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ABSTRACT

We study the mean-standard deviation minimum cost flow (MSDMCF) problem, where

the objective is minimizing a linear combination of the mean and standard deviation of

flow costs. Due to the non-linearity and non-separability of the objective, the problem is

not amenable to the standard algorithms developed for network flow problems. We prove

that the solution for the MSDMCF problem coincides with the solution for a particular

mean-variance minimum cost flow (MVMCF) problem. The latter problem is separable and

therefore can be solved more efficiently. Leveraging this result, we propose three methods —

bisection (BSC), Newton-Raphson (NR), and a hybrid of the two (NR-BSC) — to solve the

MSDMCF problem by solving multiple MVMCF subproblems. While the methods all seek to

find the specific MVMCF problem whose optimal solution coincides with the optimal solution

for the given MSDMCF problem, they differ in the method used for the parameter search.

We further show that this approach can be extended to solve more generalized non-separable

parametric minimum cost flow problems under certain conditions. The performance of the

algorithms are compared to CPLEX on benchmark MCF networks generated with the well-

known NETGEN generator. Computational experiments show that the NR algorithm is

about twice as fast as the solver on the original problem.



1 INTRODUCTION

The minimum cost flow (MCF) problem is to find the flow in a network that minimizes

total cost while satisfying node demands and arc capacities. Many other flow and circulation

problems are special cases of MCF, including the shortest path and maximum flow problems.

Decision-making problems in various industries — transportation, manufacturing, medicine,

health care, energy, and defense, to name a few — can be formulated as MCF problems. In

the traditional MCF formulation, the arc costs are assumed to be deterministic. This setting

is well studied and several families of efficient algorithms have been developed for it [1].

When the arc costs are stochastic, the decision-maker is often concerned with solution

reliability in addition to minimizing the expected cost. Results in the travel choice literature

show that travel time reliability is of comparable importance as mean travel costs [22, 21,

20, 15], motivating the incorporation of reliability-based objectives into specific network

optimization problems with transportation applications. There is a rich body of literature

on stochastic shortest path variants using different reliability specifications — minimizing

variance or standard deviation in addition to expected travel times [66, 58, 61, 26, 60, 73, 71],

maximizing probability of arrival or disutility associated with a pre-specified arrival time

[43, 44, 18, 19, 46, 48, 13, 62, 68], percentiles [67, 68], risk aversion [49, 65, 70], and so forth.

Reliability and risk related objectives have also been incorporated into traffic assignment

models [12, 51, 69, 47, 50, 64, 59, 52].

There has been relatively less research on incorporating reliability objectives into other

traditional minimum cost flow and max flow network problems. Boyles and Waller [11]

studied a specific instance of the convex MCF problem, with independent uncertain arc

costs, where the aim is to minimize a linear combination of the mean and the variance of the

total flow costs, termed the mean-variance minimum cost flow problem (MVMCF). In their

model, the decision-maker chooses a weight parameter indicating the relative importance

of the mean and variance. They defined arc marginal costs and used them to modify the

generic cycle canceling algorithm. Their objective was non-linear, but separable by arc. This

separability property was critical for their algorithms.
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One drawback to the mean-variance approach is that the objective is hard to interpret

because the mean and variance carry different units. As a result, it is unclear how the

two objectives should be weighted. However, since the mean and standard deviation have

common units, their linear combination is easier to understand. Furthermore, under an ad-

ditional assumption on the arc cost distribution, a linear combination of mean and standard

deviation can also be interpreted as a percentile of the flow cost. For instance, if link costs

are normally distributed, minimizing the sum of mean and standard deviation is equivalent

to minimizing the 84th-percentile cost. Therefore, we choose to study the mean-standard

deviation formulation in this article, despite the computational challenges relative to the

mean-variance formulation.

The general case of MCF problems with costs that are strictly convex, differentiable, and

separable by arc is studied in [45]. They derive optimality conditions and provide a primal-

dual algorithm. Another approach is to transform the problem to the traditional linear MCF

problem by using piecewise linearization of the arc cost functions and use existing linear

MCF solution methods [41, 29]. More recently, Végh [63] describes a strongly polynomial

algorithm.

In this paper, we study the MCF problem with uncertain arc costs, where the objective

is to minimize the mean and the standard deviation of the total flow cost. For simplicity,

we assume that arc costs are independent; while our procedure is still correct even in the

presence of correlations, testing whether it remains efficient in this case is beyond the scope

of this paper.

While the mean-standard deviation objective function is still convex, it is not separable

by arc. Therefore, the approaches to the convex separable version of the problem mentioned

above are not applicable. This type of convex non-separable flow problem can still be solved

in polynomial time, although not strongly polynomial. The best running time reported for

such problems is O(m3L), where L is the total length of the input coefficients and m is

the number of arcs [25]. In this paper, we adopt a different approach. We prove that the

solution to the mean-standard deviation minimum cost flow (MSDMCF) problem can be

2



obtained by solving the MVMCF problem for an appropriate choice of weight parameter.

We provide three root-finding-based algorithms (bisection, Newton-Raphson, and hybrid) to

determine the appropriate weight parameter. A network flow sensitivity analysis procedure

is developed to determine the derivatives for the Newton-Raphson and hybrid procedures.

The MSDMCF problem is a special case of the more generalized non-separable parametric

MCF (GNPMCF) problem where the objective consists of a linear additive function of flow

and a weighted non-linear, non-separable function of flow. Our algorithms can be extended

to the GNPMCF problem as long as the non-additive component of the objective function is

differentiable, monotonically increasing, and convex function of an additive and differentiable

criterion.

Other researchers have applied robust optimization approaches to account for uncer-

tainties in network parameters such as demands [2], costs and capacities [8], and network

structure [7]. In the robust optimization paradigm, the uncertain parameters are assumed

to vary in a pre-specified uncertainty set. The aim is to arrive at the best solution which is

feasible for all possible realizations of the uncertain parameters from their pre-specified sets.

The shape of the uncertainty set indicates the decision maker’s risk preference and affects

the tractability of the model [5]. Birge [9] and Glockner [23] applied a multi-stage stochastic

programming approach to model uncertainties in network parameters in a stochastic and dy-

namic network flow setting. More recently, distributionally robust optimization techniques

have been getting increased attention. These approaches do not require complete knowledge

of the probability distributions, but rather the optimization is performed over the ambiguity

set of probability distributions consistent with prior beliefs about the uncertain parameters.

Chen et al.[14] applied these techniques to a maximum flow problem. A challenge in ro-

bust optimization is that planning on worst-case scenarios can lead to overly conservative

solutions.

Stochastic programming, yet another approach to addressing uncertainty, requires knowl-

edge of the probability distribution of uncertain parameters. In contrast, we only assume

that the decision-maker knows the mean and standard deviation of arc costs and is interested
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in minimizing the mean and standard deviation of total network flow costs.

