
CFL-HC: A Coded Federated Learning Framework
for Heterogeneous Computing Scenarios

Dong Wang∗, Baoqian Wang†, Jinran Zhang‡, Kejie Lu∗, Junfei Xie†, Yan Wan§ and Shengli Fu‡
∗Department of Computer Science and Engineering, University of Puerto Rico at Mayagüez

†Department of Electrical and Computer Engineering, San Diego State University
‡Department of Electrical Engineering, University of North Texas

§Department of Electrical Engineering, University of Texas at Arlington

Abstract—Federated learning (FL) is a promising machine
learning paradigm because it allows distributed edge devices to
collaboratively train a model without sharing their raw data.
In practice, a major challenge to FL is that edge devices are
heterogeneous, so slow devices may compromise the convergence
of model training. To address such a challenge, several recent
studies have suggested different solutions, in which a promising
scheme is to utilize coded computing to facilitate the training
of linear models. Nevertheless, the existing coded FL (CFL)
scheme is limited by a fixed coding redundancy parameter,
and a weight matrix used in the existing design may introduce
unnecessary errors. In this paper, we tackle these issues and
propose a novel framework, namely CFL-HC, to facilitate CFL
in heterogeneous computing scenarios. In our framework, we
consider a computing system consisting of a central server and
multiple computing devices with original or coded datasets.
Then we specify an expected number of input-output pairs
that are used in one round. Within such a framework, we
formulate an optimization problem to find the best deadline
of each training round and the optimal size of the computing
task allocated to each computing device. We then design a two-
step optimization scheme to obtain the optimal solution. To
evaluate the proposed framework, we develop a real CFL system
using the message passing interface platform. Based on this
system, we conduct numerical experiments, which demonstrate
the advantages of the proposed framework, in terms of both
accuracy and convergence speed.

Index Terms—Federated learning, edge computing, hetero-
geneous, coded computing, task allocation and scheduling,
message passing interface

I. INTRODUCTION

In recent years, we have witnessed a tremendous increase
in data produced by smart edge devices along with a rising
need to train learning models based on these data while pre-
serving data privacy [1]. To address these needs, a promising
learning paradigm, namely, federated learning (FL) [2], has
attracted significant attention because FL allows edge devices
to collaboratively train a global model without sharing the
local raw data, and thus can protect data privacy [3], [4].

Despite such salient features, FL also faces many design
challenges in the real-world networks, especially how to
cope with the heterogeneous computing environments that
are common in edge computing [3], [4]. In practice, the
heterogeneity can have multiple forms, in terms of computing
capability, communication capacity, energy capacity, etc. In

general, all these factors can affect the performance of model
training in FL.

To address the aforementioned challenge, many existing
studies design various scheduling schemes for different FL
systems. For instance, the authors in [5] proposed a schedul-
ing policy for FL in a heterogeneous edge computing sce-
nario, in which edge devices share the same wireless channel
with limited capacity. For this FL system, they designed
an age-based scheduling (ABS) scheme that schedules slow
devices less frequently while guaranteeing data in these slow
devices can contribute to the training of the learning model
before a threshold. The authors then demonstrated that the
proposed scheduling scheme can lead to faster convergence
of a classification model that is trained by using the clas-
sical MNIST database with approximately 70% converged
accuracy.

In addition to the scheduling schemes, coded computing
schemes have also been introduced recently [6], [7]. While
most of these coded computing schemes aim to accelerate
matrix multiplication, which is a building block in machine
learning, a novel coded computing scheme, namely, coded
federated learning (CFL), was proposed recently in [8] that
can accelerate the training of linear regression models in a
heterogeneous computing environment. Compared to coded
matrix multiplication, the key novelty of CFL is that only
the encoding process is required in the initialization stage
of FL. Consequently, the privacy of raw data can still be
preserved because the confidentiality of raw data can be
protected by a random encoding matrix. Moreover, despite
the errors introduced by the encoding process, using coded
data in the training stage seems to speed up the convergence
of the learning model. More recently, the authors in [9]
further extended the CFL model to solve more general
non-linear problems. Specifically, they demonstrated that the
inputs in the MNIST database can first be converted by using
random Fourier features (RFFs) to approximate the radial
basis function (RBF) kernel, and then the converted input
data and output labels can be used to train a linear regression
model, which can quickly converge to about 95% accuracy.

