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A B S T R A C T   

This paper describes the lessons learned from the implementation of a regional ensemble data assimilation and 
forecast system during the intensive observing period of the Remote sensing of Electrification, Lightning, And 
Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign (central 
Argentina, November–December 2018). This system is based on the coupling of the Weather Research and 
Forecasting (WRF) model and the Local Ensemble Transform Kalman Filter (LETKF). It combines multiple data 
sources both global and locally available like high-resolution surface networks, AMDAR data from local aircraft 
flights, soundings, AIRS retrievals, high-resolution GOES-16 wind estimates, and local radar data. Hourly ana
lyses with grid spacing of 10 km are generated along with warm-start 36-h ensemble-forecasts, which are 
initialized from the rapid refresh analyses every three hours. A preliminary evaluation shows that a forecast error 
reduction is achieved due to the assimilated observations. However, cold-start forecasts initialized from the 
Global Forecasting System Analysis slightly outperform the ones initialized from the regional assimilation system 
discussed in this paper. The system uses a multi-physics approach, focused on the use of different cumulus and 
planetary boundary layer schemes allowing us to conduct an evaluation of different model configurations over 
central Argentina. We found that the best combinations for forecasting surface variables differ from the best ones 
for forecasting precipitation, and that differences among the schemes tend to dominate the forecast ensemble 
spread for variables like precipitation. Lessons learned from this experimental system are part of the legacy of the 
RELAMPAGO field campaign for the development of advanced operational data assimilation systems in South 
America.   

1. Introduction 

Over the last years, the most important operational centers in the 
world have implemented global numerical weather prediction (NWP) 
models with horizontal grid spacings ranging between roughly 7 and 20 
km (Geer et al., 2018). In general, they also run regional domains using 

grid spacings from 1.3 to 15 km with data assimilation (DA) cycles of 1, 
3, or 6 h (Gustafsson et al., 2018). These local forecasting systems can 
benefit from local observations such as radar and automatic weather 
station data, and can enable the computation of more frequent analyses 
in comparison with global cycles. It is worth mentioning that the posi
tive impact of mesoscale and convective scale DA regional systems has 
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been documented among distinct geographical areas, showing that the 
quality of the forecasts initialized from these systems is significantly 
better than those produced by downscaling global analyses and forecasts 
(e.g., Xiao et al., 2005; Koizumi et al., 2005; Routray et al., 2010; Kuroda 
et al., 2012; Ferreira et al., 2017; Lien et al., 2017; Gustafsson et al., 
2018; Zhu et al., 2019; Carrió et al., 2019). Regarding local observa
tions, the assimilation of radar data was widely found to positively 
impact regional analysis and forecasts, as shown by Xiao et al. (2005), 
Routray et al. (2010), Putnam et al. (2017), and Gao et al. (2019), 
among many others. 

Regional mesoscale DA systems have shown a positive impact on the 
precipitation forecasts of local severe weather using both variational 
and ensemble methods. For example, Routray et al. (2010) obtained an 
enhanced performance of the Weather Research and Forecasting (WRF) 
model with the 3D-VAR scheme for a monsoon case study employing 30 
km horizontal grid spacing and assimilating Doppler weather radar data, 
and Kunii (2014) showed a positive performance of 12-km analyses 
applying the Local Ensemble Transform Kalman Filter (LETKF) system to 
a local severe rainfall event in Japan. Further, the U.S. National Weather 
Service runs the Rapid Refresh (RAP) regional operational hourly 
updated analysis and forecast system, using a 13-km hybrid ensemble- 
variational Gridpoint Statistical Interpolation (GSI) analysis system 
(Benjamin et al., 2016). Additionally, Pan et al. (2018) tested a proto
type for the RAP forecasting system using a dual-resolution system 
consisting of a ~13-km hybrid system coupled with ensemble Kalman 
filter cycles at 40-km grid spacing. 

Over South America, few studies have been documented regarding 
regional mesoscale and convective scale DA systems. Goncalves de 
Goncalves et al. (2015) presented experiments carried out at the Center 
for Weather Forecast and Climate Studies from the Brazilian National 
Institute for Space Research (CPTEC-INPE for their acronyms in Portu
guese), using regional data assimilation cycles with 12, 9 and 3 km 
resolution, for one month. At the same time, promising results of DA 
applied to different case studies using resolutions between 1 and 10 km 
have been shown both in Brazil and Argentina (Ferreira et al., 2017; 
Bauce Machado et al., 2017; Toshio Inouye et al., 2017; Maldonado 
et al., 2019; Corrales et al., 2019; Vendrasco et al., 2020; Ferreira et al., 
2020). At the time of writing, CPTEC is running a 5-km regional 

modeling system for South America using the WRF model with the GSI- 
DA system with a 6-h cycling interval (Sapucci personal communica
tion1) and the Argentinian National Meteorological Service (ANMS) has 
been running a convective-scale downscaling forecast since 2016 (Gar
cía Skabar et al., 2018), and is working actively in implementing a 
regional data assimilation system in order to improve the forecast of 
precipitation and severe weather events. 

From June 2018 to April 2019, the Remote sensing of Electrification, 
Lightning, And Mesoscale/microscale Processes with Adaptive Ground 
Observations (RELAMPAGO) field campaign took place in central 
Argentina, with an Intensive Observing Period (IOP) during Nov-Dec 
2018 to study extreme thunderstorms in the region (Nesbitt et al., 
2021). Given the regional advances in DA, the positive performance of a 
coarser-resolution LETKF-WRF system over Argentina (Dillon et al., 
2016), and the opportunity of running numerical experiments in real- 
time to support IOP operations during RELAMPAGO, a rapid-refresh 
mesoscale data assimilation and forecast system was designed. The 
RELAMPAGO Rapid Refresh (RRR) is a 10-km resolution, multi-physics 
ensemble-based, LETKF-WRF DA system developed as a joint effort 
among many institutions. This ensemble rapid-update-cycle system as
similates conventional, satellite, and radar observations, and is the first 
mesoscale DA system ever run in real-time in Argentina, providing the 
first set of analyses available to be used in research activities. For 
example, Pal et al. (2021) recently documented encouraging results 
using RRR simulations for the WRF-Hydro data forcing for the study of a 
hydrometeorological flash flood event. 

This article describes in detail the RRR configuration and provides 
the first evaluation of its performance. Moreover, an analysis of the skill 
associated with the multi-physics approach used to run the different 
ensemble members is provided. The paper is organized as follows: the 
data assimilation and forecast system is described in Section 2, while the 
verification of different aspects of the RRR, including its analyses and 
forecasts impact, are shown in Section 3. Some insights regarding the 
different model configurations are given in Section 4. Finally, conclu
sions are summarized in Section 5. 

