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ABSTRACT

We study the mean-standard deviation minimum cost flow (MSDMCF) problem, where
the objective is minimizing a linear combination of the mean and standard deviation of
flow costs. Due to the non-linearity and non-separability of the objective, the problem is
not amenable to the standard algorithms developed for network flow problems. We prove
that the solution for the MSDMCF problem coincides with the solution for a particular
mean-variance minimum cost flow (MVMCF) problem. The latter problem is separable and
therefore can be solved more efficiently. Leveraging this result, we propose three methods —
bisection (BSC), Newton-Raphson (NR), and a hybrid of the two (NR-BSC) — to solve the
MSDMCEF problem by solving multiple MVMCEF subproblems. While the methods all seek to
find the specific MVMCF problem whose optimal solution coincides with the optimal solution
for the given MSDMCF problem, they differ in the method used for the parameter search.
We further show that this approach can be extended to solve more generalized non-separable
parametric minimum cost flow problems under certain conditions. The performance of the
algorithms are compared to CPLEX on benchmark MCF networks generated with the well-
known NETGEN generator. Computational experiments show that the NR algorithm is

about twice as fast as the solver on the original problem.



1 INTRODUCTION

The minimum cost flow (MCF) problem is to find the flow in a network that minimizes
total cost while satisfying node demands and arc capacities. Many other flow and circulation
problems are special cases of MCF, including the shortest path and maximum flow problems.
Decision-making problems in various industries — transportation, manufacturing, medicine,
health care, energy, and defense, to name a few — can be formulated as MCF problems. In
the traditional MCF formulation, the arc costs are assumed to be deterministic. This setting
is well studied and several families of efficient algorithms have been developed for it [1].

When the arc costs are stochastic, the decision-maker is often concerned with solution
reliability in addition to minimizing the expected cost. Results in the travel choice literature
show that travel time reliability is of comparable importance as mean travel costs [22, 21,
20, 15], motivating the incorporation of reliability-based objectives into specific network
optimization problems with transportation applications. There is a rich body of literature
on stochastic shortest path variants using different reliability specifications — minimizing
variance or standard deviation in addition to expected travel times [66, 58, 61, 26, 60, 73, 71],
maximizing probability of arrival or disutility associated with a pre-specified arrival time
(43, 44, 18, 19, 46, 48, 13, 62, 68], percentiles [67, 68], risk aversion [49, 65, 70], and so forth.
Reliability and risk related objectives have also been incorporated into traffic assignment
models [12, 51, 69, 47, 50, 64, 59, 52].

There has been relatively less research on incorporating reliability objectives into other
traditional minimum cost flow and max flow network problems. Boyles and Waller [11]
studied a specific instance of the convex MCF problem, with independent uncertain arc
costs, where the aim is to minimize a linear combination of the mean and the variance of the
total flow costs, termed the mean-variance minimum cost flow problem (MVMCF). In their
model, the decision-maker chooses a weight parameter indicating the relative importance
of the mean and variance. They defined arc marginal costs and used them to modify the
generic cycle canceling algorithm. Their objective was non-linear, but separable by arc. This

separability property was critical for their algorithms.



One drawback to the mean-variance approach is that the objective is hard to interpret
because the mean and variance carry different units. As a result, it is unclear how the
two objectives should be weighted. However, since the mean and standard deviation have
common units, their linear combination is easier to understand. Furthermore, under an ad-
ditional assumption on the arc cost distribution, a linear combination of mean and standard
deviation can also be interpreted as a percentile of the flow cost. For instance, if link costs
are normally distributed, minimizing the sum of mean and standard deviation is equivalent
to minimizing the 84th-percentile cost. Therefore, we choose to study the mean-standard
deviation formulation in this article, despite the computational challenges relative to the
mean-variance formulation.

The general case of MCF problems with costs that are strictly convex, differentiable, and
separable by arc is studied in [45]. They derive optimality conditions and provide a primal-
dual algorithm. Another approach is to transform the problem to the traditional linear MCF
problem by using piecewise linearization of the arc cost functions and use existing linear
MCF solution methods [41, 29]. More recently, Végh [63] describes a strongly polynomial
algorithm.

In this paper, we study the MCF problem with uncertain arc costs, where the objective
is to minimize the mean and the standard deviation of the total flow cost. For simplicity,
we assume that arc costs are independent; while our procedure is still correct even in the
presence of correlations, testing whether it remains efficient in this case is beyond the scope
of this paper.

While the mean-standard deviation objective function is still convex, it is not separable
by arc. Therefore, the approaches to the convex separable version of the problem mentioned
above are not applicable. This type of convex non-separable flow problem can still be solved
in polynomial time, although not strongly polynomial. The best running time reported for
such problems is O(m?L), where L is the total length of the input coefficients and m is
the number of arcs [25]. In this paper, we adopt a different approach. We prove that the

solution to the mean-standard deviation minimum cost flow (MSDMCF) problem can be



obtained by solving the MVMCF problem for an appropriate choice of weight parameter.
We provide three root-finding-based algorithms (bisection, Newton-Raphson, and hybrid) to
determine the appropriate weight parameter. A network flow sensitivity analysis procedure
is developed to determine the derivatives for the Newton-Raphson and hybrid procedures.
The MSDMCF problem is a special case of the more generalized non-separable parametric
MCF (GNPMCF) problem where the objective consists of a linear additive function of flow
and a weighted non-linear, non-separable function of flow. Our algorithms can be extended
to the GNPMCF problem as long as the non-additive component of the objective function is
differentiable, monotonically increasing, and convex function of an additive and differentiable
criterion.

Other researchers have applied robust optimization approaches to account for uncer-
tainties in network parameters such as demands [2], costs and capacities [8], and network
structure [7]. In the robust optimization paradigm, the uncertain parameters are assumed
to vary in a pre-specified uncertainty set. The aim is to arrive at the best solution which is
feasible for all possible realizations of the uncertain parameters from their pre-specified sets.
The shape of the uncertainty set indicates the decision maker’s risk preference and affects
the tractability of the model [5]. Birge [9] and Glockner [23] applied a multi-stage stochastic
programming approach to model uncertainties in network parameters in a stochastic and dy-
namic network flow setting. More recently, distributionally robust optimization techniques
have been getting increased attention. These approaches do not require complete knowledge
of the probability distributions, but rather the optimization is performed over the ambiguity
set of probability distributions consistent with prior beliefs about the uncertain parameters.
Chen et al.[14] applied these techniques to a maximum flow problem. A challenge in ro-
bust optimization is that planning on worst-case scenarios can lead to overly conservative
solutions.

Stochastic programming, yet another approach to addressing uncertainty, requires knowl-
edge of the probability distribution of uncertain parameters. In contrast, we only assume

that the decision-maker knows the mean and standard deviation of arc costs and is interested



in minimizing the mean and standard deviation of total network flow costs.

There has been a separate body of work focusing on the impact of node and arc dis-
ruptions on the ability of a network to sustain a specific amount of flow [35, 36, 38]. Lin
et al. [37] studied the stochastic maximum flow problem, where the nodes and arcs have
uncertain discrete capacities, and developed an algorithm to compute the system reliability
defined as the probability that the maximum flow is greater than the given demand. Lin [39]
focused on the multi-commodity variant of [37] and defined a system reliability objective as
the probability that the upper bound of system capacity equals a given pattern, subject to
budget constraints on flows. Along similar lines, Lin [40] adopted a throughput style defini-
tion of system reliability as the probability of sending a pre-specified amount of flow through
the network under a cost constraint. Kuipers [33] formulated two stochastic maximum flow
models: maximum flow in stochastic networks, where the bandwidth or capacity has a log-
concave probability distribution, and the maximum delay constrained flow problem, where
an additional stochastic delay constraint is imposed on the flows. A convex formulation and
polynomial-time algorithm were provided for the former problem, while the latter was shown
NP-hard and solved using an approximation algorithm. The MSDMCF model presented in
our paper does not consider disruptions, failures, or uncertainties in capacity. Our model has
a cost minimization perspective, whereas the above studies are concerned with maximizing
flows and require full knowledge of the probability distributions.

The remainder of the paper is organized as follows. We introduce the problem formulation
of the MSDMCF and show the relevance to the MVMCF in Section 2. Section 3 describes
the algorithm developed for solving the MSDMCEF. In Section 4, we extend the results to
a more general class of GNPMCF problems. We demonstrate the efficiency of our methods
on randomly generated networks in Section 5, and finally, we conclude and discuss future

directions in Section 6.