Although these recent studies push forward the develop-
ment of FL, we notice that these schemes still have some

978-1-7281-8104-2/21/$31.00 ©2021 IEEE

GL
O

BE
CO

M
 2

02
1

- 2
02

1
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

72
81

-8
10

4-
2/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
46

51
0.

20
21

.9
68

59
62

Authorized licensed use limited to: San Diego State University. Downloaded on December 27,2022 at 16:31:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: the System Model

limitations. First, there is a lack of a clear formulation that
aims to optimize both the deadline to execute a training round
and the amount of data that shall be used by each computing
device to train the local model in one training round. In
addition, the CFL model in [8] and [9] uses only one extra
computing device, which may not fully exploit the computing
resources in edge systems. Moreover, the encoding process in
the CFL model [8], [9] uses a fixed coding redundancy and
uses a weight matrix that may introduce unnecessary coding
errors, which will be analyzed in Section II-C.

In this paper, we aim to tackle the above issues to advance
the state-of-the-art. Specifically, we propose a novel coded
FL scheme, namely, coded federated learning framework for
the heterogeneous computing environment (CFL-HC). In our
framework, we consider an FL system that consists of a
central server, multiple computing devices with original data,
and multiple computing devices that store coded data. In
terms of learning, we apply the stochastic gradient descent
approach and specify an expected number of input-output
pairs that are used in one round. Within such a framework, we
formulate an optimization problem to find the best deadline
of each training round and the optimal load allocated to each
computing device. We then design a two-step optimization
scheme to obtain the optimal solution. To evaluate the pro-
posed framework, we develop a real CFL prototype, based
on which we conduct numerical experiments that confirm
the advantages of the proposed framework in terms of both
accuracy and convergence speed.

The rest of this paper is organized as follows. In Section II,
we describe the framework of the proposed CFL-HC, includ-
ing the system model, the learning model, and the encoding
strategy. Next, in Section III, we formulate an optimization
problem and then solve it using a two-step method. To
evaluate the proposed framework, we implement a prototype
for CFL-HC and conduct experiments in Section IV. Finally,
we conclude this paper in Section V.

II. THE CFL-HC FRAMEWORK

A. The System Model

In this paper, we consider a generic FL system that consists
of one central server and multiple edge computing devices.
As illustrated in Fig. 1, we consider that there are two types
of computing devices, i.e., Type 1 devices that store original
datasets, and Type 2 devices that store coded datasets. To
facilitate further discussions, we let m1 (m1 > 1) be the
number of Type 1 devices and let m2 (m2 ≥ 0) be the number
of Type 2 devices. Moreover, we let M = m1 +m2 and we
assign an integer i (1 ≤ i ≤ M) to each computing device
such that all indices from 1 to m1 are assigned to Type 1
devices and the rest are assigned to Type 2 devices. Here
we note that, if m2 = 0, then the FL system becomes a
traditional FL system without using coded computing.

In the CFL-HC framework, the central server is responsible
for the following tasks. In particular, during the initialization
stage, the central server must (1) initialize and broadcast a
global model, (2) determine the size of the coded dataset
generated by each Type 1 device, and (3) determine the
computing task assigned to each computing device in each
training round. During the model training stage, the central
server must (4) broadcast the latest global model at the
beginning of the training round, (5) set a timer then wait
for the training parameters sent by computing devices before
timeout, (6) aggregate the training parameters and (7) update
the global model using the aggregated training parameters.

During the initialization stage, each computing device must
prepare a local model based on the global model broadcasted
by the central server. Moreover, each Type 1 computing
device must generate a certain amount of coded data and
then distribute them to Type 2 devices after it receives the
instructions from the central server. On the other hand, each
Type 2 device must store coded data from different Type 1
devices separately.