2. Methodology 

2.1. Data assimilation and forecast system 

The RELAMPAGO Rapid Refresh ensemble-based data assimilation 
and forecast system was implemented in real-time during the RELAM
PAGO field campaign as an experimental system. It consists of an hourly 
assimilation cycle and a 36-h ensemble forecast initialized every 3 h. The 
system was started at 01 UTC 5 November 2018 and continuously ran 
until 12 UTC 19 December 2018 (44 days) which coincides approxi
mately with RELAMPAGO IOPs. The National Center for Atmospheric 
Research (NCAR) supercomputer Cheyenne (Computational and Infor
mation Systems Laboratory, 2019) was used to run the system. Graph
ical products were available in real-time at RELAMPAGO’s operation 
center throughout the campaign at NCAR Earth Observing Laboratory 
Field Catalog.2 

The RRR is based on the Weather Research and Forecasting Model 
(WRF; Skamarock et al., 2008), with its Advanced Research WRF 
dynamical solver (ARW) version 3.9.1.1, run with a 10-km horizontal 
grid spacing over a domain of 150 × 100 grid points using a Lambert 
projection (Fig. 1). The model top is set at 50 hPa, and the number of 
vertical sigma-p levels is 50. 

The RRR uses a 60-member multi-physics and perturbed boundary 
conditions approach in which land-surface processes, microphysics, and 
radiation schemes are the same for all ensemble members. The multi- 

Fig. 1. RRR domain and topography (shaded) [m]. The circles indicate the 240 
km radius of the eight radars assimilated. The black star refers to Villa Yacanto. 
SDC refers to Sierras de Córdoba mountain range. The black box indicates the 
area considered for validation. The lower-right subplot indicates the location of 
the verification domain within South America. 

1 See products in https://previsaonumerica.cptec.inpe.br/wrf  
2 http://catalog.eol.ucar.edu/relampago/model see RRAA for analyses and 

RRAF for forecasts 
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physics approach is introduced in order to represent the uncertainty 
associated with the parameterization of unresolved physical processes. 
This approach has been shown to produce more reliable ensembles in 
the context of regional data assimilation (Ha et al., 2015; Houtekamer 
and Zhang, 2016; Dillon et al., 2016). The Noah–MP land surface model 
was used (Niu et al., 2011); microphysics processes were parameterized 
with the WRF single-moment 6–class scheme (WSM6; Hong et al., 
2006a), and radiation with the RRTMG shortwave and longwave scheme 
(Iacono et al., 2008). We used three different schemes to represent moist 
convection and planetary boundary layer (PBL) processes. For the 
former, the Kain–Fritsch scheme (KF; Kain, 2004), the 
Betts–Miller–Janjic scheme (BMJ; Janjić, 1994), and the Grell–Freitas 
scheme (GF; Grell and Freitas, 2013) were used. For the latter, the 
Yonsei University scheme (YSU; Hong et al., 2006b); the Mel
lor–Yamada–Janjic scheme (MYJ; Janjić, 1994), and the Mel
lor–Yamada Nakanishi Niino scheme (MYNN2; Nakanishi and Niino, 
2009) were used. 

It is worth noting that the multi-parametrization approach is used in 
the hourly forecasts needed for the assimilation and in the 36-h 
forecasts. 

Both lateral and lower boundary conditions were taken from the 20 
members of the National Centers for Environmental Prediction (NCEP) 
Global Ensemble Forecasting System v.11 (GEFS; Zhou et al., 2017) 

analyses and forecasts, available at 0.5∘ resolution, which were re- 
centered around the GFS higher resolution deterministic run, available 
at 0.25∘, using linear interpolation. With the aim of enlarging the 
ensemble spread, these 20 boundary conditions were mixed with the 
nine different model configurations resulting from the combination of 
cumulus and PBL schemes as shown in Table 1. For example, the 
members with the KF-YSU parameterizations were combined with the 
GEFS members number 1, 6, 8, 10, 15, 17 and 19. 

In order to attain a semi-operational schedule, the computation of 
the analysis was started 2 h after the corresponding analysis time. 
Boundary conditions for the RRR were always taken from the latest 
available GFS and GEFS runs, which are typically 4 and 5 h after the 
analysis time, respectively. Taking this into account, the initialization 
time corresponding to the boundary conditions used for each RRR cycle 
are summarized in Table 2. 

The RRR analysis step is based on the four-dimensional Local 
Ensemble Transform Kalman Filter (4D-LETKF; Hunt et al., 2007; 
Miyoshi and Aranami, 2006; Miyoshi and Kunii, 2012a). In this 
approach an assimilation window is defined and forecast and observa
tions distributed within this window are compared at the right time. 
Sample covariances derived from the ensemble are used to describe 
temporal and spatial covariances among different variables (i.e. an 
adjoint model is not required for the computation of the analysis). In this 
work we use a data assimilation window of 1 h divided into 10-min time 
slots used to compare the observations with the model output at the 
closest time. For each slot, all observations are assumed to be taken at 
the center of the interval. The assimilation window starts at the time of 
the previous analysis and up to the time of the current analysis (Fig. 2). 
Given the short length of the assimilation window, no temporal locali
zation is used. RRR soil states were cyclically updated with the infor
mation from the GEFS ensemble members, re-centered around the GFS, 
through the da_update_bc utility from the WRF Data Assimilation pack
age (WRFDA; Barker et al., 2012). 

To reduce the impact of sampling errors and errors associated to non- 
linearities and also to account for model errors (not accounted for by the 
use of the multi-physics approach), a relaxation to prior spread inflation 
(RTPS; Whitaker and Hamill, 2012) is used with an alpha of 0.8, as in 
Necker et al. (2020). Sampling errors also lead to noise in the estimation 
of error covariances which is how the Kalman filter propagates the in
formation among different variables. To mitigate this effect, the 
covariance matrix was localized in space using an R-localization method 
(Greybush et al., 2011). A single horizontal localization radius of 
approximately 180 km was implemented for all the observations, while 

Table 1 
Generation of the 60-member RRR multi-physics ensemble as a combination of 
Cumulus and PBL parameterizations, and GEFS members for boundary 
conditions.  

PBL Cumulus YSU MYJ MYNN2 

KF 1, 6, 8, 10, 15, 17, 19 2, 4, 9, 11, 13, 18, 20 3, 5, 7, 12, 14, 16 
BMJ 2, 7, 9, 11, 16, 18, 20 1, 3, 5, 10, 12, 14, 19 4, 6, 8, 13, 15, 17 
GF 1, 3, 8, 10, 12, 17, 19 2, 4, 6, 11, 13, 15, 20 5, 7, 9, 14, 16, 18  

Table 2 
GFS/GEFS initializations used for the boundary conditions needed to 
compute each RRR analyses.  

GFS/GEFS initializations RRR analyses 

00 UTC 03, 04, 05, 06, 07, 08 UTC 
06 UTC 09, 10, 11, 12, 13, 14 UTC 
12 UTC 15, 16, 17, 18, 19, 20 UTC 
18 UTC 21, 22, 23, 00, 01, 02 UTC  

ANA 00 UTC

• BC: GFS+ 
pert GEFS

• OBS 1h 

ANA 01 UTC

• BC: GFS+ 
pert GEFS

• OBS 1h

ANA 02 UTC

• BC: GFS+ 
pert GEFS

• OBS 1h

ANA 03 UTC

• BC: GFS+ 
pert GEFS

• OBS 1h

4D LETKF 4D LETKF 4D LETKF

WRF 36 hrs 
FCST

Obs 23:00

• From
22:55 to
23:05

Obs 23:10

• From
23:05 to
23:15

Obs 23:20

• From
23:15 to
23:25

Obs 23:30

• From
23:25 to
23:35

Obs 23:40

• From
23:35 to
23:45

Obs 23:50

• From
23:45 to
23:55

Obs 00:00

• From
23:55 to
00:05

WRF 36 hrs 
FCST

Fig. 2. Flow diagram of the RRR showing the hourly analysis generation (ANA) using 4D-LETKF and the 36 h forecasts generation every 3 h (FCST). “BC” stands for 
Boundary Conditions and OBS stands for observations. An example of the distribution of the observations within the assimilation window is shown for the 00 UTC 
analysis. See the text for more details. 
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a dual vertical localization was used for radar data (~ 7.3 km) and 
conventional observations (~ 12.5 km). A gross error check was also 
implemented to reject observations whose distance from the first guess 
was more than 10 times larger than the observation error. 