2 PROBLEM STATEMENT

2.1 Problem formulation

Let G = (N, A) be a directed network with A/ and A denoting the set of nodes and arcs,
respectively, with m = |A| and n = |N|. The arc costs ¢;; are stochastic with known means
Elc;;] and variances Var|c;j]. Let A denote a (strictly positive) weighing parameter. Nodes
and arcs are assumed to have deterministic demands b; and finite capacities u;;, respectively.
Let x;; denote the flow on arc (7, j) and x the vector of all flows. The MSDMCF problem

considered in this paper has the following form:

mxin Z Elci;] IB”—F)\\/ Z Var|c;;]a?
(i

(3,7)€A i,j)EA
(j,k)eA (3,5)€A
0 <25 <y, v(i,j) € A

or, more compactly,

min  p'x + AVxTVx

st. Ax=b (MSDMCF (X))
0<x<u
with
Elc] Var[ey] 0 0
o= : , V =diag(Var) = . A>0,
Elc,,] 0 0 Varlen)

and Ax = b representing the flow conservation equations, and with at least one b; > 0 to
exclude trivial instances. We will assume that V is positive definite, implying that every
feasible solution has a strictly positive variance; as discussed below, our proposed approach
may not apply when this is not the case. In practice, this assumption is unlikely to be
limiting, as links with zero variance can be assigned a sufficiently small variance; and indeed,
“risk-free” options in the real world are invariably subject to some unlikely “tail events.”

Despite the square root, the objective is convex, as can be seen by writing

VxIVx = HV%XH
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and applying the triangle inequality in the definition of convexity.
The proposed algorithm exploits the relationship between the MSDMCEF and the MVMCEF,

with the latter given by:

min Z Elcijlzi; + A Z Var[cij]:v?j

X

(i,5)eA (i,5)eA

s.t. Z Tk — Z Tij = bj V] S N
(J:k)eA (i) €A (MVMCF(}))
0 S Tij S Uyj V(Z,]> € ./4

or, compactly,
rnxin p'x 4+ xx"Vvx
st. Ax=Db (MVMCE(\))
0<x<u
with non-negative A. Unlike the MSDMCF, the MVMCF problem is separable by arc. Both
of the problems are convex; however, the separability structure is exploitable algorithmically

11].

2.2 Proposed approach
We adopt a parametric search method to solve the MSDMCF problem. Given any positive
value of \, we show that there exists some \ for which optimal solutions for the mean-variance
problem with A are also optimal for the mean-standard deviation problem with A. In the
remainder of the paper, we will use \* to refer to a value of this parameter that produces
an optimal solution to MSDMCF()); we will show that this value is unique. Our approach
is similar in spirit to methods that have previously been applied for the mean-standard
deviation shortest path problem [30, 72]. However, since the MSDMCF is a continuous
optimization problem, rather than a combinatorial optimization problem, existing results on
the mean-standard deviation shortest path problem do not directly apply to the problem
studied in this paper.

We first derive the relationship between the two weight parameters of these problems,

which will guide the search. By applying root-finding methods to the function that defines
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this relationship, we find \* iteratively. To this end, we propose three algorithms, one based
on bisection (BSC), one based on the Newton-Raphson (NR) method, and another using a
combination of the two (NR-BSC). In order to obtain the derivative information required for
the NR algorithm, we perform sensitivity analysis on the solution of the MVMCEF problem.

All of the results can be extended to a more general class of MCF problems — the

generalized non-separable parametric MCF (GNPMCF), shown below:
min{pu(x) + Ag(v(x)) : x € X'}

where X represents the MCF problem feasible set, ;1 and v are separable and differentiable
functions, ¢ is a strictly monotone, increasing and differentiable function, with the compo-
sition g o v(x) = g(v(x)) convex. In such cases, we can transform the function g(-) such
that the problem becomes additive, therefore simpler. The same procedure proposed for the
mean-standard deviation model can then be used to solve the GNPMCF problems with the

stated assumptions above. Our main contributions are as follows:

1. We prove that optimal solutions to the MSDMCEF problem are also optimal to the
MVMCEF problem for a particular choice of the weight parameter. We also show that
the converse of this claim is true, unlike the mean-standard deviation shortest path

problem.

2. We derive a key equation characterizing the relationship between the optimal solutions
of the two problems, and develop three algorithms for finding the particular weight
parameter \* to the MVMCEF problem for which the optimal solution is also optimal
to the MSDMCF problem for a given A\. We further analyze the resulting function to

show that a bisection algorithm will always work, and converges to a unique root.

3. We further show that our results can be extended to a more general class of MCF

problems.

This model differs from the bi-objective MCF literature [34, 54, 57, 24, 55, 16, 17, 42, 56]

in two aspects. The bi-objective MCF research mentioned above primarily focuses on two
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linear objectives, whereas we have a non-separable, non-linear component in our objective
function. A key focus of the bi-objective MCF literature is determining the non-dominated
solution set. In our model, the two objectives can be collapsed into a single objective using a
weight parameter, and we do not directly attempt to find the set of non-dominated solutions.
Nevertheless, we show in the appendix that all non-dominated solutions are solutions to
MSDNFP (or MVNFP) for an appropriate choice of weighting parameter, and therefore can
be found using our methods.

We expect this method to be efficient because the independence assumption means that
MVMCEF is a network flow problem with a separable, convex, quadratic objective, for which
there is a strongly polynomial, O(m*logm) time algorithm [63]. For the case of general
correlation, there is O(m®) time algorithm [25]. Solving MSDMCF directly is likely to be
slower, since the objective is neither separable nor quadratic, and we are unaware of a

strongly polynomial-time algorithm for this problem.

2.3 Relevance to the MVMCF
In this section, we will show that for any instance of the MSDMCEF, there exists A\* for
which the optimal solution for the MVMCF(\*) is also optimal for the MSDMCEF problem.
The proof for this claim relies on the Karush-Kuhn-Tucker (KKT) necessary conditions.
Therefore, we first derive these conditions for both problems below.

Let £(x) = b — Ax and h(x) = x — u. The feasible solution sets for the two problems
are identical since their constraints are the same. Then the complementary slackness, primal

feasibility, and dual feasibility conditions for both problems are given by:

niihij(x) =0 VY(i,j) € A

hij(x) <0 V(i,j)e A

Lx)=0 VieN (1)
ni; >0 V(i,j)e A

pi free VieN

where 7;; and p; are the dual variables for the capacity and flow balance constraints, respec-



tively. Next, the stationary conditions are:

VX (/J/TX + 5\ VxTVx + szgz Z 777,] ’Lj ) = 07 (2)

1EN (i,5)eA

Vx (uTx + MxxIVx + Zpi& Z nijhij( ) =0. (3)

ieN (4,4)eA
Equations (1) & (2) and (1) & (3) are the necessary conditions for optimality for MSDMCF ()

and MVMCF()), respectively. Since the objective functions are also convex and the con-
straints are all linear, these necessary conditions are also sufficient [6]. Our main result now

follows.

Theorem 1. Let x(\) denote an optimal solution to the MVMCF(X) problem. This solution
is also optimal to MSDMCF(X) if X satisfies

A =20/x(N)TVx(\). (4)
Proof. As x(\) satisfies the KKT necessary conditions for MVMCF (A), there exist n(\) and
p(A) such that
- Z 772](>‘)v h‘Z] sz )) - AQVX()‘> (5)
(3,7)€A iEN
and the complementary conditions (1) are satisfied. Since the constraint systems for MVMCF
and MSDMCF are the same (regardless of weight parameters), x(\) also satisfies the com-
plementary conditions for MSDMCF () with the same 5()\) and p()).
Now, if A = 2\/x(\)TVx()), then equation (5) is equivalent to
AVx())

—p— (N Vichis (x ; = : (6)
no 2 VO = 3 V) = TR

But this is exactly the stationary condition for MSDMCF (), so all of its KKT necessary
conditions are also satisfied. Since the objective function for MSDMCF(]) is convex, these

conditions are also sufficient for optimality.



