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Abstract—The implementation of many Unmanned Aerial
Vehicle (UAV) applications (e.g., fire detection, surveillance, and
package delivery) requires extensive computing resources to
achieve reliable performance. Existing solutions that offload com-
putation tasks to the ground may suffer from long communication
delays. To address this issue, the Networked Airborne Computing
(NAC) is a promising technique, which offers advanced onboard
airborne computing capabilities by sharing resources among the
UAVs via direct flight-to-flight links. However, NAC does not
exist yet and enabling it requires overcoming many technical
challenges, such as the high UAV mobility, and the uncertain,
heterogeneous, and dynamic airspace. This paper addresses these
challenges by 1) developing a Dynamic Batch-Processing based
Coded Computation (D-BPCC) framework for achieving robust
and adaptable cooperative airborne computing, and 2) designing
deep reinforcement learning (DRL) based load allocation and
UAV mobility control strategies for optimizing the system perfor-
mance. As the first study to systematically investigate NAC, to the
best of our knowledge, we evaluate the proposed methods through
designing a NAC simulator and conducting comparative studies
with four state-of-the-art distributed computing schemes. The
results demonstrate the promising performance of the proposed
methods.

Index Terms—Networked airborne computing, unmanned
aerial vehicle, coded distributed computing, reinforcement learn-
ing, load allocation, mobility control

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been widely used
to assist different ground entities or networks, such as provid-
ing wireless services to cellular users, increasing connectivity
in vehicular networks, delivering medical supplies to disaster
areas, and offering computing services to ground users [1]–[3].
Among these applications, using UAVs to assist computing has
recently drawn a growing interest. The implementation of ad-
vanced UAV functions (e.g., path planning, positioning, video
processing, flight control) also requires a significant amount
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Fig. 1: Illustration of Networked Airborne Computing (NAC)
paradigm.

of computing resources. However, due to small payload, the
computing capability of most existing UAV platforms is very
limited. To execute computation-intensive tasks, the existing
solutions are to offload these tasks to ground servers or remote
clouds, which can, however, incur significant delays or even
failures [4].

To address the aforementioned issues, a promising technique
is the Networked Airborne Computing (NAC) [5] that can offer
advanced onboard airborne computing capabilities. NAC is a
new computing paradigm formed by aerial vehicles connected
with direct flight-to-flight communication links (see Fig. 1).
The advantages of UAV-based NAC include low latency,
transportability, infrastructure-free, unmanned maneuvering,
fast deployment, wide-coverage, and low cost. It can not only
enhance UAVs’ system performance by allowing advanced
algorithms to be implemented onboard of UAVs and hence
benefit a wide range of existing UAV applications, but also
give rise to a variety of new applications. For example, it
can facilitate data collection, processing, and distribution for
Internet of Things (IoT) devices, and can function as Mobile
Edge Computing (MEC) servers [6] to provide computing
services for ground users, etc.

Despite the exciting advantages and broad applications,
enabling a UAV-based NAC requires overcoming many tech-
nical challenges. For example, when UAVs operate in the
complex and uncertain airspace with high mobility, the fast
node movement, line-of-sight effect, and node leaving and
joining can cause frequent topology changes, link failures,
data losses, and task interruptions. Moreover, the various
uncertainties (e.g., winds and other vehicles) present in the
airspace can disturb the communication among the UAVs,
bringing additional challenges for robust computing. Currently,

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3231179

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: San Diego State University. Downloaded on December 27,2022 at 16:33:42 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2022 2

the research on UAV-based NAC is still in its early stage,
and most existing studies have been focused on the UAV-
assisted MEC [7]–[14] with a single UAV, which is just one of
many possible applications of NAC. Specifically, these studies
investigate how to provide the best computing services to
ground users, via properly allocating resources and planning
UAV trajectories. Moreover, in these studies, the UAVs act
alone without collaboration and follow trajectories that are
pre-planned. The locations of ground users are assumed to
be known and fixed.

In this paper, we directly tackle the key technical challenges
of NAC to achieve robust cooperative airborne computing on-
board of multiple networked UAVs. In our study, we consider
that a NAC system can be formed in different ways, and there
are two realistic formation scenarios. First, the NAC system
is formed by UAVs operated by different owners in an oppor-
tunistic manner, e.g., when cargo drones owned by different
companies are serving the same area. Here, the mobility of
the UAVs is uncontrollable, unknown, and can be considered
random. Second, the NAC system is formed by UAVs operated
by the same owner, e.g., in multi-UAV applications like
multi-UAV surveillance, search and rescue. In this scenario,
the mobility of the UAVs can be controlled and proactively
planned by the owner to facilitate computing. In this study,
we consider both formation scenarios and develop innovative
computation schemes for the two scenarios to enable efficient,
robust, and adaptable cooperative airborne computing in an
uncertain, heterogeneous, and dynamic airspace. The main
contributions are summarized as follows:

1) Dynamic batch-processing based coded computation (D-
BPCC) framework: This framework features a dynamic
batch-processing based procedure and applies the coding
theory to address the uncertainties phenomenal in a
dynamic NAC system and to improve the efficiency,
robustness, and adaptability of the computing system.

2) Deep reinforcement learning (DRL) based optimization
and control: DRL-based online decision-making strate-
gies are designed to optimize the system performance
and control UAV mobility. Compared to the conventional
numerical optimization methods [7]–[14], DRL-based
strategies do not require any knowledge of the com-
munication, computation, or UAV mobility models, can
be quickly deployed in any NAC systems, and generate
solutions in real time.

3) Two typical NAC formation scenarios: We address two
typical NAC formation scenarios by applying the DRL-
based and D-BPCC-based schemes. To the best of our
knowledge, these two scenarios have not been investi-
gated in the literature.

4) Comprehensive simulation studies: We conduct compre-
hensive simulation studies to evaluate the performance
of the proposed methods for the two NAC formation
scenarios from several aspects. We also implement four
state-of-the-art distributed computing schemes as the
benchmarks for comparison studies.

The rest of the paper is organized as follows. Section
II presents the related work. Section III describes the NAC

system and the computation tasks performed on it. In Section
IV, the D-BPCC framework is introduced to enable the NAC
system to execute computation tasks robustly in a dynamic
and uncertain airspace. To optimize the system performance,
two optimization problems are then formulated in the same
section for the two NAC formation scenarios. Sections V and
VI introduce the DRL-based methods to solve the two opti-
mization problems. The performance of the proposed methods
is evaluated via simulations and comparative studies in Section
VII. Section VIII concludes the paper.

II. RELATED WORK

In this section, we review related work in four areas:
networked airborne computing (NAC), UAV-assisted mobile
edge computing (MEC), DRL-based UAV-assisted networks,
and coded distributed computing.

A. Networked Airborne Computing

Most existing works on UAV-assisted computing focus on
MEC [7]–[14], where UAVs function as servers to provide
computing services to ground users. Studies that explore
resource sharing among UAVs in uncertain airspace via direct
flight-to-flight links are very limited. In [5], the concept of
NAC, its advantages and design guidelines were introduced.
In [15], [16], we investigated the hardware and software design
for a prototype of the NAC platform. In [17], we considered
a NAC system formed by static UAVs hovering in the air and
developed a coded distributed computing scheme to achieve
robust computation of matrix multiplication tasks.