2.2. Assimilated observations 

Several observation types are assimilated into the RRR system. Their 
characteristics are summarized in Table 3, an example of the spatial 
distribution of the observations for 18 UTC 10 November is provided in 
Fig. 3, and Fig. 4 provides a summary of the observation count for each 
assimilation cycle. A brief description of the data sets and the pre- 
processing procedures are provided below.  

• Conventional Surface Weather Stations (CSWS): These observations 
are provided by the ANMS and correspond to the Argentina, Uruguay 
and Paraguay surface operational networks. While their spatial dis
tribution is heterogeneous, most of the 81 CSWS report hourly. 
Nevertheless, an increment of assimilated observations is detected at 
00, 06, 12 and 18 UTC, considering the whole period.  

• Automatic Surface Weather Stations (ASWS): These observations 
consists of 757 stations integrating 17 public and private surface 
networks. Observation providers and their website is listed in Ap
pendix A. This data set is available through the RELAMPAGO Data 
Archive. The amount of assimilated observations from ASWS is 
notably larger than those assimilated from CSWS (27.93% versus 
1.57% with respect to the total data assimilated).  

• Radiosondes (RS): This data is also provided by the ANMS. There are 
radiosondes only at 00 UTC and 12 UTC over the domain in up to 
seven different locations. 

Table 3 
Characteristics of the assimilated observations: The acronym for each observation type, its data source, and the associated assimilated variables error magnitude 
[temperature (T), zonal (U) and meridional (V) wind components, surface pressure (PSFC), relative humidity (RH), specific humidity (Q), reflectivity (Z)]. *Please see 
the text for a detailed explanation of the errors.  

Observation type Data source Assimilated variables error   

T U, V PSFC RH Q Z   

(K) (ms−1) (Pa) (%) (g kg−1) (dBZ) 

CSWS ANMS Conventional Surface Weather Stations 2 1.4 160 10 – – 
ASWS Automatic Surface Weather Stations 2 1.4 160 10 – – 
RS* Radiosondes 1 variable – 10 – – 
AIRPL Airplanes – 3.6 – – – – 
AIRSR* NASA Atmospheric Infrared Sounder Retrievals variable – – – variable – 
RADAR C-band radar – – – – – 5 
GDMW GOES Derived Motion Winds – 7.5 – – – – 
SHBU Ships, Buoys 2 – – – – –  

Fig. 3. Spatial distribution of different observations assimilated in the RRR on 
10 November 2018 at 18 UTC. See Table 3 for a description of the different 
observation types. The total amount of assimilated observations for each data 
type is also indicated at the top. 

Fig. 4. The total number of each observation type assimilated for each hour of the day [UTC] for the validation period (from 00 UTC 9 November to 12 UTC 19 
December 2018). 
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• Airplanes (AIRPL): Provided by the ANMS. These observations do not 
cover the whole aircraft routes because we only considered the 
Aircraft Meteorological Data Relay (AMDAR) messages. Only wind 
data was assimilated.  

• AIRS Retrievals (AIRSR): The Atmospheric Infrared Sounder (AIRS) 
is on board the National Aeronautics and Space Administration 
(NASA) Aqua polar-orbiting satellite. Near real time vertical profiles 
of estimated temperature and specific moisture retrievals (Susskind 
et al., 2014) are available through https://discnrt1.gesdisc. 
eosdis.nasa. 

gov/data/Aqua_AIRS_NRT/AIRS2RET_NRT.006. RRR analyses 
incorporates these profiles at its original horizontal and vertical 
resolution of approximately 45 km and 1 km, respectively. Only data 
below 200 hPa and with the best quality control flag are assimilated, 
following Tobin et al. (2006). Although these profiles are available 
only at specific hours (i.e., early morning and afternoon) and not 
everyday due to the satellite polar orbit, they represent a valuable 
data set that complements the sparse upper air network over the 
region and which have been successfully assimilated in regional 
systems over the world (e.g. Miyoshi and Kunii, 2012b; Dillon et al., 
2019).  

• C-band Radar Reflectivity (RADAR): This data is provided by the 
recently developed Argentine C-band Doppler dual-polarization 
weather radar network (de Elía et al., 2017). The RRR assimilates 
data from eight radars independently, as a mosaic product was not 
available (see Fig. 1 for their location and spatial coverage). Quality 
control is performed to the data to remove echoes associated with 
clutter, speckle, anomalous propagation, interference and complex 
terrain (Arruti et al., 2021). Areas strongly affected by attenuation 
are also identified and removed from the data. The quality control is 

performed in the original radar geometry. A superobbing is per
formed to convert the data from its original resolution (which can be 
as high as 500 m) to an horizontal resolution of 10 km, a vertical 
resolution of 1 km, and a time resolution of 10 min, consistent with 
the model resolution and output frequency. Clear air observations of 
reflectivity (i.e., reflectivity observations lower than 0 dBZ) were 
assimilated to suppress spurious convection within the computa
tional domain (Tong and Xue, 2005; Aksoy et al., 2009). Note the 
large quantity of radar data in comparison with other sources 
(67.53%), due to the inherent resolution of this kind of data. Radial 
velocity observations were not assimilated in this experiment since 
quality control to properly handle this particular data type was not 
yet available at the ANMS.  

• GOES Derived Motion Winds (GDMW): Motion vectors estimated 
from the water vapor, visible, and infrared channels from the Geo
stationary satellite GOES-16 (Derived Motion Winds) are assimilated 
in the RRR. Given that sometimes the horizontal resolution of these 
motion vectors can be very high, a superobbing technique is applied 
with an horizontal resolution of 30 km and a vertical resolution of 25 
hPa. Only the data that passed the NCEP quality control were used in 
the superobbing. To access the data in real time the NOAA-NESDIS 
PDA (Product Distribution and Access) system was used through 
the ANMS. The GDMW were assimilated with an hourly frequency.  

• Ships and Buoys (SHBU): This data is provided by the ANMS. 
Although the sea surface area in our domain is small, we were able to 
assimilate some SHBU data at 00, 06, 12, and 18 UTC. 