There has been a separate body of work focusing on the impact of node and arc dis-

ruptions on the ability of a network to sustain a specific amount of flow [35, 36, 38]. Lin

et al. [37] studied the stochastic maximum flow problem, where the nodes and arcs have

uncertain discrete capacities, and developed an algorithm to compute the system reliability

defined as the probability that the maximum flow is greater than the given demand. Lin [39]

focused on the multi-commodity variant of [37] and defined a system reliability objective as

the probability that the upper bound of system capacity equals a given pattern, subject to

budget constraints on flows. Along similar lines, Lin [40] adopted a throughput style defini-

tion of system reliability as the probability of sending a pre-specified amount of flow through

the network under a cost constraint. Kuipers [33] formulated two stochastic maximum flow

models: maximum flow in stochastic networks, where the bandwidth or capacity has a log-

concave probability distribution, and the maximum delay constrained flow problem, where

an additional stochastic delay constraint is imposed on the flows. A convex formulation and

polynomial-time algorithm were provided for the former problem, while the latter was shown

NP-hard and solved using an approximation algorithm. The MSDMCF model presented in

our paper does not consider disruptions, failures, or uncertainties in capacity. Our model has

a cost minimization perspective, whereas the above studies are concerned with maximizing

flows and require full knowledge of the probability distributions.

The remainder of the paper is organized as follows. We introduce the problem formulation

of the MSDMCF and show the relevance to the MVMCF in Section 2. Section 3 describes

the algorithm developed for solving the MSDMCF. In Section 4, we extend the results to

a more general class of GNPMCF problems. We demonstrate the efficiency of our methods

on randomly generated networks in Section 5, and finally, we conclude and discuss future

directions in Section 6.
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2 PROBLEM STATEMENT

2.1 Problem formulation

Let G = (N ,A) be a directed network with N and A denoting the set of nodes and arcs,

respectively, with m = |A| and n = |N |. The arc costs cij are stochastic with known means

E[cij] and variances V ar[cij]. Let λ̄ denote a (strictly positive) weighing parameter. Nodes

and arcs are assumed to have deterministic demands bj and finite capacities uij, respectively.

Let xij denote the flow on arc (i, j) and x the vector of all flows. The MSDMCF problem

considered in this paper has the following form:

min
x

∑
(i,j)∈A

E[cij]xij + λ̄

√ ∑
(i,j)∈A

V ar[cij]x2
ij

s.t.
∑

(j,k)∈A

xjk −
∑

(i,j)∈A

xij = bj ∀j ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A

(MSDMCF(λ̄))

or, more compactly,

min
x

µTx + λ̄
√

xTVx

s.t. Ax = b

0 ≤ x ≤ u

(MSDMCF(λ̄))

with

µ =


E[c1]

...

E[cm]

 , V = diag(Var) =


V ar[c1] 0 0

. . .

0 0 V ar[cm]

 , λ̄ ≥ 0,

and Ax = b representing the flow conservation equations, and with at least one bj > 0 to

exclude trivial instances. We will assume that V is positive definite, implying that every

feasible solution has a strictly positive variance; as discussed below, our proposed approach

may not apply when this is not the case. In practice, this assumption is unlikely to be

limiting, as links with zero variance can be assigned a sufficiently small variance; and indeed,

“risk-free” options in the real world are invariably subject to some unlikely “tail events.”

Despite the square root, the objective is convex, as can be seen by writing

√
xTVx =

∥∥∥V 1
2 x
∥∥∥

2
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and applying the triangle inequality in the definition of convexity.

The proposed algorithm exploits the relationship between the MSDMCF and the MVMCF,

with the latter given by:

min
x

∑
(i,j)∈A

E[cij]xij + λ
∑

(i,j)∈A

V ar[cij]x
2
ij

s.t.
∑

(j,k)∈A

xjk −
∑

(i,j)∈A

xij = bj ∀j ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A.

(MVMCF(λ))

or, compactly,

min
x

µTx + λxTVx

s.t. Ax = b

0 ≤ x ≤ u

(MVMCF(λ))

with non-negative λ. Unlike the MSDMCF, the MVMCF problem is separable by arc. Both

of the problems are convex; however, the separability structure is exploitable algorithmically

[11].

2.2 Proposed approach

We adopt a parametric search method to solve the MSDMCF problem. Given any positive

value of λ̄, we show that there exists some λ for which optimal solutions for the mean-variance

problem with λ are also optimal for the mean-standard deviation problem with λ̄. In the

remainder of the paper, we will use λ∗ to refer to a value of this parameter that produces

an optimal solution to MSDMCF(λ̄); we will show that this value is unique. Our approach

is similar in spirit to methods that have previously been applied for the mean-standard

deviation shortest path problem [30, 72]. However, since the MSDMCF is a continuous

optimization problem, rather than a combinatorial optimization problem, existing results on

the mean-standard deviation shortest path problem do not directly apply to the problem

studied in this paper.

We first derive the relationship between the two weight parameters of these problems,

which will guide the search. By applying root-finding methods to the function that defines

6



this relationship, we find λ∗ iteratively. To this end, we propose three algorithms, one based

on bisection (BSC), one based on the Newton-Raphson (NR) method, and another using a

combination of the two (NR-BSC). In order to obtain the derivative information required for

the NR algorithm, we perform sensitivity analysis on the solution of the MVMCF problem.

All of the results can be extended to a more general class of MCF problems — the

generalized non-separable parametric MCF (GNPMCF), shown below:

min{µ(x) + λ̄g(v(x)) : x ∈ X}.

where X represents the MCF problem feasible set, µ and v are separable and differentiable

functions, g is a strictly monotone, increasing and differentiable function, with the compo-

sition g ◦ v(x) = g(v(x)) convex. In such cases, we can transform the function g(·) such

that the problem becomes additive, therefore simpler. The same procedure proposed for the

mean-standard deviation model can then be used to solve the GNPMCF problems with the

stated assumptions above. Our main contributions are as follows:

1. We prove that optimal solutions to the MSDMCF problem are also optimal to the

MVMCF problem for a particular choice of the weight parameter. We also show that

the converse of this claim is true, unlike the mean-standard deviation shortest path

problem.

2. We derive a key equation characterizing the relationship between the optimal solutions

of the two problems, and develop three algorithms for finding the particular weight

parameter λ∗ to the MVMCF problem for which the optimal solution is also optimal

to the MSDMCF problem for a given λ̄. We further analyze the resulting function to

show that a bisection algorithm will always work, and converges to a unique root.

3. We further show that our results can be extended to a more general class of MCF

problems.

This model differs from the bi-objective MCF literature [34, 54, 57, 24, 55, 16, 17, 42, 56]

in two aspects. The bi-objective MCF research mentioned above primarily focuses on two
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linear objectives, whereas we have a non-separable, non-linear component in our objective

function. A key focus of the bi-objective MCF literature is determining the non-dominated

solution set. In our model, the two objectives can be collapsed into a single objective using a

weight parameter, and we do not directly attempt to find the set of non-dominated solutions.

Nevertheless, we show in the appendix that all non-dominated solutions are solutions to

MSDNFP (or MVNFP) for an appropriate choice of weighting parameter, and therefore can

be found using our methods.

