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Abstract—A single unmanned aerial vehicle (UAV) has
limited computing resources and battery capacity, making
it difficult to handle computationally intensive tasks such
as the convolution operations in many deep learning
applications. UAV-based networked airborne computing
(NAC) is a promising technique to address this challenge.
It allows UAVs within a range to share resources among
each other via UAV-to-UAV communication links and carry
out computation-intensive tasks in a collaborative manner.
This paper investigates the vector convolution problem over
the NAC architecture. A novel dynamic coded convolution
strategy with privacy awareness is developed to address the
unique features of UAV-based NAC, including node het-
erogeneity, frequently changing network typologies, time-
varying communication and computation resources. Sim-
ulation results show its high efficiency and resilience to
uncertain stragglers.

I. INTRODUCTION

Recent years have witnessed the fast popularization
of unmanned aerial vehicle (UAV) in both academia
and industry [1]-[3]. The UAVs are often equipped with
sensing, communication, and computing capabilities and
can generate massive data, which include valuable in-
formation that can be used for improving decisions,
making scientific discoveries, or supporting new artificial
intelligence (Al) applications. To effectively utilize the
information from these data, e.g., by using deep learning
algorithms, considerable amount of computing resources
are often needed. However, due to small payload, a
single UAV often has a limited computing capability and
battery capacity for carrying out computation-intensive
tasks.

To address above issues, the existing solution is to
offload data from the UAV to the ground station or
remote cloud for processing. However, this solution
suffers from many issues such as long transmission
latency and data losses, and is thus not suitable for delay-
sensitive applications. A better solution is to offload
the data to nearby UAVs and leverage their computing
resources to perform data processing and analysis. Such
a computing system formed by UAVs connected via
UAV-to-UAV communication links are often known as
the UAV-based networked airborne computing (NAC)

[4]. Compared with the traditional cloud- or static server-
based computing systems, UAV-based NAC systems are
featured by 1) high node mobility; 2) heterogeneous
nodes with different computing, communication and
sensing capabilities; and 3) dynamic computing and
communication resources. These unique features make
many existing distributed computing techniques that as-
sume homogeneous and static computing nodes perform
poorly in UAV-based NAC systems.

The time-varying communication and computing
properties of UAV-based networked airborne computing
systems can be modeled as uncertain stragglers that are
slow in generating the result or take a long time to
transmit data. Topology changes or link/node failures
can also be modeled as uncertain stragglers that fail to
generate or return any results. To alleviate the effects
of stragglers, coded distributed computing (CDC) [5]
is a promising technique, which introduces computation
redundancy into the system via exploiting the coding
theory. Currently, most works on CDC focus on the
matrix multiplication problem or assume homogeneous
distributed systems with static computing nodes [6]-
[9]. However, many data analysis algorithms, especially
the filtering or feature extraction techniques like the
convolutional neural networks (CNNs), involve convo-
lution operations. How to perform resilient distributed
convolution over UAV-based NAC systems formed by
heterogeneous moving UAVs has not been investigated,
to the best of our knowledge. The state-of-the-art coded
convolution strategy introduced in [10] was designed
for homogeneous systems with static computing nodes,
which performs poorly over the UAV-based NAC system
as we will show in the simulation studies. Although
there have been some works considering heterogeneous
systems [7]-[9] and moving computing nodes [11], [12],
these works are centered on the matrix multiplication
problem, which has a quite different problem solving
procedure from the convolution problem.

In this paper, we aim to fill the aforementioned re-
search gap by making the following main contributions:

e Dynamic coded distributed convolution strategy. We
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propose an innovative dynamic coded distributed
convolution strategy with privacy awareness for
UAV-based NAC. It integrates the coding theory
with a novel task decomposing and allocation mech-
anism to dynamically assign tasks to the worker
nodes based on their communication and com-
puting performances. Unlike most existing CDC
algorithms that have to pre-determine the amount
of computation redundancy to be introduced be-
fore performing the task, our strategy introduces
redundancy dynamically and only when needed. It
can thus achieve high resilience with the minimal
redundancy. Furthermore, as our strategy encodes
the input data, data privacy is protected to some
extent.

o Comprehensive simulation studies. We conducted
comprehensive simulation studies to evaluate the
performance of the proposed strategy, in compari-
son to the uncoded distributed convolution strategy
and the state-of-the-art coded distributed convolu-
tion strategies. The results demonstrate the high
efficiency and resilience of the proposed strategy
in face of uncertain stragglers.