Observation errors for CSWS, ASWS, RS, AIRPL and SHBU were set 
following the values recommended in the WRFDA package (Table 3). 
Particularly, for RS the errors are a function of height. Observational 

Fig. 5. Vertical profiles of the spatially averaged SPREAD (dashed lines) and RMSE with respect to ERA5 (solid lines) for (a) zonal wind component [ms−1], (b) 
meridional wind component [ms−1], (c) temperature [K], and (d) specific humidity [gKg−1]; at 00, 06, 12, and 18 UTC. The shaded area illustrates the range of the 
profiles across the different hours of the day, for both SPREAD and RMSE. 
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errors for GDMW and AIRSR are specified by the data provider 
(TAirStdErr and H2OMMRStdErr for temperature and specific moisture, 
respectively), while an error of 5 dBZ is assumed for superobbed radar 
reflectivity data based on previous works (e.g. Tong and Xue, 2005; 
Lange and Craig, 2014; Jones et al., 2015). 

All the observations were collected and pre-processed in real time 
(considering a 90 min cutoff) at the ANMS and then transferred to 
Cheyenne supercomputer to be assimilated. It is worth mentioning that 
the integration of ASWS was feasible through RELAMPAGO efforts, 
enabling for the first time this kind of data for assimilation and forecast 
verification over the region. Regarding the observations collected during 
the field campaign, they were not considered for the RRR as it would be 
difficult to receive and process them in real time. Nevertheless, a project 
to evaluate the impact of the assimilation of the data collected during 
the campaign is underway. 

Comparing these data sets with the ones used for the assimilation in 
the global model, RADAR and ASWS stand out in the regional system 
while the other observation types are included in both RRR and GFS. 
Note that the global model also incorporates the radiances of multiple 
sensors, which is a great advantage. 

2.3. Validation 

In order to evaluate the performance of the ensemble based data 
assimilation and forecast system presented in this article, the following 
data sets were considered as reference atmospheric states.  

• Hourly ERA5 reanalyses of 0.25∘ resolution (Hersbach and Dee, 
2016) of zonal (U) and meridional (V) wind components, tempera
ture (T) and specific humidity (Q). For comparison with this data set, 
the RRR analyses and forecasts were linearly interpolated to the 
ERA5 regular grid. 

• Data collected from surface stations (CSWS and ASWS) of 2 m tem
perature (T2m) and 10 m winds (U10m and V10m). For comparison, 
RRR forecasts were linearly interpolated to the observation 
locations. 

• Satellite precipitation estimation IMERG Final Run at 0.01∘ resolu
tion (Huffman et al., 2018). For comparison, the RRR forecasts were 
linearly interpolated to the IMERGFR regular grid.  

• Multi-Network Composite Highest Resolution Radiosonde Data 
(UCAR/NCAR, 2020) at Villa Yacanto (Fig. 1) providing vertical 
profiles of U, V, T and dewpoint (Td). For comparison, the forecasts 

Fig. 6. Time height cross section of: (a) RMS of the ensemble mean analysis update, (b) RMSE of the ensemble mean analysis with respect to ERA5 and (c) ensemble 
mean analysis, of the specific humidity [gKg−1]. The corresponding RELAMPAGO IOP missions starting time are also indicated. 
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were interpolated to the location of the observation using a closest 
neighbor approach. 

Villa Yacanto, located eastward of the highest peak of Sierras de 
Córdoba (SDC) with an altitude of 1161 m above mean sea level, is one 
of the nine fixed sounding sites considered for the campaign (Schu
macher et al., 2021). Radiosondes launched at 00, 12, 15, 18 and 21 UTC 
are used for this verification as a preliminary exploration. A validation 
of RRR using both mobile and fixed soundings along with other data sets 
collected during RELAMPAGO will be assessed in a future work. 

The following measures were used for the validation of the analysis 
and forecasts. The Root Mean Square Error (RMSE) and the BIAS were 
calculated considering either the spatial or the time dimensions. In eqs. 1 
and 2, O and X stand for the reference and simulated atmospheric states, 
respectively, while the subscript i ∈ {1,…,N} represents different 
observation locations and/or different times. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(Xi − Oi)

2

√
√
√
√ (1)  

BIAS =
1
N

∑N

i=1
(Xi − Oi) (2) 

Also, the ensemble spread (SPREAD) was computed following the 
considerations of Fortin et al. (2014) to compare this quantity with the 
RMSE of the ensemble mean, which is desired to be equal. In eq. 3, X 
represents the ensemble mean, and Xk stands for the k ∈ {1,…,M} 
ensemble member. 

SPREAD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

1
M − 1

∑M

k=1

(
Xi − Xk,i

)2

√
√
√
√ (3) 

The Fractions Skill Score (FSS) was used for the validation of pre
cipitation forecasts following Roberts (2008). The original formulation 

Fig. 7. As in Fig. 6 but for the meridional wind component [ms−1].  
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was slightly modified to take into account the information provided by 
all the ensemble members as in Maldonado et al. (2021). The modified 
version of the score is defined as: 

FSS = 1 −

1
M

∑M
j=1

(
[Px]j − Poj

)2

1
M

∑M
j=1

(
[Px]j

)2
+ 1

M

∑M
j=1

(
Poj

)2
(4)  

where [Px] is the ensemble-based probability of the accumulated pre
cipitation being over a certain threshold, spatially averaged over a 
squared box of size LxL grid points; and Po is the spatially observed 
frequency of precipitation over the same threshold computed over the 
same box. The subscript j ∈ {1,…,M} identifies the individual boxes, 
with M the total number of boxes considered. This score is typically 

computed for a range of box sizes and precipitation thresholds to 
describe forecast skill as a function of the horizontal scale and precipi
tation intensity. In this work we apply this score for the verification of 6- 
h accumulated precipitation forecasts. 

Analysis and forecast verification was performed over the domain 
66–57∘W and 26–38∘S (cf. black box in Fig. 1) to avoid the effect of the 
boundaries. A 40-day verification period from 00 UTC 9 November to 12 
UTC 19 December 2018 was considered, allowing the system approxi
mately a 4-day spin up period (~95 DA cycles). The total number of DA 
cycles in the study period is 964, as 8 of them were lost due to issues with 
data storage and transfer. 

For the 36 h ensemble forecasts validation, in addition to those 
initialized from the LETKF-WRF cycles, a 60-member WRF ensemble 

Fig. 8. Temporal evolution of the hourly accumulated precipitation averaged over 29–35∘S and 66–57∘W [mm/grid points], for the RRR first guess ensemble mean 
(solid line), the RRR ensemble range (shaded), and the IMERGFR (dashed line). The corresponding RELAMPAGO IOP missions starting time are also indicated. 
Subplots (a) and (b) show the Hovmöller diagram of hourly precipitation for the 10–13 November and 11–19 December periods, respectively, for the RRR ensemble 
mean (shaded) and the IMERGFR [1 mmh−1 (filled contour) and 7.5 mmh−1 (dashed contour)]. 

Fig. 9. Maximum reflectivity [dBZ] distribution in the (a) RRR first guess ensemble mean, (b) RRR analysis ensemble mean and (c) observed by the C-band radar 
network; for 14 December at 00 UTC. In (a) the black square and dot refer to San Luis Province and La Plata River, respectively. The 240 km radius circles from the 
radars are also depicted in (c). 
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without LETKF application (i.e., a cold-start ensemble) was also run 
during the same period, considering the configuration described in 
Table 1. Only the 36 h forecasts initialized at 06 UTC were computed. 
This experiment was called NoRegDA because no regional data was 
assimilated, but the ensemble still benefits from the global data assim
ilation system. The 06 UTC NoRegDA forecasts are compared with the 
RRR forecasts initialized at 12 UTC since these two forecasts use the 
same lateral and lower boundary conditions (cf. Table 2). 

