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ARTICLE INFO ABSTRACT

Keywords: This paper describes the lessons learned from the implementation of a regional ensemble data assimilation and

Regional data assimilation forecast system during the intensive observing period of the Remote sensing of Electrification, Lightning, And

Regional ensemble forecasts Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign (central

RELAMPAGO Argentina, November-December 2018). This system is based on the coupling of the Weather Research and
Forecasting (WRF) model and the Local Ensemble Transform Kalman Filter (LETKF). It combines multiple data
sources both global and locally available like high-resolution surface networks, AMDAR data from local aircraft
flights, soundings, AIRS retrievals, high-resolution GOES-16 wind estimates, and local radar data. Hourly ana-
lyses with grid spacing of 10 km are generated along with warm-start 36-h ensemble-forecasts, which are
initialized from the rapid refresh analyses every three hours. A preliminary evaluation shows that a forecast error
reduction is achieved due to the assimilated observations. However, cold-start forecasts initialized from the
Global Forecasting System Analysis slightly outperform the ones initialized from the regional assimilation system
discussed in this paper. The system uses a multi-physics approach, focused on the use of different cumulus and
planetary boundary layer schemes allowing us to conduct an evaluation of different model configurations over
central Argentina. We found that the best combinations for forecasting surface variables differ from the best ones
for forecasting precipitation, and that differences among the schemes tend to dominate the forecast ensemble
spread for variables like precipitation. Lessons learned from this experimental system are part of the legacy of the
RELAMPAGO field campaign for the development of advanced operational data assimilation systems in South
America.

1. Introduction grid spacings from 1.3 to 15 km with data assimilation (DA) cycles of 1,
3, or 6 h (Gustafsson et al., 2018). These local forecasting systems can

Over the last years, the most important operational centers in the benefit from local observations such as radar and automatic weather
world have implemented global numerical weather prediction (NWP) station data, and can enable the computation of more frequent analyses
models with horizontal grid spacings ranging between roughly 7 and 20 in comparison with global cycles. It is worth mentioning that the posi-
km (Geer et al., 2018). In general, they also run regional domains using tive impact of mesoscale and convective scale DA regional systems has
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Fig. 1. RRR domain and topography (shaded) [m]. The circles indicate the 240
km radius of the eight radars assimilated. The black star refers to Villa Yacanto.
SDC refers to Sierras de Cérdoba mountain range. The black box indicates the
area considered for validation. The lower-right subplot indicates the location of
the verification domain within South America.

been documented among distinct geographical areas, showing that the
quality of the forecasts initialized from these systems is significantly
better than those produced by downscaling global analyses and forecasts
(e.g., Xiao et al., 2005; Koizumi et al., 2005; Routray et al., 2010; Kuroda
et al., 2012; Ferreira et al., 2017; Lien et al., 2017; Gustafsson et al.,
2018; Zhu et al., 2019; Carrio et al., 2019). Regarding local observa-
tions, the assimilation of radar data was widely found to positively
impact regional analysis and forecasts, as shown by Xiao et al. (2005),
Routray et al. (2010), Putnam et al. (2017), and Gao et al. (2019),
among many others.

Regional mesoscale DA systems have shown a positive impact on the
precipitation forecasts of local severe weather using both variational
and ensemble methods. For example, Routray et al. (2010) obtained an
enhanced performance of the Weather Research and Forecasting (WRF)
model with the 3D-VAR scheme for a monsoon case study employing 30
km horizontal grid spacing and assimilating Doppler weather radar data,
and Kunii (2014) showed a positive performance of 12-km analyses
applying the Local Ensemble Transform Kalman Filter (LETKF) system to
a local severe rainfall event in Japan. Further, the U.S. National Weather
Service runs the Rapid Refresh (RAP) regional operational hourly
updated analysis and forecast system, using a 13-km hybrid ensemble-
variational Gridpoint Statistical Interpolation (GSI) analysis system
(Benjamin et al., 2016). Additionally, Pan et al. (2018) tested a proto-
type for the RAP forecasting system using a dual-resolution system
consisting of a ~13-km hybrid system coupled with ensemble Kalman
filter cycles at 40-km grid spacing.

Over South America, few studies have been documented regarding
regional mesoscale and convective scale DA systems. Goncalves de
Goncalves et al. (2015) presented experiments carried out at the Center
for Weather Forecast and Climate Studies from the Brazilian National
Institute for Space Research (CPTEC-INPE for their acronyms in Portu-
guese), using regional data assimilation cycles with 12, 9 and 3 km
resolution, for one month. At the same time, promising results of DA
applied to different case studies using resolutions between 1 and 10 km
have been shown both in Brazil and Argentina (Ferreira et al., 2017;
Bauce Machado et al., 2017; Toshio Inouye et al., 2017; Maldonado
et al., 2019; Corrales et al., 2019; Vendrasco et al., 2020; Ferreira et al.,
2020). At the time of writing, CPTEC is running a 5-km regional
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modeling system for South America using the WRF model with the GSI-
DA system with a 6-h cycling interval (Sapucci personal communica-
tion') and the Argentinian National Meteorological Service (ANMS) has
been running a convective-scale downscaling forecast since 2016 (Gar-
cia Skabar et al., 2018), and is working actively in implementing a
regional data assimilation system in order to improve the forecast of
precipitation and severe weather events.

From June 2018 to April 2019, the Remote sensing of Electrification,
Lightning, And Mesoscale/microscale Processes with Adaptive Ground
Observations (RELAMPAGO) field campaign took place in central
Argentina, with an Intensive Observing Period (IOP) during Nov-Dec
2018 to study extreme thunderstorms in the region (Nesbitt et al.,
2021). Given the regional advances in DA, the positive performance of a
coarser-resolution LETKF-WRF system over Argentina (Dillon et al.,
2016), and the opportunity of running numerical experiments in real-
time to support IOP operations during RELAMPAGO, a rapid-refresh
mesoscale data assimilation and forecast system was designed. The
RELAMPAGO Rapid Refresh (RRR) is a 10-km resolution, multi-physics
ensemble-based, LETKF-WRF DA system developed as a joint effort
among many institutions. This ensemble rapid-update-cycle system as-
similates conventional, satellite, and radar observations, and is the first
mesoscale DA system ever run in real-time in Argentina, providing the
first set of analyses available to be used in research activities. For
example, Pal et al. (2021) recently documented encouraging results
using RRR simulations for the WRF-Hydro data forcing for the study of a
hydrometeorological flash flood event.

This article describes in detail the RRR configuration and provides
the first evaluation of its performance. Moreover, an analysis of the skill
associated with the multi-physics approach used to run the different
ensemble members is provided. The paper is organized as follows: the
data assimilation and forecast system is described in Section 2, while the
verification of different aspects of the RRR, including its analyses and
forecasts impact, are shown in Section 3. Some insights regarding the
different model configurations are given in Section 4. Finally, conclu-
sions are summarized in Section 5.