A more general concept, called mobile ad hoc computing
or mobile ad hoc cloud [18]–[20], was coined recently in
[18], which refers to any computing systems formed by
mobile devices with resources shared among each other.
Existing studies have mostly considered smartphones [21]–
[23] or ground vehicles [24] as the main computing resource
providers. Nevertheless, substantial differences exist between
NAC and ground-based mobile ad hoc computing due to the
unique features of UAVs such as high 3-D mobility, highly
uncertain operating environment with significant impacts on
aerial dynamics, stringent safety requirements, mechanical and
aerospace constraints. Existing solutions cannot address these
new technical challenges of NAC.

B. UAV-assisted Mobile Edge Computing

MEC addresses the high transmission latency of remote
cloud-based computing paradigms by deploying cloud re-
sources at the network edge close to users [6]. In UAV-
assisted MEC [25], UAV with computing power functions as
an edge server to provide computing services for ground users.
To improve the quality of service (QoS), joint computation
offloading and UAV trajectory designs were investigated in
[7]–[14], where the UAV follows an optimized trajectory
for serving multiple static ground users. Recently, a few
studies extended the problem to multiple UAVs [26]–[28]. In
particular, [26], [27] made UAVs hover statically over ground
users and investigated the optimal placement of UAVs and task
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assignment. In [28], the trajectories of UAVs were optimally
designed, while jointly considering the optimal bit allocation
and task assignment. In [29], the authors considered an MEC
system formed by stationary and UAV-based quasi-stationary
MEC servers, and investigated how to form coalitions with
shared resources for MEC servers to better serve their users.

To solve the aforementioned optimization problems, most
studies [7]–[14], [26]–[28] assumed known and time-invariant
communication and computation models and attempted to
derive exact solutions. However, this assumption often does
not hold in reality.

C. DRL-based UAV-Assisted Networks

To manage unknown and complex UAV-assisted networks,
DRL has been explored in many recent studies [30]–[36].
For example, multi-agent reinforcement learning (MARL) was
used in [36] to optimize the wireless energy transfer between
UAVs and flying energy resources. Deep Q Network (DQN)
was employed in [35] to achieve efficient dispatch of UAVs
as relays in vehicular networks. In [30], DQN was used for
UAV path planning in UAV-assisted MEC to minimize energy
consumption and maximize task completion efficiency. In [31],
MARL was applied to plan UAV trajectories, based on which
an optimization approach was developed for computation
offloading. DRL has also been explored to generate offloading
decisions in UAV-assisted MEC [33], [34], but it hasn’t been
applied to NAC.

D. Coded Distributed Computing

The resilience of distributed computing systems to uncertain
system disturbances can be enhanced using the coded compu-
tation techniques. The key idea is to apply the coding theory
to generate redundant computations for reducing the impact
of disturbances. This idea has been explored for different
computation problems, such as matrix multiplications [37]–
[42], linear inverse problems [43], convolution [44], deep
neural networks [45], map-reduce [46], and MARL [47].

Nevertheless, most of these approaches were developed
based on multiple assumptions (e.g., homogeneous and static
computing nodes, known and time-invariant data transfer be-
havior and computing power) and thus, cannot be directly
applied for NAC.

Recently, coded distributed computing (CDC) has also been
explored to facilitate MEC. For example, an error-correcting-
code-inspired strategy was proposed in [48] to execute com-
putation tasks in edge servers. Paper [49] introduced a coding
scheme that combines a rateless code for improving system
resiliency and an irregular-repetition code for reducing the
communication latency. However, both approaches assume
homogeneous and static computing nodes. In [50], a Lagrange
coded computing-based framework was developed to enable
fast and secure computation in MEC with heterogeneous but
static edge servers. Papers [39], [40] are closely related to this
work, which consider a MEC system with heterogeneous and
mobile computing nodes. To reduce task completion delay, a
coded computation framework called the coded cooperative
computation protocol (C3P) was developed. Although this

framework can address the first NAC formation scenario with
uncontrollable UAVs, it cannot address the second scenario
that requires UAV mobility control. Moreover, as we will show
in the Simulation Studies section (Sec. VII), C3P is vulnerable
to frequent network changes caused by node movement.

Table I compares the studies that are closely related to this
work from various aspects including application, objective, of-
floading direction, method, planning horizon, mobility control,
computation load optimization, and straggler mitigation.

III. NAC SYSTEM

In this paper, we consider a NAC system that consists of
multiple UAVs flying at the same altitude. The system can
be either formed by UAVs with random mobility, i.e., uncon-
trollable and unpredictable, or UAVs that can be proactively
maneuvered. The onboard computation tasks to be executed
by the UAVs cooperatively are assumed to be matrix-vector
multiplications Ax, where A ∈ Rp×m is a pre-stored matrix.
Matrix-vector multiplication is considered here as it is the
building block for many computation tasks, especially machine
learning based applications such as collaborative filtering
recommender systems [51] and object detection [52]. The
proposed computation framework can be easily extended for
other problems, such as convolution [53] and distributed path
planning [54].

The UAV that receives a sequence of input vectors,
{x1,x2, . . . ,xK}, to process is referred to as the master node,
where xj ∈ Rm×1, j ∈ [K] := {1, 2, . . . ,K} and K is the
total number of input vectors. Due to limited computing power,
executing each task in a single UAV can be time consuming
when the task size is large. To speed up the computation,
the master node cooperates with its neighboring N UAVs
within the communication range by sharing with them the
computation loads. These neighboring UAVs, referred to as
the worker nodes, execute tasks assigned by the master node
and send back the obtained results. The master node then
aggregates the results to output the final values.

This paper seeks the fastest way for the aforementioned
NAC system to complete all tasks. The desired features of
the approach include: 1) Resilience to the various uncertain
system disturbances prominent in the UAV network, such as
communication bottlenecks in the network traffic, link/node
failures, package losses, and slow-downs of computing nodes;
2) Adaptivity for unpredictable network changes such as
random node movement, topology and resource (e.g., com-
munication, computing, and energy) changes; and 3) quick
deployment without requiring any knowledge of the system
models.

IV. DYNAMIC BATCH-PROCESSING BASED CODED
COMPUTATION FRAMEWORK

In this section, we first introduce a dynamic batch-
processing based coded computation (D-BPCC) framework to
enable robust cooperative airborne computing in an uncertain
airspace. Under this framework, we then formulate the system
optimization problems mathematically for the two different
NAC formation scenarios.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3231179

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: San Diego State University. Downloaded on December 27,2022 at 16:33:42 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2022 4

Tab. I: A Comparison of existing studies on UAV or mobile device assisted computing

Ref. Application Objective Offloading
Direction Method Plan

Horizon
Mobility
Control

Comput.
Load

Optim.

Straggler
Mitig.

[7]
UAV-

assisted
MEC

Efficiently offload partial computation
tasks from ground users to the UAV.