3. Overview of the RRR performance 

3.1. Analysis and first guess 

The vertical profiles of the spatially averaged SPREAD and RMSE of 
the analysis mean with respect to ERA5 are shown for 00, 06, 12, and 18 
UTC in Fig. 5. At low levels for both wind components, the time with the 
smallest RMSE is 18 UTC (3 p.m. local time) while the one with the 
biggest errors is 06 UTC (3 a.m. local time). The meridional wind RMSE 
profiles present a local maximum at low levels during the night and early 
morning (from 00 to 12 UTC). This pattern may be associated with a 
misrepresentation of the Low Level Jet (LLJ), which shows its maximum 
intensity at these times and is frequently present over the northern half 
of the RRR domain during the summer season (Vera et al., 2006). 
Regarding temperature and specific humidity, their RMSE show a 
diurnal cycle in the lowest level evaluated (975 hPa): the smaller errors 
correspond to 06 and 12 UTC for temperature, while 12 UTC is the time 
of less error for humidity. In addition, a diurnal cycle is encountered for 
T, U and V at upper levels, which may be related to the distribution of 
the distinct type of data assimilated along the day (Fig. 4). The profiles of 

the remaining hours of the day offer similar characteristics for the four 
variables evaluated, as it can be seen by the shaded areas in Fig. 5. 

One evident feature is the under-dispersion of the ensemble as the 
SPREAD is lower than the RMSE for all the variables, which was also 
shown by Dillon et al. (2019), for a 40 km LETKF-WRF over Southern 
South America. Nevertheless, it should be noted that ERA5 errors are 
embedded in RMSE calculation, contributing to increase the observed 
difference between the ensemble spread and the model error. Likewise, 
it is not possible to know accurately the impact of the reference data 
errors in the SPREAD-RMSE comparison. 

It is worth mentioning that the RMSE values found for the RRR are 
similar to those reported for other regional DA systems. For example 
Lien et al. (2017) showed temperature RMSE values generally lower 
than 3 K over Japan with a regional 18-km LETKF system implemented 
with the SCALE model. They also showed annual RMSE mean values of 
3.59 and 3.99 ms−1 for meridional and zonal wind components. The 
SPREAD-RMSE ratio for the zonal wind component at 300 hPa is also in 
agreement with our results (Lien et al., 2017). 

To study the impact of the assimilated observations as the DA cycles 
progressed, the hourly evolution of the vertical profiles of different 
quantities are presented in Figs. 6 and 7: (a) the Root Mean Square 
(RMS) update of the ensemble mean analysis with respect to the 
ensemble mean first guess in model space (using the eq. 1), (b) the RMSE 
of the ensemble mean analysis with respect to ERA5, and (c) the 
ensemble mean analysis, for the specific humidity and the meridional 
wind component. The starting times of the RELAMPAGO IOPs are also 
indicated to let the reader easily have a first impression on the RRR 
performance for each event (please refer to the NCAR Earth Observing 
Laboratory Field Catalog for a detailed description of each IOP). One 
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Fig. 10. Ensemble mean forecast RMSE (black lines) and BIAS (grey lines) with respect to CSWS and ASWS observations as a function of the forecast lead time. The 
light blue shaded indicates the range of RMSE and BIAS across the RRR ensemble members. Each column correspond to a different initialization time at 00, 06, 12 
and 18 UTC, and each row to a different variable: T2m [K], U10m [ms−1] and V10m [ms−1]. The NoRegDA ensemble RMSE and BIAS (dashed contours) as well as 
their corresponding range across ensemble members (pink shaded) are included for the 12 UTC initialization time. RMSE and BIAS are averaged over the validation 
domain and over all the forecasts within the validation period. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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remarkable aspect is that the filter ran in a stable way during the whole 
study period. The magnitude of the observation impact is strongly 
modulated by the domain averaged precipitation (Fig. 8) with the 
stronger corrections being made during the periods with larger precip
itation rates. Also the errors are larger during rainy periods. This is also 
true for the temperature and the zonal wind component (not shown). 
Moreover, the RMS update generally shows a diurnal cycle with 
maximum values close to surface during the night for the wind, and 
during the afternoon and the night for the specific humidity and 
temperature. 

In general, it was found that for all the variables the dates for the 
maximum RMSE (with respect to ERA5) are in concordance with the 
ones for the maximum RMS update. Observing the ensemble means, it 
can be shown that those dates also correspond with the presence of high 
amounts of humidity at low levels, with an attendant northward wind 
component. During the summer season, humid periods with prevailing 
northerly flow are characterized by higher convective instability. When 

this instability is released, error growing rates are significantly larger 
and therefore, faster departures of the forecast from the observations are 
expected. Also, previous studies (e.g. Ruiz et al. (2010)) documented 
systematic errors in the representation of intense low-level northerly 
flow associated with a southward extension of the South American LLJ. 
These systematic errors, that consists on a weaker simulated low level 
flow, can also contribute to the day-to-day changes in the magnitude of 
the analysis updates. 

In Fig. 8 we present the temporal evolution of the hourly total pre
cipitation per grid points computed in the domain 66–57∘W and 29–35∘S 
(note that this is a bit smaller in latitude than the black box indicated in 
Fig. 1), for the RRR first guess ensemble members and the ensemble 
mean (i.e. one hour forecasts), and for IMERGFR. Generally, the RRR 
represents all the events estimated by IMERGFR, although the precipi
tation amount is systematically lower. 

Two particular periods (10–13 November and 11–19 December, 
containing IOPs 04–05 and 15–19, respectively) are displayed in more 

(c) BIAS & RMSE T [K] (d) BIAS & RMSE Td [K]

(a) BIAS & RMSE U [ms−1] (b) BIAS & RMSE V [ms−1]
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Fig. 11. Temporally-averaged ensemble mean forecast RMSE (black lines) and BIAS (grey lines) with respect to Villa Yacanto radiosondes valid at 12 UTC for: (a) 
zonal wind component [ms−1]; (b) meridional wind component [ms−1]; (c) temperature [K]; (d) dewpoint [K]. The light blue shaded indicates the range of RMSE and 
BIAS across the RRR ensemble members (initialized at 12 UTC, 0 h forecast lead time). The NoRegDA ensemble RMSE and BIAS (dashed contours) as well as their 
corresponding range across ensemble members (pink shaded) are included (initialized at 06 UTC, 6 h forecast lead time). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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detail using Hovmöller diagrams (Fig. 8a and b). Overall, the evolution 
of the estimated precipitation is well captured by the RRR, and likewise 
the location of the maxima. 

To ilustrate the impact of radar observations, Fig. 9 shows the dis
tribution of the maximum reflectivity in the mean first guess, the mean 
analysis and the observations for 14 December 00 UTC. There exists a 
clear improvement of the reflectivity around 34∘S and 64∘W between the 
first guess and the analysis. The systems over northern San Luis province 
and over La Plata river were not represented by the first guess, but do 
appear to some extent in the analysis. However, the DA system was not 
able to simulate the precipitating system near 34∘S and 60∘W. Probably 
the lack of availability of radar data in the trajectory of the system was 
an important cause of the misrepresentation of convection (not shown). 