We expect this method to be efficient because the independence assumption means that

MVMCF is a network flow problem with a separable, convex, quadratic objective, for which

there is a strongly polynomial, O(m4 logm) time algorithm [63]. For the case of general

correlation, there is O(m5) time algorithm [25]. Solving MSDMCF directly is likely to be

slower, since the objective is neither separable nor quadratic, and we are unaware of a

strongly polynomial-time algorithm for this problem.

2.3 Relevance to the MVMCF

In this section, we will show that for any instance of the MSDMCF, there exists λ∗ for

which the optimal solution for the MVMCF(λ∗) is also optimal for the MSDMCF problem.

The proof for this claim relies on the Karush-Kuhn-Tucker (KKT) necessary conditions.

Therefore, we first derive these conditions for both problems below.

Let `(x) = b −Ax and h(x) = x − u. The feasible solution sets for the two problems

are identical since their constraints are the same. Then the complementary slackness, primal

feasibility, and dual feasibility conditions for both problems are given by:

ηijhij(x) = 0 ∀(i, j) ∈ A

hij(x) ≤ 0 ∀(i, j) ∈ A

`i(x) = 0 ∀i ∈ N

ηij ≥ 0 ∀(i, j) ∈ A

pi free ∀i ∈ N

(1)

where ηij and pi are the dual variables for the capacity and flow balance constraints, respec-
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tively. Next, the stationary conditions are:

∇x

(
µTx + λ̄

√
xTVx +

∑
i∈N

pi`i(x) +
∑

(i,j)∈A

ηijhij(x)

)
= 0, (2)

∇x

(
µTx + λxTVx +

∑
i∈N

pi`i(x) +
∑

(i,j)∈A

ηijhij(x)

)
= 0. (3)

Equations (1) & (2) and (1) & (3) are the necessary conditions for optimality for MSDMCF(λ̄)

and MVMCF(λ), respectively. Since the objective functions are also convex and the con-

straints are all linear, these necessary conditions are also sufficient [6]. Our main result now

follows.

Theorem 1. Let x(λ) denote an optimal solution to the MVMCF(λ) problem. This solution

is also optimal to MSDMCF(λ̄) if λ̄ satisfies

λ̄ = 2λ
√

x(λ)TVx(λ). (4)

Proof. As x(λ) satisfies the KKT necessary conditions for MVMCF(λ), there exist η(λ) and

p(λ) such that

−µ−
∑

(i,j)∈A

ηij(λ)∇xhij(x(λ))−
∑
i∈N

pi(λ)∇xli(x(λ)) = λ2Vx(λ). (5)

and the complementary conditions (1) are satisfied. Since the constraint systems for MVMCF

and MSDMCF are the same (regardless of weight parameters), x(λ) also satisfies the com-

plementary conditions for MSDMCF(λ̄) with the same η(λ) and p(λ).

Now, if λ̄ = 2λ
√

x(λ)TVx(λ), then equation (5) is equivalent to

−µ−
∑

(i,j)∈A

ηij(λ)∇xhij(x(λ))−
∑
i∈N

pi(λ)∇xli(x(λ)) =
λ̄Vx(λ)√

x(λ)TVx(λ)
. (6)

But this is exactly the stationary condition for MSDMCF(λ̄), so all of its KKT necessary

conditions are also satisfied. Since the objective function for MSDMCF(λ̄) is convex, these

conditions are also sufficient for optimality.
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The same argument shows that an optimal solution x(λ̄) to MSDMCF(λ̄) is also optimal

for MVMCF(λ) if the same relation holds between λ and λ̄, and that therefore the sets of opti-

mal solutions to the mean-variance and mean-standard deviation problems coincide. In fact,

the sets of optimal solutions to these problems are the full sets of Pareto-optimal solutions, as

shown in the appendix. This distinguishes our problem from the mean-standard deviation

shortest path problem, where the analogous statement fails [30] (there are mean-variance

shortest paths which are not mean-standard deviation shortest paths for any weighting).

Therefore, the MVMCF and the MSDMCF have a closer relationship than the correspond-

ing shortest path problems.

3 ALGORITHMS

We use equation (4) to devise algorithms to solve the MSDMCF(λ̄) problem. If we can

identify a weight parameter λ such that

f(λ) ≡ 2λ
√

x(λ)TVx(λ)− λ̄ = 0, (7)

solving MVMCF(λ) will solve the original MSDMCF(λ̄). Therefore, solving MSDMCF(λ̄)

reduces to finding a root of f(λ). As shown below, such a root always exists and is unique, and

f is strictly increasing. This section first addresses these issues of existence and uniqueness,

and then the issue of selecting an initial guess or interval containing the root — these issues

are common to all three of the root-finding algorithms we present. We then present BSC,

NR, and NR-BSC in turn.

We first show the existence of at least one root for f(λ) in the domain λ ∈ [0,∞).

To this end, we show that the function takes values of opposite signs when evaluated at

the endpoints of the domain, and it is continuous for all λ ∈ [0,∞). In what follows, we

use M(λ) ≡ µTx(λ) to refer to the mean cost of the optimal solution to MVMCF(λ), and

V (λ) ≡ x(λ)TVx(λ). It is trivial to see that f takes a negative value as λ approaches 0, since

λ̄ is positive and V (λ) is finite for any value of λ. Let V (∞) represent the minimum variance

of any feasible flow (this notation reflects that this value can be computed by solving an

instance of MVMCF with only the variance term). Then we know V (λ) ≥ V (∞), which is
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positive by assumption. We thus conclude that f(λ) takes a positive value as λ approaches

∞.

Finally, since the objective function of MVMCF(λ) is continuous in both x and λ and

strictly convex in x, the minimizer x(λ) is well-defined and continuous in λ by the Maximum

Theorem [3]. Therefore f(λ) is also continuous, and at least one root exists in [0,∞).

Furthermore, this root is unique, as shown in the following results.

Lemma 1. The mean cost M(λ) of the optimal solution is nondecreasing in λ, while V (λ)

is nonincreasing.

Proof. Let λ1 and λ2 be distinct weighting parameters. Without loss of generality we can

assume 0 ≤ λ1 < λ2. Since x(λ1) minimizes µTx + λ1x
TVx, we have

M(λ1) + λ1V (λ1) ≤M(λ2) + λ1V (λ2) . (8)

Similarly,

M(λ2) + λ2V (λ2) ≤M(λ1) + λ2V (λ1) . (9)

Multiplying inequality (8) by λ2, inequality (9) by λ1, and subtracting gives

(λ2 − λ1)M(λ1) ≤ (λ2 − λ1)M(λ2) , (10)

whence it follows that M(λ1) ≤M(λ2), that is, M is nondecreasing.

Furthermore, since M(λ1) ≤M(λ2), inequality (9) can only be satisfied if V (λ1) ≥ V (λ2),

showing that V is nonincreasing and completing the lemma.

Theorem 2. The function f(λ) = 2λ
√

x(λ)TVx(λ)− λ̄ has exactly one root.

