 mM NaCl, 2 mM imidazole, 5% 

(v/v) glycerol and 1 mM tris(2-carboxyethyl)phosphine (TCEP). For lysis, Buffer A was supplemented with 

5 U mL-1 DNase, 5 U mL-1 RNase A and 0.2 mg mL-1 lysozyme (hen egg white, Sigma), 1.5 mM MgCl2, 
and EDTA-free protease inhibitor tablet (Roche), 250 µM phenylmethylsulfonyl fluoride (PMSF). Cells 

were homogenized with a French Press at 14,000 psi for 10 minutes inside a cold room operating at 4 ˚C. 

Cell debris was separated by centrifugation at 4 ˚C (25,000 x g, 30 min), and the supernatant was loaded 



Burnim, et al.  16 

onto a Talon cobalt affinity column (5 mL bed volume) equilibrated in Buffer A. The column was washed 

with the equilibration buffer for 10 column volumes, and protein was eluted with Buffer A with 500 mM 

imidazole. Protein-containing fractions were pooled and buffer exchanged into Buffer A via a centrifugal 

concentrator (30 kDa Amicon). Smt3-protease was added of a 350:1 mole ratio of tagged protein:Smt3 

protease. Detagged protein was collected via the flowthrough of a second cobalt affinity column equili-

brated with Buffer A. Further purification was performed with size exclusion chromatography on a HiLoad 

Superdex 200 pg preparative 16/600 column in Buffer A. All protein concentrations are given as monomer 

concentrations. All biophysical studies were performed in the following assay buffer except where noted in 

the cryo-EM sample preparation: 50 mM HEPES pH 7.6, 150 mM NaCl, 15 mM MgCl2, 1 mM TCEP and 

5% (v/v) glycerol.  

 

Small-angle X-ray scattering  

X-ray scattering experiments were performed at the Cornell High Energy Synchrotron Source (CHESS) 

ID7A1 station. Data were collected using a 250 µm x 200 µm X-ray beam with an energy of 9.9 keV and a 

flux of ~1012 photons s-1 mm-1 at the sample position. Small-angle X-ray scattering (SAXS) images were 

collected on an Eiger 4M detector covering a range of q = 0.009–0.55 Å−1. Here, the momentum transfer 

variable is defined as q=4π/λ sinθ, where λ is the X-ray wavelength and 2θ is the scattering angle. Data 

processing at the beamline was performed in BioXTAS RAW (Hopkins et al., 2017). Briefly, scattering 

images were integrated about the beam center and normalized by transmitted intensities measured on a 

photodiode beamstop. The integrated protein scattering profile, I(q), was produced by subtraction of back-

ground buffer scattering from the protein solution scattering. Radii of gyration (Rg) were estimated with 

Guinier analysis, and pair distance distribution analysis was performed with Bayesian indirect Fourier trans-

formation (BIFT) (Hansen, 2000). Error bars associated with Rg values are curve-fitting uncertainties from 

Guinier analysis. Subsequent analysis was performed in MATLAB and utilized REGALS and other estab-

lished protocols (Meisburger et al., 2021, 2016; Skou et al., 2014) 

 

The scattering of Synechococcus phage S-CBP4 α subunit was first measured over the concentration range 

of 4 – 40 µM. 8 µM was chosen for subsequent titration of nucleotides to maintain near physiological 

concentration (Ando et al., 2011; Parker, 2017). For all titration experiments, background subtraction was 

performed with carefully matched buffer solutions containing identical concentrations of nucleotides fol-

lowing established protocols (Skou et al., 2014). For each measurement, 40 μL of sample were prepared 

fresh and centrifuged at 14,000×g at 4 °C for 10 min immediately before loading into an in-vacuum flow 

cell kept at 4 °C. For each protein and buffer solution, 20 × 2 s exposures were taken with sample oscillation 

to limit radiation damage then averaged together to improve signal. SVD was performed in MATLAB. 
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Size-exclusion chromatography-coupled SAXS (SEC–SAXS) experiments were performed using a Super-

dex 200 Increase 10/300 GL (24 mL) column operated by a GE Akta Purifier at 4 °C with the elution 

flowing directly into an in-vacuum X-ray sample cell. To account for a ~10-fold dilution of the sample 

during elution, 40 μL sample was prepared at 80 μM protein in assay buffer with 200 µM TTP and 200 µM 