2. Methodology
2.1. Data assimilation and forecast system

The RELAMPAGO Rapid Refresh ensemble-based data assimilation
and forecast system was implemented in real-time during the RELAM-
PAGO field campaign as an experimental system. It consists of an hourly
assimilation cycle and a 36-h ensemble forecast initialized every 3 h. The
system was started at 01 UTC 5 November 2018 and continuously ran
until 12 UTC 19 December 2018 (44 days) which coincides approxi-
mately with RELAMPAGO IOPs. The National Center for Atmospheric
Research (NCAR) supercomputer Cheyenne (Computational and Infor-
mation Systems Laboratory, 2019) was used to run the system. Graph-
ical products were available in real-time at RELAMPAGO’s operation
center throughout the campaign at NCAR Earth Observing Laboratory
Field Catalog.”

The RRR is based on the Weather Research and Forecasting Model
(WRF; Skamarock et al., 2008), with its Advanced Research WRF
dynamical solver (ARW) version 3.9.1.1, run with a 10-km horizontal
grid spacing over a domain of 150 x 100 grid points using a Lambert
projection (Fig. 1). The model top is set at 50 hPa, and the number of
vertical sigma-p levels is 50.

The RRR uses a 60-member multi-physics and perturbed boundary
conditions approach in which land-surface processes, microphysics, and
radiation schemes are the same for all ensemble members. The multi-

1 See products in https://previsaonumerica.cptec.inpe.br/wrf
2 http://catalog.eol.ucar.edu/relampago/model see RRAA for analyses and
RRAF for forecasts
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Table 1

Generation of the 60-member RRR multi-physics ensemble as a combination of
Cumulus and PBL parameterizations, and GEFS members for boundary
conditions.

PBL Cumulus YSU MYJ MYNN2

KF 1,6,8,10,15,17,19 2,4,9,11,13,18,20 3,5,7,12,14,16
BMJ 2,7,9,11, 16, 18, 20 1,3,5,10,12, 14,19 4,6,8,13,15,17
GF 1,3,8,10,12,17,19 2,4,6,11,13,15,20 5,7,9,14,16,18
Table 2

GFS/GEFS initializations used for the boundary conditions needed to
compute each RRR analyses.

GFS/GEFS initializations RRR analyses

00 UTC 03, 04, 05, 06, 07, 08 UTC
06 UTC 09, 10, 11, 12, 13, 14 UTC
12 UTC 15, 16, 17, 18, 19, 20 UTC
18 UTC 21, 22, 23, 00, 01, 02 UTC

physics approach is introduced in order to represent the uncertainty
associated with the parameterization of unresolved physical processes.
This approach has been shown to produce more reliable ensembles in
the context of regional data assimilation (Ha et al., 2015; Houtekamer
and Zhang, 2016; Dillon et al., 2016). The Noah-MP land surface model
was used (Niu et al., 2011); microphysics processes were parameterized
with the WRF single-moment 6-class scheme (WSM6; Hong et al.,
2006a), and radiation with the RRTMG shortwave and longwave scheme
(Iacono et al., 2008). We used three different schemes to represent moist
convection and planetary boundary layer (PBL) processes. For the
former, the Kain-Fritsch scheme (KF; Kain, 2004), the
Betts-Miller-Janjic scheme (BMJ; Janji¢, 1994), and the Grell-Freitas
scheme (GF; Grell and Freitas, 2013) were used. For the latter, the
Yonsei University scheme (YSU; Hong et al., 2006b); the Mel-
lor-Yamada—Janjic scheme (MYJ; Janji¢, 1994), and the Mel-
lor-Yamada Nakanishi Niino scheme (MYNNZ2; Nakanishi and Niino,
2009) were used.

It is worth noting that the multi-parametrization approach is used in
the hourly forecasts needed for the assimilation and in the 36-h
forecasts.

Both lateral and lower boundary conditions were taken from the 20
members of the National Centers for Environmental Prediction (NCEP)
Global Ensemble Forecasting System v.11 (GEFS; Zhou et al., 2017)
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analyses and forecasts, available at 0.5° resolution, which were re-
centered around the GFS higher resolution deterministic run, available
at 0.25°, using linear interpolation. With the aim of enlarging the
ensemble spread, these 20 boundary conditions were mixed with the
nine different model configurations resulting from the combination of
cumulus and PBL schemes as shown in Table 1. For example, the
members with the KF-YSU parameterizations were combined with the
GEFS members number 1, 6, 8, 10, 15, 17 and 19.

In order to attain a semi-operational schedule, the computation of
the analysis was started 2 h after the corresponding analysis time.
Boundary conditions for the RRR were always taken from the latest
available GFS and GEFS runs, which are typically 4 and 5 h after the
analysis time, respectively. Taking this into account, the initialization
time corresponding to the boundary conditions used for each RRR cycle
are summarized in Table 2.

The RRR analysis step is based on the four-dimensional Local
Ensemble Transform Kalman Filter (4D-LETKF; Hunt et al., 2007;
Miyoshi and Aranami, 2006; Miyoshi and Kunii, 2012a). In this
approach an assimilation window is defined and forecast and observa-
tions distributed within this window are compared at the right time.
Sample covariances derived from the ensemble are used to describe
temporal and spatial covariances among different variables (i.e. an
adjoint model is not required for the computation of the analysis). In this
work we use a data assimilation window of 1 h divided into 10-min time
slots used to compare the observations with the model output at the
closest time. For each slot, all observations are assumed to be taken at
the center of the interval. The assimilation window starts at the time of
the previous analysis and up to the time of the current analysis (Fig. 2).
Given the short length of the assimilation window, no temporal locali-
zation is used. RRR soil states were cyclically updated with the infor-
mation from the GEFS ensemble members, re-centered around the GFS,
through the da update bc utility from the WRF Data Assimilation pack-
age (WRFDA; Barker et al., 2012).

