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Abstract—We consider the problem of estimating unknown
transmittance θ of a target bathed in thermal background light.
As quantum estimation theory yields the fundamental limits, we
employ the lossy thermal-noise bosonic channel model, which
describes sensor-target interaction quantum mechanically in
many practical active-illumination systems (e.g., using emissions
at optical, microwave, or radio frequencies). We prove that
quantum illumination using two-mode squeezed vacuum (TMSV)
states asymptotically achieves minimal quantum Cramér-Rao
bound (CRB) over all quantum states (not necessarily Gaussian)
in the limit of low transmitted power. We characterize the optimal
receiver structure for TMSV input, and show its advantage over
other receivers using both analysis and Monte Carlo simulation.

I. INTRODUCTION

A precise measurement of power transmittance is a fun-

damental task in engineering. It translates to measuring both

target reflectance in active sensing systems, such as RADAR

and LIDAR, and signal distortion from attenuation in commu-

nications systems. Transmittance is also critical to quantum-

system design. It determines the precision of quantum methods

for phase estimation [2], [3], the point-to-point quantum-

communication capacity [4], and whether a quantum channel

preserves the entanglement [5].

The importance of measuring transmittance led to the de-

velopment of classical signal processing methods covering

many practical scenarios [6], [7]. However, the fundamental

precision limits for all sensing tasks as well as the approaches

to achieve these limits are governed by quantum information

theory [8]–[11]. As we briefly discuss in Section II-C, this is

because quantum information methods optimize the underly-

ing physical measurement process that generates the data for

the estimator, as well as the estimator itself. Indeed, quantum-

enhanced sensing systems can significantly outperform those

limited by classical methodology [12], [13].

Consider active sensing of target reflectance, using optical,

microwave, or radio-frequency emissions in the presence of
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background Gaussian noise. This task is modeled quantum

mechanically by the measurement of power transmittance of a

lossy thermal-noise bosonic channel. Despite the progress in

quantum transmittance sensing [14]–[20], outlined briefly in

Section II-D, a design of a sensor transceiver that attains the

quantum limit in the presence of environmental thermal noise,

has been elusive. In fact, the authors of [18], upon establishing

the fundamental lower bound on the mean squared error

(MSE) of quantum transmittance estimation, question whether

a thermal-noise scenario even exists where this bound is sat-

urated. Here, we answer this question affirmatively: the lower

bound is achievable for probes with low transmitted power.

Furthermore, we characterize the corresponding transceiver

and provide analysis, and simulations supporting its near-term

physical implementation.

We begin by describing in Section II our notation and the

lossy thermal-noise bosonic-channel model. We then cover the

basics of quantum estimation theory. This allows us to in-

troduce the quantum perspective on the transmittance-sensing

problem and to consider the use of quantum illumination

(QI) [18], [21]–[26], which, in general, improves precision

by using entanglement between the transmitted probe and

a reference state retained in the transceiver. In Section III

we prove that probes constructed from two-mode squeezed

vacuum (TMSV) states can achieve the ultimate bound in

the limit of low transmitted power. As was done previously

for quantum-enhanced target detection [18], [21]–[24], [26],

our transmitter generates n TMSV states, and probes the

target’s transmittance with one mode of each TMSV state,

while retaining the other mode as a reference. In Section IV,

we characterize a matching quantum receiver, that measures

the n returned probes and corresponding entangled reference

signals, and applies maximum likelihood estimation (MLE)

on the resulting classical measurements. In the limit of low

transmitted power and large n this transceiver achieves the

fundamental lower bound on MSE from [18]. Although they

are not classical, the components used in our receiver are

well-known to the optics community: a two-mode squeezer

followed by a photon-number-resolving (PNR) measurement.

However, despite this convenience, our receiver’s existence is

limited to certain ranges of system parameters: transmittance,

signal power, and thermal noise power. Thus, in Section V,

we compare its theoretical limits to those of other well-known

receivers, and show significant advantage derived from using

TMSV input and our receiver.

The MSE of our sensing system converges to the quantum

lower bound as the number of probes n → ∞. However,

practical sensing is limited to a finite number of probes:

n < ∞. This motivates evaluating the speed of convergence

to the limit. Further complicating the analysis is the depen-
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between S and I . The quantum CRB for joint estimation of

unknown ¹ and n̄T using Gaussian subset of quantum states

[44] was derived in [17]. Although the two-mode squeezed

vacuum (TMSV) state was proved an optimal Gaussian state in

[17], the sensor was allowed to estimate ¹ from just the thermal

background – called “shadow effect” in [19]. QI literature [18],

[21]–[23], [25], [26] addresses arguably more practical settings

where the thermal background cannot aid the estimation. The

“shadow effect” is removed by setting:

n̄T ≡ n̄B

1− ¹
, (6)

where n̄B is the mean number of thermal background photons

per mode that corrupt the sensor’s probes. When the back-

ground light does not help the estimation of ¹, quantum CRB is

quantitatively different from results in [17]1, and the quantum

FI is upper-bounded by [18, Eq. (21)]:

Jθ (Ã̂InRn(¹)) f Jθ,ub (n̄S,tot) ≡
n̄S,tot

¹(n̄B + 1− ¹)
, (7)

where n̄S,tot =
∑n

i=1 n̄S,i is the total mean photon number

transmitted over n modes, and the individual mode mean

photon numbers n̄S,i may be unequal. However, [18] leaves

open the structure of Ä̂InSn that saturates (7), and the design

of the corresponding quantum-CRB-achieving measurement.

Excited by the gap identified in [18] and using the pre-

scription for n̄T in (6), we analyze transmittance sensing

with the TMSV states. In the next section, we find that the

quantum FI of TMSV states saturates the ultimate bound

in (7) as per-mode transmitted photon number n̄S → 0.

In Section V, we report that, at n̄S > 0, the quantum FI

of TMSV states significantly exceeds the FI of other well-

known transmittance estimation schemes. This motivates the

derivation of the quantum-CRB-achieving receiver structure

for TMSV probes in Section IV, and the numerical analysis

of the convergence of its MSE to the optimal in Section VI.

Following the conference presentation [1] of our prelimi-

nary results, [19] investigated transmittance sensing with and

without noise aiding the estimation. Notably, [19] proved that

TMSV maximized the quantum FI within the class of Gaussian

quantum states [44] with and without the “shadow effect.”

While the treatment of quantum FI in [19] is comprehensive,

the receiver structures that achieve it are not considered.

Even more recently, [20] presented an experimental study of

estimating multiple transmittance parameters in Xanadu’s X8

integrated-photonic-quantum computer [45]. Unfortunately,

the limitations of Xanadu’s platform limit the study in [20]

to photon-number-resolving (PNR) measurements of TMSV

states. The same authors follow up by analyzing the limits of

transmittance sensing using coherent and Fock states in the

presence of detector dark counts [46], and report results that

are qualitatively similar to those in Section V.