Ground to
UAV Numerical Offline ✓ ✓ ✗

[8]
UAV-

assisted
MEC

Use UAVs to provide computing services
and transmit wireless power to mobile

users

Ground to
UAV Numerical Online ✓ ✓ ✗

[9]
UAV-

assisted
MEC

Offload computations from ground IoT
nodes to UAVs

Ground to
UAV DRL Online ✗ ✓ ✗

[10]

UAV-
assisted
MEC

Minimize mobile users’ energy
consumption while offloading mobile

applications to run on the UAV

Ground to
UAV Numerical Online ✓ ✓ ✗

[11]

UAV-
assisted
MEC

Maximize computation bits of
UAV-assisted MEC while satisfying

energy constraints

Gound to
UAV Numerical Offline ✓ ✓ ✗

[12]

UAV-
assisted
MEC

Maximize energy efficiency for
UAV-assisted MEC

Ground to
UAV Numerical Offline ✓ ✓ ✗

[13]

UAV-
assisted
MEC

Minimize weighted sum of energy
consumption of UAV and users

Ground to
UAV Numerical Offline ✓ ✓ ✗

[14]

UAV-
assisted
MEC

Minimize energy consumption for task
offloading between IoT devices and the

UAV

Ground to
UAV Numerical Offline ✓ ✓ ✗

[26],
[27]

UAV-
assisted
MEC

Minimize system energy consumption by
jointly optimizing task scheduling and

UAV deployment

Ground to
UAV Numerical Offline ✗ ✓ ✗

[28]

UAV-
assisted
MEC

Minimize total energy consumption by
jointly optimizing task scheduling,

UAVs’ trajectories and bit allocation

Ground to
UAV Numerical Online ✓ ✓ ✗

[29]

UAV-
assisted
MEC

Efficiently offload computations from
mobile edge severs to UAVs

Ground to
UAV DRL Online ✗ ✓ ✗

[30]

UAV-
assisted
MEC

Ensure QoS of MEC system while
satisfying energy constraints

Ground to
UAV DRL Online ✓ ✗ ✗

[31]

UAV-
assisted
MEC

Jointly minimize energy consumption of
users and maximize service fairness of

UAVs

Ground to
UAV DRL Online ✓ ✓ ✗

[39],
[40]

MEC
Minimize task completion time through

cooperative coded computation on
mobile edge devices

Mobile
device to
mobile
device

Numerical Online ✗ ✓ ✓

This
Work

UAV-based
NAC

Jointly minimize computation time and
mission flight time

UAV to
UAV DRL Online ✓ ✓ ✓

A. D-BPCC Framework

The D-BPCC framework (see Fig. 2) exploits the coding
theory to enhance system resilience to uncertain system dis-
turbances and uses a dynamic batch-processing based proce-
dure (extended from our previous design for static networks
[42]) to make the NAC system adaptable to unpredictable
network changes. In particular, in each worker node i ∈
[N ] := {1, 2, . . . , N}, we encode matrix A into a new matrix
Âi ∈ Rp×m using the following equation

Âi = GiA,

where Gi ∈ Rp×p is an encoding matrix satisfying the
condition that any p rows of the concatenated encoding matrix
G = [G1;G2; . . . ;GN ] ∈ RNp×p are linearly independent.
This step is computed offline, and Âi and G are pre-stored
in each worker node i, assuming the storage space of each
worker node is sufficiently large.

Once receiving an input vector xj , the master node sends
xj to each worker node i. At the same time, it also no-
tifies each node i the number of rows hi,j of Âi to be
processed at a time. In another word, each worker node i
will evenly divide Âi row-wise into ⌈ p

hi,j
⌉ submatrices as

[Âi,1, . . . , Âi,⌈ p
hi,j

⌉], where each submatrix has hi,j rows

except the last one Âi,⌈ p
hi,j

⌉ that has p − (⌈ p
hi,j
⌉ − 1)hi,j

rows. Each submatrix will then be multiplied with xj one
by one, i.e., Âi,kxj , ∀k ∈ [⌈ p

hi,j
⌉]. For ease of reference, we

hereinafter call each submatrix of Âi as a batch, and hi,j as
the batch size. Once a batch is processed, the worker node
will send the result back to the master node immediately and
move on to process the next batch.

The worker nodes will stop processing after receiving
the notification from the master node, who will send such
notification after it receives sufficient results for generating
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Fig. 2: Cooperative airborne computing of matrix-vector mul-
tiplication tasks under the D-BPCC framework.

the output. In particular, let ŷj denote the results received at
the master node by a certain time, which can be represented
by

ŷj = ĜAxj ,

where Ĝ is a submatrix of [G1;G2; . . . ;GN ]. Then, the
master node can generate the output using the following
equation

Axj = (ĜT Ĝ)−1ĜT ŷj ,

as long as the length of ŷj is larger than or equal to p, i.e.,
|ŷj | ≥ p.

The following lemma shows the resilience of D-BPCC to
uncertain stragglers.

Lemma 1. For a distributed computing system with a master
node and N worker nodes, D-BPCC can tolerate up to
N − 1 worker nodes failures when processing matrix-vector
multiplication tasks.

Proof. As each worker node i pre-stores the encoded matrix
Âi = GiA with Âi ∈ Rp×m, given an input x ∈ Rm×1,
the aggregated results computed by the node are sufficient for
obtaining the value of Ax by Ax = G−1

i Âix. Therefore,
when there are N − 1 or fewer worker nodes failing to return
results, the master node can utilize the results from other nodes
to recover the final value.

Remark 1. According to Lemma 1, with D-BPCC, the master
node can complete each computation task Axj as long as
there is a functioning worker node. If the master node also
shares certain workload (i.e., also being one of the worker
nodes), any network changes or uncertain system disturbances
won’t cause tasks to fail as long as the master node is
functional.

Remark 2. In the special case that N − 1 worker nodes
fail, the remaining functional worker node i will compute the
whole task Âix. Although this may lead to more computation
time compared with directly performing the task at the master
node without distributed computing, the probability of this
happening is usually small especially when N is large.

The high resilience makes D-BPCC suitable for NAC in
an uncertain and dynamic airspace. Processing tasks as small

batches also naturally handles node heterogeneity as nodes
with more computing or communication resources will process
more batches. Moreover, with batch processing, the master
node will continuously receive partial results from the worker
nodes, which can be utilized to generate approximated outputs.
This feature is crucial for safe UAV operations that require
quick responses to environmental changes such as wind, birds,
obstacles, and other UAVs.

B. Problem Formulation

In D-BPCC, the batch size hi,j is a key control variable to
be determined, which will impact the system performance.
In particular, when hi,j is large (e.g., equal to p), very
few worker nodes will essentially contribute to the compu-
tation and their resources are hence underutilized. On the
contrary, when hi,j is small (e.g., equal to 1), the frequent
data transmissions by the worker nodes may generate large
overhead and communication traffic. Another key factor that
will impact the computing performance is the relative distance
between two UAVs, which affects the data transmission time.
In the NAC formation scenario where UAVs move randomly
with uncontrollable mobility, we exploit the optimization of
the batch size hi,j to minimize the impact of random UAV
mobility and other uncertain system disturbances, and make
the system adaptable to uncertain network changes. In the
scenario where UAVs are controllable, we exploit the benefit
of UAV mobility control to computing and jointly optimize
the batch size and UAV mobility.