To reduce the impact of sampling errors and errors associated to non-
linearities and also to account for model errors (not accounted for by the
use of the multi-physics approach), a relaxation to prior spread inflation
(RTPS; Whitaker and Hamill, 2012) is used with an alpha of 0.8, as in
Necker et al. (2020). Sampling errors also lead to noise in the estimation
of error covariances which is how the Kalman filter propagates the in-
formation among different variables. To mitigate this effect, the
covariance matrix was localized in space using an R-localization method
(Greybush et al., 2011). A single horizontal localization radius of
approximately 180 km was implemented for all the observations, while

Obs 23:00 | | Obs23:10 | | Obs23:20 | | Obs 23:30 | | Obs 23:40 | | Obs 23:50 | | Obs 00:00
e From * From * From * From * From * From * From
22:55 to 23:05 to 23:15 to 23:25to 23:35to 23:45 to 23:55 to
23:05 23:15 23:25 23:35 23:45 23:55 00:05
: 4D LETKF 4D LETKF 4D LETKF
ANA 00 UTC ANA 01 UTC ANA 02 UTC ANA 03 UTC
|
* BC: GFS+ * BC: GFS+ * BC: GFS+ r * BC: GFS+ )
pert GEFS pert GEFS pert GEFS pert GEFS
e OBS 1h e OBS 1h * OBS 1h ¢ OBS 1h
WRF 36 hrs WREF 36 hrs
FCST FCST

Fig. 2. Flow diagram of the RRR showing the hourly analysis generation (ANA) using 4D-LETKF and the 36 h forecasts generation every 3 h (FCST). “BC” stands for
Boundary Conditions and OBS stands for observations. An example of the distribution of the observations within the assimilation window is shown for the 00 UTC

analysis. See the text for more details.



M.E. Dillon et al.

Table 3
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Characteristics of the assimilated observations: The acronym for each observation type, its data source, and the associated assimilated variables error magnitude
[temperature (T), zonal (U) and meridional (V) wind components, surface pressure (PSFC), relative humidity (RH), specific humidity (Q), reflectivity (Z)]. *Please see

the text for a detailed explanation of the errors.

Observation type Data source

Assimilated variables error

T U, v PSFC RH Q Z

®) (ms ™) (Pa) (%) (gkg ™) (dBZ)
CSWS ANMS Conventional Surface Weather Stations 2 1.4 160 10 - -
ASWS Automatic Surface Weather Stations 2 1.4 160 10 - -
RS* Radiosondes 1 variable - 10 - -
AIRPL Airplanes - 3.6 - - - -
AIRSR* NASA Atmospheric Infrared Sounder Retrievals variable - - - variable -
RADAR C-band radar - - - - - 5
GDMW GOES Derived Motion Winds - 7.5 - - -
SHBU Ships, Buoys - - - - -

Assimilated Observations for 2018-11-10 18 UTC
RADAR=53469, GDMW=420, AIRSR=5220, ASWS=9848
AIRPL=152, CSWS=624, RS=0, SHBU=0

26°S
28°S
ol RADAR
30°S . GDMW
x  AIRSR
o * ASWS
32°5 < AIRPL
o CSWS
o e RS
34°S e SHBU
36°S
38°5 |
40°S
69°W 66°W 63°W 60°W 57°W 54°W

Fig. 3. Spatial distribution of different observations assimilated in the RRR on
10 November 2018 at 18 UTC. See Table 3 for a description of the different
observation types. The total amount of assimilated observations for each data
type is also indicated at the top.

a dual vertical localization was used for radar data (~ 7.3 km) and
conventional observations (~ 12.5 km). A gross error check was also
implemented to reject observations whose distance from the first guess
was more than 10 times larger than the observation error.

2.2. Assimilated observations

Several observation types are assimilated into the RRR system. Their
characteristics are summarized in Table 3, an example of the spatial
distribution of the observations for 18 UTC 10 November is provided in
Fig. 3, and Fig. 4 provides a summary of the observation count for each
assimilation cycle. A brief description of the data sets and the pre-
processing procedures are provided below.

e Conventional Surface Weather Stations (CSWS): These observations
are provided by the ANMS and correspond to the Argentina, Uruguay
and Paraguay surface operational networks. While their spatial dis-
tribution is heterogeneous, most of the 81 CSWS report hourly.
Nevertheless, an increment of assimilated observations is detected at
00, 06, 12 and 18 UTC, considering the whole period.

Automatic Surface Weather Stations (ASWS): These observations
consists of 757 stations integrating 17 public and private surface
networks. Observation providers and their website is listed in Ap-
pendix A. This data set is available through the RELAMPAGO Data
Archive. The amount of assimilated observations from ASWS is
notably larger than those assimilated from CSWS (27.93% versus
1.57% with respect to the total data assimilated).

Radiosondes (RS): This data is also provided by the ANMS. There are
radiosondes only at 00 UTC and 12 UTC over the domain in up to
seven different locations.

1.0e+06
ASWS
< AIRSR ¢ 0o L
o
*§ RADAR - 7.5e+05
$ sHBU{ - . . :
Q
ECSWS—oooooooooooooooooooooooo 5.0e+05
(]
O GDMW-{ © © ©¢ ¢ ¢ ¢ ¢ ¢ ¢ o ©¢ ¢ ¢ o ©¢ ¢ ¢ © © © © o o o
[oX
|2\A|RP|_— e o o o o o e e 0 0o o o 0o 0 o o 0 0 0o o o o
2.5e+05
RS e °
0 3 6 9 12 15 18 21 24 § 1.0e405
5.0e+04
Hour of the day (UTC) 1.0e+04

Fig. 4. The total number of each observation type assimilated for each hour of the day [UTC] for the validation period (from 00 UTC 9 November to 12 UTC 19

December 2018).
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(b) SPREAD & RMSE V [ms-1]
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Fig. 5. Vertical profiles of the spatially averaged SPREAD (dashed lines) and RMSE with respect to ERA5 (solid lines) for (a) zonal wind component [ms~'], (b)
meridional wind component [ms’l], (c) temperature [K], and (d) specific humidity [gKg’l] ; at 00, 06, 12, and 18 UTC. The shaded area illustrates the range of the

profiles across the different hours of the day, for both SPREAD and RMSE.

performed in the original radar geometry. A superobbing is per-
formed to convert the data from its original resolution (which can be
as high as 500 m) to an horizontal resolution of 10 km, a vertical
resolution of 1 km, and a time resolution of 10 min, consistent with
the model resolution and output frequency. Clear air observations of
reflectivity (i.e., reflectivity observations lower than 0 dBZ) were
assimilated to suppress spurious convection within the computa-
tional domain (Tong and Xue, 2005; Aksoy et al., 2009). Note the
large quantity of radar data in comparison with other sources
(67.53%), due to the inherent resolution of this kind of data. Radial
velocity observations were not assimilated in this experiment since
quality control to properly handle this particular data type was not
yet available at the ANMS.

e GOES Derived Motion Winds (GDMW): Motion vectors estimated
from the water vapor, visible, and infrared channels from the Geo-
stationary satellite GOES-16 (Derived Motion Winds) are assimilated
in the RRR. Given that sometimes the horizontal resolution of these
motion vectors can be very high, a superobbing technique is applied
with an horizontal resolution of 30 km and a vertical resolution of 25
hPa. Only the data that passed the NCEP quality control were used in
the superobbing. To access the data in real time the NOAA-NESDIS
PDA (Product Distribution and Access) system was used through
the ANMS. The GDMW were assimilated with an hourly frequency.