The same argument shows that an optimal solution x(A) to MSDMCF()) is also optimal
for MVMCF () if the same relation holds between A and A, and that therefore the sets of opti-
mal solutions to the mean-variance and mean-standard deviation problems coincide. In fact,
the sets of optimal solutions to these problems are the full sets of Pareto-optimal solutions, as
shown in the appendix. This distinguishes our problem from the mean-standard deviation
shortest path problem, where the analogous statement fails [30] (there are mean-variance
shortest paths which are not mean-standard deviation shortest paths for any weighting).
Therefore, the MVMCEF and the MSDMCF have a closer relationship than the correspond-
ing shortest path problems.

3 ALGORITHMS

We use equation (4) to devise algorithms to solve the MSDMCF(A) problem. If we can

identify a weight parameter A such that

f) = 22/x(N)TVx(\) — A =0, (7)
solving MVMCF(A) will solve the original MSDMCF (). Therefore, solving MSDMCF ()
reduces to finding a root of f(A). As shown below, such a root always exists and is unique, and
f is strictly increasing. This section first addresses these issues of existence and uniqueness,
and then the issue of selecting an initial guess or interval containing the root — these issues
are common to all three of the root-finding algorithms we present. We then present BSC,
NR, and NR-BSC in turn.

We first show the existence of at least one root for f(\) in the domain A € [0, c0).
To this end, we show that the function takes values of opposite signs when evaluated at
the endpoints of the domain, and it is continuous for all A € [0,00). In what follows, we
use M(A\) = p'x()\) to refer to the mean cost of the optimal solution to MVMCF (M), and
V(A) = x(A)TVx(N). Tt is trivial to see that f takes a negative value as A approaches 0, since
)\ is positive and V() is finite for any value of A. Let V(co) represent the minimum variance

of any feasible flow (this notation reflects that this value can be computed by solving an

instance of MVMCF with only the variance term). Then we know V' (\) > V(o0), which is

10



positive by assumption. We thus conclude that f()\) takes a positive value as A approaches
00.

Finally, since the objective function of MVMCF () is continuous in both x and A and
strictly convex in x, the minimizer x(\) is well-defined and continuous in A by the Maximum
Theorem [3]. Therefore f(\) is also continuous, and at least one root exists in [0, o).

Furthermore, this root is unique, as shown in the following results.

Lemma 1. The mean cost M(\) of the optimal solution is nondecreasing in X, while V()

18 NONINCTEasing.

Proof. Let A1 and Ay be distinct weighting parameters. Without loss of generality we can

assume 0 < A\; < A\g. Since x(\;) minimizes p?x + \;x? Vx, we have

M) +MV(A) < M)+ MV (). (8)
Similarly,

M(X2) + XV (A) < M(A) + XV (A). (9)

Multiplying inequality (8) by Mg, inequality (9) by A;, and subtracting gives
(A2 =AM (A1) < (A2 — A)M(N2), (10)

whence it follows that M (A1) < M(\y), that is, M is nondecreasing.
Furthermore, since M (A1) < M()\y), inequality (9) can only be satisfied if V(A1) > V' (\2),

showing that V' is nonincreasing and completing the lemma. O]
Theorem 2. The function f(\) = 2A/x(\)TVx(A\) — A has exactly one root.

Proof. The above discussion establishes the existence of a root; we now show that this root
is unique.

By contradiction, assume that f(A;) = f(A2) = 0 for some A\; # Ag. Theorem 1 ensures
that x; = x(\;) and x5 = x(\y) are both optimal to MSDMCF()). Since this problem is

convex, the set of optimal solutions is convex, and (1 — a)xy + axg is optimal as well for any

a € [0,1].
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Since all these solutions are optimal, they all have equal objective function values, so

there is a constant k such that

k=p"((1—a)x; +axs) + MW ((1 —a)xy +ax2)TV((1 — a)x; + axs) (11)

for a € [0,1], and in particular & — uT'x; = A\v/x;7Vx; and k — puTxy = A/X2TVXs.

Furthermore, for a = 1/2, we have

M/ (Exg+ 2 YWV L1+ 1 (k— p'xq) = ( ) (12)
X1 + =X X1+ =Xo | = (k—p'x1) — =p (X0 — X
5X1 T 5X2 oX1 T 5X2 P Xa 2H 2 1

or, after simplifying,

1 1- 1-
5)\\/(X1 + X2)TV (Xl —+ Xz) = 5/\\/ XlTVX1 + 5)\‘\/ X2TVX2 . (13)

Since \ is strictly positive, we have

\/(Xl + Xz)TV (Xl + X2) = \/XITVX1 + \/X2TVX2 . (14)

Squaring both sides and simplifying gives

%17 Vxy = \/(xlTVxl)(szVXz) ) (15)

But V is also positive definite, so x’ Vy forms an inner product space. The Cauchy-
Schwarz inequality therefore asserts that (15) holds only if x; and x5 are linearly dependent,
that is, if x; = (x5 for some  # 0. The only choice that satisfies the flow conservation
constraints for both x; and x5 is § = 1; therefore x; = x5, and the solutions corresponding
to A} and A\, are in fact identical.

As a result, V(\) = V(A\g). But f(A) = 20V (A) = A, so f(A\1) = f(X2) = 0 would

imply A\; = A\, a contradiction. 0

With this result in hand, we can show that f is strictly increasing and therefore takes

unique values for all \.

Corollary 1. The function f(X) is strictly increasing.
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Proof. We will show that f : [0,00) — [~), o0) is a bijection, using the fact that Theorems 1
and 2 are valid for any A > 0. The arguments above established that f is continuous,
f(0) = =X and f(A\) — oo as A — oo. Taken together, these prove the result.

The surjectivity of f follows immediately from continuity and its limiting values. To show
injectivity, assume f(\;) = f(A\2) = z. If z = —\, then we immediately have \; = X\ = 0

since all solutions have positive variance. Otherwise, z > —A\, so an instance of MSDMCF

with weight parameter A + z is valid. Then
20V V(M) — (A +2) = 20/ V(Xa) — (A +2) =0,
so x(\1) and x()\,) are optimal to MSDMCF (X + 2), and by Theorem 2, A\; = Xs. O

The assumption that V is positive definite (and not merely positive semidefinite) is
necessary to guarantee the existence of a root. As a counterexample, consider a network
with two nodes, connected by two parallel links: link 1 has mean cost 0 and standard
deviation 1, whereas link 2 has a mean cost of 1 and a standard deviation of 0; the total
demand is 1, and A = 2. The optimal solution to MSDMCF(2) is to assign all flow to link
2, and zero to link 1. However, this solution is not optimal to any mean-variance problem;

for any A > 0, the optimal solution to MVMCF()) places strictly positive flow on link 1.

3.1 Finding an initial A
A simple way to find an interval containing this root is as follows: determine a finite upper
endpoint by doubling an initial guess A until f(A) > 0, and f(\) is negative for A = 0, so
set the lower endpoint of the interval to 0.

However, more refined initial bounds can substantially improve algorithm performance.
From Lemma 1, we know that V(0) > V(A) for all non-negative A, and can be found
efficiently by solving a linear minimum cost flow problem with the mean costs. Therefore,

any A with
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also satisfies

A
< —.
2/ V(N
Hence, we can set the lower bound for the interval that includes the root to A, = A/(24/V(0)).
It is also possible to find an upper bound on the interval in a similar fashion. Doing so
would require solving a quadratic MCF. There is an alternative, simpler procedure which
provides a looser upper bound: if we set A to A\/2, and if V/(A) > 1 then f(\) > 0. By
changing units one can always satisfy the condition V' (\) > 1, and re-solve the problem after
scaling. Therefore we can set Apign = M2
However, our computational experiments show that the former approach performs better.
Specifically, we calculate V' (o0) by solving a quadratic minimum cost flow problem with the

variance term alone. Then, any A with

A
A >
24/ V(00)
also satisfies
A
> —
2/V()\)

Hence, we can set the upper bound for the interval that includes the root to Apin =
M (24/V (00))
In Section 5, we show empirically that this procedure dramatically reduces the running

time of the algorithm.