GDP for substrate. Sample was then centrifuged at 14,000×g for 10 min at 4 °C before loading onto a 

column pre-equilibrated in a matched buffer containing 200 µM TTP, 200 µM GDP. Samples were eluted 

at flow rates of 0.05 mL min−1 and 2-s exposures were collected throughout elution until the elution profile 

had returned to buffer baseline. Normalized, integrated scattering profiles were binned 6-fold in frame 

number and 4-fold in q, and scattering profiles of the elution buffer were averaged to produce a background-

subtracted SEC–SAXS dataset. Singular value decomposition (SVD) was performed to determine the num-

ber of significant components, and the SEC-SAXS dataset was decomposed in the MATLAB implementa-

tion of REGALS (Meisburger et al., 2021).  

 

Structural modeling was performed using the ATSAS package (Manalastas-Cantos et al., 2021) and Allos-

ModFoXS (Schneidman-Duhovny et al., 2010; Weinkam et al., 2012) following previously established 

protocols (Ando et al., 2011, 2016; Meisburger et al., 2016; Thomas et al., 2019). Theoretical scattering 

curves of the cryo-EM model (Methods described below, PDB: 7urg) were calculated in CRYSOL (Svergun 

et al., 1995) with 50 spherical harmonics, 256 points between 0 and 0.5 Å−1, and the default electron 

density of water. The overall scale factor and solvation parameters were determined by fitting to the protein 

scattering curve extracted by REGALS. Disordered and missing residues were modeled in AllosModFoXS  

(Konarev et al., 2003; Manalastas-Cantos et al., 2021) with sampling of static structures consistent with the 

starting model. 

 

Cryo-EM grid preparation and data acquisition 

QuantiFoil holey carbon R 1.2/1.3 300-mesh grids were glow discharged on a PELCO easiGlow system for 

45 s with 15 mA current. Grid freezing was then performed on a FEI Vitrobot Mark IV with the chamber 

humidity set to 100% and the temperature set to 4 °C. 3 μL of sample (4 µM Synechococcus phage S-CBP4 

α subunit in 50 mM HEPES pH 7.6, 150 mM NaCl, 7.55 mM MgCl2, 200 µM TTP, 200 µM GDP, 1 mM 

TCEP, 1% v/v glycerol) was applied onto the grid. The sample was blotted for 4 s and then immediately 

plunged into liquid ethane cooled by liquid nitrogen. 

 

Data collection was performed at the Cornell Center for Materials Research (CCMR) on a Talos Arctica 

(Thermo Fisher Scientific) operating at 200 keV with a Gatan K3 direct electron detector and BioQuantum 
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energy filter at a nominal magnification of 79,000 x (1.07 Å/pixel). A total of 856 movies was collected 

with a nominal defocus range from -0.6 μm to -2.0 μm and a total dose of 50 e-/Å2 over 50 frames (2.164 s 

total exposure time, 0.0435 s frame time, 26.96 e-/Å2/s dose rate). 

 

Cryo-EM data processing 

Initial processing was performed in cryoSPARC v3.3.1 (Punjani et al., 2017). Patch motion correction and 

patch CTF estimation were performed on 856 movies. The resulting micrographs were manually curated 

based on statistics and visual inspection, and 432 micrographs were retained. 46 high quality micrographs 

were then selected, from which the blob picker routine was used to pick particles. The resulting 99k particles 

were extracted and subjected to 2D classification, and the top four unique 2D classes were selected and 

used as templates for template picking on the entire dataset. Due to the large variance in ice conditions in 

many of our micrographs, masks were manually defined for every micrograph, and particle picks outside 

the ideal ice region were excluded. The resulting 582k particles were extracted with a box size of 256 pixels 

binned to 128 pixels. Two rounds of 2D classification were performed, and only particles corresponding to 

the top 2D classes with secondary structure features were kept. The 203k remaining particles were re-ex-

tracted with 256-pixel box size and subjected to ab initio reconstruction and heterogeneous refinement into 

two classes. The top class containing 117k particles was then subjected to homogeneous refinement with 

C2 symmetry, which yielded a 4.04 Å map. Duplicate particles were removed using a minimum separation 

distance of 80 Å, and the remaining particles (108k) were subjected to a non-uniform refinement (Punjani 

et al., 2020) with C2 symmetry imposed and per-particle defocus and CTF parameter optimization enabled, 

which yielded a 3.57 Å map. 