e Ships and Buoys (SHBU): This data is provided by the ANMS.
Although the sea surface area in our domain is small, we were able to
assimilate some SHBU data at 00, 06, 12, and 18 UTC.

o Airplanes (AIRPL): Provided by the ANMS. These observations do not
cover the whole aircraft routes because we only considered the
Aircraft Meteorological Data Relay (AMDAR) messages. Only wind
data was assimilated.

e AIRS Retrievals (AIRSR): The Atmospheric Infrared Sounder (AIRS)
is on board the National Aeronautics and Space Administration
(NASA) Aqua polar-orbiting satellite. Near real time vertical profiles
of estimated temperature and specific moisture retrievals (Susskind
etal., 2014) are available through https: //discnrtl.gesdisc.
eosdis.nasa.
gov/data/Agua AIRS _NRT/AIRS2RET NRT.006. RRR analyses
incorporates these profiles at its original horizontal and vertical
resolution of approximately 45 km and 1 km, respectively. Only data
below 200 hPa and with the best quality control flag are assimilated,
following Tobin et al. (2006). Although these profiles are available

only at specific hours (i.e., early morning and afternoon) and not
everyday due to the satellite polar orbit, they represent a valuable
data set that complements the sparse upper air network over the
region and which have been successfully assimilated in regional
systems over the world (e.g. Miyoshi and Kunii, 2012b; Dillon et al.,
2019).

e C-band Radar Reflectivity (RADAR): This data is provided by the
recently developed Argentine C-band Doppler dual-polarization
weather radar network (de Elia et al., 2017). The RRR assimilates
data from eight radars independently, as a mosaic product was not
available (see Fig. 1 for their location and spatial coverage). Quality
control is performed to the data to remove echoes associated with
clutter, speckle, anomalous propagation, interference and complex
terrain (Arruti et al., 2021). Areas strongly affected by attenuation
are also identified and removed from the data. The quality control is

Observation errors for CSWS, ASWS, RS, AIRPL and SHBU were set
following the values recommended in the WRFDA package (Table 3).
Particularly, for RS the errors are a function of height. Observational
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Fig. 6. Time height cross section of: (a) RMS of the ensemble mean analysis update, (b) RMSE of the ensemble mean analysis with respect to ERA5 and (c) ensemble
mean analysis, of the specific humidity [gKg™']. The corresponding RELAMPAGO IOP missions starting time are also indicated.

errors for GDMW and AIRSR are specified by the data provider
(TAirStdErr and H2OMMRStdErr for temperature and specific moisture,
respectively), while an error of 5 dBZ is assumed for superobbed radar
reflectivity data based on previous works (e.g. Tong and Xue, 2005;
Lange and Craig, 2014; Jones et al., 2015).

All the observations were collected and pre-processed in real time
(considering a 90 min cutoff) at the ANMS and then transferred to
Cheyenne supercomputer to be assimilated. It is worth mentioning that
the integration of ASWS was feasible through RELAMPAGO efforts,
enabling for the first time this kind of data for assimilation and forecast
verification over the region. Regarding the observations collected during
the field campaign, they were not considered for the RRR as it would be
difficult to receive and process them in real time. Nevertheless, a project
to evaluate the impact of the assimilation of the data collected during
the campaign is underway.

Comparing these data sets with the ones used for the assimilation in
the global model, RADAR and ASWS stand out in the regional system
while the other observation types are included in both RRR and GFS.
Note that the global model also incorporates the radiances of multiple
sensors, which is a great advantage.

2.3. Validation

In order to evaluate the performance of the ensemble based data
assimilation and forecast system presented in this article, the following
data sets were considered as reference atmospheric states.

Hourly ERAS5 reanalyses of 0.25° resolution (Hersbach and Dee,
2016) of zonal (U) and meridional (V) wind components, tempera-
ture (T) and specific humidity (Q). For comparison with this data set,
the RRR analyses and forecasts were linearly interpolated to the
ERAS regular grid.

Data collected from surface stations (CSWS and ASWS) of 2 m tem-
perature (T2m) and 10 m winds (U10m and V10m). For comparison,
RRR forecasts were linearly interpolated to the observation
locations.

Satellite precipitation estimation IMERG Final Run at 0.01° resolu-
tion (Huffman et al., 2018). For comparison, the RRR forecasts were
linearly interpolated to the IMERGFR regular grid.

Multi-Network Composite Highest Resolution Radiosonde Data
(UCAR/NCAR, 2020) at Villa Yacanto (Fig. 1) providing vertical
profiles of U, V, T and dewpoint (Td). For comparison, the forecasts
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Fig. 7. As in Fig. 6 but for the meridional wind component [ms™].

were interpolated to the location of the observation using a closest
neighbor approach.

Villa Yacanto, located eastward of the highest peak of Sierras de
Cordoba (SDC) with an altitude of 1161 m above mean sea level, is one
of the nine fixed sounding sites considered for the campaign (Schu-
macher et al., 2021). Radiosondes launched at 00, 12, 15, 18 and 21 UTC
are used for this verification as a preliminary exploration. A validation
of RRR using both mobile and fixed soundings along with other data sets
collected during RELAMPAGO will be assessed in a future work.

The following measures were used for the validation of the analysis
and forecasts. The Root Mean Square Error (RMSE) and the BIAS were
calculated considering either the spatial or the time dimensions. In egs. 1
and 2, O and X stand for the reference and simulated atmospheric states,
respectively, while the subscript i € {1,...,N} represents different
observation locations and/or different times.

(€8]

1 N
BIAS = > (xi—0))

i=1

@

Also, the ensemble spread (SPREAD) was computed following the
considerations of Fortin et al. (2014) to compare this quantity with the
RMSE of the ensemble mean, which is desired to be equal. In eq. 3, X

represents the ensemble mean, and Xj stands for the k € {1,...,M}
ensemble member.

1

N

SPREAD = 3

The Fractions Skill Score (FSS) was used for the validation of pre-
cipitation forecasts following Roberts (2008). The original formulation
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was slightly modified to take into account the information provided by
all the ensemble members as in Maldonado et al. (2021). The modified
version of the score is defined as:

2
M
i j=1 ([PX],' - Pu.f)

B (1P) S (Pa)

MZj=1
where [P,] is the ensemble-based probability of the accumulated pre-
cipitation being over a certain threshold, spatially averaged over a
squared box of size LxL grid points; and P, is the spatially observed
frequency of precipitation over the same threshold computed over the
same box. The subscript j € {1,...,M} identifies the individual boxes,
with M the total number of boxes considered. This score is typically

FSS=1-— ()]

computed for a range of box sizes and precipitation thresholds to
describe forecast skill as a function of the horizontal scale and precipi-
tation intensity. In this work we apply this score for the verification of 6-
h accumulated precipitation forecasts.