In the rest of the paper, we first describe the problem
to be solved in Sec. II, and then review the two existing
distributed convolution strategies in Sec. III. The pro-
posed dynamic coded distributed convolution strategy is
then introduced in Sec. IV. In Sec. V, we present the
simulation results on the performance of the proposed
strategy, compared to existing distributed convolution
strategies. Section VI finally concludes the paper.

II. PROBLEM DESCRIPTION

Consider a UAV-based NAC system formed by mul-
tiple UAVs with different computing and/or communi-
cation capabilities. Suppose one of the UAV needs to
perform a vector convolution task, a*ax, where a € RM
is a pre-stored vector and & € R™V2 is the input vector. To
save energy and reduce computation time, it decides to
offload the task to its neighbors within its communication
range.

The problem considered in this paper is how the mas-
ter node (UAV that offloads the task) should decompose
the task and distribute subtasks to surrounding worker
nodes (UAVs that execute the offloaded task collabora-
tively), such that the task completion time is minimized.
To solve this problem, the key technical challenges to
conquer include: 1) As all worker nodes in the UAV-
based NAC system can move, the network topology may
change frequently due to node leave and join, and the
communication quality of UAV-to-UAV links varies over
time; 2) The computing resources available at a worker
node are also time variant, due to completion of old
tasks or receipt of new tasks; 3) The input data = may

contain sensitive information and directly sending the
data to worker nodes may raise privacy concerns. The
desired distributed computing scheme should thus 1) be
resilient to network topology and resource changes, 2)
be efficient in computing the task, and 3) protect data
privacy to certain extent.

III. REVIEW OF EXISTING SOLUTIONS

In this section, we review two state-of-the-art dis-
tributed convolution strategies.

A. Uncoded Convolution Strategy

In the uncoded convolution strategy introduced in
[10], the master node first partitions both vectors a and
N1 N2

o
ie,{ai,aq,...,an, }and {x1,x9, ..., N, }, where P is
the total number of worker nodes. It then sends each pair
of sub-vectors, a; and x;, to a different worker node for
further processing, where 1 <7 < % and 1 <5 < %
Each worker node computes a;*x; and returns the result
back to the master node. After receiving results from
all worker nodes, the master node finally aggregates the
results with proper shifts to obtain the value of a * x.

x evenly into a set of sub-vectors of length s =

As this strategy requires the results from all worker
nodes to obtain the final value, any delay will signifi-
cantly degrade its performance and any node/link failure
will cause the whole task to fail. In addition, this strategy
simply decomposes the workload evenly, and thus cannot
address the node heterogeneity and dynamic features
of UAV-based NAC. Moreover, it directly sends the
input data to the worker nodes and hence may cause
information leakage.

B. Traditional Coded Convolution Strategy

To improve the resilience of the uncoded strategy to
the straggler effects, a coded strategy was developed in
[10]. The key idea is to introduce redundancy into the
computation by using the coding theory. In particular,
similar to the uncoded strategy, the coded strategy first
partitions both vectors a and z into small sub-vectors
of equal length s. The difference is that the sub-vector
%, and the

% sub-vectors of a are encoded into %

with each having a length of s, by using a (%’, %) MDS
code. The following equation shows how a Vandermonde

length s can be any value larger than

sub-vectors

N1, Ps
. Ny Ps
matrix, denoted as V € R™s ~ 2, can be used to encode
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the set of % sub-vectors, {a1, as, ..., a ~, }, into a larger
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With the encoded sub-vectors {al} 2, the master
node then sends each pair (a;, ;) to a different worker
node, where 1 < i < ]F\;—z and 1 < 57 < % The
worker nodes then convolve the received two sub-vectors
and return the result back to the master node after
the task is completed The master node can decode
{a;*x;|1 < i < &1} to reconstruct axz; after receiving
any 2 of the set {a; xx;|1 <i < JI\D,;} by using the
following equation:

ap *x T; Q;, *T;
ag * T; i, * I
-1
=V,
an; *Ij Aiy, *Tj
s =
Ny -1
s ~
1 91‘1% Q;, * T
s _1 A. .
1 9is Qi, * T;
1 AR Ay, *Tj
s

Ny
where {ij},%, represent any % distinct indices of
{1,2,. &} and V; is a sub-matrix of V. Finally,

the master “node can reconstruct @ *  after obtaining

{a * T } Jj=1

It should be noted that although this strategy can ef-
fectively reduce the straggler effect, it has the following
limitations: 1) It cannot address the node heterogeneity
and dynamic features of UAV-based NAC; 2) It is only
resilient to up to P — % node failures; 3) In order
to achieve high resilience, the introduced computation

redundancy, indicated by s — /& 1N 2 > (), should be

large; 4) It also directly sends the input data to the worker
nodes and thus may cause information leakage.