To formulate the system optimization problems mathemati-
cally, we first introduce the evaluation metrics for the system
performance. Denote the time required by each worker node i
to process bi,j batches for the j-th task as Ti,j . Then Ti,j can
be captured by the following equation.

Ti,j = T comm
i,j + T comp

i,j , (1)

which includes the communication time T comm
i,j and the com-

putation time T comp
i,j . The communication time T comm

i,j can be
captured by

T comm
i,j = T comm

i,j (xj) + T comm
i,j (Âi,bi,jxj)

where T comm
i (xj) is the time spent to send the input vec-

tor xj from the master node to the worker node i and
T comm
i,j (Âi,bi,jxj) is the time spent to send the last batch

computation result from the worker node i back to the master
node. Note that there is no break between two batches. Once
a worker node completes a batch, it will immediately move
on to process the next batch and at the same time transmit the
computation result of the previous batch to the master node.

The computation time T comp
i,j in (1) can be captured by

T comp
i,j =

bi,j∑
k=1

T comp
i,j (Âi,k,xj)

where T comp
i,j (Âi,k,xj) is the time spent by the worker node

i to compute one batch Âi,kxj . Note that the communication
and computation times are affected by various factors and find-
ing perfect models for them is very challenging considering the

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3231179

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: San Diego State University. Downloaded on December 27,2022 at 16:33:42 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2022 6

uncertain and dynamic airspace. In contrast with most existing
studies that assume the existence of perfect communication
and computation models, we do not make such assumptions
in this study.

With Ti,j , the completion time of each task j ∈ [K] can
then be represented by:

Tj = min
t
{t|Rj(t) ≥ p}

where Rj(t) =
∑N

i=1 bi,jhi,j1Ti,j≤t is the total number of
rows of inner product results for task j that the master node
has received by time t. 1 is the indicator function [55].

The mathematical formulations of the optimization prob-
lems for the two NAC formation scenarios are described as
follows.

1) Problem 1: Consider the scenario where the mobility of
UAVs is random and cannot be controlled. Assuming that the
positions and velocities of the UAVs can be observed through
sensing and estimation, we aim to minimize the total task
completion time by optimizing the batch size hi,j , which is
formulated as

P1 : min
hi,j

∀i∈[N ],∀j∈[K]

J1 =
K∑
j=1

Tj

s.t. C1 : hi,j ∈ Z+, ∀i ∈ [N ], ∀j ∈ [K]

C2 : hi,j ≤ p, ∀i ∈ [N ], ∀j ∈ [K]

C3 : pi,t+∆T = fi(pi,t,vi,t,∆T ),

∀i ∈ [N + 1]

C4 : Tj = min
t
{t|Rj(t) ≥ p}, ∀j ∈ [K]

C5 : Rj(t) =

N∑
i=1

bi,jhi,j1Ti,j≤t, ∀j ∈ [K]

(2)
In constraint C3, pi,t,vi,t denote the position and velocity of
UAV i at time t, respectively, where i ∈ [N+1] with the master
node indexed by N+1. fi(·) describes the movement behavior
of each worker node i, whose specific formula is unknown,
but the velocity of each UAV is assumed to be fixed over a
small time period ∆T .

2) Problem 2: Consider the scenario where the mobility of
UAVs is controllable, and each UAV has a target location to
reach while performing cooperative airborne computing. The
goal is to simultaneously minimize the total task completion
time and the total UAV flight time. To achieve this goal,
we formulate the following optimization problem that jointly
optimizes UAVs’ velocities and batch sizes.

P2 : min
hi,j ,vi,j

∀i∈[N ],∀j∈[K]

J2 = ω
K∑
j=1

Tj +
N+1∑
i=1

T flight
i

s.t. C1, C2, C3, C4, C5
C6 : vi,t = vi,j , tj ≤ t < tj+1, ∀i ∈ [N + 1]

C7 : pi,T flight
i

= gi, ∀i ∈ [N + 1]

C8 : |pi,t − pj,t| ≤ ϵ, ∀i, j ∈ [N + 1], i ̸= j

C9 : vmin ≤ vi,j ≤ vmax, ∀i ∈ [N + 1], j ∈ [K]
(3)

where T flight
i is the flight time of UAV i and ω is a weight that

trades off between total task completion time and total flight
time. When executing each task j, we let each UAV i fly at
a velocity of vi,j , which remains unchanged during the task
execution period [tj , tj+1), where tj is the start time of task j
and tj+1 = tj +Tj . Constraint C7 ensures that each UAV will
reach its target location specified by gi. Constraint C8 prevents
collisions among the UAVs, where ϵ is the minimum safety
distance between two UAVs.

V. DRL-BASED SOLUTION TO P1

In this section, we solve problem P1 in (2) by exploiting
DRL, specifically, the Deep Deterministic Policy Gradient
(DDPG) method [56], which does not need any knowledge
of the communication, computation or UAV mobility models,
and can be quickly deployed in any NAC systems to make
decisions online in real time. We first convert the optimization
problem into a reinforcement learning (RL) problem, and then
describe the solution to the resulting problem.

A. RL based Formulation for P1

To convert P1 into a RL problem, we first model this
problem as a Markov Decision Process (MDP) characterized
by a quintuple (st,at, ζ, r, µ) with each component described
as follows.

1) State st: The system state at time t includes distances
di,t between each worker node and the master node, and
velocities vi,t of all nodes. Specifically,

st = [d1,t, d2,t, . . . , dN,t,v1,t,v2,t, . . . ,vN+1,t]
⊤ ∈ S,

where S denotes the state space.
2) Action at: In P1, the batch size hi,j for each worker

node i and task j is the control variable to be determined when
executing the task j, hence the action to take. The action taken
at time tj (start time of task j) is then defined as follows

atj = [h1,j , h2,j , h3,j , . . . , hN,j ]
⊤ ∈ A

where A is the action space. Note that each hi,j in atj should
satisfy constraints C1 and C2 in P1, i.e., hi,j ∈ Z+ and hi,j ≤
p.

3) Transition function ζ: The transition function describes
the transition from the current state to the next state given the
current action, and outputs the probability distribution over the
next state, i.e., ζ : S ×A× S → [0, 1]. In P1, given the state
stj and action atj at time tj , the next state of interest is the
state stj+1

at the start time tj+1 of the next task j+1, as tj+1

is the time to make the next decision. To obtain stj+1
, the

computing nodes take action atj and execute task j. The next
state stj+1 can then be obtained by observing the positions
and velocities of all nodes at time tj+1 = tj + Tj . Note that
in our settings, the explicit form of the transition function ζ
is unknown.
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4) Reward function r: As the goal of P1 is to minimize
the total task completion time, we define the reward function
as follows:

r(stj ,atj ) = −ω1Tj

which can be obtained based on the state stj and action atj .
A larger reward indicates less time taken for computing a task
j.

5) Policy function µ: The policy function determines the
action to take given the current state, which can be determin-
istic or stochastic. We here consider a deterministic policy
function that maps the state space to the action space, i.e.,
µ : S → A and a = µ(s). In P1, the policy function is called
only at the start time tj of each task j.