Analysis and forecast verification was performed over the domain
66-57°W and 26-38°S (cf. black box in Fig. 1) to avoid the effect of the
boundaries. A 40-day verification period from 00 UTC 9 November to 12
UTC 19 December 2018 was considered, allowing the system approxi-
mately a 4-day spin up period (~95 DA cycles). The total number of DA
cycles in the study period is 964, as 8 of them were lost due to issues with
data storage and transfer.

For the 36 h ensemble forecasts validation, in addition to those
initialized from the LETKF-WRF cycles, a 60-member WRF ensemble
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without LETKF application (i.e., a cold-start ensemble) was also run
during the same period, considering the configuration described in
Table 1. Only the 36 h forecasts initialized at 06 UTC were computed.
This experiment was called NoRegDA because no regional data was
assimilated, but the ensemble still benefits from the global data assim-
ilation system. The 06 UTC NoRegDA forecasts are compared with the
RRR forecasts initialized at 12 UTC since these two forecasts use the
same lateral and lower boundary conditions (cf. Table 2).

3. Overview of the RRR performance
3.1. Analysis and first guess

The vertical profiles of the spatially averaged SPREAD and RMSE of
the analysis mean with respect to ERA5 are shown for 00, 06, 12, and 18
UTC in Fig. 5. At low levels for both wind components, the time with the
smallest RMSE is 18 UTC (3 p.m. local time) while the one with the
biggest errors is 06 UTC (3 a.m. local time). The meridional wind RMSE
profiles present a local maximum at low levels during the night and early
morning (from 00 to 12 UTC). This pattern may be associated with a
misrepresentation of the Low Level Jet (LLJ), which shows its maximum
intensity at these times and is frequently present over the northern half
of the RRR domain during the summer season (Vera et al., 2006).
Regarding temperature and specific humidity, their RMSE show a
diurnal cycle in the lowest level evaluated (975 hPa): the smaller errors
correspond to 06 and 12 UTC for temperature, while 12 UTC is the time
of less error for humidity. In addition, a diurnal cycle is encountered for
T, U and V at upper levels, which may be related to the distribution of
the distinct type of data assimilated along the day (Fig. 4). The profiles of

the remaining hours of the day offer similar characteristics for the four
variables evaluated, as it can be seen by the shaded areas in Fig. 5.

One evident feature is the under-dispersion of the ensemble as the
SPREAD is lower than the RMSE for all the variables, which was also
shown by Dillon et al. (2019), for a 40 km LETKF-WRF over Southern
South America. Nevertheless, it should be noted that ERA5 errors are
embedded in RMSE calculation, contributing to increase the observed
difference between the ensemble spread and the model error. Likewise,
it is not possible to know accurately the impact of the reference data
errors in the SPREAD-RMSE comparison.

It is worth mentioning that the RMSE values found for the RRR are
similar to those reported for other regional DA systems. For example
Lien et al. (2017) showed temperature RMSE values generally lower
than 3 K over Japan with a regional 18-km LETKF system implemented
with the SCALE model. They also showed annual RMSE mean values of
3.59 and 3.99 ms~! for meridional and zonal wind components. The
SPREAD-RMSE ratio for the zonal wind component at 300 hPa is also in
agreement with our results (Lien et al., 2017).

To study the impact of the assimilated observations as the DA cycles
progressed, the hourly evolution of the vertical profiles of different
quantities are presented in Figs. 6 and 7: (a) the Root Mean Square
(RMS) update of the ensemble mean analysis with respect to the
ensemble mean first guess in model space (using the eq. 1), (b) the RMSE
of the ensemble mean analysis with respect to ERA5, and (c) the
ensemble mean analysis, for the specific humidity and the meridional
wind component. The starting times of the RELAMPAGO IOPs are also
indicated to let the reader easily have a first impression on the RRR
performance for each event (please refer to the NCAR Earth Observing
Laboratory Field Catalog for a detailed description of each IOP). One
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Fig. 11. Temporally-averaged ensemble mean forecast RMSE (black lines) and BIAS (grey lines) with respect to Villa Yacanto radiosondes valid at 12 UTC for: (a)
zonal wind component [ms’l]; (b) meridional wind component [ms’l]; (c) temperature [K]; (d) dewpoint [K]. The light blue shaded indicates the range of RMSE and
BIAS across the RRR ensemble members (initialized at 12 UTC, 0 h forecast lead time). The NoRegDA ensemble RMSE and BIAS (dashed contours) as well as their
corresponding range across ensemble members (pink shaded) are included (initialized at 06 UTC, 6 h forecast lead time). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

remarkable aspect is that the filter ran in a stable way during the whole
study period. The magnitude of the observation impact is strongly
modulated by the domain averaged precipitation (Fig. 8) with the
stronger corrections being made during the periods with larger precip-
itation rates. Also the errors are larger during rainy periods. This is also
true for the temperature and the zonal wind component (not shown).
Moreover, the RMS update generally shows a diurnal cycle with
maximum values close to surface during the night for the wind, and
during the afternoon and the night for the specific humidity and
temperature.

In general, it was found that for all the variables the dates for the
maximum RMSE (with respect to ERA5) are in concordance with the
ones for the maximum RMS update. Observing the ensemble means, it
can be shown that those dates also correspond with the presence of high
amounts of humidity at low levels, with an attendant northward wind
component. During the summer season, humid periods with prevailing
northerly flow are characterized by higher convective instability. When

10

this instability is released, error growing rates are significantly larger
and therefore, faster departures of the forecast from the observations are
expected. Also, previous studies (e.g. Ruiz et al. (2010)) documented
systematic errors in the representation of intense low-level northerly
flow associated with a southward extension of the South American LLJ.
These systematic errors, that consists on a weaker simulated low level
flow, can also contribute to the day-to-day changes in the magnitude of
the analysis updates.

In Fig. 8 we present the temporal evolution of the hourly total pre-
cipitation per grid points computed in the domain 66-57°W and 29-35°S
(note that this is a bit smaller in latitude than the black box indicated in
Fig. 1), for the RRR first guess ensemble members and the ensemble
mean (i.e. one hour forecasts), and for IMERGFR. Generally, the RRR
represents all the events estimated by IMERGFR, although the precipi-
tation amount is systematically lower.

Two particular periods (10-13 November and 11-19 December,
containing IOPs 04-05 and 15-19, respectively) are displayed in more
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detail using Hovmoller diagrams (Fig. 8a and b). Overall, the evolution
of the estimated precipitation is well captured by the RRR, and likewise
the location of the maxima.

To ilustrate the impact of radar observations, Fig. 9 shows the dis-
tribution of the maximum reflectivity in the mean first guess, the mean
analysis and the observations for 14 December 00 UTC. There exists a
clear improvement of the reflectivity around 34°S and 64°W between the
first guess and the analysis. The systems over northern San Luis province
and over La Plata river were not represented by the first guess, but do
appear to some extent in the analysis. However, the DA system was not
able to simulate the precipitating system near 34°S and 60°W. Probably
the lack of availability of radar data in the trajectory of the system was
an important cause of the misrepresentation of convection (not shown).