 

To employ Bayesian polishing in RELION-3 (Zivanov et al., 2018), the same 432 micrographs were mo-

tion-corrected in RELION 3.1 using its own implementation of MotionCorr2 (Zheng et al., 2017) with 5 by 

5 patches. The particle .cs file from the cryoSPARC non-uniform refinement job was converted to star 

format using pyem (Asarnow, D., Palovcak, E., & Cheng, Y., 2019) with the micrograph path modified to 

that of the RELION motion-corrected micrographs. Particles were then re-extracted from RELION motion-

corrected micrographs with a box size of 256 pixels. Due to the failure of RELION 3D auto-refine to con-

verge on a reasonable structure from these particles, particles were imported back into cryoSPARC and 

subjected to homogeneous refinement. The particle .cs file from this refinement job was again converted to 

a star file using pyem. Relion_reconstruct was employed to reconstruct two half maps using the offset and 

angle information refined in cryoSPARC with the same half data split, and post-processing was performed 

on the resulting half maps using the refinement mask from cryoSPARC. Bayesian polishing (Zivanov et 

al., 2019) training and polishing jobs were then performed with this post-processing job as input. The 



Burnim, et al.  19 

resulting shiny particles were successfully refined to a 3.85 Å map with 3D auto-refine in RELION. After 

one round of CTF refinement (Zivanov et al., 2020) the particles were subjected to another round of Bayes-

ian polishing, and the resulting shiny particles were imported back into cryoSPARC. Non-uniform refine-

ment on shiny particles with C2 symmetry imposed and per-particle defocus and CTF parameter optimiza-

tion enabled yielded the final 3.46-Å resolution map used for model building and analysis. 

 

AlphaFold prediction and atomic model building 

The sequence for the Synechococcus phage S-CBP4 α subunit was retrieved from UniProt (Bateman et al., 

2021) with accession number M1PRZ0. The sequence was used as input for AlphaFold2 prediction (Jumper 

et al., 2021) with the five default model parameters and a template date cutoff of 2020-05-14. As the five 

models were largely identical in the core region and differing only in the location of the C-terminal tail, the 

structure predicted with the first model parameter was used in the subsequent process. 

 

The predicted structure of the Synechococcus phage S-CBP4 α subunit was first processed and docked into 

the unsharpened cryo-EM map in phenix. The 25 N-terminal residues and 45 C-terminal residues were then 

manually removed due to lack of cryo-EM density, and residues 26-426 were retained in the model. We 

observed unmodeled density at the specificity site, and based on solution composition, we modeled a TTP 

molecule. A structure of TTP coordinating a magnesium ion was extracted from the crystal structure of 

Bacillus subtilis RNR (pdb: 6mt9) (Thomas et al., 2019) and rigid body fit into the unmodeled density in 

Coot (Emsley and Cowtan, 2004). The combined model was refined with unsharpened and sharpened maps 

using phenix.real_space_refine (Afonine et al., 2018; Liebschner et al., 2021), with a constraint applied on 

the magnesium ion coordinated by the triphosphate in TTP according to the original configuration. Residue 

and loop conformations in the resulting structure were manually adjusted in Coot to maximize fit to map 

and input for an additional round of real-space refinement in phenix with an additional restraint for the 

disulfide bond between C30 and C196. The atomic coordinates and maps have been deposited to the Protein 

Data Bank and EM Data Bank under accession codes 7urg and EMD-26712. Due to the weak density for 

the magnesium ion, it was removed from the atomic coordinates when deposited into PDB. 