3.2 Bisection

A straightforward method to find the root is bisection, where a given initial interval is
successively halved until the root is found to the desired precision. Pseudocode for the
method is given in Figure 1. Since f has a unique root, and the above procedure guarantees

an initial interval containing the root, convergence to the correct solution is assured.
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FIGURE 1: Pseudocode for BSC (\, TOL)

Xp <~ MVMCF(A=0),%, < MVMCF(\ = 0);
V(0) < x, VX, V(00) < X, VX

Mow < A 24/V(0),  Anigh < A/24/V(0);
Found < False;

while not Found do

A = (Anigh + Niow) /2;

x(A) < argmin (MVMCF())) ;

FO) + 22/x(N)TVx(N) — A

if |f(\)| < TOL then

Found < True;

else

if f(A) >0 then

‘ Ahigh < A;

15



3.3 Newton’s algorithm

Although the bisection method is guaranteed to converge, it only has a linear convergence
rate and may need many iterations to converge, each of which requires solving a mean-
variance problem. An alternative is to seek a root for f(A) with the Newton-Raphson
method. This method is simple to implement and under certain conditions, has quadratic
convergence [6]. However, this method requires calculating the derivative of f()\), which

involves solving an auxiliary optimization problem. The Newton update for f(\) is given

by:

o= P ] "

where [-]* = max{0, -} is the positive component of its argument. Let & represent the

vector of derivatives of the optimal solution x with respect to A\, &€ = dx/d\. We can then

write f'(\) as

0 = 2x(MN)TVx(\) + 2Xx(A\)TVE (17)
N x(A\)TVx()) '

In this section, we identify the derivatives & using sensitivity analysis, using similar tech-

niques as in Boyles [10] and Jafari & Boyles [27]. The derivative of the optimal solution
vector with respect to the weight parameter \ can be interpreted as the sensitivity of the
solution to changes in A.

Let Cyj(ij) = Elcijleyg + A\Var(egla;; represent the cost of arc (i,7), and Cf;(zy;) =

Elcij] + 2A\Var|c;j|z;; its derivative with respect to z;;. Then, using p to represent the

dual variables for the flow conservation constraints, the Karush-Kuhn-Tucker conditions for
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MVMCEF (A) require that

Cli(xi) +pi —p; > 0 V(i5) @iy =0

Cij(wij) +pi—p; =0 V(i j) : 0 < wij < ugg

Cli(xij) +pi—p; <0 V(i j)  zij = wy
ijk— inj:bj VjeN

(j,k)EA (i) €A

0 <@ <y V(i,j) e A

hold at optimality. Let J* represent the set of arcs with Cj;(x;) + p; — p; = 0, and further
partition J* into sets J}, Jy, and J* according to whether z;; = 0, 0 < z;; < wyy, or
x;; = w;; at optimality, respectively. (The sets J} and J* are empty unless the optimal
solution is degenerate.)

Let ¢ represent the marginal change in p when the weight parameter A is perturbed,

¢ = dp/d\. Differentiating the KKT conditions with respect to A, we have

2Var(e;)(xij + Mij) + i — @ =0 V(i,j) € T*
Z Sk — Z & =0 VieN

(J,k)eT* (,5)eT*

&; >0 v(i,j) € JI

§ij  free v(i,j) € Ty

€ <0 V(i,j) € T*

&; =0 V(i,j) € A\T"

which show how the optimal x and p change with .

A solution £ to this problem could be obtained by solving this set of linear equations
and inequalities; indeed, in the typical case where the optimal solution is nondegenerate
it is simply a linear system of equations that can be solved using standard techniques.
Regardless of degeneracy, we can recognize this system as the optimality conditions of the

following quadratic program:

17



mgin 2 Z Var|cjlei&; + A Z Va?“[cij]fgj

(i,5)eT* (3,5)€T*
st > Gr— Y. &i=0 VjeEN
(j,k)eT* (4,5)eT*
&i; >0 v(i,j) € J; (A(A,x))
&j free V(i j) € Tg
§i; <0 V(i,j) e T*
£, =0 V(i,j) € A\T*

Note that x is a parameter in this formulation, the optimal solution of the MVMCF()),
and that & is the only decision variable. Furthermore, this optimization problem is very
nearly an instance of MVMCEF, restricted to the links in the set J*, without capacities, with
different sign constraints, and with mean link costs replaced with 2V ar|c;j|x;;.

There are advantages to obtaining & by solving this MVMCF variant, rather than solving
the linear system directly. Using existing algorithms for MVMCF exploits problem structure.
Our experiments showed that such algorithms were faster and more numerically stable, and
furthermore provide a natural way to identify solutions at a customizable level of precision
(at early iterations, high-precision solutions for these derivatives are likely not necessary).

The pseudocode in Figure 2 outlines the Newton-Raphson-based search procedure, which
uses the flow sensitivity procedure to determine the derivatives. Since evaluating f(\) re-
quires solving an optimization problem, the behavior of this implicit function is difficult to
analyze to determine whether quadratic convergence can be guaranteed. In the next sub-
section, we provide a fail-safe to alleviate the lack of convergence guarantee for the pure
Newton algorithm. We also note that the method converged for all the test instances in our

experiments, despite the lack of a convergence proof.

3.4 Hybrid algorithm
The third algorithm (NR-BSC) is a hybrid of the first two, primarily using a Newton step

size with bisection as a fallback to ensure convergence, as in Press et al. [53]. Specifically,
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FIGURE 2: Pseudocode for NR (A, TOL)
%, + MVMCF(0);
V(O) — )NChV)N(h;

A A/2,/V(0);

while not Found do
x(A) <= argmin (MVMCF()));

FON) ¢ 220/XOVTVX(N) — A

if | f(\)] < TOL then

Found < True;

else

£ < argmin A(\, x);

2x(N)TVx(N) + 2Xx(\)TVE

VOTV)
A= [ A= L)\) ;
F

J')

we switch to a bisection step whenever the current Newton-Raphson step suggests a solution
out of the bracket, or whenever the bracket size is not reducing rapidly enough.

It is easy to check for the first condition to see if the step would take the solution out of
bounds. However, to check the second condition, a definition is needed for “rapidly enough.”
In our implementation, we check whether |f(\)| is smaller than the |f(A)| in the previous
iteration, if not, we apply bisection. This approach prevents possible divergent behaviors in

the pure NR algorithm. The pseudocode of the algorithm is provided in Figure 3.

4 GENERALIZATION TO NON-SEPARABLE PARAMETRIC CONVEX COST
PROBLEMS

This section discusses the applicability of the proposed methods to certain generalizations.

The mathematical technique of solving MSDMCEF by solving a sequence of MVMCEF prob-
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FIGURE 3: Pseudocode for NR-BSC (A, TOL)

Xy, < MV MCF(0);

V(0) < x, VXp;

Aiow < A/24/V (0);

while not Found do

x(A) <= argmin (MVMCF()));
FO) = 22/x(N)TVx(N) — \;

if |f(A\)| < TOL then
| Found <+ True

else

if |f(A)] < f(Aprev)| then

€ + argmin A(\, x);

2x(A\)TVx(A) + 22x(\)TVE

F = x(A)TVx()) ’

f()\prev> — f()‘)a

)\prev A >\7

A=A — &
J)
if ANow <A< )\high then
if f(A) >0 then
Ahigh $— A

else
L )\low — )\

else
| Update the bounds using )., and perform Bisection step

else
| Update the bounds using \,., and perform Bisection step
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lems can be applied to a broader class of optimization problems. The question is whether
the resulting algorithms are efficient, which depends critically on whether the transformed
problems are substantially simpler to solve than the original one and, in the case of the New-
ton methods, whether derivatives are easily available. Exploring this question thoroughly is
beyond the scope of the current paper, but we provide some initial discussion here.

The BSC method is applicable not only for MCF problems, but for the general case of

non-separable convex cost problems

min () + Ag (v(x)) (18)

XEX
where X is a bounded linear constraint system, p and v are separable and differentiable
functions of x with v(x) > 0, g is a strictly monotone, increasing and differentiable function,
and lastly the composition g o v is convex.
We can define an associated convex separable problem:

min  pu(x) + Av(x) (19)

xeX

By following the same procedure as in the proof of Theorem 1, we can find a relation

between the two problems.

_0g

v=v(x(}))

Note that the differentiability of both ¢ and v is necessary for Theorem 1 to follow.
Moreover, as gow is convex by assumption, the KKT necessary conditions are also sufficient
for optimality of (18) and therefore the optimal solution for (19) with A satisfying (20) is also
optimal for (18). By similar arguments made earlier, one can show that the function f(\)
is continuous. Moreover, it takes values of opposite signs when evaluated at the endpoints
of the domain. By assumption, g is monotonically increasing, and therefore the derivative
is positive for any A in the domain. Then, f(\) takes a negative value as A approaches 0.
The criterion v term in f(\) is finite for any value of A, so f(\) takes a positive value as A

approaches oo, as the negative term will be finite with this assumption. If, in addition, the
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function g is twice differentiable and we have an MCF problem, one can conduct sensitivity
analysis and apply Newton-Raphson.