IV. DYNAMIC CODED CONVOLUTION STRATEGY
WITH PRIVACY AWARENESS

In this section, we introduce a privacy-aware dynamic
coded convolution strategy that addresses the unique
features of UAV-based NAC systems. How to decompose
and encode the task is first explained, followed by
the description of how to allocate and distribute the
decomposed subtasks.

A. Task Decomposing and Encoding

Instead of partitioning both vectors, we split only
the input vector x evenly into % sub-vectors
{x1,x3,...,x N, }, where b is the length of each sub-
vector and can be any integer between 1 and N,. Then
instead of encoding a, we encode the input sub-vectors
into a larger set {5:1,:%2,...,:%%%} by applying a
(% + k, %) MDS code, where k € ZT specifies the
computation redundancy. This will not only enhance the
system resilience to uncertain stragglers, but also protect
the data privacy to certain extent as the original input

N.

data is not sent. These sub-vectors {:ﬁl}j 1+k are then
pushed into a stack, denoted as S, at the master node.
Whenever a worker node becomes available, we pop
a sub-vector ; from the top of stack S and send it
to this worker node to compute a * &;, where vector
a is pre-stored in all worker nodes. Once the master
node receives % convolution results from the worker
nodes, it can decode {a * x;|1 < i < %}, using the
similar decoding procedure described in Section III-B,
and thereby reconstructing a * .

Unlike in the traditional coded convolution strategy,
where the amount of computation redundancy is fixed
after specifying the length s of the sub-vectors, we
here base on the network condition to dynamically
introduce redundancy when needed. In particular, we
first set k as a small value, e.g., 1, so that the initial
stack S only contains encoded input sub-vectors merely
adequate enough for obtaining the final result. During
task execution, whenever the stack S becomes empty
(or below a certain threshold) and the master node still
hasn’t received sufficient results for computing the final
value, the master node pushes a new &;, generated by

encoding {x; }Z,l, into the stack. Note that we can pre-
store an encoding matrix V' that is large enough at the
master node, and take the first &2 + k rows to initialize
the stack S and take a new row whenever needed to
generate new &; during task execution. With this scheme,
we can minimize the amount of introduced computation
redundancy and maximize the system resilience to un-
certain stragglers simultaneously.
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B. Task Allocation

To determine which worker node the master node
should send the next sub-vector &; (popped from the
stack S) to and when to send this sub-vector, we borrow
the idea introduced in [11]. The key idea is to send a
sub-vector &; to each worker node at the beginning. The
master node then determines the best time to send the
next sub-vector to a worker node based on the estimation
of the time required for this worker node to complete its
current task as well as send back the result.

In particular, let 7;; be the time interval between
sending two consecutive sub-vectors, &; and &;41, to
the worker node j from the master node. As illustrated
in Fig. 1, in order to maximally reduce the computation
delay, the desired 7;; will minimize the idle time at the
worker node j while not overloading it. That is, ideally,
the worker node j should receive &,;; immediately after
it completes the previous task, i.e., computing a * &;.
To determine 7;;, the key is thus to estimate the time
required for the master node to compute a * &;, denoted
as T;7;"". Here, we apply the method introduced in
[11] to estimate the expected time required for the
worker node j to compute a % &;. In particular, the
expected computation time E[T}7"""] can be estimated
by following equations:

t$ —tu
E[TMP] 3,1 1
[T3777) 2 n
c T BT
R e i )
ti; ~ty, +max(0, RTT; —t7, 1 —t3;) ()

C
where ¢ ;

is the time when the worker node j finishes
computing a * &;, t;z is the time when the master
node receives the computation result of a * &; from the
worker node j, and th is the time when the master
node sends sub-vector &; to the worker node j. 7, is
the accumulated idle time of worker node j. c¢; is the

number of results sent back from the worker node j, B,

Worker

The | g X;
Master Node
Node ....... J

Fig. 1. The communication flow between the master node and the
worker node j.

(bytes) is the size of the vector &; and B,. (bytes) is the
size of the result of a*&;. Lastly, RT"T} is the round trip
time of sending &, to the worker node j and receiving the
computed result, which can be estimated at the master
node by exchanging Acknowledgement (ACK) packages
[13] or based on the timestamps returned by the worker
node j.

Given E[T;7™"], we then determine 7;; using the
following equat1on:

Tji = min(ty; — &5, E[T5577]) “

Algorithm 1 summarizes the complete procedure of

the proposed dynamic coded convolution strategy.