 
EM Data collection, processing, and refinement 

 
Data collection and processing  

Microscope Talos Arctica 

Camera K3 
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Magnification 79,000 

Voltage (keV) 200 

Electron exposure (e-/Å2) 50 

Defocus range (μm) -0.6 to -2.0 

Pixel size (Å) 1.07 

Micrographs used (no.) 432 

Initial particles (no.) 581,884 

Final particles (no.) 107,885 

Symmetry imposed C2 

Map resolution (Å) 
 FSC threshold 

3.46 
(0.143) 

Map resolution range (Å) 3.0 – 7.0 (75%) 

Refinement  

Initial model used AlphaFold2 prediction for UniProt entry M1PRZ0 

Model resolution (Å) 
 FSC threshold 

3.6 
(0.5) 

Map sharpening B factor (Å2) -171 

Model composition 
 Non-hydrogen atoms 
 Protein residues 
 Ligands 

 
6260 
802 
TTP 

B factors (Å2) 
 Protein 
 Ligand 

 
74.37 
67.23 

R.m.s. deviations 
 Bond lengths (Å) 
 Bond angles (°) 

 
0.004 
0.937 

Validation 
 MolProbity score 
 Clashscore 
 Poor rotamers (%) 

 
1.47 
4.69 
0.00 

Ramachandran plot 
 Favored (%) 
 Allowed (%) 
 Disallowed (%) 

 
96.49 
3.51 
0.00 

 

Data Availability 
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The cryo-EM map has been deposited in the Electron Microscopy Data Bank under accession code EMD-

26712, and the model has been deposited in the Protein Data Bank under accession code 7urg. The phylog-

eny shown in Figure 2 is available at (https://itol.embl.de/shared/yFvz6aVgum9z). The structure-guided 

sequence alignment and all twenty inferred phylogenies are available for download as supplementary ma-

terials. 
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Figure 1. The catalytic fold of the ribonucleotide reductase (RNR) family is a unique 10-stranded ɑ/β barrel, 
consisting of ten β-strands (light green) and eight ɑ-helices (light blue). (A) Each half of the barrel contains 
a 5-stranded parallel β-sheet (βA-βE and βF-βJ) that is arranged in anti-parallel orientation with respect to 
each other. The two halves are connected by the so-called “finger loop” (yellow) which typically begins 
with a short ɑ-helix and contains a conserved cysteine that has been shown to be the site of the catalytically 
essential thiyl radical in all biochemically characterized RNRs. Diversity among the RNRs is generated by 
N- and C-terminal extensions as well as the insertions (dashed curves) between the secondary structure 
elements in the ɑ/β barrel. Loops 1-3 (dark green, red, blue) have special names in the RNR literature for 
their involvement in specificity regulation. The gray secondary structure elements (starred) are partially 
integrated in the ɑ/β barrel and are involved in substrate binding. (B) The barrel portion (top) of the E. coli 
class Ia catalytic subunit (bottom dimer). The ATP-cone domain is colored in orange. (C) The barrel portion 
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(top) of the T. maritima class II catalytic subunit (bottom dimer). (D) The barrel portion (top) of the T4 
phage class III catalytic subunit (bottom dimer). In class III RNRs, the loop 1 region (dark green) is a long 
helix that is involved in dimerization. 

 
Figure 1 – figure supplement 1. RNRs catalyze the reduction of ribonucleoside di- or tri-phosphates 
(NDPs or NTPs) to their respective deoxynucleotide forms (dNDPs or dNTPs). The full catalytic cycle 
involves three steps: (1) cofactor-mediated generation of a thiyl radical, (2) nucleotide reduction, and (3) 
active-site reduction. In the first step, class I RNRs utilize a ferritin subunit, which has a characteristic 
metal-binding E/D + EXXH motif and a nearby residue, X. The residue X and the metal center together 
constitute the radical cofactor in class I RNRs. In most subclasses, X is a tyrosine, but it can also be a redox-
inert residue like phenylalanine (e.g., as in class Ic RNRs) or a tyrosine post-translationally modified to 
dihydroxyphenylalaninine (DOPA) in class Ie RNRs. The metal ions (M1, M2) are typically Fe and/or Mn, 
although in class Ie RNRs, the metal-binding motif is not conserved and therefore unable to coordinate 
metals (Blaesi et al., 2018; Srinivas et al., 2018). Once the thiyl radical is generated, nucleotide reduction 
proceeds in a conserved manner. Reducing equivalents for nucleotide reduction are ultimately provided by 
external sources (redoxins or formate). In most RNRs, nucleotide reduction is coupled to the oxidation of 
a pair of active-site cysteines, which are subsequently reduced by thioredoxin, thioredoxin reductase, and 
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NADPH. Some class III RNRs do not have this conserved cysteine pair, and they use formate as the external 
reductant (Wei et al., 2014b). 
 