In practice, optimization problems of this form might arise when capturing the utilities
with an exponential function. Other functions such as quadratic, Ackley, Brent, and Brown
fall into the class of functions for g that satisfies conditions needed by this framework. We
refer the reader to an extensive survey of benchmark functions [28] for more applicable
functions that fall into this class.

It is also possible to arrive at this form starting from other optimization problems. For
instance, a standard MCF problem with the addition of a non-linearly-valued budget con-

straint, such as

min  p(x)
t. Ax=Db

S X (21)
0<x<u
g(v(x)) < B,

can be cast into the form
minmax u(x) + A (g (v(x))) — AB
X >0
s.t. Ax=b (22)

0<x<u

by Langrangianizing the budget constraints. For a given A, we then have an outer minimiza-
tion problem which is of the form we consider in this section. Note that Langrangianizing
the budget constraints will lead to a max min problem. Strong duality holds if there exists
a feasible solution x for which g(v(x)) < B. As such point would be an interior point and
so Slater’s condition will then hold. In this case, one can swap the max min problem into a

min max problem and end up with the optimization problem in (22).

5 COMPUTATIONAL EXPERIMENTS
In this section, we assess the performance of the proposed algorithms, using CPLEX to

solve the original MSDMCEF problem directly, and to solve the MVMCF subproblems in
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our algorithms. We chose to use CPLEX for both cases to facilitate comparison, and to
demonstrate that the MVMCEF subproblems are indeed easier to solve without introducing
confounding factors of different implementations, compiler and architecture optimizations,
and so forth. We compare the methods using the same benchmark suite, and thus provide
intuition into their performance on networks with different characteristics, including, how
dense the network is, how restricting are the capacities on the arcs. The computational
experiments are performed on a quad-core 2.8 GHz computer with 16 GB RAM. The code
used for the computational experiments and analysis is provided at https://github.com/

cangokalp/mean-std.

5.1 Benchmark networks
The performance of the methods are evaluated on the networks generated with the well-
known random generator NETGEN [32]. We use the benchmark suite created in [31], which
was designed to compare linear MCF solution methods.

In the NETGEN problem families, the arc costs and capacities are uniformly drawn from
[1,10) and [1,10%], respectively. There are approximately \/n supply and demand nodes,
and the average supply per supply node is set to 103

There are four problem families created with the above characteristics:

e NETGEN-8. Sparse networks, with average node outdegree of 8 (m = 8n).

NETGEN-SR. Dense networks, with average node outdegree of /n (m = ny/n).

NETGEN-LO-8. Same as NETGEN-8, except the average supply per supply node
is 10.

NETGEN-LO-SR. Same as NETGEN-SR, except the average supply per supply

node is 10.

Arc capacities in NETGEN-LO-8 and NETGEN-LO-SR impose only loose bounds for

feasible flows, as the average supply per supply node is small.
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Initialization Time (s) [teration #
Now Ahigh BSC NR | BSC NR
Naive 0 5\/2 154.85 19.15 | 21 2

Custom | A\/2,/V(0) A/2y/V(c0) | 26.77 11.63| 1 1

TABLE 1: Initialization procedure benefits - on a network with 4096 nodes and average

degree of 64.

We use the arc costs in the instances as the mean arc costs Elc;;]. We sample a coef-
ficient of variation COVj; for each link, drawn uniformly from [0.15,0.3], and thus set the
variance as Var;; = (COV;;E[c;;])?. This interval for COVj; represents typical variation in

transportation networks [4].

5.2 Benefits of customized initialization

Table 1 illustrates the benefits of using custom bounds found with the procedure described
in Subsection 3.1. It compares the number of iterations needed, and the running time of
the algorithms for both naive and custom bounds on a dense network with 4096 nodes and
degree 64. The custom initialization helps the algorithms to start very close to \*, and

therefore iteration numbers and running times are much lower.

5.3 Comparison of algorithms

The reported running times for the algorithms NR and BSC include the time elapsed for
finding the interval for A. We do not report the hybrid algorithm in the tables and figures
below as its performance is almost identical to the NR method since the “failsafe” bisection
steps were rarely used. Both of the line search methods used convergence criteria of TOL =
108, The MVMCF subproblems are solved using the CPLEX solver. All comparisons were
done using A = 10. We also address how the performance changes for different values of
later in this section.

For each graph family, each method’s performance was measured by seconds needed to
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achieve 0.01% “optimality gap” — the percentage gap between the method’s objective and
the best objective found by all three algorithms. The reported running times are averaged
over 5 instances for each problem.

Tables 2-5 provide the absolute running times in seconds, and the best running times
are bolded. Figures 4-7 provide corresponding plots using logarithmic scales, so the relative
difference between methods is clearly apparent across all problem sizes tested.

In the tables, the size of the network is indicated by the number of nodes and the average
degree per node in each row. NR method outperforms the other methods in every experiment.
While the BSC method outperforms CPLEX on dense networks for smaller problem sizes,
it has a worse trend than CPLEX in all cases. All of the methods’ solution times increase
by about an order of magnitude when the number of nodes is held fixed and the density of
the network increased.

Additionally, Tables 2-5 also provide the average number of iterations for the proposed
algorithms to achieve the gap level. The NR method requires fewer iterations for all fami-
lies except NETGEN-LO-SR. The solution time of the NR method is better than the BSC
method, despite requiring more iterations for this family. This is due to each method re-
quiring a different amount of time to find the initial \. The time for each method to achieve
its first objective includes only the time elapsed for finding initial A. For the NR method,
the initial A is set to Aj,w, and to find this lower bound, a linear MCF problem needs to be
solved. On the other hand, for the BSC method, the initial A is set to (Ajow + Anign)/2, which
requires finding both the lower bound and the upper bound. The latter requires solving a
quadratic MCF problem and thus is more costly.

Figure 8 presents the convergence behavior of the algorithms on the NETGEN-LO-SR
family on a representative problem instance with 2! nodes. The BSC and NR methods we
propose start very close to the optimal solution, thanks to the tight interval found for the
parameter using the procedure described in Subsection 3.1. Both of the methods achieve a
percentage gap of 0.1% in their first iteration. Similar behavior is observed in other graph

families and instances. The time needed to achieve various gap levels is shown in Table 6.

25



NETGEN-8 (m=8n)

104
--o- CPLEX
-4- BSC
v -#- NR
T 10°- e
2 s e
g __________________ n
=
P e
£ 104 e
= PR
8 ,—::”"/,:':: ————————
[ emmzZEEETT T
€ 10! LEXC ==
Sy gee
MR-
100 T T T T
212 213 214 215

Number of nodes

FIGURE 4: Comparison of the algorithms on NETGEN-8 families (logarithmic scale).
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FIGURE 5: Comparison of the algorithms on NETGEN-SR families (logarithmic scale).

26



NETGEN-LO_8 (m=8n)

104
--o- CPLEX
-4+- BSC

v -=- NR A
© 103+ ST |
3 e
o T - -
Js! e s
~ AT T
L 102 o -
€ 107 5 T T
b ,—:::’—:: ________
o ‘,—_‘—""— ______
c P B
E s-—""” ____ el
c 1 ‘==== ______
S 100y gaEcT
e 1 T -

R~

100 T T T T
212 213 214 215

Number of nodes

FIGURE 6: Comparison of the algorithms on NETGEN-LO-8 families (logarithmic scale).
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FIGURE 7: Comparison of the algorithms on NETGEN-LO-SR families (logarithmic scale).
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Size Time (s) Avg. Tteration #
n deg | CPLEX  BSC NR NR BSC
2128 8.70 6.40 3.89 2.0 2.2
238 | 3690 3874  24.06 | 2.0 2.0
2148 140.64  168.51 93.55 | 1.2 1.2
2158 893.78  1220.60 467.02 | 1.0 1.0

TABLE 2: Comparison on NETGEN-8 instances.

Size Time (s) Avg. Tteration #
n deg | CPLEX  BSC NR BSC NR
2264 | 6096 2540  10.60 | 1.2 1.0
21390 | 247.85  162.85 66.53 1.2 1.0
214 128 | 984.32 1019.80 616.12 1.2 1.2
215 181 | 6441.52 8265.37 3804.74 | 1.0 1.2

TABLE 3: Comparison on NETGEN-SR instances.