Proof. The above discussion establishes the existence of a root; we now show that this root

is unique.

By contradiction, assume that f(λ1) = f(λ2) = 0 for some λ1 6= λ2. Theorem 1 ensures

that x1 ≡ x(λ1) and x2 ≡ x(λ2) are both optimal to MSDMCF(λ̄). Since this problem is

convex, the set of optimal solutions is convex, and (1−α)x1 +αx2 is optimal as well for any

α ∈ [0, 1].
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Since all these solutions are optimal, they all have equal objective function values, so

there is a constant k such that

k = µT ((1− α)x1 + αx2) + λ̄
√

((1− α)x1 + αx2)TV((1− α)x1 + αx2) (11)

for α ∈ [0, 1], and in particular k − µTx1 = λ̄
√

x1
TVx1 and k − µTx2 = λ̄

√
x2

TVx2.

Furthermore, for α = 1/2, we have

λ̄

√(
1

2
x1 +

1

2
x2

)T
V

(
1

2
x1 +

1

2
x2

)
=
(
k − µTx1

)
− 1

2
µT (x2 − x1) (12)

or, after simplifying,

1

2
λ̄

√
(x1 + x2)T V (x1 + x2) =

1

2
λ̄
√

x1
TVx1 +

1

2
λ̄
√

x2
TVx2 . (13)

Since λ̄ is strictly positive, we have√
(x1 + x2)T V (x1 + x2) =

√
x1

TVx1 +
√

x2
TVx2 . (14)

Squaring both sides and simplifying gives

x1
TVx2 =

√
(x1

TVx1)(x2
TVx2) . (15)

But V is also positive definite, so xTVy forms an inner product space. The Cauchy-

Schwarz inequality therefore asserts that (15) holds only if x1 and x2 are linearly dependent,

that is, if x1 = βx2 for some β 6= 0. The only choice that satisfies the flow conservation

constraints for both x1 and x2 is β = 1; therefore x1 = x2, and the solutions corresponding

to λ1 and λ2 are in fact identical.

As a result, V (λ1) = V (λ2). But f(λ) = 2λ
√
V (λ) − λ̄, so f(λ1) = f(λ2) = 0 would

imply λ1 = λ2, a contradiction.

With this result in hand, we can show that f is strictly increasing and therefore takes

unique values for all λ.

Corollary 1. The function f(λ) is strictly increasing.
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Proof. We will show that f : [0,∞)→ [−λ̄,∞) is a bijection, using the fact that Theorems 1

and 2 are valid for any λ̄ > 0. The arguments above established that f is continuous,

f(0) = −λ̄ and f(λ)→∞ as λ→∞. Taken together, these prove the result.

The surjectivity of f follows immediately from continuity and its limiting values. To show

injectivity, assume f(λ1) = f(λ2) = z. If z = −λ̄, then we immediately have λ1 = λ2 = 0

since all solutions have positive variance. Otherwise, z > −λ̄, so an instance of MSDMCF

with weight parameter λ̄+ z is valid. Then

2λ1

√
V (λ1)− (λ̄+ z) = 2λ2

√
V (λ2)− (λ̄+ z) = 0,

so x(λ1) and x(λ2) are optimal to MSDMCF(λ̄+ z), and by Theorem 2, λ1 = λ2.

The assumption that V is positive definite (and not merely positive semidefinite) is

necessary to guarantee the existence of a root. As a counterexample, consider a network

with two nodes, connected by two parallel links: link 1 has mean cost 0 and standard

deviation 1, whereas link 2 has a mean cost of 1 and a standard deviation of 0; the total

demand is 1, and λ̄ = 2. The optimal solution to MSDMCF(2) is to assign all flow to link

2, and zero to link 1. However, this solution is not optimal to any mean-variance problem;

for any λ ≥ 0, the optimal solution to MVMCF(λ) places strictly positive flow on link 1.

3.1 Finding an initial λ

A simple way to find an interval containing this root is as follows: determine a finite upper

endpoint by doubling an initial guess λ until f(λ) ≥ 0, and f(λ) is negative for λ = 0, so

set the lower endpoint of the interval to 0.

However, more refined initial bounds can substantially improve algorithm performance.

From Lemma 1, we know that V (0) ≥ V (λ) for all non-negative λ, and can be found

efficiently by solving a linear minimum cost flow problem with the mean costs. Therefore,

any λ with

λ ≤
λ̄

2
√
V (0)
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also satisfies

λ ≤
λ̄

2
√
V (λ)

.

Hence, we can set the lower bound for the interval that includes the root to λlow = λ̄/(2
√
V (0)).

It is also possible to find an upper bound on the interval in a similar fashion. Doing so

would require solving a quadratic MCF. There is an alternative, simpler procedure which

provides a looser upper bound: if we set λ to λ̄/2, and if V (λ) > 1 then f(λ) > 0. By

changing units one can always satisfy the condition V (λ) > 1, and re-solve the problem after

scaling. Therefore we can set λhigh = λ̄/2.

However, our computational experiments show that the former approach performs better.

Specifically, we calculate V (∞) by solving a quadratic minimum cost flow problem with the

variance term alone. Then, any λ with

λ ≥
λ̄

2
√
V (∞)

also satisfies

λ ≥
λ̄

2
√
V (λ)

.

Hence, we can set the upper bound for the interval that includes the root to λhigh =

λ̄/(2
√
V (∞))

In Section 5, we show empirically that this procedure dramatically reduces the running

time of the algorithm.

3.2 Bisection

A straightforward method to find the root is bisection, where a given initial interval is

successively halved until the root is found to the desired precision. Pseudocode for the

method is given in Figure 1. Since f has a unique root, and the above procedure guarantees

an initial interval containing the root, convergence to the correct solution is assured.
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FIGURE 1: Pseudocode for BSC (λ̄, TOL)

x̃h ←MVMCF (λ = 0), x̃l ←MVMCF (λ =∞);

V (0)← x̃hVx̃h, V (∞)← x̃lVx̃l;

λlow ← λ̄/2
√
V (0), λhigh ← λ̄/2

√
V (∞);

Found← False;

while not Found do

λ← (λhigh + λlow)/2;

x(λ)← arg min (MVMCF(λ)) ;

f(λ)← 2λ
√

x(λ)TVx(λ)− λ̄;

if |f(λ)| ≤ TOL then

Found← True;

else

if f(λ) > 0 then

λhigh ← λ;

else

λlow ← λ;

15



3.3 Newton’s algorithm

Although the bisection method is guaranteed to converge, it only has a linear convergence

rate and may need many iterations to converge, each of which requires solving a mean-

variance problem. An alternative is to seek a root for f(λ) with the Newton-Raphson

method. This method is simple to implement and under certain conditions, has quadratic

convergence [6]. However, this method requires calculating the derivative of f(λ), which

involves solving an auxiliary optimization problem. The Newton update for f(λ) is given

by:

λn+1 =

[
λn −

f(λn)

f ′(λn)

]+

, (16)

where [·]+ = max{0, ·} is the positive component of its argument. Let ξ represent the

vector of derivatives of the optimal solution x with respect to λ, ξ = dx/dλ. We can then

write f ′(λ) as

f ′(λ) =
2x(λ)TVx(λ) + 2λx(λ)TVξ√

x(λ)TVx(λ)
. (17)

In this section, we identify the derivatives ξ using sensitivity analysis, using similar tech-

niques as in Boyles [10] and Jafari & Boyles [27]. The derivative of the optimal solution

vector with respect to the weight parameter λ can be interpreted as the sensitivity of the

solution to changes in λ.