3.2. 36 h Ensemble forecasts 

Surface variables were verified against ASWS and CSWS data. The 
scores of the U10m, V10m and T2m 36 h forecasts from four different 
initializations (00, 06, 12 and 18 UTC) are presented in Fig. 10. 
Generally, a positive BIAS is encountered for the temperature. Please 
note that a positive BIAS also dominates the analyses below 850 hPa 
with respect to ERA5 during the whole period (not shown), suggesting 
that the WRF model with the above mentioned configurations produces 
warmer low level temperatures. 

In fact, a warm BIAS in T2m forecasts has been documented over 
central and eastern Argentina during one summer season, using a 40-km 
WRF with different parameterizations by Ruiz et al. (2010). In addition, 
the ANMS operational 4-km WRF generally overestimated T2m during 
2020 in the region (Matsudo et al., 2021). 

Regarding the winds, the BIAS is bigger in module for U10m than for 
V10m, which values are generally between 0 and − 0.5 ms−1. A diurnal 
cycle of RMSE was identified for T2m and both wind components, with 
better scores during the night hours. These RMSE values are similar to 
those previously shown with different WRF configurations at surface 
(Ruiz et al., 2010) and at low levels (Dillon et al., 2016) over the region. 
Note that Benjamin et al. (2016) also found the smallest errors for 12 h 
surface variables forecasts during the night, using their RAP system over 
United States (which uses a 13-km WRF). 

In relation to the NoRegDA statistics, for the temperature both the 
RMSE and BIAS generally perform better than RRR for the first 24 h. The 
BIAS in NoRegDA is close to zero at the beginning and increases along 
the forecast lead times, while in the case of RRR the BIAS is far from zero 
from the beginning. This behavior suggests that systematic errors in the 
WRF model accumulate during the data assimilation cycles, resulting in 
a biased initial condition. 

For surface winds, the RRR performs better in terms of RMSE for the 
first 2–3 forecast hours but shows an afterwards rapidly increase. The 
reason for this rapid information loss provided by the observations for 
this particular variable is not clear and requires further investigation. 
For example, techniques incorporating a digital-filter initialization (as 
applied to RAP (Benjamin et al., 2016)) should be studied to reduce 
initial noise in the first forecast hour and therefore produce a more 
effective assimilation of the observations. 

In Fig. 11 the vertical profiles of BIAS and RMSE with respect to Villa 
Yacanto radiosondes valid at 12 UTC are shown, using the 0 and 6 h 
forecast lead times for RRR and NoRegDA, respectively. For the wind 
components, the less RMSE values are encountered near surface while 
maximums are found around 650 and 750 hPa for U and V, respectively, 

Fig. 12. 6 h accumulated precipitation fractions skill score (FSS) as function of forecast lead time, for thresholds of 1 mm (red line) and 25 mm (blue line), and box 
sizes of 50 km (squares) and 350 km (circles). RRR forecasts initialized at (a) 00 UTC, (b) 06 UTC, (c) 12 UTC and (d) 18 UTC. The NoRegDA experiment initialized at 
06 UTC (dashed line) is included in (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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for RRR. Temperature errors above 2 K are registered below 800 hPa, 
associated to a low-level warm BIAS. Dewpoint errors up to 12 K evi
dence the model deficiencies in representing properly the humidity, 
with a dry (wet) BIAS below (above) 550 hPa. Note that a dry BIAS was 
also encountered for convection-permitting deterministic WRF for this 
location during the same period (Casaretto et al., 2021). In addition, mid 
level dry model BIAS was documented by Piersante et al. (2021) over the 
region using radiosonde data to validate a 20-km WRF simulation. In 
relation to the NoRegDA statistics, although its values are very close to 
RRR, its ensemble mean generally performs better for all these variables. 
Moreover, the NoRegDA ensemble spread is generally larger than the 
RRR one, in particular below 700 hPa. The great amount of ASWS 
assimilated observations (as mentioned in Section 2.2) may have 
impacted negatively in low levels RRR spread. 

Regarding the precipitation, in Fig. 12 we present the FSS against 
IMERGFR precipitation estimates as a function of the forecast lead time. 
Overall, the 00 and 12 UTC initializations show better scores consid
ering both the 1 and 25 mm 6 h accumulated thresholds, and the 
different scales analyzed. For the bigger threshold, the best FSS values 
are encountered at 12 UTC valid time (e.g. 18 and 30 h forecast lead 
times for 18 and 06 UTC initializations, respectively), while the worst 
values are detected at 18 UTC valid time (e.g. 6 and 18 h forecast lead 
times for 12 and 00 UTC initializations, respectively). This behavior 
suggests that the RRR is more skillful in forecasting morning than af
ternoon heavy precipitation. In addition, NoRegDA performs better, 
particularly for the 25 mm threshold and during the first 12 forecast 
hours, possibly because initial conditions provided by RRR are not as 
good as the ones provided by the global data assimilation system. 

In order to evaluate the overall impact of the assimilated observa
tions, we compute the spatially averaged RMSE for each forecast lead 

time of different initializations with respect to ERA5, for each member 
for distinct levels. Then we compare the errors between the initializa
tions driven by the same GEFS boundary conditions (for example 09 and 
12 UTC) considering the common valid times (for example 3–36 h 09 
UTC forecasts versus 0–33 h 12 UTC forecasts). Finally, an average 
among the forecasts lead times and the ensemble members is taken to 
obtain one vertical profile to represent the RMSE difference for RRR 
forecasts initialized at different cycles (Fig. 13). Overall, negative values 
are encountered, suggesting that the observations assimilated in be
tween are responsible for error reduction, as the same boundary con
ditions are used. However, there are some positive values, for example 
for low level temperature for three time pairs of day, except for the 
difference between the forecasts initialized at 18 and 15 UTC. 

We perform a similar evaluation using Villa Yacanto radiosondes 
valid at 12 UTC (Fig. 14). In general, larger RMSE reductions are 
observed at middle and upper levels for all the variables, while at lower 
levels more positive values are found. At low levels the greatest im
provements are registered at 00 UTC for T and at 18 UTC for U and V. 

Further investigation is required to identify the observation types 
responsible for the detrimental impact upon the quality of the analyses 
and forecasts. Analyzing the diurnal cycle errors not only in this location 
but also in the other sounding sites, would help to understand both the 
DA strengths and weaknesses. 

4. Insight on the multi-physics ensemble 

In this section we evaluate the performance of the different PBL and 
cumulus parameterizations used in the ensemble (Table 1). To assess the 
impact of each PBL (cumulus) scheme, we analyze the three sub- 
ensembles that result from the combination with the cumulus (PBL) 

Fig. 13. Difference of RMSE with respect to ERA5 for RRR forecasts initialized at different cycles (00 minus 21 UTC; 06 minus 03 UTC; 12 minus 09 UTC; 18 minus 
15 UTC) but driven by the same GEFS boundary conditions; for (a) zonal wind component [ms−1]; (b) meridional wind component [ms−1]; (c) temperature [K]; (d) 
specific humidity [gKg−1]. The figure condensates the information of all members and forecasts lead times (see the text for more details in the calculation). 
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schemes. For these sub-ensembles we compute the BIAS and RMSE for 
T2m and V10m, and the FSS for the 6 h accumulated precipitation. 