During the training stage, each computing device first
updates its local model using the new model parameters
broadcasted by the central server. It will then randomly
choose a subset of local data, depending on the number
of tasks specified by the central server, to train the local
model. Finally, it will send the local training parameters (e.g.,
gradients) to the central server.

B. The Learning Model

Following recent studies in [8] and [9], we consider the
training of a linear regression model. Usually, the input of
a linear model is a data point x (x ∈ R1×d and x =
[x1, x2, · · · , xd]), the output of the model is y (y ∈ R), and
the model to be trained is y = xβ + β0, where β0 (β0 ∈ R)
is the bias and β (β ∈ Rd×1 and β = [β1, β2, · · · , βd]T) is
a d-dimensional vector of linear coefficients.

In this paper, to simplify the discussions, we let input
data point x be a (d + 1)-dimensional data point, i.e.,

Authorized licensed use limited to: San Diego State University. Downloaded on December 27,2022 at 16:31:07 UTC from IEEE Xplore. Restrictions apply.

x ∈ R1×(d+1), such that the first element in x, denoted as
x0, is constant 1. Similarly, we let vector β be a (d + 1)-
dimensional vector, i.e., β ∈ R(d+1)×1, such that the first
element in β is the bias β0. In this manner, the model can
be simplified to y = xβ, for which the objective of model
training is to find the best β that minimizes an error function.

We assume that each computing device i stores a total of
ni input-output pairs. In Type 1 device (1 ≤ i ≤ m1), the
input-output pairs are not coded and are defined by set S(i) =

{(x(i)
j , y

(i)
j) | x(i)

j ∈ R1×(d+1) and y(i)j ∈ R , where x(i)j0 = 1
and 1 ≤ j ≤ ni}. In Type 2 device (m1 < i ≤ M), the
input-output pairs are coded (to be explained in the next sub-
section) and are defined by set S(i) = {(x̃(i)

j , ỹ
(i)
j) | x̃(i)

j ∈
R1×(d+1) and ỹ(i)j ∈ R , where 1 ≤ j ≤ ni}.

To train the model, we apply a stochastic gradient decent
(SGD) approach. Specifically, we consider that in each train-
ing round, a total of r input-output pairs will be randomly
chosen from existing datasets in the training process. We
further assume that computing device i will randomly choose
`i input-output pairs in its dataset (original or coded) for
training such that

∑M
i=1 `i = r. In Section III, we will discuss

how to find the optimal task allocation for each computing
device.

Next, suppose the j-th input-output pair on the i-th com-
puting device (x

(i)
j , y

(i)
j) is chosen to train the model, then

the estimated output ŷ(i)j is

ŷ
(i)
j = x

(i)
j β (1)

and the corresponding error e(i)j is

e
(i)
j = y

(i)
j − ŷ

(i)
j . (2)

Without the loss of generality, we consider that the first
`i pairs are chosen in a training round, then the total square
error E(i) on device i can be defined by

E(i) =

`i∑
j=1

(e
(i)
j)2 =

`i∑
j=1

(y
(i)
j − ŷ

(i)
j)2. (3)

Then, to train the model locally, computing device i can
try to find the gradient of E(i) with respect to β:

5βE(i) = 2

`i∑
j=1

(x
(i)
j)T (ŷ

(i)
j − y

(i)
j)

= 2(X(i))T (ŷ(i) − y(i)), (4)

where ŷ(i) ∈ R`i×1 is created by grouping all `i estimated
outputs into a vector, y(i) ∈ R`i×1 is created by grouping all
`i outputs into a vector, and X(i) ∈ R`i×(d+1) is generated
by grouping all `i inputs into a matrix.

To update the global model, we assume that I is the set of
computing devices that return gradients before timer reaches
timeout. If I = ∅, then the same β will be sent to all

computing devices in the next round. Otherwise, a new β
can be calculated by

β − η∑
i∈I `i

(∑
i∈I
5βE(i)

)
, (5)

where η ≥ 0 is the learning rate.
Lastly, regarding the time complexity, the computing time

of ŷ(i) is determined by implementing the matrix-vector
multiplication with two matrices in dimensions of `i×(d+1)
and (d+1)×1. Therefore, the time complexity of computing
ŷ(i) is O(`id). Similarly, to compute the gradient for the i-th
node 5βE(i), the time complexity is also O(`id).