1Reparameterizing [17, Eqs. (B8a)-(B8d)] to θ = e−γ shows that, even in
the absence of probes (n̄S = 0), quantum FI associated with θ is positive
due to the thermal background.

III. TMSV IS OPTIMAL FOR TRANSMITTANCE SENSING

The TMSV state is represented in the Fock (photon number)

basis as follows:

|ÈðIS =

∞
∑

k=0

√

q(k; n̄S) |kðI |kðS , (8)

where q (k; n̄) is defined in (1). TMSV is a zero-displacement

pure Gaussian state, which among all two-mode-Gaussian

states with mean photon number n̄S is maximally entangled

[44]. It is critical in quantum-information processing. Gener-

ating TMSV is a well-known (bordering on routine) process

in quantum optics. We show that TMSV becomes optimal

for transmittance estimation in thermal noise as transmitted

photon number per mode n̄S decays to zero:

Theorem 1. The following limit holds for the quantum Fisher

information Jθ (Ã̂InRn(¹)):

lim
n̄S→0

Jθ (Ã̂InRn(¹))

n̄S
=

n

¹(n̄B + 1− ¹)
(9)

when n TMSV probes described by tensor-product state

Ä̂InSn = |Èð ïÈ|¹n
IS are used and Ã̂InRn(¹) is the quantum

state describing the returned probes and retained references.

We first note that the lossy thermal-noise bosonic channel

E n̄T,θ
S→R acts independently on each transmitted mode. There-

fore, for input tensor product of TMSV states |Èð ïÈ|¹n
IS ,

the output state Ã̂InRn(¹) = Ã̂¹n
IR (¹) is a tensor product of

states Ã̂IR(¹) =
(

II ¹ E n̄T,θ
S→R

)

[|Èð ïÈ|IS ]. By the additivity

of the quantum FI for tensor product states, Jθ (Ã̂InRn(¹)) =
nJθ (Ã̂IR(¹)). In Appendix I we employ the method from

[47], [48] to derive the quantum FI

Jθ,TMSV (n̄S) ≡ Jθ (Ã̂IR(¹))

=
n̄S (n̄B + 1 + (1− ¹)n̄S + n̄Bn̄S)

¹ (n̄B + 1− ¹) (n̄B + 1 + n̄S(2n̄B + 1− ¹))
(10)

associated with the quantum state Ã̂IR(¹) that describes the

returned probe and retained reference when a single TMSV

probe is used. Multiplying (10) by n
n̄S

and taking the limit in

(9) yields the proof.2

Theorem 1 proves that TMSV is optimal over all low-

input-power states, including the non-Gaussian ones. Although

it has been shown to be an optimal Gaussian state for all

values of ¹, n̄B, and n̄S [19], characterization of a general

quantum input state that maximizes quantum FI associated

with ¹ is an open problem. That being said, as mentioned

in Section I, the low transmitted-photon-number per mode

regime is important for the design of sensors operating under

the total power constraints. Thus, we characterize and analyze

a receiver structure that achieves asymptotically the quantum

CRB for TMSV.

2Our expression for the quantum FI of TMSV in (10) is exact, unlike
[25, Eq. (6)] and [18, Eq. (23)]. In fact, all of the quantum FI expressions

in [25] are approximations at θa = 0, where θa =
√

θ is the amplitude
transmittance, and [18, Eq. (23)] is [25, Eq. (6)] reparametrized from θa to
θ. Reparametrizing (10) to θa and setting θa = 0 yields [25, Eq. (6)]. That a
crude approximation with a zero-order Taylor series term yields such a close
result is striking.
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Jθ(n̄S)
n̄S

is our figure of merit, where Jθ (n̄S) is classical or

quantum FI attainable with n̄S input mean signal photons per

mode. The ultimate upper bound for PFIE is derived from (7):

ȷub (n̄S) ≡
Jθ,ub (n̄S)

n̄S
=

1

¹(n̄B + 1− ¹)
. (24)

The PFIE for TMSV source uses the quantum FI in (10):

ȷTMSV (n̄S) ≡
Jθ,TMSV (n̄S)

n̄S

=
n̄B + 1 + (1− ¹)n̄S + n̄Bn̄S

¹ (n̄B + 1− ¹) (n̄B + 1 + n̄S(2n̄B + 1− ¹))
.

(25)

The PFIE for coherent and TMSV+OPA transceivers use

classical FI expressions (12) and (14), respectively:

ȷCoh (n̄S) ≡
Jθ,Coh (n̄S)

n̄S
=

1

2¹(n̄B + 1)
(26)

ȷOPA (n̄S) ≡
Jθ,OPA (n̄S)

n̄S

= max
G>1

(

(G− 1)n̄S +
√

G(G−1)n̄S(n̄S+1)
θ

)2

n̄Sn̄OPA(n̄OPA + 1)
.

(27)

The PFIE for Fock state and TMSV+Heralded PNR measure-

ment use quantum and classical FI expressions in (19) and

(23), respectively:

ȷFock (|mð) ≡ Jθ,Fock (|mð)
m

(28)

ȷHer (n̄S) ≡
Jθ,Her (n̄S)

n̄S
. (29)

We evaluate (24)-(29) and plot the results versus thermal-

noise mean photon number n̄B in Fig. 9. While ȷub (n̄S) and

ȷCoh (n̄S) are constant relative to transmitted mean photon

number n̄S, ȷTMSV (n̄S), ȷOPA (n̄S), and ȷHer (n̄S) are not.

Thus, we include plots for various values of n̄S. We set ¹ = 0.5
and note that, for other values ¹, the plots are qualitatively

similar. In plotting ȷOPA (n̄S) we maximize (27) over G > 1
numerically. We include the plot of ȷFock (|mð) for single-

photon Fock state |1ð and a thirty-photon Fock state |30ð on

all plots. The challenges associated with computing the hy-

pergeometric series 2F1 [57] precluded evaluating ȷFock (|mð)
for m > 30. When evaluating ȷHer (n̄S), we had to truncate

the sum in the expectation in (23) at m = 30. This accurately

approximates ȷHer (n̄S) only up to n̄S ≈ 4. Thus, we did not

evaluate ȷHer (n̄S)|n̄S=10 and ȷHer (n̄S)|n̄S=100.

It is evident from Fig. 9 that PFIE of the TMSV input

combined with optimal measurement exceeds that of other

receivers we consider. While Fock state transmitters’ per-

formance rapidly decays with noise, they outperform the

TMSV+OPA transceiver when signal-to-noise ratio (SNR)

is high. Indeed, the TMSV+OPA transceiver performs very

poorly when the transmitted mean photon number is high.

On the other hand, the high PFIE of single-photon Fock

state |1ð in low noise shows the promise of using the on-

demand single-photon sources and PNR measurement for

transmittance sensing. Furthermore, since the first three terms

of the summation in (22) approximate Jθ (¿̂R(¹, 1)) well for

n̄B < 1, a measurement that distinguishes zero, one, or more

photons suffices for accurate estimation of ¹ for these systems.

Such measurement is less complex than the full PNR one.