For T2m and V10m a different behavior is detected for the PBL 
schemes RMSE when fixing a cumulus parameterization for forecasts 
initialized at 12 UTC (Figs. 15a, b and c). The largest RMSE corresponds 
to MYJ for the wind for all the forecast lead times (this is also true for the 
zonal component, not shown), but this PBL parameterization exhibits 
the largest errors for the temperature only during the day time. For the 
BIAS, MYJ shows the most positive values during warm hours, while 
during the night it is the scheme with less BIAS (in module). In addition, 
MYNN2 exhibits the BIAS closest to zero during the day time. The same 
behavior is presented for the forecasts initialized at 00, 06 and 18 UTC 
(not shown). 

Cumulus parameterizations have an impact upon T2m which is as 
large as the one produced by different PBL schemes (Figs. 15d, e and f). 
This impact can be explained through the coupling between the cumulus 
scheme and the parameterization of radiative fluxes and also due to the 
direct low-level temperature tendencies associated with cumulus 
schemes. The impact on low-level winds is much smaller, as their ten
dencies are not directly modified by cumulus schemes and in this case 
the impact is indirect (e.g. through changes in the larger scale circula
tion or due to the development of mesoscale circulations like those 
associated with cold pools). Regarding the BIAS, more distinctions 
appear among the cumulus parameterizations: for the temperature 
generally GF shows the values closest to zero and for the wind both GF 

and KF perform better most of the time. Similar results were found for 
the forecasts initialized at 00, 06 and 18 UTC (not shown). 

The FSS of precipitation, for the forecasts initialized at 00 and 12 
UTC (Fig. 16) indicates that precipitation forecasts are, as expected, 
more sensitive to the choice of the cumulus parametrization than to the 
choice of the PBL scheme (as shown for example by Piersante et al. 
(2021)). Particularly, BMJ shows the worst performance for both 
thresholds. In the case of the PBL parameterizations, some distinctions 
appear at the 25 mm threshold, where MYJ is slightly better than YSU 
and MYNN2. 

In addition, Hovmöller diagrams of hourly accumulated precipita
tion from forecasts initialized on 12 November at 12 UTC using different 
configurations are compared against IMERGFR in Fig. 17. Forecasted 
precipitation on each panel of Fig. 17 consists of the mean over the 
ensemble members that share that particular combination of cumulus 
and PBL schemes. The behavior of the precipitation for this specific case 
confirms the results obtained with the FSS: the greater differences occur 
among the cumulus schemes, with BMJ showing the worst performance 
as it significantly underestimates precipitation intensity. KF consistently 
captures both the initiation of this event and the intensification of pre
cipitation after 06 UTC November 13th. Overall the eastward propaga
tion of the system is also well captured. However, there is an 
overestimation of precipitation intensity during the first hours which is 
larger when KF is combined with the MYJ scheme. GF also performs well 
in this case, particularly capturing a second pulse of convective 

Fig. 14. Difference of RMSE with respect to Villa Yacanto radiosondes for RRR forecasts initialized at different cycles (00 minus 21 UTC; 06 minus 03 UTC; 12 minus 
09 UTC; 18 minus 15 UTC) but driven by the same GEFS boundary conditions; for (a) zonal wind component [ms−1]; (b) meridional wind component [ms−1]; (c) 
temperature [K]; (d) dewpoint [K]. The figure condensates the information of all members and forecasts lead times (see the text for more details in the calculation). 
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initiation around 00 UTC November 13th which is not well represented 
by KF, although the maximum precipitation is split into two local 
maxima a few hours prior and after the observed one. Particularly, the 
prior maximum is significantly reduced by the GF-MYNN2 
configuration. 

An important issue is the clustering effect associated with the use of 
multi-physics ensembles. Fig. 17 shows different precipitation forecast 
clusters depending on the cumulus scheme, while the impact of PBL 
seems to play a secondary role for this variable. Also a look at the 

individual ensemble members reveals that differences among cumulus 
parameterizations are much larger than differences due to different 
initial conditions (not shown). This result confirms what has been found 
by Johnson et al. (2011), that in a multi-model multi-physics ensemble 
the spread at short lead times is dominated by the different physics 
schemes, at least for variables whose dynamics are directly driven by the 
parameterization of unresolved physical processes. 

Overall, the performance of different schemes depend on the verified 
variable. For example, MYJ shows the largest RMSE for V10m for all 
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Fig. 15. Spatial and temporal averaged RMSE and BIAS 
with respect to CSWS and ASWS observations as a function 
of the forecast lead time, for RRR forecasts initialized at 12 
UTC for (A) T2m [K] and (B) V10m [ms−1]. Ensemble 
members with cumulus parameterizations of: (a) KF (b) 
BMJ and (c) GF; and with PBL parameterizations of: (d) 
YSU (e) MYJ and (f) MYNN2. For each case of cumulus 
(PBL) parameterizations the three possible combinations 
with PBL (cumulus) are shown. All the panels include the 
scores of the ensemble mean (grey thin contour).   

M.E. Dillon et al.                                                                                                                                                                                                                                



Atmospheric Research 264 (2021) 105858

15

forecast times and for T2m during daytime. At the same time, this 
parameterization produces the best results in terms of precipitation as 
revealed by the FSS. This confirms that no single model configuration 
overhangs and that all the evaluated combinations of schemes lead to 
similar forecast skill, with the exception of configurations using BMJ 
which showed lower forecast skill for almost all the variables consid
ered. The fact that BMJ performs worse than the rest of the configura
tions suggests that this parameterization should not be included in the 
design of multi-physics ensembles over this region. 

In addition, this indicates the need to account for the performance of 
individual schemes’ combinations for forecasting and data assimilation. 
As an alternative to a-prior evaluation of different parameterizations 
combinations (that can be computationally demanding), some previous 
works explored on-line optimization schemes for multi-model ensemble 
compositions based on Bayesian techniques with promising results (e.g. 
Otsuka and Miyoshi (2015); Xue and Zhang (2014)). 

5. Concluding remarks 

This article documents the implementation of a regional ensemble 
data assimilation system during the RELAMPAGO field campaign in 
central Argentina, during November and December 2018. A multi- 
physics 60-member ensemble-based LETKF-WRF DA system was run in 
real-time to support IOP operations during the field campaign and also 
to provide the first set of analyses that can be used in research activities. 
This RELAMPAGO Rapid Refresh system (RRR) represents the first 
ensemble rapid update cycle that was run in Southern South America 
using conventional, satellite and radar observations altogether with a 
10-km horizontal resolution. 

On the one hand, the evaluation of the hourly analyses from 00 UTC 
9 November to 12 UTC 19 December 2018 revealed an overall good 
performance when compared with the ERA5 reanalyses. Moreover, it 
was shown that the LETKF DA has functioned in a stable way during the 
whole period producing reasonable updates from the observations. 
Regarding the ensemble spread, the under dispersive estimation 

encountered is an aspect that should be addressed in future imple
mentations, for example by optimizing the inflation coefficient, 
including perturbations on soil conditions, among others (Houtekamer 
and Zhang, 2016). The model uncertainties can also be handled by 
applying a stochastic kinetic energy backscatter scheme (Berner et al., 
2011; Romine et al., 2014), with the aim of increasing the ensemble 
spread. 