 
 
Figure 2. Phylogenetic reconstruction of the RNR superfamily. (A) A representative phylogeny of 6779 
extant RNR ɑ sequences rooted at the midpoint. The superfamily forms four distinct lineages, with the three 
major clades (blue, yellow, red) corresponding to the three biochemically known classes I-III. Class III is 
the most distantly related clade (red). A small ancestral clade (green) forms an outgroup to the clades cor-
responding to classes I and II (blue and yellow, respectively). The scale bar represents the expected number 
of amino acid substitutions per site in the alignment. The taxonomic group each sequence belongs to is 
labelled by a color strip at the circumference. Sequences used for the structural alignment are mapped onto 
the tree by organism ID in circles. Organism IDs in dashed circles are α sequences that were utilized in the 
structural alignment but were filtered in favor of more representative sequences for the tree inference and 
thus are not on the tree (see Methods). These structures are represented by closely related sequences with 
≥ 80% sequence identity. (B) An unrooted representation of the RNR phylogeny with branch supports 
(UFboot/SH-ALRT statistics) for the placements of major lineages. Deep nodes in the RNR phylogeny are 
resolved with high confidence. 
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Figure 2 – figure supplement 1. All 20 inferred phylogenies of the ribonucleotide reductase family shown 
in the unrooted representation. Green, red, yellow, and blue branches are clade Ø and classes III, II, and I, 
respectively. Trees are labeled with the respective matrices of evolution used for the phylogenetic inference. 
The tree shown in Figure 2 and referenced throughout this work is tree 1. Trees with the light blue back-
ground support the overall topology shown in Figure 2 of the major classes. Trees with orange background 
show the second most frequently observed topology, where the midpoint places the class Ø clade ancestral 
to the class III clade. The four trees without a colored background cannot be categorized into either of the 
previously described topologies.  
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Figure 2 – figure supplement 2. Tree inference is robust to sequence identity threshold. (A) Tree inference 
on an RNR sequence dataset with redundancy removed to 55% identity reconstructs class Ø sequences as 
ancestral to the last common ancestor of classes I and II, congruent with analyses performed at a higher 
redundancy threshold (see Methods). (B) The tree shown in Figure 2A (reproduced here on the left) is of 
identical topology to the tree inferred at a lower redundancy threshold (shown on the right). Identical se-
quences between the trees are mapped by grey lines. In both panels A and B, class I, II, III, and Ø are 
colored as in Figure 2.    
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Figure 3. Evo-velocity analysis of the RNR superfamily. ESM-1b embedded RNR sequences were 
projected onto a two-dimensional vector plot, where the horizontal and vertical axes are UMAP 1 and 2, 
respectively. Each colored point in the plot corresponds to one of the 6779 ɑ sequences from the full RNR 
phylogeny. (A) Vector field plot colored by RNR classification: clade Ø (green), class I (blue), class II 
(yellow), class III (red). (B) Vector field plot colored by the probability of a sequence being a root of the 
sequence space, where purple sequences are the most likely to represent probable roots. (C) Vector field 
plot colored by pseudotime, a proxy for phylogenetic depth. Yellow (pseudotime = 0) represents ancestral 
sequences and indigo (pseudotime = 1) represents sequences that have diverged the most from ancestral 
sequences.  
 