We also note that TMSV+heralded PNR performs as well

as the single-photon Fock state source in low-noise set-

ting. In fact, our calculations suggest that, for n̄S j 1,

TMSV+heralded PNR measurement matches PFIE of a single-

photon Fock state source while using a less-complex single-

photon detector (SPD) that distinguishes zero or more than

zero photons instead of a PNR measurement.

Nevertheless, many practical scenarios demand low-

transmitted-power operation. Even for moderate noise power,

this results in low SNR. Transmittance sensors that employ

TMSV+receiver derived in Section IV and TMSV+OPA re-

ceiver behave well in this setting. Thus, next we use Monte

Carlo simulation to evaluate these sensors and to compare their

performance to a simpler one based of a coherent transceiver.

VI. COMPARISON WITH ALTERNATIVE

TRANSMITTANCE-SENSING METHODS: SIMULATIONS

Maximum likelihood estimators (MLEs) have a number of

desirable properties, the first and foremost being the avail-

ability of “turn-the-crank” implementation in most practical

settings. Furthermore, MLEs are usually asymptotically con-

sistent and efficient, as the number of observations n→ ∞ [6],

[7]. Here we employ MLEs to estimate transmittance ¹ from

the outputs of coherent homodyne transceiver, TMSV+OPA

receiver, and TMSV+receiver derived in Section IV, analyzing

their convergence to CRB for increasing n.

A. Construction of MLEs

1) Coherent Homodyne Transceiver: Consider a transmit-

tance sensing scheme described in Section V-A that uses a

tensor product |³ð¹n
S of n coherent states |³ðS with ³ =

√
n̄S

as probes and a homodyne receiver. The corresponding output

is a sequence of n independent and identically distributed

(i.i.d.) Gaussian random variables {Xk}nk=1, each with mean√
¹n̄S and variance n̄B + 1. The MLE for ¹ is:

¹̌Coh(n) =
1

n̄S

(

1

n

n
∑

k=1

xk

)2

, (30)

where xk is an observed instance of Xk.

2) TMSV Input and OPA Receiver: Now consider a scheme

from Section V-B that uses a tensor product Ä̂InSn =
|Èð ïÈ|¹n

IS of n TMSV states defined in (8) as probes and

an OPA receiver. The corresponding output is a sequence of

n i.i.d. geometric random variables {Yk}nk=1, each with mass

function qY (y; n̄OPA) defined in (1), where the n̄OPA is in

(13). The MLE for ¹ is:

¹̌OPA(n) =
ȳ(G∗ − 1)− 1− n̄B

(G∗ − 1)2n̄S

− 2
√

G∗(1 + ȳ + n̄B −G∗n̄S)(1 + n̄S)

(G∗ − 1)n̄S

+
G∗(G∗ + 2n̄B −G∗n̄B + (G∗ − 1)n̄S)

(G∗ − 1)2n̄S
, (31)
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to account for the limitations of practical systems. This will

allow exploration of trade-offs between their complexity and

performance and hasten the integration of quantum-enhanced

sensing protocols into practical systems.

APPENDIX I

PROOF OF THEOREM 1

The proof of Theorem 1 was presented at the International

Symposium on Information Theory (ISIT) 2021 and included

in its proceedings [1].

As explained in Section III, for input tensor product of

TMSV states |Èð ïÈ|¹n
IS , the output is a tensor-product state

Ã̂InRn(¹) = Ã̂¹n
IR (¹) and quantum FI Jθ (Ã̂InRn(¹)) =

nJθ (Ã̂IR(¹)). Since the TMSV state and the bosonic channel

are Gaussian, the output state Ã̂IR(¹) is also Gaussian. This

allows the use of the symplectic formalism [44]. We use

the q̂q̂p̂p̂ form for representing and evolving the covariance

matrices of Gaussian states in phase-space, where q̂ = â+â†
√
2

and p̂ = â−â†
√
2

are the quadrature operators. The input TMSV

state’s covariance matrix is:

Σρ̂IS
=











u1 u2 0 0

u2 u1 0 0

0 0 u1 −u2
0 0 −u2 u1











, (36)

where u1 = n̄S + 1
2 and u2 =

√

n̄S(n̄S + 1). The action of

the lossy thermal-noise bosonic channel E n̄T,θ
S→R on the signal

mode does not displace the state and results in the covariance

matrix of the output:

Σσ̂IR(θ) = XΣρ̂IS
XT + Y (37)

=











w11 w12 0 0

w12 w22 0 0

0 0 w11 −w12

0 0 −w12 w22











, (38)

where Y = diag
(

0, n̄B + 1
2 − θ

2 , 0, n̄B + 1
2 − θ

2

)

, X =

diag
(

1,
√
¹, 1,

√
¹
)

, AT is a transpose of A, and

w11 = n̄S +
1

2
, (39)

w22 = n̄B + ¹n̄S +
1

2
, (40)

w12 =
√

¹n̄S(n̄S + 1). (41)

We now derive the quantum FI using the method in [47],

[48]. First, the Uhlmann fidelity between zero-displacement

Gaussian states Ä̂1 and Ä̂2 with covariance matrices Σ1 and

Σ2 is [47]:

F (Ä̂1, Ä̂2) =
1

√

√
Γ +

√
Λ−

√

(
√
Γ +

√
Λ)2 −∆

, (42)

where the symplectic invariants are:

∆ = det (Σ1 +Σ2) g 1 (43)

Γ = 16 det

(

ΩΣ1ΩΣ2 −
I4×4

4

)

g ∆ (44)

Λ = 16det

(

Σ1 +
j

2
Ω

)

det

(

Σ2 +
j

2
Ω

)

g 0, (45)

Ω =

[

02×2 I2×2

−I2×2 02×2

]

is the symplectic matrix, Im×m is

the m × m identity matrix, and j =
√
−1 is the imaginary

unit. The quantum FI is calculated using (42) as follows:

Jθ (Ã̂IR(¹)) = −4
∂2F (Ã̂IR(¹), Ã̂IR(¹ + ¶θ))

∂¶2θ

∣

∣

∣

∣

δθ=0

,(46)

where (46) is derived in [48]. Evaluating (46) yields (10).

APPENDIX II

DERIVATION OF A QUANTUM CRB-ACHIEVING RECEIVER

We obtain a quantum CRB-achieving receiver for trans-

mittance by adapting the approach from [14]. We derive

an eigendecomposion
{

Ŝ(É) |kmð : k,m = 0, 1, . . .
}

of Λ̂θ

in three steps: 1) we find an orthonormal basis {|Èkmð},

k,m = 0, 1, . . . for the output state Ã̂IR(¹); 2) we use {|Èkmð}
to write Λ̂θ as a linear combination of creation and annihilation

operators âI , âR, â
 
I , and â

 
R of the return and idler modes;

and, 3) we recognize that the resulting linear combination is

produced by an action of a two-mode squeezing operator Ŝ(É)
on a number operator, yielding an expression for É.