Size Time (s) Avg. Tteration #
n deg | CPLEX BSC NR | BSC NR
2128 8.08 7.08 3.34 2.0 2.0
2138 35.38 38.11 17.99 | 2.0 1.8
2148 147.63  187.12 112.51 | 2.0 1.6
2158 11005.59 1604.47 408.43 | 2.0 1.0

TABLE 4: Comparison on NETGEN-LO-8 instances.

28




107_
-#- NR
-#4&- BSC
0000000000 g _:_ -
.—0--0--0\.*
LN
‘e
5 ] N
10 .
Q
N
»
o) S
g oo,
8 10%- “o.
e .
\
o
aQ [}
S o
o 10! S
> \
= \
|9} \
9 \
o) v
o e
g \
_ 1
-Jg 10 1' ||
B A\\ ‘I
o4 . \~\ i
TS Y \
- - \
. .| \
*~\\\ | T 1
1073 4 T -"\
S~e Vs
[ [N
~o \ SN
-~ \ -
~o 1 ~.
‘\\ \
\\\‘\ .\ \‘l
e ..
105 L — | | | e L) .
0 250 500 750 1000 1250

Running time

FIGURE 8: Convergence behavior.
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Size Time (s) Avg. Tteration #
n deg | CPLEX BSC NR BSC NR
212 64 65.94 20.34 16.91 1.2 2.0
21390 | 27449 117.14  108.20 1.2 2.0
214128 | 1044.87 796.01 614.13 2.0 1.8
215 181 | 772751 4789.31 3397.46 | 1.4 1.4

TABLE 5: Comparison on NETGEN-LO-SR instances.

NETGEN-8 NETGEN-SR NETGEN-LO-8 NETGEN-LO-SR

Gap | Method | 212 213 914 915 912 913 14 915 912 913 gl4 915 912 913 14 915
CPLEX | 8.70 36.90 138.02 87225 || 59.47 242.40 961.95 6266.61 | 7.97 34.54 144.63 981.43 | 63.01 265.72 1031.35 7528.59
107! BSC |6.40 38.74 168.51 1220.60 || 24.12 153.43 953.44 8265.37 || 5.92 28.62 139.49 1218.74 | 19.40 110.43 552.81 3920.18
NR 3.89 24.06 93.55 467.02 || 10.60 66.53 513.04 3184.48 | 1.52 894  65.73 408.43 | 10.42 56.61  340.59 2922.85
CPLEX | 8.70 36.90 140.64 893.78 || 60.96 247.85 984.32 6441.52 || 8.08 35.38 147.63 1005.59 | 65.94 274.49 1044.87 7727.51
1072| BSC |6.40 38.74 168.51 1220.60 || 25.40 162.85 1019.80 3804.74 || 7.08 38.11 187.12 1604.47 | 20.34 117.14 796.015 4789.31
NR 3.89 24.06 93.55 467.02 || 10.60 66.53 616.12 8265.37 || 3.34 17.99 112.51 408.43 | 16.91 108.20 614.13 3397.46
CPLEX | 8.70 36.90 143.45 920.82 || 63.49 261.11 1022.64 6746.57 || 27.74 109.89 464.80 1043.12 | 68.58 289.56 1077.93 8015.43
1073 | BSC |6.40 38.74 168.51 1220.60 | 29.65 162.85 1155.14 8854.55 || 7.08 39.77 226.26 1988.61 | 28.07 124.54 936.20 5672.07
NR 3.89 24.06 93.55 467.02 || 20.99 121.62 1002.74 5845.18 || 3.34  20.27 143.81 882.13 | 18.46 118.63 687.83 5329.62

TABLE 6: Time elapsed to achieve gap levels.

For dense networks, for the early iterations, CPLEX has a much higher gap value than the
methods we propose. Moreover, the performance from NR and BSC methods can be further
optimized by tuning the precision to which the subproblems are solved, since high-precision
subproblem solutions are likely more useful in later iterations than in earlier ones (in these

experiments, no such tuning was done).

5.4 Sensitivity to reliability

This subsection emphasizes the need for modeling reliability by showing the difference in
solutions between our model and a deterministic model. Additionally, we also investigate
how the performance of the algorithms changes with respect to the changes in the reliabil-
ity parameter \. In our experiments, standard deviations were generated uniformly from

[0.15E]c;;], 0.3E][c;5]], based on typical variation in transportation networks [4]; however in
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Relative Objective Gap

other types of networks this problem parameter might be very different. To capture the
possible effects of higher or lower variation for the arc costs, in the set of experiments we
perform in this subsection we allow A to range from 0.1 to 1000 and investigate the sensitivity
of the problem metrics.

In terms of modeling, Figure 9 plots the percentage relative gap between the objective
value of a deterministic solution obtained by minimizing mean cost, and the objective value
of the mean-standard deviation model versus the reliability parameter A on a small network
with 1024 nodes and 8192 arcs. As reliability becomes more and more important to the
decision-maker, the performance of the deterministic model deteriorates. In such situations,

where reliability is important, using a mean-standard deviation model may outweigh the
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FIGURE 10: Criteria trade-off.

additional computation costs over optimizing expected performance only. Moreover, Figure
10 demonstrates that a significant decrease in the standard deviation cost can be traded
off with a relatively small increase in the mean cost, especially when X is small. It is thus
possible to substantially improve reliability with a small impact to mean cost.

Figures 11-14 plot the performance of the algorithms with respect to different reliability
parameters for each of the graph families in the benchmark suite. Among all the methods, the
performance of the BSC method is the most robust against the variation in the A parameter.
On the other hand, the performance of the NR method is more sensitive to the changes in .
This is mainly due to the fact that a single iteration in NR takes longer than a single iteration

in BSC. When ) increases, both of the methods require an additional iteration, although
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the increase in solution time for NR is larger than the increase in solution time for BSC for
an additional iteration. Furthermore, as A increases, the non-separable part of the objective
gets more weight. As a result, the difficulty for solving the problem directly increases, which
is observed on harder problem instances created by NETGEN-LO-SR family. Lastly, we note
that even for A = 1000 — where even the choice of A > 10 would be probably unlikely as a

weight parameter — the performance of NR is still better compared to others.

6 CONCLUSION

This paper described three solution algorithms for the mean-standard deviation minimum
cost flow problem, based on solving a sequence of easier MVMCF problems. The algorithms
differ in the method they use to identify the weight parameter in the MVMCF subproblems.
We also provide a procedure to find tighter upper and lower bounds for the root-finding
methods, which improves the performance significantly. Among all, the BSC method is the
simplest to implement. However, it needs more iterations to converge compared to the NR
method. In contrast, the NR method requires solution derivatives, which can be obtained
through sensitivity analysis. In each iteration of the NR method, we thus solve two problems,
one subproblem and one auxiliary problem for finding the derivatives. The starting A for
the NR method is crucial, as starting far from the root may cause divergent behavior. In
order to alleviate this potentially divergent behavior of the pure Newton method, we also
provide a “failsafe” Hybrid method. These algorithms can also be applied to more general
GNPMCF problems.

In our experiments, we compared the running times of the algorithms to achieve a gap
level of 0.01%. The NR method outperformed CPLEX and BSC on every problem instance.
In contrast, BSC outperformed CPLEX for small instances of dense network families, while
performing competitively or worse for larger instances. The NR and BSC methods achieved
very good solutions quickly. This can even be improved by changing the strategy to find
the initial A\. Spending less effort for finding an initial parameter for the algorithms to start
with, will result in time savings while trading off with solution quality. In future work, it

would be interesting to see if the tolerance used in finding a root of f can be directly linked
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to the optimality gap in the resulting MSDMCEF solution.