Let Cij(xij) = E[cij]xij + λV ar[cij]x
2
ij represent the cost of arc (i, j), and C ′ij(xij) =

E[cij] + 2λV ar[cij]xij its derivative with respect to xij. Then, using p to represent the

dual variables for the flow conservation constraints, the Karush-Kuhn-Tucker conditions for
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MVMCF(λ) require that

C ′ij(xij) + pi − pj ≥ 0 ∀(i, j) : xij = 0

C ′ij(xij) + pi − pj = 0 ∀(i, j) : 0 < xij < uij

C ′ij(xij) + pi − pj ≤ 0 ∀(i, j) : xij = uij∑
(j,k)∈A

xjk −
∑

(i,j)∈A

xij = bj ∀j ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A

hold at optimality. Let J ∗ represent the set of arcs with C ′ij(xij) + pi − pj = 0, and further

partition J ∗ into sets J ∗+, J ∗0 , and J ∗− according to whether xij = 0, 0 < xij < uij, or

xij = uij at optimality, respectively. (The sets J ∗+ and J ∗− are empty unless the optimal

solution is degenerate.)

Let ϕ represent the marginal change in p when the weight parameter λ is perturbed,

ϕ = dp/dλ. Differentiating the KKT conditions with respect to λ, we have

2V ar[cij](xij + λξij) + ϕi − ϕj = 0 ∀(i, j) ∈ J ∗∑
(j,k)∈J ∗

ξjk −
∑

(i,j)∈J ∗

ξij = 0 ∀j ∈ N

ξij ≥ 0 ∀(i, j) ∈ J ∗+

ξij free ∀(i, j) ∈ J ∗0

ξij ≤ 0 ∀(i, j) ∈ J ∗−

ξij = 0 ∀(i, j) ∈ A\J ∗

which show how the optimal x and p change with λ.

A solution ξ to this problem could be obtained by solving this set of linear equations

and inequalities; indeed, in the typical case where the optimal solution is nondegenerate

it is simply a linear system of equations that can be solved using standard techniques.

Regardless of degeneracy, we can recognize this system as the optimality conditions of the

following quadratic program:
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min
ξ

2
∑

(i,j)∈J ∗

V ar[cij]xijξij + λ
∑

(i,j)∈J ∗

V ar[cij]ξ
2
ij

s.t.
∑

(j,k)∈J ∗

ξjk −
∑

(i,j)∈J ∗

ξij = 0 ∀j ∈ N

ξij ≥ 0 ∀(i, j) ∈ J ∗+
ξij free ∀(i, j) ∈ J ∗0
ξij ≤ 0 ∀(i, j) ∈ J ∗−
ξij = 0 ∀(i, j) ∈ A\J ∗

(∆(λ,x))

Note that x is a parameter in this formulation, the optimal solution of the MVMCF(λ),

and that ξ is the only decision variable. Furthermore, this optimization problem is very

nearly an instance of MVMCF, restricted to the links in the set J ∗, without capacities, with

different sign constraints, and with mean link costs replaced with 2V ar[cij]xij.

There are advantages to obtaining ξ by solving this MVMCF variant, rather than solving

the linear system directly. Using existing algorithms for MVMCF exploits problem structure.

Our experiments showed that such algorithms were faster and more numerically stable, and

furthermore provide a natural way to identify solutions at a customizable level of precision

(at early iterations, high-precision solutions for these derivatives are likely not necessary).

The pseudocode in Figure 2 outlines the Newton-Raphson-based search procedure, which

uses the flow sensitivity procedure to determine the derivatives. Since evaluating f(λ) re-

quires solving an optimization problem, the behavior of this implicit function is difficult to

analyze to determine whether quadratic convergence can be guaranteed. In the next sub-

section, we provide a fail-safe to alleviate the lack of convergence guarantee for the pure

Newton algorithm. We also note that the method converged for all the test instances in our

experiments, despite the lack of a convergence proof.

3.4 Hybrid algorithm

The third algorithm (NR-BSC) is a hybrid of the first two, primarily using a Newton step

size with bisection as a fallback to ensure convergence, as in Press et al. [53]. Specifically,
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FIGURE 2: Pseudocode for NR (λ̄, TOL)

x̃h ←MVMCF (0);

V (0)← x̃hVx̃h;

λ← λ̄/2
√
V (0);

while not Found do

x(λ)← arg min (MVMCF(λ));

f(λ)← 2λ
√

x(λ)TVx(λ)− λ̄;

if |f(λ)| ≤ TOL then

Found← True;

else

ξ ← arg min ∆(λ,x);

f ′(λ)←
2x(λ)TVx(λ) + 2λx(λ)TVξ√

x(λ)TVx(λ)
;

λ←

λ− f(λ)

f ′(λ)

+

;

we switch to a bisection step whenever the current Newton-Raphson step suggests a solution

out of the bracket, or whenever the bracket size is not reducing rapidly enough.

It is easy to check for the first condition to see if the step would take the solution out of

bounds. However, to check the second condition, a definition is needed for “rapidly enough.”

In our implementation, we check whether |f(λ)| is smaller than the |f(λ)| in the previous

iteration, if not, we apply bisection. This approach prevents possible divergent behaviors in

the pure NR algorithm. The pseudocode of the algorithm is provided in Figure 3.

4 GENERALIZATION TO NON-SEPARABLE PARAMETRIC CONVEX COST

PROBLEMS

This section discusses the applicability of the proposed methods to certain generalizations.

The mathematical technique of solving MSDMCF by solving a sequence of MVMCF prob-
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FIGURE 3: Pseudocode for NR-BSC (λ̄, TOL)

x̃h ←MVMCF (0);

V (0)← x̃hVx̃h;

λlow ← λ̄/2
√
V (0);

while not Found do

x(λ)← arg min (MVMCF(λ));

f(λ)← 2λ
√

x(λ)TVx(λ)− λ̄;

if |f(λ)| ≤ TOL then
Found← True

else

if |f(λ)| ≤ |f(λprev)| then

ξ ← arg min ∆(λ,x);

f ′(λ)←
2x(λ)TVx(λ) + 2λx(λ)TVξ√

x(λ)TVx(λ)
;

f(λprev)← f(λ);

λprev ← λ;

λ← λ−
f(λ)

f ′(λ)
;

if λlow < λ < λhigh then

if f(λ) > 0 then

λhigh ← λ;

else
λlow ← λ

else
Update the bounds using λprev and perform Bisection step

else
Update the bounds using λprev and perform Bisection step
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lems can be applied to a broader class of optimization problems. The question is whether

the resulting algorithms are efficient, which depends critically on whether the transformed

problems are substantially simpler to solve than the original one and, in the case of the New-

ton methods, whether derivatives are easily available. Exploring this question thoroughly is

beyond the scope of the current paper, but we provide some initial discussion here.