A. Orthonormal Basis for the Output State Ã̂IR(¹)

Squeezing the two modes of Ã̂IR(¹) yields Ã̂d
IR(¹) =

Ŝ(·)Ã̂IR(¹)Ŝ
 (·) with the covariance matrix:

Σσ̂d

IR
(θ) = ZΣσ̂IR(θ)Z

T (47)

=











wd
11 wd

12 0 0

wd
12 wd

22 0 0

0 0 wd
11 −wd

12

0 0 −wd
12 wd

22











, (48)

where

Z =











cosh(·) sinh(·) 0 0

sinh(·) cosh(·) 0 0

0 0 cosh(·) − sinh(·)

0 0 − sinh(·) cosh(·)











(49)

wd
11 = w11 cosh

2(·) + w22 sinh
2(·) + w12 sinh(2·), (50)

wd
22 = w22 cosh

2(·) + w11 sinh
2(·) + w12 sinh(2·), (51)

wd
12 = w12 cosh(2·) + (w11 + w22) cosh(·) sinh(·). (52)

A value of · such that

wd
12 = 0 (53)

makes Ã̂d
IR(¹) a thermal state that is diagonal in the Fock

basis. Note that in (52), w11 > 0, w22 > 0, w12 > 0 and
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cosh(·) > 0. Thus, sinh(·) < 0. Solution of (53) for · under

these constraints satisfies:

cosh(·) =

√

1 + n̄B + n̄S + ¹n̄S

2
√
a

+
1

2
≡ µ, (54)

sinh(·) = −
√

1 + n̄B + n̄S + ¹n̄S

2
√
a

− 1

2
≡ ¿. (55)

This yields, in turn,

· = log

(
√

1 + n̄B + n̄S + ¹n̄S

2
√
a

+
1

2

−
√

1 + n̄B + n̄S + ¹n̄S

2
√
a

− 1

2

)

, (56)

where

a = n̄2
B + (1 + n̄S(1− ¹))2 + 2n̄B(1 + n̄S + ¹n̄S). (57)

The covariance matrix of Ã̂d
IR(¹) can be expressed as

Σσ̂d

IR
(θ) =











N1 +
1
2 0 0 0

0 N2 +
1
2 0 0

0 0 N1 +
1
2 0

0 0 0 N2 +
1
2











,

(58)

where the mean thermal photon numbers in each mode are:

N1 = wd
11 −

1

2
=

1

2

(√
a+ n̄B − 1− n̄S(1− ¹)

)

(59)

N2 = wd
22 −

1

2
=

1

2

(√
a− n̄B − 1 + n̄S(1− ¹)

)

. (60)

Hence, using two-mode Fock basis, we have:

Ã̂d
IR(¹) =

∑

km

rkm |kmð ïkm| , (61)

where, using the definition of q(k, n̄) from (1),

rkm ≡ q(k,N1)q(m,N2) =
Nk

1N
m
2

(1 +N1)k+1(1 +N2)m+1
.

(62)

Therefore, the output state Ã̂IR(¹) is diagonal in the two-mode

squeezed Fock basis {|Èkmð}, k,m = 0, 1, . . .:

Ã̂IR(¹) =Ŝ
 (·)Ã̂d

IR(¹)Ŝ(·) =
∑

km

rkm |Èkmð ïÈkm| , (63)

where |Èkmð = Ŝ (·) |kmð defines an orthonormal basis.

B. Actions of Modal Creation and Annihilation Operators on

Output State

Since the squeezing parameter · is real, we have [42,

Eq. (5.35)]

S(·)âRS
 (·) = µâR + ¿â

 
I , (64)

S(·)â RS
 (·) = µâ

 
R + ¿âI , (65)

where µ and ¿ are defined in (54) and (55), respectively.

These facts, the diagonalization of the output state Ã̂IR(¹) in

(63), and the photon-number raising and lowering properties

of creation and annihilation operators allow us to derive the

following six expressions for use in Appendix II-C:

ïÈkm| 2âRÃ̂IR(¹)â R |Èstð
= ïkm|S(·)2âRS (·)

∑

ul

rul |ulð ïul|S(·)â RS (·) |stð

= ïkm| 2(µâR + ¿â
 
I)
∑

ul

rul |ulð ïul| (µâ R + ¿âI) |stð

= ïkm| 2(µâR + ¿â
 
I)
∑

ul

rul |ulð ïul| (µ
√
r + 1 |s+ 1, tð

+ ¿
√
t− 1 |s, t− 1ð)

= ïkm| 2(µâR + ¿â
 
I)(µrs+1,t

√
r + 1 |s+ 1, tð

+ ¿rs,t−1

√
t− 1 |s, t− 1ð)

= ïkm| 2(µâR + ¿â
 
I)(µrs+1,tâ

 
R + ¿rs,t−1âI) |stð (66)

ïÈkm| â RâRÃ̂IR(¹) |Èstð
= ïkm|S(·)â RS (·)S(·)âRS

 (·)
∑

ul

rul |ulð ïÈul|Èstð

= ïkm| (µâ R + ¿âI)(µâR + ¿â
 
I)rst |stð (67)

ïÈkm| Ã̂IR(¹)â RâR |Èstð
= ïÈkm|

∑

ul

rul |Èulð ïul|S(·)â RS (·)S(·)âRS
 (·) |stð

= ïkm| rkm(µâ R + ¿âI)(µâR + ¿â
 
I) |stð (68)

ïÈkm| 2â RÃ̂IR(¹)âR |Èstð
= ïkm|S(·)2â RS (·)

∑

ul

rul |ulð ïul|S(·)âRS (·) |stð

= ïkm| 2(µâ R + ¿âI)
∑

ul

rul |ulð ïul| (µâR + ¿â
 
I) |stð

= ïkm| 2(µâ R + ¿âI)
∑

ul

rul |ulð ïul| (µ
√
k |s− 1, tð

+ ¿
√
t+ 1 |s, t+ 1ð)

= ïkm| 2(µâ R + ¿âI)(µrs−1,t

√
k |s− 1, tð

+ ¿rs,t+1

√
t+ 1 |s, t+ 1ð)

= ïkm| 2(µâ R + ¿âI)(µrs−1,tâR + ¿rs,t+1â
 
I) |stð (69)

ïÈkm| âRâ RÃ̂IR(¹) |Èstð
= ïkm|S(·)âRS (·)S(·)â RS

 (·)
∑

ul

rul |ulð ïÈul|Èstð

= ïkm| (µâR + ¿â
 
I)(µâ

 
R + ¿âI)rst |stð (70)

ïÈkm| Ã̂IR(¹)âRâ R |Èstð
= ïÈkm|

∑

ul

rul |Èulð ïul|S(·)âRS (·)S(·)â RS
 (·) |stð

= ïkm| rkm(µâR + ¿â
 
I)(µâ

 
R + ¿âI) |stð (71)

C. Characterization of SLD Λ̂θ

First, we use (5) to relate the kmst-th term of the SLD

operator Λ̂θ in the basis {|Èkmð} to the corresponding term
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of the derivative
dσ̂IR(θ)

dθ
:

ïÈkm| dÃ̂IR(¹)
d¹

|Èstð =
1

2
ïÈkm| Ã̂IR(¹)Λ̂θ |Èstð

+
1

2
ïÈkm| Λ̂θÃ̂IR(¹) |Èstð (72)

=
rkm + rst

2
ïÈkm| Λ̂θ |Èstð . (73)

Thus, the SLD operator is expressed as follows:

Λ̂θ =
∑

kmst

ïÈkm| 2dσ̂IR(θ)
dθ

rkm + rst
|Èstð |Èkmð ïÈst| . (74)

The probe state evolving in a thermal bath is characterized

by the Lindblad Master equation [62, Ch. 4]:

dÃ̂IR(¹)

dt
=
µ

2

[

(n̄B + 1)L̂R[â] + n̄BL̂R[â
 ]
]

Ã̂IR(¹), (75)

where the superoperator L̂R[·] is defined as follows:

L̂R[â]Ã̂IR(¹) = 2âRÃ̂IR(¹)â
 
R − â

 
RâRÃ̂IR(¹)

− Ã̂IR(¹)â
 
RâR (76)

L̂R[â
 ]Ã̂IR(¹) = 2â RÃ̂IR(¹)âR − âRâ

 
RÃ̂IR(¹)

− Ã̂IR(¹)âRâ
 
R. (77)

The dissipation rate µ satisfies exp
(

−γ
2 t
)

=
√
¹, which, in

turn, implies:

dt

d¹
=

1

µ¹
. (78)

Employing the chain rule in (75) using (78), and substituting

the result into (74) yields:

Λ̂θ =
∑

kmst

ïÈkm| 2
dσ̂IR(θ)

dt
dt
dθ

rkm + rst
|Èstð |Èkmð ïÈst| (79)

=
(n̄B + 1)

¹

∑

kmst

ïÈkm| L̂R[â]Ã̂IR(¹) |Èstð
rkm + rst

|Èkmð ïÈst|

+
n̄B

¹

∑

kmst

ïÈkm| L̂R[â
 ]Ã̂IR(¹) |Èstð

rkm + rst
|Èkmð ïÈst|

(80)

We analyze the two summations in (80) separately. First,

ïÈkm| L̂R[â]Ã̂IR(¹) |Èstð
rkm + rst

=
ïÈkm| 2âRÃ̂IR(¹)â R |Èstð

rkm + rst

−ïÈkm| â RâRÃ̂IR(¹) |Èstð
rkm + rst

−ïÈkm| Ã̂IR(¹)â RâR |Èstð
rkm + rst

(81)

=
ïkm| 2(µâR + ¿â

 
I)(µrs+1,tâ

 
R + ¿rs,t−1âI) |stð

rkm + rst

−ïkm| (µâ R + ¿âI)(µâR + ¿â
 
I) |stð (82)

= ïkm|
(

2rs+1,t

rkm + rst
− 1

)

µ2â
 
RâR |stð

+ ïkm|
(

2rs+1,t

rkm + rst
− 1

)

¿µâ
 
I â

 
R |stð

+ ïkm|
(

2rs,t−1

rkm + rst
− 1

)

µ¿âRâI |stð

+ ïkm|
(

2rs,t−1

rkm + rst
− 1

)

¿2â
 
I âI |stð

+

(

2µ2rs+1,t

rkm + rst
− ¿2

)

ïkm|stð , (83)

where µ an ¿ are defined in (54) and (55), respectively, (82)

is derived using (66)-(71) in Appendix II-B, and (83) is due

to the commutation relation
[

â, â 
]

= Î (with Î denoting the

identity operator), and rearrangement of terms. Observe that

the first, fourth, and fifth terms in (83) are not zero only when

{k = s,m = t}, while the second and third terms are not zero

when {k = s + 1,m = t + 1} and {k = s − 1,m = t − 1},

respectively. Since

2rs+1,t

rkm + rst

∣

∣

∣

∣

k=s,m=t

− 1 = − 1

1 +N1
(84)

2rs+1,t

rkm + rst

∣

∣

∣

∣

k=s+1,m=t+1

− 1 =
N1 −N2 − 1

2N1N2 +N1 +N2 + 1

(85)

2rs,t−1

rkm + rst

∣

∣

∣

∣

k=s−1,m=t−1

− 1 =
N1 −N2 − 1

2N1N2 +N1 +N2 + 1

(86)

2rs,t−1

rkm + rst

∣

∣

∣

∣

k=s,m=t

− 1 =
1

N2
, (87)

with N1 and N2 defined in (59) and (60), respectively, we

have:

∑

kmst

ïÈkm| L̂R[â]Ã̂IR(¹) |Èstð
rkm + rst

|Èkmð ïÈst|

= Ŝ (·)K̂1Ŝ(·), (88)

where

K̂1 =

(

N1 −N2 − 1

2N1N2 +N1 +N2 + 1

)

¿µ
(

â
 
I â

 
R + âRâI

)

− µ2â
 
RâR

1 +N1
+
¿2

N2
â
 
I âI +

(

µ2 N1

1 +N1
− ¿2

)

Î . (89)

Now, the kmst-th term in the second summation in (80) is:

ïÈkm| L̂R[â
 ]Ã̂IR(¹) |Èstð

rkm + rst

=
ïÈkm| 2â RÃ̂IR(¹)âR |Èstð

rkm + rst

−ïÈkm| âRâ RÃ̂IR(¹) |Èstð
rkm + rst

−ïÈkm| Ã̂IR(¹)âRâ R |Èstð
rkm + rst

(90)

=
ïkm| 2(µâ R + ¿âI)(µrs−1,tâR + ¿rs,t+1â

 
I) |stð

rkm + rst

−ïkm| (µâR + ¿â
 
I)(µâ

 
R + ¿âI) |stð (91)

= ïkm|
(

2rs−1,t

rkm + rst
− 1

)

µ2â
 
RâR |stð
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+ ïkm|
(

2rs−1,t

rkm + rst
− 1

)

¿µâI âR |stð

+ ïkm|
(

2rs,t+1

rkm + rst
− 1

)

µ¿â
 
Râ

 
I |stð

+ ïkm|
(

2rs,t+1

rkm + rst
− 1

)

¿2â
 
I âI |stð

+

(

2¿2rs+1,t

rkm + rst
− µ2

)

ïkm|stð , (92)

where µ an ¿ are defined in (54) and (55), respectively, (91)

is derived using (66)-(71) in Appendix II-B, and (92) is due

to the commutation relation
[

â, â 
]

= Î , and rearrangement

of terms. Observe that the first, fourth, and fifth terms in (92)

are not zero only when {k = s,m = t}, while the second and

third terms are not zero when {k = s − 1,m = t − 1} and

{k = s+ 1,m = t+ 1}, respectively. Since

2rs−1,t

rkm + rst

∣

∣

∣

∣

k=s,m=t

− 1 =
1

N1
(93)