C. The Coded Computing Model

In [8] and [9], the authors used the same coded computing
scheme. Specifically, they introduced a coding redundancy
parameter c and assumed that computing device i can return
gradient on time with probability pi, which is known in
advance. Then, during the initialization stage, each Type 1
computing device i generates a random matrix Gi of size
c × `i, and a diagonal weight matrix Wi of size `i × `i, in
which each diagonal element equals to

√
1− pi. Based on

these two matrices, they designed a coding scheme for each
computing device i using the following equations:

X̃(i) = GiWiX
(i), (6)

ỹ(i) = GiWiy
(i), (7)

Next, they considered that all Type 1 computing devices send
coded data, i.e., X̃(i) and ỹ(i), to the central server, which
will aggregate the received coded data by

X̃ =
n∑

i=1

X̃(i), (8)

ỹ =
n∑

i=1

ỹ(i). (9)

Using our system model, their FL system contains a single
Type 2 device, which is the central server itself and this
device always has c coded input-output pairs. Consequently,
in each training round, they assumed that the central server
can always compute a local gradient before the deadline by

5βẼ =
2

c
(X̃)T (X̃β − ỹ),

≈ 2

m1∑
i=1

(1− pi)5β E(i). (10)

Finally, the authors in [8] and [9] considered that the
expected summation of received gradients is

2

m1∑
i=1

pi 5β E(i), (11)

which can be added to the locally computed gradient to
cancel out pi.

Authorized licensed use limited to: San Diego State University. Downloaded on December 27,2022 at 16:31:07 UTC from IEEE Xplore. Restrictions apply.

Clearly, the above coding scheme is first limited by a
fixed coding redundancy parameter for every computing
device. Moreover, we can observe that this scheme introduces
unnecessary error in the aggregation stage. Specifically, by
the end of a training round, the central server can receive the
gradients from a subset of Type 1 computing devices, and
as such the actual summation of gradients is never the same
as Eq. (11). Therefore, adding the local gradient in Eq. (10)
cannot give the desired summation of gradients.

To solve the above issue, in our CFL-HC framework, we
design a different coding scheme. Specifically, we consider
that each Type 1 computing device calculates a set of ci
coded input-output pairs during the initialization stage, using

X̃(i) =
1
√
ci
GiX

(i), (12)

ỹ(i) =
1
√
ci
Giy

(i), (13)

where Gi is a ci × ni dimensional random coding matrix,
in which every element can be either +1 or −1 with 50%
probability. Then this Type 1 computing device will send the
coded dataset to one or more Type 2 devices. Consequently,
when a Type 2 device computes gradients locally, the errors
will be only introduced by the coding matrices.

Due to limited space, in this paper, we will skip the
analysis about the coding error when we use the coded data
to generate gradients. In the next section, we focus on the
optimal task allocation in CFL-HC. We will then develop
a prototype of the CFL-HC system and evaluate its overall
performance in Section IV.

III. AN OPTIMAL TASK SCHEDULING SCHEME

In this section, we first formulate an optimal task schedul-
ing problem for the CFL-HC framework. We then design
a two-step alternative solution that solves the optimization
problem.

A. Problem Formulation
In the last section, we have explained the details of

the CFL-HC framework, in which the proposed learning
model utilizes the SGD approach for training such that each
computing device i randomly chooses `i input-output pairs
in a round and

∑M
i=1 `i = r. To formulate an optimal task

scheduling problem, we first define a task allocation vector
` = (`1, ..., `M). We then define T as the random variable
representing the time to complete a training round. Based on
these definitions, we formulate an optimal task scheduling
problem as follows to minimize the expected task completion
time E[T].

Pmain : minimize
`

E[T]

subject to : `i ≤ ni, ∀1 ≤ i ≤M
M∑
i=1

`i = r,

(14)

where the first constraint specifies that the assigned load
to every computing device cannot exceed the size of the
dataset stored locally, and the second constraint specifies the
requirement for SGD.