With the above MDP setting, we can then convert P1 into
a RL problem that determines the optimal policy µ∗(s) such
that the following expected cumulative discounted reward is
maximized,

Qµ(s, a) :=E stj∼ζ

atj
=µ(stj )

[ K∑
j=1

γj−1r(stj ,atj )|st1 = s, at1 = a

]
where s ∈ S , a ∈ A, and γ ∈ (0, 1] is a discount factor.
Qµ(s, a) is also known as the action value function or Q
function. The optimal policy can be obtained by

µ∗(s) ∈ argmax
a

Q∗(s, a)

where Q∗(s, a) is the optimal Q function obtained by
Q∗(s, a) := maxµ Q

µ(s, a).

B. Deterministic Policy Gradient Method

To solve the above RL problem, the key is to derive the
optimal Q function Q∗(s, a), which can be obtained by using
the Bellman equation [57] as follows

Q∗(s, a) =Es′∼ζ

[
r(s, a) + γmax

a′
Q∗(s′,a′)

]
(4)

where s′ ∼ ζ(s, a) denotes the next state. As the state space
is continuous, Q∗(s, a) cannot be directly computed. Instead,
we approximate Q∗(s, a) using a parameterized non-linear
function, denoted as Q(s, a; θ), where θ is the parameter.
We delay the design of the non-linear function to the next
subsection.

It is noted that in (4), the transition function ζ is needed
for computing the optimal Q function, whose explicit form is,
however, unknown. To address this challenge, we introduce
a learning agent to interact with the NAC system, which is
the environment, and collect transition data to approximate
the transition function ζ. The transition data to be collected
includes the state, action, reward, and the next state, i.e.,
(s, a, r, s′), and are stored in a replay buffer denoted by D.
Equation (4) can then be rewritten as

Q(s, a; θ) ≈ E(s,a,r,s′)∼D

[
r(s, a) + γmax

a′
Q(s′,a′; θ)

]
,

Fig. 3: DNN representation of the policy functions for com-
putation load optimization.

with Q∗(s, a) approximated by Q(s, a; θ). This equation can
be solved to obtain the optimal Q function by minimizing the
following error,

J(θ)

= E
(s,a,r,s′)∼D

[(
Q(s, a; θ)−

(
r + γmax

a′
Q (s′,a′; θ)

))2
]
.

However, we note that directly computing maxa′ Q (s′,a′; θ)
in the above error function is difficult considering the large
state and action spaces. To address this issue, we introduce
a policy approximator denoted by µ(s;ϕ) with parameter ϕ
to output the action using a = µ(s;ϕ). We then learn the
parameters of the policy and Q functions to minimize the error
function. Moreover, to stabilize the training procedure, we
introduce a target policy function µ′ and a target Q function Q′

with the same function representations and initial weights as
the original policy and Q functions. The error function finally
used for finding the optimal Q function is then given as

J(θ)

= E
(s,a,r,s′)∼D

[
(Q(s, a; θ)− (r + γQ′ (s′, µ′(s′;ϕ); θ)))

2
]

where the parameters ϕ of the policy function is updated using
the policy gradient theorem by

∇ϕJ(ϕ) = E
(s,a,r,s′)∼D

[∇ϕµ(s;ϕ)∇aQ (s, a; θ)]

C. Deep Neural Network based Function Representation
To approximate the policy functions, µ(s) and µ′(s), and

the Q functions, Q(s, a) and Q′(s, a), we adopt deep neural
networks (DNNs) considering their powerful approximation
capability. For the policy functions, we design a DNN with
four fully connected layers. The input layer consists of 3N+2
units representing the system state at time tj (start time of task
j ∈ [K]), denoted by stj . The output layer consists of N + 1
sigmoid units [58], denoted by ytj , which output normalized
batch sizes ranged between 0 and 1. The batch size hi,j for
each worker i and task j is computed by

hi,j = ⌈pyi,tj⌉

where ⌈⌉ is the ceiling function. This ensures that the load
constraints C1, C2 are satisfied. Each hidden layer consists of
64 units with ReLU activation function [59]. An illustration
of the designed DNN is shown in Fig. 3.

To approximate the Q functions, we design a DNN also with
four fully connected layers. It takes both state stj and action
atj as the input and has a single linear unit in the output layer
to generate the Q value. The hidden layers consist of 64 ReLU
units.
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D. Training DRL Agent

To estimate the parameters in the DNN-based policy and
Q functions, we adopt the offline training procedure in [56],
which involves the following three stages.

1) Initialization: In the initialization stage (Lines 1-6
in Alg. 1), the weights of the DNNs are randomly ini-
tialized. The learning agent then executes the policy con-
structed using the initial weights for initial episode number
episodes to initialize the replay buffer D. After that, the
exploration and parameter update stages described below
are performed for max training iteration iterations, where
max training iteration is a constant large enough for en-
suring convergence.

2) Training Data Collection: In the training data collection
stage (Lines 8-12 in Alg. 1), the learning agent interacts with
the environment to collect the transition data (stj ,atj , r, stj+1

)
by running the policy constructed with the current weights
for max episode number episodes. In particular, in time
step tj for each task j, given the current state stj , the
action is generated by applying the policy atj = µ(stj ).
The next state stj+1

is obtained by observing the positions
pi,tj+1

and velocities vi,tj+1
of all UAVs at time tj+1. The

movement of each UAV is described by the mobility model
pi,tj+∆T

= fi(pi,t,vi,t,∆T ) with vi,tj being the mobility
control input. It is noted that our method does not require
knowledge of the mobility model and fi can take any form.
With pi,tj+1

, the distances di,tj+1
in the next state stj+1

can
then be computed. The rewards r are obtained by applying the
reward function described in Sec. V-A4.

The collected transition data is stored in the replay buffer
D. After that, a mini-batch B is randomly sampled from the
replay buffer D, which will be used in the next stage to update
the parameters of the policy and Q functions.

3) Parameter Update: The parameters θ of the Q function
are updated by minimizing the following temporal-difference
error:

J(θ) ≈ 1

|B|
∑

(s,a,s′,r)∈B

[L(s′, r)−Q(s, a; θ)]
2

L(s′, r) = r + γQ′(s′, µ′(s′;ϕ); θ)

(5)

The policy parameters ϕ are updated using gradient ascent
based on the policy gradient theorem, with the gradient given
as follows [57]:

∇ϕJ(ϕ) ≈
1

|B|
∑

(s,a,s′,r)∈B

∇ϕµ(s;ϕ)∇aQ (s, a; θ) (6)

To update the parameters, ϕ′ and θ′, in the target policy and
Q functions, Polyak averaging given below is applied:

ϕ′ ← τϕ′ + (1− τ)ϕ

θ′ ← τθ′ + (1− τ)θ
(7)

where τ ∈ (0, 1) is a hyperparameter. The complete training
procedure is summarized in Alg. 1 and illustrated in Fig. 4.

E. Convergence and Complexity Analysis

Our DRL-based algorithm follows the standard DDPG
training procedure, which is not theoretically guaranteed to

Algorithm 1: DRL Training Procedure

// Initialization
1 Initialize ϕ, θ, θ′, ϕ′,D
2 for k = 1 : initial episode number do
3 for j = 1 : K do
4 Select atj =µ(stj ;ϕ).
5 Execute action atj and receive new state stj+1

and reward r.
6 Store (stj ,atj , r, stj+1

) in replay bufferD.