The run time of the proposed algorithms provided in this paper can be further improved
in several ways. We used CPLEX solver to solve the MVMCF subproblems. However, faster
solution methods [45, 11, 41, 29] specialized for separable convex MCF problems could reduce
run time significantly. Another approach could be finding ways to improve the root-finding
procedure, possibly exploring or modifying the methods to descend even faster than the
ones provided. Omne can also do an analysis on early stopping for early iterations in the
proposed methods. The framework can be used for any problem with linear constraints and
continuous variables, where the objective function meets the requirements. Other potential
directions for future research is to investigate the case where the second criterion is concave
and differentiable, and to explore whether the application of this method to the cases of

correlated link costs, or to other optimization problems of the form in Section 4, are efficient.
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APPENDIX

It turns out that for both MVMCF and MSDMCEF, the Pareto frontier coincides with its
lower convex envelope, and that therefore the methods described in this paper can find any
non-dominated solution with respect to mean and standard deviation (or variance). The
key idea is that the Pareto frontier is a convex function; given any two solutions x; and xa,
and any « € [0, 1], the mean cost of ax; + (1 — a)x3 is a linear function of a, whereas the
variance of axy + (1 — a)x2 is a convex function of . Therefore, the type of situation shown
in Figure 15 (where there are Pareto-optimal solutions not on the lower convex envelope)
cannot occur; the dashed line connecting points x; and x5 traces out the mean and variance
of axy + (1 — a)xa, and so a point like y cannot be Pareto optimal.

A more rigorous justification is as follows. First consider MVMCEF. For convenience, let
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FIGURE 15: The Pareto frontier only contains points on its lower convex envelope.

M(x) and V/(x) represent the mean and variance of a feasible solution x, M (x) = pu’x and
V(x) = x'Vx. The function M is clearly linear in x, and as V is positive definite, V is a
convex function.! Let M and M respectively denote the minimum and maximum values of
M (x) across all feasible x; these values exist since M is continuous and the feasible set X is
compact. Finally, for m € [M, M], let V*(m) denote the least variance among all solutions
with mean cost m, that is, V*(m) = min{V(x) : M(x) = m,x € X}. This function is
well-defined since it is the minimum of a continuous function over a compact set, and it
characterizes the set of solutions along the Pareto frontier.

Now, V*(m) is a convex function. To show this, choose m1, my € [M, M], let x; and x5

be feasible solutions with V(x1) = V*(m;) and V(x2) = V*(my), and consider a € [0, 1].

The solution ax;y + (1 — a)x3 is also feasible and has mean am; + (1 — a)my, and therefore

Vi (amy + (1 — a)my) < V(axy + (1 — a)xs) (by optimality)
<aV(xy)+ (1 —a)V(x2a) (by convexity of V(x))
=aV*(my) + (1 — a)V*(ma) .

It follows that the Pareto frontier V* is piecewise differentiable, with a subdifferential 9V*(m)

at each m € [M, M].

!This is a slight abuse of notation, since Section 3.2 uses M()) and V() to refer to the mean and variance
of the optimal solution to MVNFP()), but we feel the mnemonic advantage of using M and V to refer to

means and variances outweighs any possible confusion.
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Finally, since every line through V*(m) with a slope in 0V*(m) is a supporting tangent,
a solution x is optimal to MVNFP () if and only if V(x) = V*(M(x)) (that is, x is Pareto-
efficient) and —1/\ € OV*(M(x)). For if V(x) = V*(M(x)) and —1/X € OV*(M(x)), given

any other feasible solution y we have
M(y) +AV(y) = M(y) + AV (M(y)).

By convexity,

Vi(M(y)) =2 Vi (M(x) = +(M(y) = M(x)) . (23)

Combining these gives

M(y)+ AV (y) > M(x) + \V(x), (24)

establishing the optimality of x. In the other direction, if x is optimal to MV N FP(\), then
clearly V(x) = V*(M(x)). Inequality (24) is also valid for all feasible y, and in particular
those y for which V(y) = V*(M(y)). Therefore (23) holds, and —1/\ € OV*(M (x)).

The same arguments hold for MSDMCF since the standard deviation is also convex in x

(as established in Section 2).

38



REFERENCES

1]

Ravindra K Ahuja, Thomas L. Magnanti, and James B Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall Inc., Englewood Cliffs, NJ, 1993.

Alper Atamtiirk and Muhong Zhang. Two-stage robust network flow and design under
demand uncertainty. Operations Research, 55(4):662-673, 2007.

Lawrence M Ausubel and Raymond J Deneckere. A generalized theorem of the maxi-

mum. Fconomic Theory, 3(1), 1993.

John Bates. Challenges and accomplishments of modeling impacts of policy initiatives.

In Association for European Transport and Contributors, 2008.

Aharon Ben-Tal, Laurent E Ghaoui, and Arkadi Nemirovski. Robust Optimization,

volume 28. Princeton University Press, 2009.
Dimitri P Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

Dimitris Bertsimas, Ebrahim Nasrabadi, and Sebastian Stiller. Robust and adaptive

network flows. Operations Research, 61(5):1218-1242, 2013.

Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization and network flows.

Mathematical programming, 98(1-3):49-71, 2003.

John R Birge and James K Ho. Optimal flows in stochastic dynamic networks with

congestion. Operations Research, 41(1):203-216, 1993.

Stephen D Boyles. Bush-based sensitivity analysis for approximating subnetwork diver-

sion. Transportation Research Part B, 46:139-155, 2012.

Stephen D Boyles and S Travis Waller. A mean-variance model for the minimum cost

flow problem with stochastic arc costs. Networks, 56(3):215-227, 2010.

39



[12]

[13]

[15]

[16]

[18]

[19]

[20]

[21]

Anthony Chen and Zhong Zhou. The a-reliable mean-excess traffic equilibrium model
with stochastic travel times. Transportation Research Part B: Methodological, 44(4):493—
513, 2010.

BiY Chen, William H K Lam, Agachai Sumalee, Qingquan Li, and Mei L. Tam. Reliable
shortest path problems in stochastic time-dependent networks. Journal of Intelligent

Transportation Systems, 18(2):177-189, 2014.

Louis Chen, Will Ma, James Orlin, and David Simchi-levi. Distributionally Robust Max
Flows, pages 81-90. 01 2020.

Peng Chen and Yu M Nie. Bicriterion shortest path problem with a general nonadditive
cost. Transportation Research Part B: Methodological, 57:419-435, 2013.

Augusto Eusébio and José R Figueira. Finding non-dominated solutions in bi-objective
integer network flow problems. Computers € Operations Research, 36(9):2554-2564,
2009.

Augusto Eusébio, José R Figueira, and Matthias Ehrgott. On finding representative
non-dominated points for bi-objective integer network flow problems. Computers &

Operations Research, 48:1-10, 2014.

Yueyue Fan, Robert E Kalaba, and James E Moore. Arriving on time. Journal of

Optimization Theory and Applications, 127(3):497-513, 2005.

Yueyue Fan and Yu M Nie. Optimal routing for maximizing the travel time reliability.

Networks and Spatial Economics, 6(3-4):333-344, 2006.

Mogens Fosgerau and Leonid Engelson. The value of travel time variance. Transporta-

tion Research Part B: Methodological, 45(1):1-8, 2011.

Mogens Fosgerau and Anders Karlstrom. The value of reliability. Transportation Re-

search Part B: Methodological, 44(1):38-49, 2010.

40



[22]

[25]

[26]

[29]

[30]

[31]

Steven A Gabriel and David Bernstein. The traffic equilibrium problem with nonadditive
path costs. Transportation Science, 31(4):337-348, 1997.

Gregory D Glockner and George L Nemhauser. A dynamic network flow problem with
uncertain arc capacities: formulation and problem structure. Operations Research,

48(2):233-242, 2000.

Horst W Hamacher, Christian Roed Pedersen, and Stefan Ruzika. Multiple objective
minimum cost flow problems: A review. FEuropean Journal of Operational Research,

176(3):1404-1422, 2007.

Dorit Hochbaum. Complexity and algorithms for nonlinear optimization problems.

Annals of Operations Research, 153(1):257-296, September 2007.

Kevin R Hutson and Douglas R Shier. Extended dominance and a stochastic shortest

path problem. Computers € Operations Research, 36(2):584-596, 2009.

Ehsan Jafari and Stephen D Boyles. Improved bush-based methods for network con-
traction. Transportation Research Part B, 83:298-313, 2016.

Momin Jamil and Xin-She Yang. A literature survey of benchmark functions for global
optimization problems. International Journal of Mathematical Modelling and Numerical

Optimisation, 4(2):150-194, 08 2013.

P V Kamesam and R R Meyer. Multipoint methods for separable nonlinear networks,

pages 185—-205. Springer Berlin Heidelberg, Berlin, Heidelberg, 1984.

Alireza Khani and Stephen D Boyles. An exact algorithm for the mean-standard devi-
ation shortest path problem. Transportation Research Part B: Methodological, 81:252—
266, 2014.

Zoltan Kiraly and Péter Kovacs. Efficient implementations of minimum-cost flow algo-

rithms. Acta Universitatis Sapientiae, Informatica, 4, 2012.