 
 
 



Burnim, et al.  33 

 
Figure 4. The class Ø α subunit shares similarities with both class I and II α subunits. (A) An expansion of 
the class Ø clade from the full tree in Figure 2. Cyanophage sequences in this clade are bolded. Genomes 
with identified photosynthetic genes, psbA and psbD, are colored in green. (B) Representative results from 
an all-vs-all pBLAST search of every class Ø sequence against all RNR α sequences from other clades. 
Blue bars represent number of significant hits (E-values < 10-3) of the title sequence to sequences in the 
class I clade. Yellow bars represent number of sequences from the class II clade. Overall, the class Ø clade 
shares greater homology with the class II RNRs. (C) A 3.46-Å cryo-EM map of the Synechococcus phage 
S-CBP4 α subunit (shown at a threshold of 2.17) depicts a dimer with TTP bound at the allosteric specificity 
sites. The β-hairpin (violet) is a shared trait of class I and II RNRs. (D) Experimental SAXS profile (blue 
solid) of the Synechococcus phage S-CBP4 α subunit in the presence of 200 μM TTP, 200 mM GDP is 
explained well by the theoretical scattering of our cryo-EM model (red dashed). Model-data agreement is 
further improved by modeling the disordered N- and C-termini in AllosModFoXS (black dashed, see Meth-
ods) (Schneidman-Duhovny et al., 2010). Cryo-EM density for (E) TTP at the specificity site, (F) a stacked 
tyrosine dyad adjacent to the catalytic cysteine, and (G) the oxidized cysteine pair in the active site is shown 
at a threshold of 2.77. 
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Figure 4 – figure supplement 1. Six representative operons of class Ø sequences. In sequenced organisms 
with high genome coverage, the α gene (cyan) is followed by a gene for a small ferritin-like protein (orange). 
Of the 35 sequences in the class Ø clade, 24 are from sequenced genomes with greater coverage than a 
contig. 18 of these have annotated ferritin-like sequences (IPR009078) directly downstream of the α gene 
in the operon, and 6 have unannotated genes that share homology with the class Ø ferritin-like gene directly 
downstream of the α gene.  
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Figure 4 – figure supplement 2. Synechococcus phage S-CBP4 α is a stable dimer in the presence of 
nucleotides. (A) The radius of gyration (Rg) of Synechococcus phage S-CBP4 α in the absence of nucleo-
tides as a function of protein concentration in solution shows a monomer-dimer equilibrium. (B) The Rg of 
8 µM Synechococcus phage S-CBP4 α in the presence of 200 µM GDP as a function of TTP concentration 
in solution is consistent with the stabilization of a dimer. Error bars in panels A and B represent fitting 
uncertainties from Guinier analysis, and where not visible are smaller than the data marker. The theoretical 
Rg values of Synechococcus phage S-CBP4 α (based on the cryo-EM model with N- and C-termini added) 
are 26 Å and 37 Å, respectively, for monomer and dimer. (C) Size exclusion chromatography-coupled 
SAXS (SEC-SAXS) data collected on the Synechococcus phage S-CBP4 α subunit in the presence of 200 
µM TTP and 200 µM GDP. Singular value decomposition (SVD) of the background-subtracted SEC-SAXS 
data contained 4 significant singular values. REGALS (Meisburger et al., 2021) was used to decompose the 
dataset into (D) elution profiles and (E) SAXS profiles for a sloping background component (purple), a 
minor aggregate component (blue), a protein component (red), and one trailing component (green) repre-
senting buffer mismatch and radiation damage. The presence of a minor aggregate species explains the 
slightly elevated Rg values observed in panel B. (F) Residuals of REGALS decomposition from SEC-SAXS 
dataset (G) Extracted SAXS profile for the Synechococcus phage S-CBP4 α dimer shown in Figure 4D.  