3.2. 36 h Ensemble forecasts

Surface variables were verified against ASWS and CSWS data. The
scores of the U10m, V10m and T2m 36 h forecasts from four different
initializations (00, 06, 12 and 18 UTC) are presented in Fig. 10.
Generally, a positive BIAS is encountered for the temperature. Please
note that a positive BIAS also dominates the analyses below 850 hPa
with respect to ERA5 during the whole period (not shown), suggesting
that the WRF model with the above mentioned configurations produces
warmer low level temperatures.

In fact, a warm BIAS in T2m forecasts has been documented over
central and eastern Argentina during one summer season, using a 40-km
WRF with different parameterizations by Ruiz et al. (2010). In addition,
the ANMS operational 4-km WRF generally overestimated T2m during
2020 in the region (Matsudo et al., 2021).
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Regarding the winds, the BIAS is bigger in module for U10m than for
V10m, which values are generally between 0 and — 0.5 ms™!. A diurnal
cycle of RMSE was identified for T2m and both wind components, with
better scores during the night hours. These RMSE values are similar to
those previously shown with different WRF configurations at surface
(Ruiz et al., 2010) and at low levels (Dillon et al., 2016) over the region.
Note that Benjamin et al. (2016) also found the smallest errors for 12 h
surface variables forecasts during the night, using their RAP system over
United States (which uses a 13-km WRF).

In relation to the NoRegDA statistics, for the temperature both the
RMSE and BIAS generally perform better than RRR for the first 24 h. The
BIAS in NoRegDA is close to zero at the beginning and increases along
the forecast lead times, while in the case of RRR the BIAS is far from zero
from the beginning. This behavior suggests that systematic errors in the
WRF model accumulate during the data assimilation cycles, resulting in
a biased initial condition.

For surface winds, the RRR performs better in terms of RMSE for the
first 2-3 forecast hours but shows an afterwards rapidly increase. The
reason for this rapid information loss provided by the observations for
this particular variable is not clear and requires further investigation.
For example, techniques incorporating a digital-filter initialization (as
applied to RAP (Benjamin et al., 2016)) should be studied to reduce
initial noise in the first forecast hour and therefore produce a more
effective assimilation of the observations.

In Fig. 11 the vertical profiles of BIAS and RMSE with respect to Villa
Yacanto radiosondes valid at 12 UTC are shown, using the 0 and 6 h
forecast lead times for RRR and NoRegDA, respectively. For the wind
components, the less RMSE values are encountered near surface while
maximums are found around 650 and 750 hPa for U and V, respectively,
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Fig. 13. Difference of RMSE with respect to ERAS for RRR forecasts initialized at different cycles (00 minus 21 UTC; 06 minus 03 UTC; 12 minus 09 UTC; 18 minus
15 UTC) but driven by the same GEFS boundary conditions; for (a) zonal wind component [ms’l]; (b) meridional wind component [ms’l]; (c) temperature [K]; (d)
specific humidity [gKg™']. The figure condensates the information of all members and forecasts lead times (see the text for more details in the calculation).

for RRR. Temperature errors above 2 K are registered below 800 hPa,
associated to a low-level warm BIAS. Dewpoint errors up to 12 K evi-
dence the model deficiencies in representing properly the humidity,
with a dry (wet) BIAS below (above) 550 hPa. Note that a dry BIAS was
also encountered for convection-permitting deterministic WRF for this
location during the same period (Casaretto et al., 2021). In addition, mid
level dry model BIAS was documented by Piersante et al. (2021) over the
region using radiosonde data to validate a 20-km WRF simulation. In
relation to the NoRegDA statistics, although its values are very close to
RRR, its ensemble mean generally performs better for all these variables.
Moreover, the NoRegDA ensemble spread is generally larger than the
RRR one, in particular below 700 hPa. The great amount of ASWS
assimilated observations (as mentioned in Section 2.2) may have
impacted negatively in low levels RRR spread.

Regarding the precipitation, in Fig. 12 we present the FSS against
IMERGFR precipitation estimates as a function of the forecast lead time.
Overall, the 00 and 12 UTC initializations show better scores consid-
ering both the 1 and 25 mm 6 h accumulated thresholds, and the
different scales analyzed. For the bigger threshold, the best FSS values
are encountered at 12 UTC valid time (e.g. 18 and 30 h forecast lead
times for 18 and 06 UTC initializations, respectively), while the worst
values are detected at 18 UTC valid time (e.g. 6 and 18 h forecast lead
times for 12 and 00 UTC initializations, respectively). This behavior
suggests that the RRR is more skillful in forecasting morning than af-
ternoon heavy precipitation. In addition, NoRegDA performs better,
particularly for the 25 mm threshold and during the first 12 forecast
hours, possibly because initial conditions provided by RRR are not as
good as the ones provided by the global data assimilation system.

In order to evaluate the overall impact of the assimilated observa-
tions, we compute the spatially averaged RMSE for each forecast lead

time of different initializations with respect to ERAS5, for each member
for distinct levels. Then we compare the errors between the initializa-
tions driven by the same GEFS boundary conditions (for example 09 and
12 UTC) considering the common valid times (for example 3-36 h 09
UTC forecasts versus 0-33 h 12 UTC forecasts). Finally, an average
among the forecasts lead times and the ensemble members is taken to
obtain one vertical profile to represent the RMSE difference for RRR
forecasts initialized at different cycles (Fig. 13). Overall, negative values
are encountered, suggesting that the observations assimilated in be-
tween are responsible for error reduction, as the same boundary con-
ditions are used. However, there are some positive values, for example
for low level temperature for three time pairs of day, except for the
difference between the forecasts initialized at 18 and 15 UTC.

We perform a similar evaluation using Villa Yacanto radiosondes
valid at 12 UTC (Fig. 14). In general, larger RMSE reductions are
observed at middle and upper levels for all the variables, while at lower
levels more positive values are found. At low levels the greatest im-
provements are registered at 00 UTC for T and at 18 UTC for U and V.

Further investigation is required to identify the observation types
responsible for the detrimental impact upon the quality of the analyses
and forecasts. Analyzing the diurnal cycle errors not only in this location
but also in the other sounding sites, would help to understand both the
DA strengths and weaknesses.

4. Insight on the multi-physics ensemble

In this section we evaluate the performance of the different PBL and
cumulus parameterizations used in the ensemble (Table 1). To assess the
impact of each PBL (cumulus) scheme, we analyze the three sub-
ensembles that result from the combination with the cumulus (PBL)

12
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Fig. 14. Difference of RMSE with respect to Villa Yacanto radiosondes for RRR forecasts initialized at different cycles (00 minus 21 UTC; 06 minus 03 UTC; 12 minus
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temperature [K]; (d) dewpoint [K]. The figure condensates the information of all members and forecasts lead times (see the text for more details in the calculation).

schemes. For these sub-ensembles we compute the BIAS and RMSE for
T2m and V10m, and the FSS for the 6 h accumulated precipitation.