On the other hand, the assessment of 36 h forecasts initialized at 
different times presented an acceptable skill. It was shown that the WRF 
model produced warmer low level temperatures for almost all the hours 
of the day, in agreement with previous studies over the region (eg. Ruiz 
et al. (2010)). In relation to the vertical profiles of BIAS and RMSE with 
respect to Villa Yacanto radiosondes valid at 12 UTC, the misrepresen
tation of the humidity was the most striking feature, while the winds and 
temperature showed typical error values. With regards to precipitation, 
the Fractions Skill Scores were better for initializations at 00 and 12 UTC 
than at 06 and 18 UTC (considering IMERGFR). 

In addition, these 36 h warm-start forecasts were compared with the 
cold-start forecasts of a 60-member WRF ensemble without LETKF 
application (named NoRegDA), showing an overall similar performance 
between them, but only a few times a positive impact of the regional 
warm-start initialization was encountered. Some possible reasons could 
be: (a) for RRR no radiance observations were assimilated (currently 
under development by the authors); (b) the low level temperature BIAS 
of WRF over the region, which has also been documented previously 
(Ruiz et al., 2010; Dillon et al., 2016) (other PBL schemes should be 
tested over the region and also a BIAS correction could be implemented 
(for example following Pelosi et al. (2017))); (c) the relatively low res
olution of the regional model in comparison to the resolution in the 
global one, which prevents the regional model from producing better 
quality forecasts with respect to the driving global model; (d) the rela
tively small regional domain which may increase the negative effect 
associated with a coarse temporal resolution specification of the 
boundary conditions; (e) the dominant amount of radar observations 
compared to the other data sources which may produce a detrimental 

Fig. 16. As in Fig. 12, but for a box size of 50 km, and thresholds of 1 mm (solid line) and 25 mm (dashed line). Ensemble members with cumulus parameterizations 
of: (a) KF (b) BMJ and (c) GF; and with PBL parameterizations of: (d) YSU (e) MYJ and (f) MYNN2. For each case of cumulus (PBL) parameterizations the three 
possible combinations with PBL (cumulus) are shown. 
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effect on the analysis, since radar data is complex to assimilate due to the 
nonlinear relation with model variables and also due to complex 
observational errors. It is evident that more work is required to improve 
the regional system to overcome current limitations and to provide a set 
of initial conditions for warm-start regional ensemble forecasts with 
better skill than the cold-start forecasts. 

The analysis of the observation impact, using both ERA5 and Villa 
Yacanto soundings as reference data sets, showed that the assimilation 
usually lead to an error reduction in the forecast. However, a detri
mental effect has been identified for some levels and variables like, for 
example, low-level temperature. This detrimental effect deserves further 
investigation. A detailed analysis of the impact associated with different 
observation types is currently underway. 

In this work, we evaluated the individual skill of the nine model 
configurations used in the multi-physics ensemble. As has been reported 

in previous studies, no single combination of schemes produce the best 
results for all the verified variables (e.g. Ha et al. (2015)). The best 
combinations for forecasting surface variables (GF-MYNN2 and GF-YSU) 
differ from the best ones for forecasting precipitation (GF-MYJ and KF- 
MYJ). In addition, members using the BMJ cumulus parameterization 
performed systematically worse than those using GF or KF indepen
dently of the choice of the PBL scheme. Besides, the analysis of a 
particular case showed that using different schemes leads to different 
convective initiation times and different evolution of the precipitation 
systems. 

Furthermore, a clustering effect similar to that reported in Johnson 
et al. (2011) has been found. As has been discussed in those papers, the 
clustering effect has important implications in the context of ensemble 
forecasting since the assumption of all members being equally likely is 
violated. This can have important consequences in the context of data 

Fig. 17. Hourly precipitation Hovmöller diagrams for the 36 h forecasts initialized at 12 UTC on 12 November, for the RRR ensemble mean for each group of 
parameterizations (shaded) [mmh−1]: (a)KF-YSU, (b)BMJ-YSU, (c)GF-YSU, (d)KF-MYJ, (e)BMJ-MYJ, (f)GF-MYJ, (g)KF-MYNN2, (h)BMJ-MYNN2, (i)GF-MYNN2. The 
IMERGFR contours for 1, 5 and 7.5 mmh−1 are also shown. 
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assimilation. Systematic differences among clusters of ensemble mem
bers may lead to systematic error covariances. Moreover the sample 
distribution derived from a multi-physics ensemble may depart from 
Guassianity, with eventually multiple modes associated to different 
clusters, thus violating the Kalman filter assumptions and leading to sub- 
optimal analysis updates. These effects deserves further investigation, 
particularly for the assimilation of radar data and surface observations 
which are linked to model variables that are susceptible of being affected 
by these issues. 

We foster the usage of the RRR data set to study the RELAMPAGO 
IOPs in order to analyze both the strengths and weaknesses of the DA 
system, which could be taken into account in future experimental de
signs either for research or operational implementations over the region. 
For example, some aspects that should be addressed concerning an 
improvement in the DA system are: the quality control of the observa
tions to be assimilated, particularly the ones from radar and surface 
stations; the superobbing applied for dense distributed observations (for 
example considering the radar data altogether for the calculation); the 
temporal frequency used for the assimilation of radar data; the values 
given for certain LETKF parameters, as the localization and the inflation; 
among others. Sensitivity experiments to study these improvements can 
be validated with RELAMPAGO’s observations. 

Last but not least, a project to evaluate the impact of the assimilation 
of the observations collected during the campaign is underway. Besides, 
the findings documented in this article have been taken into account for 
the design of a convection-permitting regional LETKF-WRF system, to be 
implemented at the ANMS. 
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Appendix A 

Table A1 lists the Automatic Surface Weather Stations (ASWS) providers along with their web sites. The data was collected during the RELAM
PAGO field campaign.   

Table A1 
Automatic surface weather stations providers and their web sites.  

ASWS Provider web site 

REM San Luis http://www.clima.edu.ar/ 
Entre Ríos Board of Trade http://www.centrales.bolsacer.org.ar/ 
Córdoba Board of Trade http://clima.bccba.com.ar/ 
Chaco Provincial Government http://clima.produccion.chaco.gov.ar/ 
Córdoba Provincial Government http://magya.omixom.com/ 
National Water Institute (INA) http://sgainacirsa.ddns.net/ 
National Institute for Agricultural Technology (INTA) http://inta.gob.ar/ 
Entre Ríos Provincial Government http://www.hidraulica.gob.ar/ 
Rosario Board of Trade http://www.bcr.com.ar/ 
Wunderground http://wunderground.com/ 
La Plata National University http://unlp.edu.ar/ 
Uruguay National Weather Service http://inumet.gub.uy/ 
Brasil National Weather Service http://www.inmet.gov.br/ 
La Pampa Provincial Government http://www.lapampa.gov.ar/ 
Tucumán Agroindustrial Experimental Station http://www.eeaoc.org.ar/ 
Paraguay National Aeronautical Direction http://www.dinac.gov.py/ 
Mendoza Radar Operators http://mate.cima.fcen.uba.ar/estaciones/mendoza/  
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