7 for iteration = 1 : max training iteration do
// Training Data Collection

8 for k = 1 : max episode number do
9 for j = 1 : K do

10 Select atj =µ(stj ;ϕ).
11 Execute action atj and receive new state

stj+1 and reward r.
12 Store (stj ,atj , r, stj+1

) in replay bufferD.

13 Sample a random mini-batch B.
// Parameter Update

14 Update θ by minimizing the temporal-difference
error in (5).

15 Update ϕ using gradient ascent, with the gradient
provided in (6).

16 Update θ and ϕ using (7).

converge in its general form [60]. In this study, we evaluate
the convergence of the proposed algorithm empirically through
simulation studies in Section VII.

The time complexity of the proposed DRL-based algorithm
is dominated by the training of actor and critic neural net-
works [61], [62], which is captured by O(

∑J−1
j=1 χjχj+1 +∑Z−1

z=1 χ̂zχ̂z+1). Here J and Z are the number of layers in
the actor and critic neural networks, respectively. χj , and
χ̂z represent the number of units in j-th and z-th layer,
respectively.

The space complexity of our algorithm is determined by the
amount of memory required to store the actor and critic neural
networks as well as the replay buffer [61], which is captured
by O(

∑J−1
j=1 χjχj+1 +

∑Z−1
z=1 χ̂zχ̂z+1 + |D|).

In our design, J = 4, Z = 4, χ1 = dim(s), χ2 = χ3 =
64, χ4 = dim(a), χ̂1 = dim(s)+ dim(a), χ̂2 = χ̂3 = 64, χ̂4 =
1, and |D| = 105, where dim(·) finds the dimension of a
vector.

VI. DRL-BASED SOLUTION TO P2

In this section, we solve problem P2 in (3) by extending
the DRL method described in the previous section.

A. RL based Formulation for P2

Similarly, we first model problem P2 as a MDP character-
ized by the following quintuple (st,at, ζ, r, µ).
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Fig. 4: The training process of the DRL-based method for NAC with uncontrollable UAVs.

1) State st: As UAVs’ velocities are control variables in
P2, we define the state at time t to only include distances di,t
between each worker node i and the master node. The state
st is then represented by

st = [d1,t, d2,t, . . . , dN,t]
⊤ ∈ S

where S is the state space.
2) Action at: In this setting, in addition to the batch size

hi,j for each worker node i and task j, the action atj taken
at time tj (start time of task j) also includes the velocities of
each node vi,j , i.e.,

atj = [h1,j , . . . , hN,j ,v1,j , . . . ,vN+1,j ]
⊤ ∈ A

3) Transition function ζ: The explicit form of the transition
function ζ is still unknown in P2. Different from P1, in order
to obtain the next state stj+1 , we should let the NAC system
execute task j and UAVs move at the same time based on
the action atj . stj+1

can then be obtained by observing the
positions of the UAVs at time tj+1 = tj + Tj .

4) Reward function r: P2 aims to minimize the weighted
sum of the total task completion time

∑K
j=1 Tj and the total

flight time
∑N+1

i=1 T flight
i . To achieve this goal, given current

state stj and action atj , we define the reward function as
follows

r(stj ,atj ) = −ω1Tj −
N+1∑
i=1

||pi,tj − gi||

where the first term penalizes long task completion time, and
the second term drives each UAV to move closer to its target
location and hence arrive there sooner. Moreover, as UAVs
should keep a safe distance between each other (constraint C8
in P2), we add a third term into the reward function to achieve
collision avoidance. The revised reward function is then given
by

r(stj ,atj ) = −ω1Tj −
N+1∑
i=1

||pi,tj − gi||−

ωc1|pi,t−pk,t|≤ϵ,∀i,k∈[N+1],i ̸=k (8)

where ωc > 0 is the weight.
5) Policy function µ: Similar as P1, a deterministic policy

function µ : S → A is considered and used to generate the
action at the start time tj of each task j ∈ [K].

With the above MDP setting, we can then follow the similar
procedure described in Sec. V-A to formulate the RL problem.

Fig. 5: DNN representation of policy function µ for joint
computation load and UAV mobility optimization.

B. Solution to P2

The derived RL problem can be solved by using the
deterministic policy gradient method described in Sec. V-B.
For function approximation, we adopt the same DNN structure
to approximate the Q functions. To approximate the policy
functions, we design a DNN shown in Fig. 5. It differs from
the one shown in Fig. 3 in that the output layer contains
additional 2N + 2 linear units for generating UAV mobility
control signals, i.e., vi,j ∈ R2, ∀i ∈ [N+1]. To meet constraint
C9 in P2, the values generated by these linear units are clipped
if falling out of the range [vmin,vmax].

To ensure each UAV will reach its target location (constraint
C6 in P2), which can happen before or after it completes all
computation tasks, we introduce the following mechanism. In
case when the UAV has completed all assigned tasks but hasn’t
reached its target location yet, the UAV switches to another
policy that generates mobility control commands only based
on its current state. This policy is trained using a similar DRL
method with the reward function defined as

r(stj ,atj ) = −
N+1∑
i=1

||pi,tj − gi||−

ωc1|pi′,t−pj′,t|≤ϵ,∀i′,j′∈[N+1],i′ ̸=j′ .

The DNN used for approximating the policy function is similar
to the one shown in Fig. 3 but with only 2N + 2 linear units
for generating UAV velocities. Moreover, the UAV changes
its velocity after every ∆T . In other cases when the UAV
has reached its target location but still has computation tasks
remain to complete, the UAV switches to the policy trained
using the method presented in Sec. V for generating the task
allocation decisions.

VII. SIMULATION STUDIES

In this section, we conduct simulation studies to evaluate
the performance of the proposed DRL and D-BPCC based
methods for NAC under two different formation scenarios. We
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first design a simulator for the NAC system, and then describe
the benchmark schemes used in the comparative studies. The
experiment results are presented at the end. All experiments
were run on an Alienware Desktop with 32GB memory, 16-
cores CPU with 3.6GHz.

A. Simulator Design

To simulate the NAC system, we adopt the following
communication, computation and mobility models. It is worth
noting that our methods are general and can be applied to NAC
systems described by other system models, as no knowledge
of the models are required to implement our methods.

1) Communication Model: Suppose all UAVs in the NAC
system are equipped with the same directional antennas for
long-range and broadband UAV-to-UAV communications, and
implement advanced antenna control algorithms to keep the
antennas aligned for robust communication [63]. The time to
transmit a matrix X with a rows and b columns between any
two UAVs via the UAV-to-UAV link can then be modeled as

T comm(X) =
a× b× u

C

where u (bits) is the average size of the elements in X and is
set as 32 in all experiments. C (bits/sec) is the data rate that
can be derived using the Shannon’s theory as follows

C = Wlog2(1 +
S

N0
)

S = 10
(Sd−30)

10

Sd = Pt + 20 log10(λ)− 20 log10(4π)

− 20 log10(d) +G+ κ

where W (Hz) is the communication bandwidth between two
UAVs. N0 (Watts) is the noise power. S (Watts) is the signal
power determined by the transmitting power of the transmitter
Pt (dBm), wave length λ (m), sum of the transmitting and
receiving gains G (dBi), and distance between the two UAVs d
(m). κ denotes the Gaussian noise with zero mean and variance
σ [63]. In our simulations, these parameters are configured as
W = 104, N0 = 1.1× 10−12, Pt = 27, G = 32, λ = 0.12 and
σ = 1.