For T2m and V10m a different behavior is detected for the PBL
schemes RMSE when fixing a cumulus parameterization for forecasts
initialized at 12 UTC (Figs. 15a, b and c). The largest RMSE corresponds
to MY/J for the wind for all the forecast lead times (this is also true for the
zonal component, not shown), but this PBL parameterization exhibits
the largest errors for the temperature only during the day time. For the
BIAS, MYJ shows the most positive values during warm hours, while
during the night it is the scheme with less BIAS (in module). In addition,
MYNN?2 exhibits the BIAS closest to zero during the day time. The same
behavior is presented for the forecasts initialized at 00, 06 and 18 UTC
(not shown).

Cumulus parameterizations have an impact upon T2m which is as
large as the one produced by different PBL schemes (Figs. 15d, e and f).
This impact can be explained through the coupling between the cumulus
scheme and the parameterization of radiative fluxes and also due to the
direct low-level temperature tendencies associated with cumulus
schemes. The impact on low-level winds is much smaller, as their ten-
dencies are not directly modified by cumulus schemes and in this case
the impact is indirect (e.g. through changes in the larger scale circula-
tion or due to the development of mesoscale circulations like those
associated with cold pools). Regarding the BIAS, more distinctions
appear among the cumulus parameterizations: for the temperature
generally GF shows the values closest to zero and for the wind both GF
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and KF perform better most of the time. Similar results were found for
the forecasts initialized at 00, 06 and 18 UTC (not shown).

The FSS of precipitation, for the forecasts initialized at 00 and 12
UTC (Fig. 16) indicates that precipitation forecasts are, as expected,
more sensitive to the choice of the cumulus parametrization than to the
choice of the PBL scheme (as shown for example by Piersante et al.
(2021)). Particularly, BMJ shows the worst performance for both
thresholds. In the case of the PBL parameterizations, some distinctions
appear at the 25 mm threshold, where MYJ is slightly better than YSU
and MYNN2.

In addition, Hovmoller diagrams of hourly accumulated precipita-
tion from forecasts initialized on 12 November at 12 UTC using different
configurations are compared against IMERGFR in Fig. 17. Forecasted
precipitation on each panel of Fig. 17 consists of the mean over the
ensemble members that share that particular combination of cumulus
and PBL schemes. The behavior of the precipitation for this specific case
confirms the results obtained with the FSS: the greater differences occur
among the cumulus schemes, with BMJ showing the worst performance
as it significantly underestimates precipitation intensity. KF consistently
captures both the initiation of this event and the intensification of pre-
cipitation after 06 UTC November 13th. Overall the eastward propaga-
tion of the system is also well captured. However, there is an
overestimation of precipitation intensity during the first hours which is
larger when KF is combined with the MYJ scheme. GF also performs well
in this case, particularly capturing a second pulse of convective
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Fig. 15. Spatial and temporal averaged RMSE and BIAS
with respect to CSWS and ASWS observations as a function
of the forecast lead time, for RRR forecasts initialized at 12

UTC for (A) T2m [K] and (B) V10m [ms ']. Ensemble
members with cumulus parameterizations of: (a) KF (b)
BMJ and (c) GF; and with PBL parameterizations of: (d)
YSU (e) MYJ and (f) MYNN2. For each case of cumulus
(PBL) parameterizations the three possible combinations
with PBL (cumulus) are shown. All the panels include the
scores of the ensemble mean (grey thin contour).
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initiation around 00 UTC November 13th which is not well represented
by KF, although the maximum precipitation is split into two local
maxima a few hours prior and after the observed one. Particularly, the
prior maximum is significantly reduced by the GF-MYNN2
configuration.

An important issue is the clustering effect associated with the use of
multi-physics ensembles. Fig. 17 shows different precipitation forecast
clusters depending on the cumulus scheme, while the impact of PBL
seems to play a secondary role for this variable. Also a look at the
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individual ensemble members reveals that differences among cumulus
parameterizations are much larger than differences due to different
initial conditions (not shown). This result confirms what has been found
by Johnson et al. (2011), that in a multi-model multi-physics ensemble
the spread at short lead times is dominated by the different physics
schemes, at least for variables whose dynamics are directly driven by the
parameterization of unresolved physical processes.

Overall, the performance of different schemes depend on the verified
variable. For example, MYJ shows the largest RMSE for V10m for all
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Fig. 16. Asin Fig. 12, but for a box size of 50 km, and thresholds of 1 mm (solid line) and 25 mm (dashed line). Ensemble members with cumulus parameterizations
of: (a) KF (b) BMJ and (c) GF; and with PBL parameterizations of: (d) YSU (e) MYJ and (f) MYNN2. For each case of cumulus (PBL) parameterizations the three

possible combinations with PBL (cumulus) are shown.

forecast times and for T2m during daytime. At the same time, this
parameterization produces the best results in terms of precipitation as
revealed by the FSS. This confirms that no single model configuration
overhangs and that all the evaluated combinations of schemes lead to
similar forecast skill, with the exception of configurations using BMJ
which showed lower forecast skill for almost all the variables consid-
ered. The fact that BMJ performs worse than the rest of the configura-
tions suggests that this parameterization should not be included in the
design of multi-physics ensembles over this region.

In addition, this indicates the need to account for the performance of
individual schemes’ combinations for forecasting and data assimilation.
As an alternative to a-prior evaluation of different parameterizations
combinations (that can be computationally demanding), some previous
works explored on-line optimization schemes for multi-model ensemble
compositions based on Bayesian techniques with promising results (e.g.
Otsuka and Miyoshi (2015); Xue and Zhang (2014)).

5. Concluding remarks

This article documents the implementation of a regional ensemble
data assimilation system during the RELAMPAGO field campaign in
central Argentina, during November and December 2018. A multi-
physics 60-member ensemble-based LETKF-WRF DA system was run in
real-time to support IOP operations during the field campaign and also
to provide the first set of analyses that can be used in research activities.
This RELAMPAGO Rapid Refresh system (RRR) represents the first
ensemble rapid update cycle that was run in Southern South America
using conventional, satellite and radar observations altogether with a
10-km horizontal resolution.