2rs−1,t

rkm + rst

∣

∣

∣

∣

k=s−1,m=t−1

− 1 =
N2 −N1 − 1

2N1N2 +N1 +N2 + 1

(94)

2rs,t+1

rkm + rst

∣

∣

∣

∣

k=s+1,m=t+1

− 1 =
N2 −N1 − 1

2N1N2 +N1 +N2 + 1

(95)

2rs,t+1

rkm + rst

∣

∣

∣

∣

k=s,m=t

− 1 = − 1

1 +N2
, (96)

we have:

∑

kmst

ïÈkm| L̂R[â
 ]Ã̂IR(¹) |Èstð

rkm + rst
|Èkmð ïÈst|

= Ŝ (·)K̂2Ŝ(·), (97)

where

K̂2 =

(

N2 −N1 − 1

2N1N2 +N1 +N2 + 1

)

¿µ
(

â
 
I â

 
R + âRâI

)

+
µ2â

 
RâR

N1
− ¿2

1 +N2
â
 
I âI +

(

¿2
N2

1 +N2
− µ2

)

Î .

(98)

Combining (88) and (97) yields:

Λ̂θ =
1

¹
Ŝ (·)K̂Ŝ(·), (99)

where

K̂ = (n̄B + 1)K̂1 + n̄BK̂2 (100)

= Câ
 
RâR +Dâ

 
I âI + E(â I â

 
R + âRâI) + F Î, (101)

and real scalars

C = µ2 n̄B −N1

N1(1 +N1)
(102)

D = ¿2
(

n̄B + 1 +N2

N2(1 +N2)

)

(103)

E = µ¿

(

N1 −N2 − 2n̄B − 1

2N1N2 +N1 +N2 + 1

)

(104)

F = µ2

(

N1 − n̄B

1 +N1

)

− ¿2
(

n̄B + 1 +N2

1 +N2

)

, (105)

with µ, ¿, N1, and N2 defined in (54), (55), (59), and (60),

respectively.

D. Eigenbasis of the SLD Λ̂θ

Application of a two-mode squeezing operator Ŝ
(

¼ejθλ
)

to

a photon number operator â
 
I âI results in:

Ŝ
(

¼ejθλ
)

â
 
RâRŜ

 (¼ejθλ
)

= Ŝ
(

¼ejθλ
)

â
 
RŜ

 (¼ejθλ
)

Ŝ
(

¼ejθλ
)

âRŜ
 (¼ejθλ

)

= (»â R + Àe−jθλ âI)(»âR + Àejθλ â
 
I)

= »2â
 
RâR + »À(ejθλ âRâI + e−jθλ â

 
Râ

 
I) + À2âI â

 
I , (106)

where » = cosh¼ and À = sinh¼. Similarly,

Ŝ
(

¼ejθλ
)

â
 
I âI Ŝ

 (¼ejθλ
)

= »2â
 
I âI + »À(e−jθλ âI âR + ejθλ â

 
I â

 
R) + À2âRâ

 
R. (107)

Thus, provided scalars ¼, F ′, T1, T2 exist, we can write:

K̂ = F ′Î + Ŝ(¼)(T1â
 
RâR + T2â

 
I âI)Ŝ

 (¼) (108)

= F ′Î + (T1»À + T2»À)(âRâI + â
 
Râ

 
I) + T1À

2 + T2À
2

+ (T1»
2 + T2À

2)â RâR + (T1À
2 + T2»

2)â I âI , (109)

where (109) is from substituting (106) and (107) in (108) and

rearranging terms. Note that it is necessary that ¹λ = 0, which

means that scalars ¼, F ′, T1, T2 must be real and satisfy:

C = T1»
2 + T2À

2 (110)

D = T1À
2 + T2»

2 (111)

E = (T1 + T2)»À = (T1 + T2)
sinh 2¼

2
, (112)

F = F ′ + T1À
2 + T2À

2 (113)

where scalars C, D, E, and F are given in (102)-(105). Now,

C −D = T1(»
2 − À2) + T2(À

2 − »2) = T1 − T2, (114)

C +D = T1(»
2 + À2) + T2(À

2 + »2) = (T1 + T2) cosh 2¼,
(115)

Furthermore,

(C +D)2 − 4E2 = (T1 + T2)
2(cosh2 2¼− sinh2 2¼)

= (T1 + T2)
2. (116)

Using (114)-(116), we obtain:

T1 =
1

2
(
√

(C +D)2 − 4E2 + C −D) (117)

T2 =
1

2
(
√

(C +D)2 − 4E2 − C +D) (118)

cosh 2¼ =
C +D

√

(C +D)2 − 4E2
(119)

sinh 2¼ =
2E

√

(C +D)2 − 4E2
(120)

F ′ = F − (T1 + T2) sinh
2(¼). (121)
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Finally, we can show that

Λ̂θS
 (·)S(¼) |kmð

=
1

¹
S (·)K̂S(·)S (·)S(¼) |kmð

=
1

¹
S (·)[F ′ + S(¼)(T1â

 
RâR + T2â

 
I âI)

 S(¼) ]S(¼) |kmð

=
1

¹
(F ′ + T1k + T2m)S (·)S(¼) |kmð , (122)

where

¼ =
1

2
log

(

2E + |C +D|
√

(C +D)2 − 4E2

)

. (123)

Thus, Ŝ(É) |kmð, É = ¼−· is an eigenvector of the SLD Λ̂θ.

APPENDIX III

FOCK-BASIS REPRESENTATION OF TWO-MODE SQUEEZER

To derive the representation in (34) of the two-mode squeez-

ing operator Ŝ(É1) in the two-mode Fock (photon number)

basis {|kmð : k,m = 0, 1, . . .}, note that [63, Eq. (1.233)]:

S(É1) = e−ω1â
†
R
â
†
I
+ω∗

1
âRâI (124)

= e−τ1â
†
R
â
†
I¿

−â
†
R
âR−â

†
I
âI−Î

1 eτ
∗
1
âRâI , (125)

where Î denotes identity operator, and

Ä1 =
É1

|É1|
tanh |É1| (126)

¿1 = cosh |É1|. (127)

Now,

S(É1) |kmð
= e−τ1â

†
R
â
†
I¿

−â
†
R
âR−â

†
I
âI−Î

1 eτ
∗
1
âRâI |kmð (128)

= e−τ1â
†
R
â
†
I¿

−â
†
R
âR−â

†
I
âI−Î

1

×
∞
∑

u=0

(Ä∗1 )
u

u!
(âRâI)

u |kmð (129)

=

min(k,m)
∑

u=0

e−τ1â
†
R
â
†
I¿

−â
†
R
âR−â

†
I
âI−Î

1

(Ä∗1 )
u

u!

×
√

k!m!

(k − u)!(m− u)!
|k − u,m− uð (130)

=

min(k,m)
∑

u=0

e−τ1â
†
R
â
†
I¿−k−m+2u−1

1

(Ä∗1 )
u

u!

×
√

k!m!