41



[32]

[35]

[36]

[39]

[40]

[41]

D Klingman, A Napier, and J Stutz. Netgen: A program for generating large scale ca-
pacitated assignment, transportation, and minimum cost flow network problems. Man-

agement Science, 20(5):814-821, 1974.

Fernando A Kuipers, Song Yang, Stojan Trajanovski, and Ariel Orda. Constrained
maximum flow in stochastic networks. In 2014 IEEE 22nd International Conference on

Network Protocols, pages 397-408. IEEE, 2014.

Haijune Lee and P Simin Pulat. Bicriteria network flow problems: Continuous case.

European Journal of Operational Research, 51(1):119-126, 1991.

J Shung Lin, Chin C Jane, and John Yuan. On reliability evaluation of a capacitated-
flow network in terms of minimal pathsets. Networks, 25(3):131-138, 1995.

Jsen S Lin. Reliability evaluation of capacitated-flow networks with budget constraints.

IIE Transactions, 30(12):1175-1180, 1998.

Yi K Lin. A simple algorithm for reliability evaluation of a stochastic-flow network with

node failure. Computers & Operations Research, 28(13):1277-1285, 2001.

Yi K Lin. Using minimal cuts to evaluate the system reliability of a stochastic-flow net-
work with failures at nodes and arcs. Reliability Engineering € System Safety, 75(1):41-
46, 2002.

Yi K Lin. On a multicommodity stochastic-flow network with unreliable nodes subject

to budget constraint. Furopean Journal of Operational Research, 176(1):347-360, 2007.

Yi K Lin. Reliability evaluation for an information network with node failure under cost

constraint. IEEFE Transactions on Systems, Man, and Cybernetics-Part A: Systems and

Humans, 37(2):180-188, 2007.

R R Meyer. Two-segment separable programming. Management Science, 25(4):385-395,
1979.

42



[42]

[45]

[46]

[47]

[48]

[49]

[50]

Siamak Moradi, Andrea Raith, and Matthias Ehrgott. A bi-objective column generation
algorithm for the multi-commodity minimum cost flow problem. FEuropean Journal of

Operational Research, 244(2):369-378, 2015.

Ishwar Murthy and Sumit Sarkar. A relaxation-based pruning technique for a class of

stochastic shortest path problems. Transportation Science, 30(3):220-236, 1996.

[shwar Murthy and Sumit Sarkar. FExact algorithms for the stochastic shortest path
problem with a decreasing deadline utility function. European Journal of Operational

Research, 103(1):209-229, 1997.

V A Nguyen and Y.-P Tan. Minimum convex cost flow problem. In Fourth Interna-
tional Conference on Information, Communications and Signal Processing, 2003 and the
Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint, volume 2,
pages 1248-1252, 2003.

Yu Nie and Yueyue Fan. Arriving-on-time problem: discrete algorithm that ensures
convergence. Transportation Research Record: Journal of the Transportation Research

Board, (1964):193-200, 2006.

Yu M Nie. Multi-class percentile user equilibrium with flow-dependent stochasticity.

Transportation Research Part B: Methodological, 45(10):1641-1659, 2011.

Yu M Nie and Xing Wu. Shortest path problem considering on-time arrival probability.
Transportation Research Part B: Methodological, 43(6):597-613, 2009.

Yu M Nie, Xing Wu, and Tito Homem-de Mello. Optimal path problems with second-
order stochastic dominance constraints. Networks and Spatial Economics, 12(4):561—

587, 2012.

Evdokia Nikolova and Nicolas E Stier-Moses. A mean-risk model for the traffic as-
signment problem with stochastic travel times. Operations Research, 62(2):366-382,
2014.

43



[51]

[52]

[55]

[56]

[57]

[58]

[59]

Fernando Ordoénez and Nicolas E Stier-Moses. Wardrop equilibria with risk-averse users.

Transportation Science, 44(1):63-86, 2010.

A Arun Prakash, Ravi Seshadri, and Karthik K Srinivasan. A consistent reliability-based
user-equilibrium problem with risk-averse users and endogenous travel time correlations:

formulation and solution algorithm. Transportation Research Part B: Methodological,

114:171-198, 2018.

William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. Nu-
merical Recipes in C: The Art of Scientific Computing (2nd ed.). Cambridge University
Press., 1992.

P Simin Pulat, Fenghueih Huarng, and Haijune Lee. Efficient solutions for the bicriteria

network flow problem. Computers & Operations Research, 19(7):649-655, 1992.

Andrea Raith and Matthias Ehrgott. A two-phase algorithm for the biobjective integer
minimum cost flow problem. Computers & Operations Research, 36(6):1945-1954, 2009.

Andrea Raith and Antonio Sedeno-Noda. Finding extreme supported solutions of biob-
jective network flow problems: An enhanced parametric programming approach. Com-

puters & Operations Research, 82:153-166, 2017.

Antonio Sedeno-Noda and C Gonzalez-Martin. The biobjective minimum cost flow

problem. European Journal of Operational Research, 124(3):591-600, 2000.

Suvrajeet Sen, Rekha Pillai, Shirish Joshi, and Ajay K Rathi. A mean-variance model

for route guidance in advanced traveler information systems. Transportation Science,

35(1):37-49, 2001.

Ravi Seshadri and Karthik K Srinivasan. Robust traffic assignment model: formulation,

solution algorithms and empirical application. Journal of Intelligent Transportation

Systems, 21(6):507-524, 2017.

44



[60]

[61]

[62]

[63]

[65]

[66]

[67]

Mehrdad Shahabi, Avinash Unnikrishnan, and Stephen D Boyles. An outer approxima-
tion algorithm for the robust shortest path problem. Transportation Research Part E:

Logistics and Transportation Review, 58:52-66, 2013.

Raj A Sivakumar and Rajan Batta. The variance-constrained shortest path problem.

Transportation Science, 28(4):309-316, 1994.

Karthik K Srinivasan, AA Prakash, and Ravi Seshadri. Finding most reliable paths on
networks with correlated and shifted log-normal travel times. Transportation Research

Part B: Methodological, 66:110-128, 2014.

Laszlé A Végh. A strongly polynomial algorithm for a class of minimum-cost flow
problems with separable convex objectives. SIAM Journal on Computing, 45(5):1729—
1761, 2016.

Judith YT Wang, Matthias Ehrgott, and Anthony Chen. A bi-objective user equilibrium
model of travel time reliability in a road network. Transportation Research Part B:

Methodological, 66:4-15, 2014.

Xing Wu. Study on mean-standard deviation shortest path problem in stochastic and

time-dependent networks: A stochastic dominance based approach. Transportation

Research Part B: Methodological, 80:275-290, 2015.

Tao Xing and Xuesong Zhou. Finding the most reliable path with and without link travel
time correlation: A lagrangian substitution based approach. Transportation Research

Part B: Methodological, 45(10):1660-1679, 2011.

Tao Xing and Xuesong Zhou. Reformulation and solution algorithms for absolute and
percentile robust shortest path problems. IEEE Transactions on Intelligent Transporta-

tion Systems, 14(2):943-954, 2013.

Lixing Yang and Xuesong Zhou. Optimizing on-time arrival probability and percentile

travel time for elementary path finding in time-dependent transportation networks:

45



[72]

[73]

Linear mixed integer programming reformulations. Transportation Research Part B:

Methodological, 96:68-91, 2017.

Chao Zhang, Xiaojun Chen, and Agachai Sumalee. Robust wardrop’s user equilib-
rium assignment under stochastic demand and supply: expected residual minimization

approach. Transportation Research Part B: Methodological, 45(3):534-552, 2011.

Leilei Zhang and Tito Homem-de Mello. An optimal path model for the risk-averse
traveler. Transportation Science, 51(2):518-535, 2016.

Yufeng Zhang and Alireza Khani. An algorithm for reliable shortest path problem with
travel time correlations. Transportation Research Part B: Methodological, 121:92-113,
2019.

Yuli Zhang, Zuo J Max Shen, and Shiji Song. Parametric search for the bi-attribute con-
cave shortest path problem. Transportation Research Part B: Methodological, 94:150—
168, 2016.

Yuli Zhang, Zuo J Max Shen, and Shiji Song. Lagrangian relaxation for the reliable
shortest path problem with correlated link travel times. Transportation Research Part

B: Methodological, 104:501-521, 2017.

46