On the one hand, the evaluation of the hourly analyses from 00 UTC
9 November to 12 UTC 19 December 2018 revealed an overall good
performance when compared with the ERA5 reanalyses. Moreover, it
was shown that the LETKF DA has functioned in a stable way during the
whole period producing reasonable updates from the observations.
Regarding the ensemble spread, the under dispersive estimation
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encountered is an aspect that should be addressed in future imple-
mentations, for example by optimizing the inflation coefficient,
including perturbations on soil conditions, among others (Houtekamer
and Zhang, 2016). The model uncertainties can also be handled by
applying a stochastic kinetic energy backscatter scheme (Berner et al.,
2011; Romine et al., 2014), with the aim of increasing the ensemble
spread.

On the other hand, the assessment of 36 h forecasts initialized at
different times presented an acceptable skill. It was shown that the WRF
model produced warmer low level temperatures for almost all the hours
of the day, in agreement with previous studies over the region (eg. Ruiz
et al. (2010)). In relation to the vertical profiles of BIAS and RMSE with
respect to Villa Yacanto radiosondes valid at 12 UTC, the misrepresen-
tation of the humidity was the most striking feature, while the winds and
temperature showed typical error values. With regards to precipitation,
the Fractions Skill Scores were better for initializations at 00 and 12 UTC
than at 06 and 18 UTC (considering IMERGFR).

In addition, these 36 h warm-start forecasts were compared with the
cold-start forecasts of a 60-member WRF ensemble without LETKF
application (named NoRegDA), showing an overall similar performance
between them, but only a few times a positive impact of the regional
warm-start initialization was encountered. Some possible reasons could
be: (a) for RRR no radiance observations were assimilated (currently
under development by the authors); (b) the low level temperature BIAS
of WRF over the region, which has also been documented previously
(Ruiz et al., 2010; Dillon et al., 2016) (other PBL schemes should be
tested over the region and also a BIAS correction could be implemented
(for example following Pelosi et al. (2017))); (c) the relatively low res-
olution of the regional model in comparison to the resolution in the
global one, which prevents the regional model from producing better
quality forecasts with respect to the driving global model; (d) the rela-
tively small regional domain which may increase the negative effect
associated with a coarse temporal resolution specification of the
boundary conditions; (e) the dominant amount of radar observations
compared to the other data sources which may produce a detrimental
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Fig. 17. Hourly precipitation Hovmoller diagrams for the 36 h forecasts initialized at 12 UTC on 12 November, for the RRR ensemble mean for each group of
parameterizations (shaded) [mmh1]: (a)KF-YSU, (b)BMJ-YSU, (c)GF-YSU, (d)KF-MYJ, ()BMJ-MYJ, (HGF-MYJ, (g)KF-MYNN2, (h)BMJ-MYNN2, (i)GF-MYNN2. The

IMERGFR contours for 1, 5 and 7.5 mmh™! are also shown.

effect on the analysis, since radar data is complex to assimilate due to the
nonlinear relation with model variables and also due to complex
observational errors. It is evident that more work is required to improve
the regional system to overcome current limitations and to provide a set
of initial conditions for warm-start regional ensemble forecasts with
better skill than the cold-start forecasts.

The analysis of the observation impact, using both ERA5 and Villa
Yacanto soundings as reference data sets, showed that the assimilation
usually lead to an error reduction in the forecast. However, a detri-
mental effect has been identified for some levels and variables like, for
example, low-level temperature. This detrimental effect deserves further
investigation. A detailed analysis of the impact associated with different
observation types is currently underway.

In this work, we evaluated the individual skill of the nine model
configurations used in the multi-physics ensemble. As has been reported
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in previous studies, no single combination of schemes produce the best
results for all the verified variables (e.g. Ha et al. (2015)). The best
combinations for forecasting surface variables (GF-MYNN2 and GF-YSU)
differ from the best ones for forecasting precipitation (GF-MYJ and KF-
MYJ). In addition, members using the BMJ cumulus parameterization
performed systematically worse than those using GF or KF indepen-
dently of the choice of the PBL scheme. Besides, the analysis of a
particular case showed that using different schemes leads to different
convective initiation times and different evolution of the precipitation
systems.

Furthermore, a clustering effect similar to that reported in Johnson
et al. (2011) has been found. As has been discussed in those papers, the
clustering effect has important implications in the context of ensemble
forecasting since the assumption of all members being equally likely is
violated. This can have important consequences in the context of data
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assimilation. Systematic differences among clusters of ensemble mem-
bers may lead to systematic error covariances. Moreover the sample
distribution derived from a multi-physics ensemble may depart from
Guassianity, with eventually multiple modes associated to different
clusters, thus violating the Kalman filter assumptions and leading to sub-
optimal analysis updates. These effects deserves further investigation,
particularly for the assimilation of radar data and surface observations
which are linked to model variables that are susceptible of being affected
by these issues.

We foster the usage of the RRR data set to study the RELAMPAGO
IOPs in order to analyze both the strengths and weaknesses of the DA
system, which could be taken into account in future experimental de-
signs either for research or operational implementations over the region.
For example, some aspects that should be addressed concerning an
improvement in the DA system are: the quality control of the observa-
tions to be assimilated, particularly the ones from radar and surface
stations; the superobbing applied for dense distributed observations (for
example considering the radar data altogether for the calculation); the
temporal frequency used for the assimilation of radar data; the values
given for certain LETKF parameters, as the localization and the inflation;
among others. Sensitivity experiments to study these improvements can
be validated with RELAMPAGO’s observations.

Last but not least, a project to evaluate the impact of the assimilation
of the observations collected during the campaign is underway. Besides,
the findings documented in this article have been taken into account for
the design of a convection-permitting regional LETKF-WRF system, to be
implemented at the ANMS.
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Table A1 lists the Automatic Surface Weather Stations (ASWS) providers along with their web sites. The data was collected during the RELAM-

PAGO field campaign.

Table Al

Automatic surface weather stations providers and their web sites.

ASWS Provider

web site

REM San Luis

Entre Rios Board of Trade

Cordoba Board of Trade

Chaco Provincial Government

Coérdoba Provincial Government

National Water Institute (INA)

National Institute for Agricultural Technology (INTA)
Entre Rios Provincial Government

Rosario Board of Trade

Wunderground

La Plata National University

Uruguay National Weather Service

Brasil National Weather Service

La Pampa Provincial Government

Tucuman Agroindustrial Experimental Station
Paraguay National Aeronautical Direction
Mendoza Radar Operators

http://www.clima.edu.ar/
http://www.centrales.bolsacer.org.ar/
http://clima.bcecba.com.ar/
http://clima.produccion.chaco.gov.ar/
http://magya.omixom.com/
http://sgainacirsa.ddns.net/
http://inta.gob.ar/
http://www.hidraulica.gob.ar/
http://www.bcr.com.ar/
http://wunderground.com/
http://unlp.edu.ar/
http://inumet.gub.uy/
http://www.inmet.gov.br/
http://www.lapampa.gov.ar/
http://www.eeaoc.org.ar/
http://www.dinac.gov.py/
http://mate.cima.fcen.uba.ar/estaciones/mendoza/
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