2) Computation Model: To simulate the computing power
of a UAV, we extend the modeling technique used in
many studies [37], [64]. Particularly, we assume the time
T comp
i (A,x) taken by each UAV i to multiply A ∈ Rℓ×m

by x ∈ Rm×1 follows a shifted exponential distribution:

P [T comp
i (A,x) ≤ t] = 1− e−

βi
ℓ (t−αiℓ−ξi) (9)

where t ≥ αiℓ + ξi specifies the minimum time required to
compute the task.

βi > 0 and αi > 0 are straggling and shift parameters,
respectively, characterizing the computing capability of the
UAV. The bias term ξi captures the time required for task ini-
tialization and function calls. Of note, this term is not included
in existing computation models. However, our experiments
show that the shifted exponential model with a bias term better
captures the characteristics of real computing systems. For
illustration purpose, we plot in Fig. 6 the computation model

(a) (b)
Fig. 6: a) Minimum task completion time αl + ξ versus task
size l. b) CDF of the task completion time of an Amazon EC2
t2.xlarge instance for computing Ax with l = 500.

constructed for the Amazon EC2 t2.xlarge instance by using
real experiment data and following the parameter estimation
procedure described in [42]. The estimated parameters are
α = 6× 10−4, β = 1265 and ξ = 0.04.

In the following simulation studies, we let ξi = ξ = 0.04,
∀i ∈ [N ]. The straggling parameter βi is randomly generated
from the range [100, 500] and the shift parameter is set to
αi =

1
βi

[41].
3) Mobility Model: We assume the UAVs are equipped with

an advanced controller robust to wind perturbations and no
strong winds are present. The point-mass kinematic model can
then be used to simulate the movements of UAVs. In particular,
the position of UAV i at time t + ∆T is computed by the
following equation,

pi,t+∆T = f(pi,t,vi,t,∆T ) = pi,t + vi,t∆T

In scenarios where the NAC system is formed by uncontrol-
lable UAVs, we let each UAV i change its velocity after each
computation task j is completed, with the velocity randomly
picked from the range [−10m/s, 10m/s]×[−10m/s, 10m/s].

With the NAC simulator, we train the proposed DRL meth-
ods offline by following the procedure described in Algorithm
1. During the mission, the trained policies generate desired
actions online in real time.

B. Benchmarks

We implement the following four representative distributed
computing schemes as benchmarks.

1) Uniform Uncoded (UU): In the traditional uncoded
distributed computing systems, to perform a matrix-vector
multiplication task Ax, the master node decomposes
A ∈ Rp×m row-wise into N non-overlapping submatrices
{A1,A2, . . . ,AN}, where Ai ∈ Rℓi×m, and assigns subtask
Aix to work node i ∈ [N ]. After receiving results from all
worker nodes, the master node can recover Ax by concatenat-
ing the results, i.e., Ax = [A1x;A2x; . . . ;ANx]. To allocate
the workload, the UU scheme [37] simply divides the load
equally, i.e.,

ℓi =
p

N
, ∀i ∈ [N ],

disregarding the computing power of the worker nodes.
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2) Load-Balanced Uncoded (LBU): This scheme [41] di-
vides the computation load according to the computing power
of the worker nodes. In particular, the load assigned to each
worker node i is inversely proportional to the expected time
for this node to compute an inner product, i.e.,

ℓi ∝
βi

αiβi + 1
, ∀i ∈ [N ]

with
∑N

i=1 ℓi = p. Note that this scheme requires the knowl-
edge of the computation model.

3) Heterogeneous Coded Matrix Multiplication (HCMM):
This is a state-of-the-art CDC scheme for heterogeneous static
computing systems [41]. It first encodes matrix A into a
larger matrix Â with more rows, and then follows the same
procedure as the uncoded schemes to partition and allocate the
computation load. The only difference is that the submatrices
of the encoded matrix Â are multiplied with the input vector
at the worker nodes. When the master node receives sufficient
results, i.e., the number of rows of aggregated results is no
less than p, it can compute the final value. In this scheme, the
load assigned to each worker node i is computed by

ℓi =
p

λiη
,

where λi is the positive solution to eβiλi = eαiβi(βiλi + 1),
and η =

∑N
i=1

βi

1+βiλi
. Like LBU, HCMM also requires the

knowledge of the computation model.
4) Coded Cooperative Computation Protocol (C3P): C3P

[39] is a state-of-the-art CDC scheme for heterogeneous
mobile computing systems. In this scheme, the master node
packetizes each row of A and encodes each packet. Given an
input vector x, it first broadcasts x to all worker nodes and then
gradually offloads the coded packets to the worker nodes one
by one. To optimize the computing performance, the offloading
interval is dynamically adjusted based on the worker nodes’
response times to previous tasks. This scheme does not require
any knowledge of the computation, communication or mobility
model, and hence can be directly used to solve problem P1.

As all benchmarks do not consider mobility control, to solve
P2, we apply the benchmarks for load allocation and the DRL
method described in Sec. VI-B for UAV mobility control,
which runs independently.

C. Evaluation of Solution to P1

This section evaluates our solution to P1 for the scenario
where the mobility of UAVs is uncontrollable.

1) Experiment Settings: We consider the following three
computation scenarios with varying number of UAVs and task
sizes.

• Scenario 1: N = 3, p = 5000.
• Scenario 2: N = 6, p = 10000.
• Scenario 3: N = 12, p = 20000.

In all computation scenarios, the dimension of each input
vector is set to m = 105. Initially, the UAVs are randomly
distributed over a 400m × 400m area. The total number of
computation tasks to be computed is K = 25 and the travel in-
terval is set to ∆T = 10s. To understand the impact of the bias

Fig. 7: Training reward of our method for P1.

term ξ in the computation model, we also evaluate the case
when ξ = 0, in addition to the more realistic case when ξ =
0.04. In all experiments, the parameters of the DRL method
are configured as γ = 0.95, τ = 0.01, ω1 = 15, ωc = 5,
initial episode num = 205, max training iteration =
1000, and max episode num = 4.

2) Training Reward: We first show the learning curves of
our method in different computation scenarios with different
bias settings. As shown in Fig. 7, our method converges in all
scenarios.

3) Comparative Results: The first comparative study evalu-
ates the computation efficiency of different methods. For each
computation scenario, we run each method 100 times and
record the mean time spent for completing each computation
task, referred to as the average task completion time. As shown
in Fig. 8, our method achieves the highest efficiency in all
computation scenarios. Comparing Fig. 8(a) and Fig. 8(b),
we can observe that the efficiency of both our method and
C3P is significantly impacted by the value of ξ, the overhead
induced by task initialization and function calls. However, ξ
has a negligible impact on the performance of HCMM, LBU
and UU. This is because the worker nodes in our method
and C3P process each task batch by batch, where each packet
in C3P can be considered as a batch with size hi,j = 1,
∀i ∈ [N ], ∀j ∈ [K]. Nevertheless, in HCMM, LBU, and UU,
worker nodes process each task as a whole. Hence, when ξ
is non-zero, the overhead induced by the many batches in our
method and C3P can be significant.