Burnim, et al.  36 

 
 
 

 
 
Figure 4 – figure supplement 3. Cryo-EM image processing workflow for reconstructing the 102 kDa 
Synechococcus phage S-CBP4 α2 dimer. (A) Representative micrograph used in processing. (B) Fourier 
shell correlation (FSC) curves for the final map with and without mask reported by cryoSPARC shown as 
blue and orange curves. The model-map FSC curve (green) was calculated for the deposited model (PDB: 
7urg) and the sharpened map using PHENIX. (C) Local resolution estimation computed in cryoSPARC for 
the final map. (D) Data processing scheme used to obtain the final map. 
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Figure 4 – figure supplement 4. The class Ø α subunit features the most minimal RNR architecture dis-
covered to-date. Top: Topology of the Synechococcus phage S-CBP4 α subunit monomer based on the 
cryo-EM model the minimal components of the RNR catalytic barrel colored as in Figure 1A. Only a few 
insertions are observed in the class Ø α subunit (yellow orange, orange, and violet secondary structures). 
Bottom: The cryo-EM model of the Synechococcus phage S-CBP4 α dimer with the same coloring as above. 
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Figure 4 – figure supplement 5. One structural difference between class I and II ɑ subunits is the packing 
of βJ residues next to the catalytic cysteine on the finger loop (yellow). (A) Class I RNRs contain a double 
tyrosine motif (green sticks) on the βJ strand of the barrel. When stacked, the YY dyad packs against the 
finger loop, such that it is poised for PCET with the catalytic cysteine (yellow sphere). Shown here is the 
crystal structure of the Escherichia coli class Ia RNR (PDB: 5cns) (Zimanyi et al., 2016). (B) In structures 
of class II RNRs (Larsson et al., 2010; Sintchak et al., 2002), there is a binding pocket (indicated by the 
arrow) for the adenosyl group (magenta sticks) of the AdoCbl cofactor in the space adjacent to the finger 
loop (yellow). Shown here is the crystal structure of Thermotoga maritima class II RNR (ODB: 3o0o). This 
binding pocket is also found in apo structures that lack the cofactor. (C) The double tyrosine motif is also 
found in the βJ strand of some class II sequences. However, AlphaFold2 prediction of these sequences 
suggests that the tyrosines are unstacked and placed outside of the binding pocket for the adenosyl group 
(indicated by the arrow). Shown here is the predicted model for the class II RNR from Thermaerobacter 
marianensis (Uniprot: E6SMJ2).  
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Figure 4 – figure supplement 6. Comparison of class Ø ferritin-like proteins with class I RNR β subunits. 
The four-helical bundle of the ferritin fold is colored in red, pink, yellow, and olive. (A) Topology (left) of 
an AlphaFold2 model (right) of a representative class Ø ferritin-like protein (Unitprot: M1TVU9) and (B) 
a close-up of the residues that would putatively form the metal-binding motif. In this sequence, a redox-
inert phenylalanine (F81) is found in the i+4 position from first histidine in the motif (H77). (C) Topology 
(left) of the crystal structure (right) of the E. coli class Ia RNR β subunit (PDB: 1piy) and (D) a close-up of 
the residues that form the diiron center. The site of the radical is a tyrosine (Y122) in the i+4 position from 
the first histidine in the motif (H118). (E) Sequence alignment of representative class Ø ferritin-like protein 
and class I RNR β subunits. Class Ø colored in green: Cs, Cyanophage SS120-1; Ab, Alphaproteobacteria 
bacterium; Scbs4, Synechococcus phage S-CBS4; Scbp4, Synechococcus phage S-CBP4; Cpb, Candidatus 
Poribacteria bacterium; Fb, Flavobacteriales bacterium; Fb, Flavobacteriaceae bacterium; C, Coralio-
margarita sp.; Rb, Rickettsiales bacterium TMED131. Class I colored in blue: Class Ia: EcIa, Escherichia 
coli (strain K12); Sc, Saccharomyces cerevisiae (strain ATCC 204508 / S288c). Class Ib: EcIb, Escherichia 
coli (strain K12); Bs, Bacillus subtilis (strain 168). Class Ic Ct Chlamydia trachomatis (strain D/UW-3/Cx). 
Class Id: Fj Flavobacterium johnsoniae (strain ATCC 17061); Lb, Leeuwenhoekiella blandensis (strain 
CECT 7118). A conserved E/D and EXXH metal-binding motif is observed in each helical pair (1 + 2; 3 + 
4). The i+4 position from the histidine in helix 2 is Phe or Leu in class Ø ferritin-like proteins, much like 
in class Ic β subunits. 