The BSC method is applicable not only for MCF problems, but for the general case of

non-separable convex cost problems

min
x∈X

µ(x) + λ̄g (v(x)) (18)

where X is a bounded linear constraint system, µ and v are separable and differentiable

functions of x with v(x) ≥ 0, g is a strictly monotone, increasing and differentiable function,

and lastly the composition g ◦ v is convex.

We can define an associated convex separable problem:

min
x∈X

µ(x) + λv(x) (19)

By following the same procedure as in the proof of Theorem 1, we can find a relation

between the two problems.

λ = λ̄
∂g

∂v

∣∣∣∣∣∣
v=v(x(λ))

. (20)

Note that the differentiability of both g and v is necessary for Theorem 1 to follow.

Moreover, as g ◦ v is convex by assumption, the KKT necessary conditions are also sufficient

for optimality of (18) and therefore the optimal solution for (19) with λ satisfying (20) is also

optimal for (18). By similar arguments made earlier, one can show that the function f(λ)

is continuous. Moreover, it takes values of opposite signs when evaluated at the endpoints

of the domain. By assumption, g is monotonically increasing, and therefore the derivative

is positive for any λ in the domain. Then, f(λ) takes a negative value as λ approaches 0.

The criterion v term in f(λ) is finite for any value of λ, so f(λ) takes a positive value as λ

approaches ∞, as the negative term will be finite with this assumption. If, in addition, the
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function g is twice differentiable and we have an MCF problem, one can conduct sensitivity

analysis and apply Newton-Raphson.

In practice, optimization problems of this form might arise when capturing the utilities

with an exponential function. Other functions such as quadratic, Ackley, Brent, and Brown

fall into the class of functions for g that satisfies conditions needed by this framework. We

refer the reader to an extensive survey of benchmark functions [28] for more applicable

functions that fall into this class.

It is also possible to arrive at this form starting from other optimization problems. For

instance, a standard MCF problem with the addition of a non-linearly-valued budget con-

straint, such as

min
x

µ(x)

s.t. Ax = b

0 ≤ x ≤ u

g (v(x)) ≤ B,

(21)

can be cast into the form

min
x

max
λ̄≥0

µ(x) + λ̄ (g (v(x)))− λ̄B

s.t. Ax = b

0 ≤ x ≤ u

(22)

by Langrangianizing the budget constraints. For a given λ̄, we then have an outer minimiza-

tion problem which is of the form we consider in this section. Note that Langrangianizing

the budget constraints will lead to a max min problem. Strong duality holds if there exists

a feasible solution x for which g(v(x)) < B. As such point would be an interior point and

so Slater’s condition will then hold. In this case, one can swap the max min problem into a

min max problem and end up with the optimization problem in (22).

5 COMPUTATIONAL EXPERIMENTS

In this section, we assess the performance of the proposed algorithms, using CPLEX to

solve the original MSDMCF problem directly, and to solve the MVMCF subproblems in
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our algorithms. We chose to use CPLEX for both cases to facilitate comparison, and to

demonstrate that the MVMCF subproblems are indeed easier to solve without introducing

confounding factors of different implementations, compiler and architecture optimizations,

and so forth. We compare the methods using the same benchmark suite, and thus provide

intuition into their performance on networks with different characteristics, including, how

dense the network is, how restricting are the capacities on the arcs. The computational

experiments are performed on a quad-core 2.8 GHz computer with 16 GB RAM. The code

used for the computational experiments and analysis is provided at https://github.com/

cangokalp/mean-std.

5.1 Benchmark networks

The performance of the methods are evaluated on the networks generated with the well-

known random generator NETGEN [32]. We use the benchmark suite created in [31], which

was designed to compare linear MCF solution methods.

In the NETGEN problem families, the arc costs and capacities are uniformly drawn from

[1, 104] and [1, 103], respectively. There are approximately
√
n supply and demand nodes,

and the average supply per supply node is set to 103.

There are four problem families created with the above characteristics:

• NETGEN-8. Sparse networks, with average node outdegree of 8 (m = 8n).

• NETGEN-SR. Dense networks, with average node outdegree of
√
n (m ≈ n

√
n).

• NETGEN-LO-8. Same as NETGEN-8, except the average supply per supply node

is 10.

• NETGEN-LO-SR. Same as NETGEN-SR, except the average supply per supply

node is 10.

Arc capacities in NETGEN-LO-8 and NETGEN-LO-SR impose only loose bounds for

feasible flows, as the average supply per supply node is small.
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Initialization Time (s) Iteration #

λlow λhigh BSC NR BSC NR

Naive 0 λ̄/2 154.85 19.15 21 2

Custom λ̄/2
√
V (0) λ̄/2

√
V (∞) 26.77 11.63 1 1

TABLE 1: Initialization procedure benefits - on a network with 4096 nodes and average

degree of 64.

We use the arc costs in the instances as the mean arc costs E[cij]. We sample a coef-

ficient of variation COVij for each link, drawn uniformly from [0.15, 0.3], and thus set the

variance as V arij = (COVijE[cij])
2. This interval for COVij represents typical variation in

transportation networks [4].

5.2 Benefits of customized initialization

Table 1 illustrates the benefits of using custom bounds found with the procedure described

in Subsection 3.1. It compares the number of iterations needed, and the running time of

the algorithms for both naive and custom bounds on a dense network with 4096 nodes and

degree 64. The custom initialization helps the algorithms to start very close to λ∗, and

therefore iteration numbers and running times are much lower.

5.3 Comparison of algorithms

The reported running times for the algorithms NR and BSC include the time elapsed for

finding the interval for λ. We do not report the hybrid algorithm in the tables and figures

below as its performance is almost identical to the NR method since the “failsafe” bisection

steps were rarely used. Both of the line search methods used convergence criteria of TOL =

10−8. The MVMCF subproblems are solved using the CPLEX solver. All comparisons were

done using λ̄ = 10. We also address how the performance changes for different values of λ̄

later in this section.

For each graph family, each method’s performance was measured by seconds needed to
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achieve 0.01% “optimality gap” – the percentage gap between the method’s objective and

the best objective found by all three algorithms. The reported running times are averaged

over 5 instances for each problem.

Tables 2–5 provide the absolute running times in seconds, and the best running times

are bolded. Figures 4–7 provide corresponding plots using logarithmic scales, so the relative

difference between methods is clearly apparent across all problem sizes tested.

In the tables, the size of the network is indicated by the number of nodes and the average

degree per node in each row. NR method outperforms the other methods in every experiment.

While the BSC method outperforms CPLEX on dense networks for smaller problem sizes,

it has a worse trend than CPLEX in all cases. All of the methods’ solution times increase

by about an order of magnitude when the number of nodes is held fixed and the density of

the network increased.