According to the time complexity analysis at the end of
Section II-B, we can observe that the time complexity to
calculate gradients in any computing device i is linear in the
assigned load, i.e., `i. We also assume that the communica-
tion time is less significant compared to the computing time.
Therefore, following the studies on coded matrix multipli-
cation in [6] and [7], we assume that the duration from the
time that the central server starts a training round to the time
that it receives training parameters from computing device i,
denoted as Ti, follows a shifted exponential distribution with
parameters ai and µi

Pr[Ti ≤ t] =

{
1− e−

µi
`i

(t−ai`i) t ≥ aili
0 otherwise.

(15)

B. A Two-Step Solution

Since Pmain is hard to solve, we develop a two-step
solution that is similar to the solutions proposed in [6] and
[7]. Specifically, in Step 1, we assume that a feasible time t
is given to complete a training round and we let X(t) be the
total number of input-output pairs that have been used by a
subset of computing devices to compute local gradients that
are received by the central server before t. Consequently, the
optimization formulation for Step 1 is defined as follows:

P(1)
alt : `∗(t) = argmax

`
E[X(t)]

subject to `i ≤ ni, ∀1 ≤ i ≤M,
(16)

where `∗(t) = [`∗1(t), ..., `
∗
M (t)]T is a vector of optimal loads

assigned to all computing devices.
To solve P(1)

alt , we compute the expected value of X(t) by
using the assumption that the task completion time for each
computing device follows a shifted exponential distribution:

E[X(t)] =
M∑
i=1

E[Xi(t)] =
M∑
i=1

`i(1− e−
µi
`i

(t−ai`i)). (17)

Eq. (17) shows that we can choose `i independent from
`j (∀j, j 6= i) to maximize E[Xi(t)]. Since problem P(1)

alt

requires constraints `i ≤ ni for all i, the optimization
approach to find the optimal `∗i (t) is different from the
methods used in [6]. Specifically, we first derive partial
derivative

∂

∂`i
E[Xi(t)] = 1− e−

µi
`i

(t−ai`i)(
µit

`i
+ 1) (18)

and our analysis shows that the above derivative function
approaches to 1 when `i tends to 0 and it is not increasing
with respect to `i.

Consequently, to find `∗i (t), we first use `i = ni in
Eq. (18). If the derivative is positive, then `∗i (t) = ni.

Authorized licensed use limited to: San Diego State University. Downloaded on December 27,2022 at 16:31:07 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Configuration and Parameters of Computing De-
vices

Computing Node ni ai µi
Node 1 with Original Data 400 15× 10−4 1× 104

Node 2 with Original Data 400 20× 10−4 1× 104

Node 3 with Original Data 400 25× 10−4 1× 104

Node 4 with Original Data 400 30× 10−4 1× 104

Node 5 with Coded Data 800 20× 10−4 1× 104

Otherwise, if the derivative is negative, we can use numerical
method to find `∗1(t) such that the derivative is 0.

After solving P(1)
alt , we can obtain the optimal load vector

`∗(t). We let X∗(t) be the value of X(t) when the optimal
load vector `∗(t) is used by all computing devices, which is

X∗(t) =
M∑
i=1

X∗i (t) =
M∑
i=1

`∗i (t)× 1{Ti ≤ t}, (19)

where function 1 equals to 1 when Ti ≤ t and it is 0
otherwise.

Based on the above definitions, we can formulate the
optimization problem in the second step by

P(2)
alt : minimize t

subject to Pr[X∗(t) < r] = o(
1

M
).

(20)

To solve P(2)
alt , we can find an optimal time τ∗ such

that E[X∗(τ∗)] = r. Since function E[X∗(t)] increases
monotonically with respect to t, τ∗ can be found numerically.

Due to the limited space, we will skip the theoretical
analysis that shows the optimality of our solution obtained
by the aforementioned two-step approach.