(k − u)!(m− u)!
|k − u,m− uð (131)

=

min(m,n)
∑

u=0

∞
∑

l=0

(−Ä1)l
l!

(â Râ
 
I)

l¿−k−m+2u−1
1

× (Ä∗1 )
u

u!

√

k!m!

(k − u)!(m− u)!
|k − u,m− uð (132)

=

min(k,m)
∑

u=0

∞
∑

l=0

(−Ä1)l
l!

¿−k−m+2u−1
1

(Ä∗1 )
u

u!

×
√

(k − u+ l)!(m− u+ l)!

(k − u)!(m− u)!

×
√

k!m!

(k − u)!(m− u)!

× |k − u+ l,m− u+ lð , (133)

where (129) is the power series representation of the operator

exponential eτ
∗
1
âRâI and (130) is from applying annihilation

operators âRâI u times on the two-mode Fock state |kmð.
The upper limit on the sum in (130) is because â |0ð = 0.

Furthermore, (131) follows from the power series of exponen-

tial and Fock states being eigenstates of the photon number

operator â â, (132) is the power series representation of the

operator exponential e−τ1â
†
R
â
†
I , and (133) is from applying

creation operators u times. By orthonormality of the Fock

states, ïst|S(É1) |kmð is not zero only when

s = k − u+ l and t = m− u+ l. (134)

We eliminate the summation over l in (133) by solving for l

in (134). Since (134) also implies that l−u = s− k = t−m,

rearranging the terms yields (34).
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sive Heisenberg limit in quantum-enhanced metrology,” Nat. Commun.,
vol. 3, no. 1, p. 1063, Sep. 2012.

[4] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, “Fundamental
limits of repeaterless quantum communications,” Nat. Commun., vol. 8,
Apr. 2017.

[5] R. Namiki, O. Gittsovich, S. Guha, and N. Lütkenhaus, “Gaussian-only
regenerative stations cannot act as quantum repeaters,” Phys. Rev. A,
vol. 90, p. 062316, Dec. 2014.

[6] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I:

Estimation Theory, 1st ed. Upper Saddle River, NJ: Prentice Hall,
1993.

[7] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part

I: Detection, Estimation, and Linear Modulation Theory. New York:
John Wiley & Sons, Inc., 2001.

[8] C. W. Helstrom, Quantum Detection and Estimation Theory. New York,
NY, USA: Academic Press, Inc., 1976.

[9] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information. New York, NY, USA: Cambridge University Press, 2000.

[10] M. Wilde, Quantum Information Theory, 2nd ed. Cambridge University
Press, 2016, arXiv:1106.1445v7.

[11] M. Hayashi, Quantum Information Theory: Mathematical Foundation.
Springer-Verlag Berlin Heidelberg, 2017.

[12] C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev.

Mod. Phys., vol. 89, p. 035002, Jul 2017.

This article has been accepted for publication in IEEE Journal of Selected Topics in Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2022.3222680

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of Arizona. Downloaded on December 27,2022 at 03:56:26 UTC from IEEE Xplore.  Restrictions apply. 



17

[13] S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd,
“Advances in photonic quantum sensing,” Nat. Photon., vol. 12, no. 12,
pp. 724–733, Dec. 2018.

[14] A. Monras and M. G. A. Paris, “Optimal quantum estimation of loss in
bosonic channels,” Phys. Rev. Lett., vol. 98, p. 160401, Apr. 2007.

[15] G. Adesso, F. Dell’Anno, S. De Siena, F. Illuminati, and L. A. M. Souza,
“Optimal estimation of losses at the ultimate quantum limit with non-
gaussian states,” Phys. Rev. A, vol. 79, p. 040305, Apr 2009.

[16] R. Nair, “Quantum-limited loss sensing: Multiparameter estimation and
bures distance between loss channels,” Phys. Rev. Lett., vol. 121, p.
230801, Dec. 2018.

[17] A. Monras and F. Illuminati, “Measurement of damping and
temperature: Precision bounds in gaussian dissipative channels,”
Phys. Rev. A, vol. 83, p. 012315, Jan. 2011. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.83.012315

[18] R. Nair and M. Gu, “Fundamental limits of quantum illumination,”
Optica, vol. 7, no. 7, pp. 771–774, Jul. 2020.

[19] R. Jonsson and R. D. Candia, “Gaussian quantum estimation of the
lossy parameter in a thermal environment,” arXiv:2203.00052 [quant-
ph], 2022.

[20] A. Z. Goldberg and K. Heshami, “Multiparameter transmission estima-
tion at the quantum cramér-rao limit on a cloud quantum computer,”
arXiv:2208.00011 [quant-ph], 2022.

[21] S. Lloyd, “Enhanced sensitivity of photodetection via quantum illumi-
nation,” Science, vol. 321, no. 5895, pp. 1463–1465, 2008.

[22] S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone,
S. Pirandola, and J. H. Shapiro, “Quantum illumination with gaussian
states,” Phys. Rev. Lett., vol. 101, p. 253601, Dec. 2008.

[23] S. Guha and B. I. Erkmen, “Gaussian-state quantum-illumination re-
ceivers for target detection,” Phys. Rev. A, vol. 80, p. 052310, Nov.
2009.

[24] Z. Zhang, S. Mouradian, F. N. C. Wong, and J. H. Shapiro,
“Entanglement-enhanced sensing in a lossy and noisy environment,”
Phys. Rev. Lett., vol. 114, p. 110506, Mar. 2015.

[25] M. Sanz, U. Las Heras, J. J. García-Ripoll, E. Solano, and R. Di Candia,
“Quantum estimation methods for quantum illumination,” Phys. Rev.

Lett., vol. 118, p. 070803, Feb. 2017.
[26] J. H. Shapiro, “The quantum illumination story,” IEEE Aerosp. Electron.

Syst. Mag., vol. 35, no. 4, pp. 8–20, 2020.
[27] R. D. Gill and S. Massar, “State estimation for large ensembles,” Phys.

Rev. A, vol. 61, p. 042312, Mar. 2000.
[28] M. Hayashi and K. Matsumoto, “Statistical model with measurement

degree of freedom and quantum physics,” in Asymptotic Theory of Quan-

tum Statistical Inference: Selected Papers, M. Hayashi, Ed. Singapore:
World Scientific Publishing Co. Pte. Ltd., 2005, pp. 162–169.

[29] B. A. Bash, D. Goeckel, and D. Towsley, “Square root law for commu-
nication with low probability of detection on AWGN channels,” in Proc.

IEEE Int. Symp. Inform. Theory (ISIT), Cambridge, MA, Jul. 2012.
[30] ——, “Limits of reliable communication with low probability of detec-

tion on AWGN channels,” IEEE J. Sel. Areas Commun., vol. 31, no. 9,
pp. 1921–1930, 2013.