Additionally, Tables 2–5 also provide the average number of iterations for the proposed

algorithms to achieve the gap level. The NR method requires fewer iterations for all fami-

lies except NETGEN-LO-SR. The solution time of the NR method is better than the BSC

method, despite requiring more iterations for this family. This is due to each method re-

quiring a different amount of time to find the initial λ. The time for each method to achieve

its first objective includes only the time elapsed for finding initial λ. For the NR method,

the initial λ is set to λlow, and to find this lower bound, a linear MCF problem needs to be

solved. On the other hand, for the BSC method, the initial λ is set to (λlow+λhigh)/2, which

requires finding both the lower bound and the upper bound. The latter requires solving a

quadratic MCF problem and thus is more costly.

Figure 8 presents the convergence behavior of the algorithms on the NETGEN-LO-SR

family on a representative problem instance with 214 nodes. The BSC and NR methods we

propose start very close to the optimal solution, thanks to the tight interval found for the

parameter using the procedure described in Subsection 3.1. Both of the methods achieve a

percentage gap of 0.1% in their first iteration. Similar behavior is observed in other graph

families and instances. The time needed to achieve various gap levels is shown in Table 6.
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FIGURE 4: Comparison of the algorithms on NETGEN-8 families (logarithmic scale).

FIGURE 5: Comparison of the algorithms on NETGEN-SR families (logarithmic scale).
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FIGURE 6: Comparison of the algorithms on NETGEN-LO-8 families (logarithmic scale).

FIGURE 7: Comparison of the algorithms on NETGEN-LO-SR families (logarithmic scale).
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Size Time (s) Avg. Iteration #

n deg CPLEX BSC NR NR BSC

212 8 8.70 6.40 3.89 2.0 2.2

213 8 36.90 38.74 24.06 2.0 2.0

214 8 140.64 168.51 93.55 1.2 1.2

215 8 893.78 1220.60 467.02 1.0 1.0

TABLE 2: Comparison on NETGEN-8 instances.

Size Time (s) Avg. Iteration #

n deg CPLEX BSC NR BSC NR

212 64 60.96 25.40 10.60 1.2 1.0

213 90 247.85 162.85 66.53 1.2 1.0

214 128 984.32 1019.80 616.12 1.2 1.2

215 181 6441.52 8265.37 3804.74 1.0 1.2

TABLE 3: Comparison on NETGEN-SR instances.

Size Time (s) Avg. Iteration #

n deg CPLEX BSC NR BSC NR

212 8 8.08 7.08 3.34 2.0 2.0

213 8 35.38 38.11 17.99 2.0 1.8

214 8 147.63 187.12 112.51 2.0 1.6

215 8 1005.59 1604.47 408.43 2.0 1.0

TABLE 4: Comparison on NETGEN-LO-8 instances.
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FIGURE 8: Convergence behavior.
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Size Time (s) Avg. Iteration #

n deg CPLEX BSC NR BSC NR

212 64 65.94 20.34 16.91 1.2 2.0

213 90 274.49 117.14 108.20 1.2 2.0

214 128 1044.87 796.01 614.13 2.0 1.8

215 181 7727.51 4789.31 3397.46 1.4 1.4

TABLE 5: Comparison on NETGEN-LO-SR instances.

NETGEN-8 NETGEN-SR NETGEN-LO-8 NETGEN-LO-SR

Gap Method 212 213 214 215 212 213 214 215 212 213 214 215 212 213 214 215

10−1

CPLEX 8.70 36.90 138.02 872.25 59.47 242.40 961.95 6266.61 7.97 34.54 144.63 981.43 63.01 265.72 1031.35 7528.59

BSC 6.40 38.74 168.51 1220.60 24.12 153.43 953.44 8265.37 5.92 28.62 139.49 1218.74 19.40 110.43 552.81 3920.18

NR 3.89 24.06 93.55 467.02 10.60 66.53 513.04 3184.48 1.52 8.94 65.73 408.43 10.42 56.61 340.59 2922.85

10−2

CPLEX 8.70 36.90 140.64 893.78 60.96 247.85 984.32 6441.52 8.08 35.38 147.63 1005.59 65.94 274.49 1044.87 7727.51

BSC 6.40 38.74 168.51 1220.60 25.40 162.85 1019.80 3804.74 7.08 38.11 187.12 1604.47 20.34 117.14 796.015 4789.31

NR 3.89 24.06 93.55 467.02 10.60 66.53 616.12 8265.37 3.34 17.99 112.51 408.43 16.91 108.20 614.13 3397.46

10−3

CPLEX 8.70 36.90 143.45 920.82 63.49 261.11 1022.64 6746.57 27.74 109.89 464.80 1043.12 68.58 289.56 1077.93 8015.43

BSC 6.40 38.74 168.51 1220.60 29.65 162.85 1155.14 8854.55 7.08 39.77 226.26 1988.61 28.07 124.54 936.20 5672.07

NR 3.89 24.06 93.55 467.02 20.99 121.62 1002.74 5845.18 3.34 20.27 143.81 882.13 18.46 118.63 687.83 5329.62

TABLE 6: Time elapsed to achieve gap levels.

For dense networks, for the early iterations, CPLEX has a much higher gap value than the

methods we propose. Moreover, the performance from NR and BSC methods can be further

optimized by tuning the precision to which the subproblems are solved, since high-precision

subproblem solutions are likely more useful in later iterations than in earlier ones (in these

experiments, no such tuning was done).

5.4 Sensitivity to reliability

This subsection emphasizes the need for modeling reliability by showing the difference in

solutions between our model and a deterministic model. Additionally, we also investigate

how the performance of the algorithms changes with respect to the changes in the reliabil-

ity parameter λ̄. In our experiments, standard deviations were generated uniformly from

[0.15E[cij], 0.3E[cij]], based on typical variation in transportation networks [4]; however in
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FIGURE 9: NETGEN-8 with n = 210.

other types of networks this problem parameter might be very different. To capture the

possible effects of higher or lower variation for the arc costs, in the set of experiments we

perform in this subsection we allow λ̄ to range from 0.1 to 1000 and investigate the sensitivity

of the problem metrics.

In terms of modeling, Figure 9 plots the percentage relative gap between the objective

value of a deterministic solution obtained by minimizing mean cost, and the objective value

of the mean-standard deviation model versus the reliability parameter λ̄ on a small network

with 1024 nodes and 8192 arcs. As reliability becomes more and more important to the

decision-maker, the performance of the deterministic model deteriorates. In such situations,

where reliability is important, using a mean-standard deviation model may outweigh the
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FIGURE 10: Criteria trade-off.

additional computation costs over optimizing expected performance only. Moreover, Figure

10 demonstrates that a significant decrease in the standard deviation cost can be traded

off with a relatively small increase in the mean cost, especially when λ̄ is small. It is thus

possible to substantially improve reliability with a small impact to mean cost.

Figures 11–14 plot the performance of the algorithms with respect to different reliability

parameters for each of the graph families in the benchmark suite. Among all the methods, the

performance of the BSC method is the most robust against the variation in the λ̄ parameter.