IV. NUMERICAL RESULTS

A. Heterogeneous Computing System for Federated Learning

To implement the proposed CFL-HC, we utilize Message
Passing Interface (MPI), which is a common interface for dis-
tributed computing. Specifically, we implement all the source
codes in Python and we use the open-source package mpi4py
to access the MPI platform, which is installed separately.

Table I illustrates the configuration of our prototype, which
consists of one central server, m1 = 4 computing devices
that store original data, and m2 = 1 computing device that
stores coded data. To facilitate our experiments, we assume
that each computing device stores a limited number of input-
output pairs, indicated in the second column. Moreover,
Table I shows the configuration for the shifted exponential
distribution parameters ai and µi for each computing device
i. Here, the unit of ai is second per input-output pair, and
the unit of µi is the number of input-output pairs per second.

TABLE II: Experiment Settings for CFL-HC with Different
r

r τ∗ ` [c1, c2, c3, c4]
400 0.2021s [113, 87, 71, 60, 87] [0, 127, 283, 390]
600 0.3027s [169, 131, 107, 90, 131] [0, 125, 282, 393]
800 0.4033s [225, 174, 142, 120, 174] [0, 127, 283, 390]
1000 0.5039s [281, 217, 178, 150, 217] [0, 129, 281, 390]
1200 0.6054s [337, 261, 213, 181, 261] [0, 127, 284, 389]

B. Simulation Settings

In our experiments, we follow the method in [8] and first
use a vector β∗ to generate ni input-output pairs in all Type
1 computing devices,

y(i) =X(i)β∗ + n, (21)

where each row in X(i) is uniformly distributed in a d-
dimensional space, and n is an ni-dimensional vector of
random Gaussian noise.

In our experiments, we compare the following four FL
schemes.
• FL with full load without deadline: in this scheme,

coded computing is not used, all original data are used
to calculate gradients, and there is no deadline.

• FL with average load without deadline: in this
scheme, coded computing is not used, there is no
deadline, and the average load ri is assigned to each
computing device i according to the following equation

`i = ri =
r × ni∑m1

i=1 ni
. (22)

• FL with optimal load and deadline: in this scheme,
coded computing is not used, but the optimal load and
deadline are obtained by using the two-step optimization
approach explained in Section III-B.

• CFL-HC with optimal load and deadline: in this
scheme, coded computing is used and the optimal load
and deadline are calculated by using the two-step opti-
mization approach. Moreover, in the initialization stage,
ci coded input-output pairs are generated, in which ci
is given by

ci =
max(0, ri − `i)∑m1

i=1 max(0, ri − `i)
×

(
M∑

i=m1+1

ni

)
, (23)

where ri is calculated by using Eq. (22), and the max
function helps to generate coded input-output pairs only
for slow devices. Table II shows the values of optimal
deadline, optimal load, and ci with respect to different
r values.

C. Experimental Results

To evaluate and compare the performance of different
schemes, we follow [8] and investigate the normalized mean
squared error (NMSE) of β during the training, which is
||β−β∗||2
||β∗||2 .

Authorized licensed use limited to: San Diego State University. Downloaded on December 27,2022 at 16:31:07 UTC from IEEE Xplore. Restrictions apply.

(a) the Performance of 4 Different
Schemes vs. Time (r = 1000).

(b) the Performance of 4 Different
Schemes vs. Epoch (r = 1000).

(c) the Performance of CFL-HC with Dif-
ferent r vs. time.

Fig. 2: Performance of the Proposed CFL-HC Framework

In Fig. 2, we compare the performance of the four FL
schemes over time in 500 rounds when r = 1000. Fig. 2a
shows that, compared to other FL schemes without using
coded computing, the proposed CFL-HC scheme has a much
faster convergence speed. In particular, the proposed CFL-HC
scheme can finish 500 rounds of training in 240 seconds,
while all non-coding schemes need a much longer time to
finish the training task. This experiment demonstrates the
significant advantage of the CFL-HC framework.

In Fig. 2b, we compare the performance of the four FL
schemes versus epoch when r = 1000. This figure shows
that the proposed CFL-HC scheme achieves a slightly smaller
error after the same number of training rounds. On the
other hand, all non-coding FL schemes have almost identical
NMSE after the same number of training rounds. These
results confirm that the error introduced by our coding design
is reasonably small.