Moreover, we can observe from Fig. 8(a) that although
the efficiency of C3P is comparable to our method when
the batch overhead is negligible, it is much slower than our
method when the batch overhead cannot be ignored (see
Fig. 8(b)). This is because the C3P fixes the batch size to 1
and hence does not address the performance-cost trade-offs.
Furthermore, as the C3P applies a simple moving average
algorithm [39] to approximate the worker nodes’ computation
times when making the offloading decisions, it achieves a
poor performance when the computation times have a large
variance, which can happen if UAVs are conducting many
other tasks at the same time. To illustrate this, we let the
computing parameters µ and α of each worker node change
frequently over time, by randomly sampling a new value from
the range [100, 500] after each batch is processed. The results
are shown in Fig. 9. By comparing Fig. 8(a) and Fig. 9, we
can observe that though the performance of both C3P and
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our method degrades as nodes’ computing resources change
frequently, our method is much more resilient to such changes.
Of interest, UU is not impacted by such changes. This is
because UU divides the load equally, disregarding the different
computing capabilities of the worker nodes.

(a) (b)
Fig. 8: Average task completion times of different methods in
different scenarios when a) ξ = 0 and b) ξ = 0.04.

Fig. 9: Average task completion times of different methods in
different scenarios when ξ = 0 and computation times have a
large variance.

The second comparative study evaluates the resilience of
different methods to network topology changes caused by
high UAV mobility. Particularly, we randomly pick one or two
worker nodes and make them move out of the communication
range of the master node, which is set to 1500m. Therefore,
results computed by the nodes left cannot be received by the
master node.

Fig. 10 shows the simulation results with ξ = 0.04. As we
can see, our method still achieves the highest efficiency and
is the most resilient to topology changes. Of note, there is no
data for the LBU and UU schemes, as they require results from
all the worker nodes to successfully complete a computation
task and hence any node leaving would cause the whole task
to fail. To further evaluate the resilience of different methods,
we perform a stress test and measure the success rate (ratio of
successful runs) of each method when the number of nodes left
increases. Fig. 11 shows the results for computation Scenario
2 with N = 6. The results for the other two scenarios are
similar and thus are eliminated to save space. From the figure,
we can see that both our method and C3P can complete all
computation tasks as long as there is a worker node within the
network. The success rate of HCMM decreases quickly when
more nodes leave the network, and both UU and LBU fail all
tasks when there is one or more nodes left.

D. Evaluation of Solution to P2

This section evaluates our solution to P2 for the NAC
formation scenario with controllable UAVs.

(a) (b)
Fig. 10: Average task completion times of different methods
in different scenarios when there are a) one and b) two worker
nodes leaving the NAC network.

Fig. 11: Success rates of different methods in Scenario 2 (N =
6) when an increasing number of worker nodes leave the NAC
network.

1) Experiment Settings: We consider the following two
computation scenarios.

• Scenario 1: N = 3, p = 5000.
• Scenario 2: N = 6, p = 10000.

The parameters of the reward function in (8) are set to ω = 15
and ωc = 5. The target locations gi, ∀i ∈ [N+1] are randomly
sampled from [−200m×200m]× [−200m×200m]. The bias
term in the computation model is configured as ξ = 0.04.

We notice that our DRL method is limited in the scale of the
NAC network it can handle, due to the exponentially growing
state and action spaces. This is an issue inherent in all RL
methods. One potential solution is to use MARL [65], but
this requires the change of the computing architecture. We
will leave this problem to the future work.

2) Training Reward: Fig. 12 shows the learning curves
of our method under different settings. As we can see, the
training rewards increase with more training iterations and
finally converge.

3) Inference Time: The average inference time of our
method measured over 50 runs is about 0.012s, which is small
enough for UAVs to promptly react to potential collisions.

4) Comparative Results: Fig. 13(a) shows the total cost
J2 of different methods averaged over 100 experimental runs,
where our method (separate) refers to the method that op-
timizes the two objectives of P2 separately, by using our
solution to P1 for load allocation and the DRL algorithm
described in Sec. VI-B for UAV mobility control. As we
can see, our method that jointly optimizes the two objectives
outperforms all benchmark schemes in achieving the best
tradeoff between computation efficiency and travel cost. It is
noted that we can tune the weight ω to capture the relative
importance of the two objectives depending on the application
needs.
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Fig. 12: Training reward of our method for P2.

(a) (b)

(c)
Fig. 13: a) Total cost, b) average task completion times and
c) total flight time of different methods in different scenarios.

To better understand the performance of our method, we
also plot in Fig. 13(b) and Fig. 13(c) the values of the total
task completion time and total flight time, respectively. The
results show that our method (joint) completes all computation
tasks the most quickly, but consumes the highest UAV flight
time. This is expected as all benchmark methods adopt the
DRL policy that minimizes the flight time without consid-
ering the computing performance. Moreover, the comparison
results between our method (joint) and our method (separate)
confirm our hypothesis that the mobility of the UAVs can be
proactively controlled to facilitate computing.

Fig. 14 plots the sample trajectories of the UAVs in Scenario
1 (N = 3) implementing different methods. The initial and
target locations of the UAVs are marked using stars and
diamonds, respectively. As we can see from Fig. 14(a), our
method ensures that all UAVs will reach their target positions.
Comparing Fig. 14(a) and Fig. 14(b), it is observed that
the trajectories generated by benchmark methods are more
straight than that generated by our method. This is because
the benchmark methods optimize two objectives separately.
Moreover, Fig. 15 illustrates how our method addresses the
case when the computation tasks are completed before UAVs
arrive at their target locations.

VIII. CONCLUSION

This paper introduces innovative approaches to enable effi-
cient, robust, and adaptable cooperative airborne computing in
the dynamic, heterogeneous, and uncertain airspace. A CDC

(a) (b)

Fig. 14: Sample trajectories of the UAVs in Scenario 1 by
using a) our method with joint optimization; and b) benchmark
methods.

(a) (b)

Fig. 15: Sample trajectories of the UAVs in Scenario 1 a)
when computation tasks are completed; and b) when the whole
mission is completed.

scheme, called D-BPCC, was first introduced that leverages
the coding theory and a dynamic batch-processing based
procedure to address the uncertainties in the dynamic and
heterogeneous NAC system. To optimize system performance,
DRL based online decision-making strategies are then de-
signed for two typical NAC formation scenarios, which do
not rely on perfect communication, computation or UAV
mobility models. Simulation results show that our methods are
more resilient to uncertain system disturbances than existing
solutions, including the UU, LBU, HCMM, and C3P schemes,
and are adaptive to network topology and resource changes.
Moreover, the effectiveness of our method in solving scenarios
where NAC is formed by controllable UAVs demonstrates the
benefits of UAV mobility control to robust computing. In the
future, we will investigate MARL to address the scalability
issue encountered by our DRL methods when the number of
UAVs is large. We will also take energy consumption into the
consideration.
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