On the other hand, the performance of the NR method is more sensitive to the changes in λ̄.

This is mainly due to the fact that a single iteration in NR takes longer than a single iteration

in BSC. When λ̄ increases, both of the methods require an additional iteration, although
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FIGURE 11: Sensitivity to λ̄ on NETGEN-8 instances.

FIGURE 12: Sensitivity to λ̄ on NETGEN-SR instances.
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FIGURE 13: Sensitivity to λ̄ on NETGEN-LO-8 instances.

FIGURE 14: Sensitivity to λ̄ on NETGEN-LO-SR instances.
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the increase in solution time for NR is larger than the increase in solution time for BSC for

an additional iteration. Furthermore, as λ̄ increases, the non-separable part of the objective

gets more weight. As a result, the difficulty for solving the problem directly increases, which

is observed on harder problem instances created by NETGEN-LO-SR family. Lastly, we note

that even for λ̄ = 1000 – where even the choice of λ̄ > 10 would be probably unlikely as a

weight parameter – the performance of NR is still better compared to others.

6 CONCLUSION

This paper described three solution algorithms for the mean-standard deviation minimum

cost flow problem, based on solving a sequence of easier MVMCF problems. The algorithms

differ in the method they use to identify the weight parameter in the MVMCF subproblems.

We also provide a procedure to find tighter upper and lower bounds for the root-finding

methods, which improves the performance significantly. Among all, the BSC method is the

simplest to implement. However, it needs more iterations to converge compared to the NR

method. In contrast, the NR method requires solution derivatives, which can be obtained

through sensitivity analysis. In each iteration of the NR method, we thus solve two problems,

one subproblem and one auxiliary problem for finding the derivatives. The starting λ for

the NR method is crucial, as starting far from the root may cause divergent behavior. In

order to alleviate this potentially divergent behavior of the pure Newton method, we also

provide a “failsafe” Hybrid method. These algorithms can also be applied to more general

GNPMCF problems.

In our experiments, we compared the running times of the algorithms to achieve a gap

level of 0.01%. The NR method outperformed CPLEX and BSC on every problem instance.

In contrast, BSC outperformed CPLEX for small instances of dense network families, while

performing competitively or worse for larger instances. The NR and BSC methods achieved

very good solutions quickly. This can even be improved by changing the strategy to find

the initial λ. Spending less effort for finding an initial parameter for the algorithms to start

with, will result in time savings while trading off with solution quality. In future work, it

would be interesting to see if the tolerance used in finding a root of f can be directly linked
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to the optimality gap in the resulting MSDMCF solution.

The run time of the proposed algorithms provided in this paper can be further improved

in several ways. We used CPLEX solver to solve the MVMCF subproblems. However, faster

solution methods [45, 11, 41, 29] specialized for separable convex MCF problems could reduce

run time significantly. Another approach could be finding ways to improve the root-finding

procedure, possibly exploring or modifying the methods to descend even faster than the

ones provided. One can also do an analysis on early stopping for early iterations in the

proposed methods. The framework can be used for any problem with linear constraints and

continuous variables, where the objective function meets the requirements. Other potential

directions for future research is to investigate the case where the second criterion is concave

and differentiable, and to explore whether the application of this method to the cases of

correlated link costs, or to other optimization problems of the form in Section 4, are efficient.
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APPENDIX

It turns out that for both MVMCF and MSDMCF, the Pareto frontier coincides with its

lower convex envelope, and that therefore the methods described in this paper can find any

non-dominated solution with respect to mean and standard deviation (or variance). The

key idea is that the Pareto frontier is a convex function; given any two solutions x1 and x2,

and any α ∈ [0, 1], the mean cost of αx1 + (1 − α)x2 is a linear function of α, whereas the

variance of αx1 + (1−α)x2 is a convex function of α. Therefore, the type of situation shown

in Figure 15 (where there are Pareto-optimal solutions not on the lower convex envelope)

cannot occur; the dashed line connecting points x1 and x2 traces out the mean and variance

of αx1 + (1− α)x2, and so a point like y cannot be Pareto optimal.

A more rigorous justification is as follows. First consider MVMCF. For convenience, let
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FIGURE 15: The Pareto frontier only contains points on its lower convex envelope.

M(x) and V (x) represent the mean and variance of a feasible solution x, M(x) = µTx and

V (x) = xTVx. The function M is clearly linear in x, and as V is positive definite, V is a

convex function.1 Let M and M respectively denote the minimum and maximum values of

M(x) across all feasible x; these values exist since M is continuous and the feasible set X is

compact. Finally, for m ∈ [M,M ], let V ∗(m) denote the least variance among all solutions

with mean cost m, that is, V ∗(m) = min{V (x) : M(x) = m,x ∈ X}. This function is

well-defined since it is the minimum of a continuous function over a compact set, and it

characterizes the set of solutions along the Pareto frontier.

Now, V ∗(m) is a convex function. To show this, choose m1, m2 ∈ [M,M ], let x1 and x2

be feasible solutions with V (x1) = V ∗(m1) and V (x2) = V ∗(m2), and consider α ∈ [0, 1].

The solution αx1 + (1− α)x2 is also feasible and has mean αm1 + (1− α)m2, and therefore

V ∗(αm1 + (1− α)m2) ≤ V (αx1 + (1− α)x2) (by optimality)

≤ αV (x1) + (1− α)V (x2) (by convexity of V (x))

= αV ∗(m1) + (1− α)V ∗(m2) .

It follows that the Pareto frontier V ∗ is piecewise differentiable, with a subdifferential ∂V ∗(m)

at each m ∈ [M,M ].

1This is a slight abuse of notation, since Section 3.2 usesM(λ) and V (λ) to refer to the mean and variance

of the optimal solution to MVNFP(λ), but we feel the mnemonic advantage of using M and V to refer to

means and variances outweighs any possible confusion.
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Finally, since every line through V ∗(m) with a slope in ∂V ∗(m) is a supporting tangent,

a solution x is optimal to MVNFP(λ) if and only if V (x) = V ∗(M(x)) (that is, x is Pareto-

efficient) and −1/λ ∈ ∂V ∗(M(x)). For if V (x) = V ∗(M(x)) and −1/λ ∈ ∂V ∗(M(x)), given

any other feasible solution y we have

M(y) + λV (y) ≥M(y) + λV ∗(M(y)) .

By convexity,

V ∗(M(y)) ≥ V ∗(M(x))− 1

λ
(M(y)−M(x)) . (23)

Combining these gives

M(y) + λV (y) ≥M(x) + λV (x) , (24)

establishing the optimality of x. In the other direction, if x is optimal to MVNFP (λ), then

clearly V (x) = V ∗(M(x)). Inequality (24) is also valid for all feasible y, and in particular

those y for which V (y) = V ∗(M(y)). Therefore (23) holds, and −1/λ ∈ ∂V ∗(M(x)).

The same arguments hold for MSDMCF since the standard deviation is also convex in x

(as established in Section 2).
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