Finally, in Fig. 2c, we investigate the impact of r in CFL-
HC. As we can observe, CHL-HC with r = 400 seems to
have the best convergence performance, which suggests that
choosing a smaller r may accelerate the training process.
On the other hand, we can also observe that the curve
corresponding to r = 400 is less smooth compared to others,
which is a common situation when SGD is used.

V. CONCLUSIONS

In this paper, we have systematically investigated how to
enhance the performance of federated learning (FL) in a
heterogeneous computing environment by exploiting coded
computing. Specifically, we first proposed CFL-HC, which
is a new coded FL (CFL) framework that can accelerate the
training of linear models. In this framework, we considered
a computing system that consists of a central server and
multiple computing devices with original or coded datasets,
we developed a comprehensive learning scheme based on
stochastic gradient descent, and we designed a novel en-
coding scheme that can overcome the limitations of existing
CFL schemes. Within such a framework, we formulated an
optimization problem to obtain the optimal deadline of each
training round and the optimal size of the computing task

allocated to each computing device, and also designed a two-
step method to solve the optimization problem. Finally, to
evaluate the proposed CFL-HC framework, we developed a
real CFL system, based on which we conducted simulation
experiments that demonstrate the outstanding performance of
our framework compared to non-coding FL schemes.

ACKNOWLEDGEMENT

We would like to thank National Science Foundation
under Grants CI-1953048/1730675/1730570/1730325, CNS-
1522458, CAREER-2048266, and CAREER-1714519, for
the support of this work.

REFERENCES

[1] K. Lu, J. Xie, Y. Wan, and S. Fu, “Toward UAV-Based Airborne
Computing,” IEEE Wireless Communications, vol. 26, no. 6, pp. 172–
179, dec 2019.

[2] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T.
Suresh, and D. Bacon, “Federated Learning: Strategies for Improving
Communication Efficiency,” arXiv, oct 2016. [Online]. Available:
http://arxiv.org/abs/1610.05492

[3] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems
and Technology, vol. 10, no. 2, pp. 1–19, jan 2019. [Online]. Available:
https://dl.acm.org/doi/10.1145/3298981

[4] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated Learning:
Challenges, Methods, and Future Directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, aug 2019. [Online]. Available:
http://arxiv.org/abs/1908.07873

[5] H. H. Yang, A. Arafa, T. Q. S. Quek, and H. V. Poor, “Age-Based
Scheduling Policy for Federated Learning in Mobile Edge Networks,”
ICASSP, IEEE International Conference on Acoustics, Speech and
Signal Processing - Proceedings, vol. 2020-May, pp. 8743–8747, oct
2019. [Online]. Available: http://arxiv.org/abs/1910.14648

[6] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” in IEEE Transactions on In-
formation Theory, vol. 65, no. 7. Institute of Electrical and Electronics
Engineers Inc., jul 2019, pp. 4227–4242.

[7] B. Wang, J. Xie, K. Lu, Y. Wan, and S. Fu, “On Batch-Processing Based
Coded Computing for Heterogeneous Distributed Computing Systems,”
arXiv, dec 2019. [Online]. Available: http://arxiv.org/abs/1912.12559

[8] S. Dhakal, S. Prakash, Y. Yona, S. Talwar, and N. Himayat, “Coded
federated learning,” in 2019 IEEE Globecom Workshops, GC Wkshps
2019 - Proceedings. Institute of Electrical and Electronics Engineers
Inc., dec 2019. [Online]. Available: https://arxiv.org/abs/2002.09574v2

[9] S. Prakash, S. Dhakal, M. Akdeniz, A. S. Avestimehr, and N. Himayat,
“Coded Computing for Federated Learning at the Edge,” arXiv, jul
2020. [Online]. Available: http://arxiv.org/abs/2007.03273

Authorized licensed use limited to: San Diego State University. Downloaded on December 27,2022 at 16:31:07 UTC from IEEE Xplore. Restrictions apply.