[31] B. A. Bash, D. Goeckel, S. Guha, and D. Towsley, “Hiding information
in noise: Fundamental limits of covert wireless communication,” IEEE

Commun. Mag., vol. 53, no. 12, 2015.
[32] B. A. Bash, A. H. Gheorghe, M. Patel, J. L. Habif, D. Goeckel,

D. Towsley, and S. Guha, “Quantum-secure covert communication on
bosonic channels,” Nat. Commun., vol. 6, Oct. 2015.

[33] B. A. Bash, C. N. Gagatsos, A. Datta, and S. Guha, “Fundamental limits
of quantum-secure covert optical sensing,” in Proc. IEEE Int. Symp. In-

form. Theory (ISIT), Aachen, Germany, Jun. 2017.
[34] C. N. Gagatsos, B. A. Bash, A. Datta, Z. Zhang, and S. Guha, “Covert

sensing using floodlight illumination,” Phys. Rev. A, vol. 99, p. 062321,
Jun. 2019.

[35] M. S. Bullock, C. N. Gagatsos, S. Guha, and B. A. Bash, “Fundamental
limits of quantum-secure covert communication over bosonic channels,”
IEEE J. Sel. Areas Commun., vol. 38, no. 3, pp. 471–482, Mar. 2020.

[36] C. N. Gagatsos, M. S. Bullock, and B. A. Bash, “Covert capacity of
bosonic channels,” IEEE J. Sel. Areas Inf. Theory, vol. 1, pp. 555–567,
Aug. 2020.

[37] A. K. Sinclair, E. Schroeder, D. Zhu, M. Colangelo, J. Glasby, P. D.
Mauskopf, H. Mani, and K. K. Berggren, “Demonstration of microwave
multiplexed readout of DC-biased superconducting nanowire detectors,”
IEEE Trans. Appl. Supercond., vol. 29, no. 5, Aug. 2019.

[38] A. N. McCaughan, D. M. Oh, and S. W. Nam, “A stochastic SPICE
model for superconducting nanowire single photon detectors and other
nanowire devices,” IEEE Trans. Appl. Supercond., vol. 29, no. 5, Aug
2019.

[39] J. Lee, L. Shen, A. Cerè, T. Gerrits, A. E. Lita, S. W. Nam, and
C. Kurtsiefer, “Multi-pulse fitting of transition edge sensor signals from
a near-infrared continuous-wave source,” Rev. Sci. Instrum., vol. 89,
no. 12, p. 123108, 2018.

[40] M. O. Scully and M. S. Zubairy, Quantum Optics. Cambridge, UK:
Cambridge University Press, 1997.

[41] G. S. Agarwal, Quantum Optics. Cambridge, UK: Cambridge Univer-
sity Press, 2012.

[42] M. Orszag, Quantum Optics, 3rd ed. Berlin, Germany: Springer, 2016.
[43] A. S. Holevo, “The capacity of the quantum channel with general signal

states,” IEEE Trans. Inf. Theory, vol. 44, pp. 269–273, Jan. 1998.
[44] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph,

J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod.

Phys., vol. 84, pp. 621–669, May 2012.
[45] J. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J. Collins,

I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, J. Hundal,
T. Isacsson, R. B. Israel, J. Izaac, S. Jahangiri, R. Janik, N. Killoran, S. P.
Kumar, J. Lavoie, A. E. Lita, D. H. Mahler, M. Menotti, B. Morrison,
S. W. Nam, L. Neuhaus, H. Y. Qi, N. Quesada, A. Repingon, K. K.
Sabapathy, M. Schuld, D. Su, J. Swinarton, A. Száva, K. Tan, P. Tan,
V. D. Vaidya, Z. Vernon, Z. Zabaneh, and Y. Zhang, “Quantum circuits
with many photons on a programmable nanophotonic chip,” Nature, vol.
591, no. 7848, pp. 54–60, Mar. 2021.

[46] A. Z. Goldberg and K. Heshami, “Optimal transmission estimation with
dark counts,” arXiv:2208.12831 [quant-ph], 2022.

[47] P. Marian and T. A. Marian, “Uhlmann fidelity between two-mode
gaussian states,” Phys. Rev. A, vol. 86, p. 022340, Aug. 2012.

[48] L. Banchi, S. L. Braunstein, and S. Pirandola, “Quantum fidelity for
arbitrary gaussian states,” Phys. Rev. Lett., vol. 115, p. 260501, Dec.
2015.

[49] Z. Jiang, “Quantum fisher information for states in exponential form,”
Phys. Rev. A, vol. 89, p. 032128, Mar. 2014.

[50] T. Eberle, V. Händchen, and R. Schnabel, “Stable control of 10 db two-
mode squeezed vacuum states of light,” Opt. Express, vol. 21, no. 9, pp.
11 546–11 553, May 2013.

[51] A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demon-
stration of a low-noise near-infrared photon counter with multiphoton
discrimination,” Appl. Phys. Lett., vol. 83, no. 4, pp. 791–793, 2003.

[52] S. Guha, “Classical capacity of the free-space quantum-optical channel,”
Master’s thesis, Massachusetts Institute of Technology, 2004.

[53] I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products,
7th ed., A. Jeffrey and D. Zwillinger, Eds. Elsevier Academic Press,
2007.

[54] M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review
article: Single-photon sources and detectors,” Rev. Sci. Instrum., vol. 82,
no. 7, p. 071101, 2011.

[55] U. Sinha, S. N. Sahoo, A. Singh, K. Joarder, R. Chatterjee, and
S. Chakraborti, “Single-photon sources,” Opt. Photon. News, vol. 30,
no. 9, pp. 32–39, Sep. 2019.

[56] E. Meyer-Scott, C. Silberhorn, and A. Migdall, “Single-photon sources:
Approaching the ideal through multiplexing,” Rev. Sci. Instrum., vol. 91,
no. 4, p. 041101, 2020.

[57] J. W. Pearson, S. Olver, and M. A. Porter, “Numerical methods for
the computation of the confluent and gauss hypergeometric functions,”
Numer. Algorithms, vol. 74, no. 3, pp. 821–866, Mar. 2017.

[58] F. Hong-yi and F. Yue, “Representations of two-mode squeezing trans-
formations,” Phys. Rev. A, vol. 54, pp. 958–960, Jul. 1996.

[59] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed.
New York, NY: Springer-Verlag, 1994.

[60] F. Kaneda and P. G. Kwiat, “High-efficiency single-photon generation
via large-scale active time multiplexing,” Sci. Adv., vol. 5, no. 10, 2019.

[61] Photon Spot, Inc. website, https://www.photonspot.com/ (accessed
Sep. 22, 2022).

[62] A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States in Quantum

Information, ser. Napoli Series on physics and Astrophysics. Napoli,
Italy: Bibliopolis, 2005, https://arxiv.org/abs/quant-ph/0503237.

[63] P. Kok and B. W. Lovett, Introduction to Optical Quantum Information

Processing. Cambridge, UK: Cambridge University Press, 2010.

This article has been accepted for publication in IEEE Journal of Selected Topics in Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2022.3222680

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of Arizona. Downloaded on December 27,2022 at 03:56:26 UTC from IEEE Xplore.  Restrictions apply. 