Algorithm 1: Dynamic Coded Distributed Con-
volution Strategy

Data: a, =, b, V'
Result: a *
k <+ 1, N1

Ny

Partition « into a set of sub-vectors {x;},”, with
each of length b;

Use the first % + k rows of V' to encode

N2 PR ¥
{z,;},%, into a larger set {&;},%, ",
them into the stack S

R < empty stack for storing received results;

P + list of worker nodes within master node’s
communication range;

for each node j in P do

Send &; popped from S to node j;

t3; < current_time();

and push

end

while |R| < 52 do

for each node j in P do

if |S] <1 then

k <+ k+1;

Use the k-th row in V' to generate
TN, ‘k and then push it into S;

b

end

if current_time() > 5+ 7;.: then

Send &;41 popped from S to node j;

i1 current_time();

end
if receiving result of a x &; from node j
then
Push the result into R;
Update 7;,; using (1)-(4);
end

end
end
Reconstructs a * x using results from R;
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V. SIMULATION STUDIES

In this section, we conduct simulations to evaluate
the performance of the proposed strategy, in comparison
with the uncoded convolution and traditional coded
convolution schemes. All simulations are performed on
a PC with 16GB of RAM and Intel Core 15-4590.

A. System Models

We use the following system models to simulate the
movement of UAVs, as well as how they compute and
how they communicate with each other.

1) Mobility Model: A simple 2-dimensional (2D)
point-mass mobility model is adopted to simulate the
movement of each UAV. In particular, let p;(t) denote
the location of UAV j at time ¢. Then its location at the
next time point ¢’ is given by the following equation:

p;(t") =p;(t) + v; ()" = 1)

where v;(t) is the velocity of UAV j at time ¢, where
t' >t

2) Computing Model: To simulate the time required
by each UAV j to convolve two vectors, say e; € R™
and ey € R™, we adopt the following shifted exponen-
tial distribution model commonly used in the literature

[7]:
Pr{TE"™ (€1, €2) < f] = 1 — e (el ma)

where 777" (e, ez) is the time taken by UAV j to
compute e; x es. o; > 0 and p; > 0 are shift and
straggling parameters, respectively, which characterize
the computing power of UAV j. ¢(ni,ns) represents
the computation load required for computing e; * es.
To derive this value, we assume that the Fast Fourier
Transform (FFT) is used by each UAV to calculate the
convolution of two vectors with arbitrary lengths. Hence,
we have [14], [15]:

c(ni,nz) = O((n1 + n2 — 1)(log(ny +ng — 1) + 1))
= C(n1 + ng)log(ny + n2)

where C' is a constant independent of the lengths of the
vectors.

3) Communication Model: We assume that the com-
munication between any two UAV nodes is achieved
through a directional antenna, and the antennas are
always aligned during the movement [16], [17]. The
communication time required for the master node to
transmit to (or receive from) a worker node j a dataset
containing n numbers at time ¢ can be approximated by
the following equation [18]:

nxu
R;(t)

T (n, t) =

where u is the average size of the numbers in the dataset.
R;(t) is the data rate (bits/sec) given by:

Sg(t)—30

107 10
R;(t) = Blogy(1 + ————)
No

where B (Hz) is the communication bandwidth between
the master node and worker node j and Ny is the noise
power (W), both of which are assumed to be constant.
Sq(t) = Py+20log10(N\) —20log10(4m)—20logro(d(t))+
Gjqapi +w is the signal power (W) that depends on the
distance d(t) between the master node and the worker
node j at time ¢t. P, (dBm) is the transmitting power,
G| is the sum of the transmitting and receiving gains,
w is the Gaussian noise and X is the wave length.

B. Experiment Setup

We consider the following four computation scenarios:

e Scenario 1: N; =22, N, =21, P =38,

e Scenario 2: N; =212, N, =211 p =4,

e Scenario 3: N; = 20000, N, = 30000, P = 8.

e Scenario 4: N; = 20000, N, = 30000, P = 6.

In all scenarios, the straggling parameter u; in the
computation model is randomly sampled from the range
[3 x 10%,6 x 10°], and the shift parameter «; is set to
o = % To simulate the straggler effect, we consider
two cases: 1) stragglers caused by long communication
latency and/or computation delay; and 2) stragglers
caused by system failures or moving out of the master
node’s communication range. To model the first case,
we manually make the run-time of the stragglers to
be 15 times the simulated run-time returned from its
computation model. To model the second case, we make
the stragglers stop returning any results to the master
node.

For the configuration of the mobility model, the ini-
tial position of each UAV is randomly sampled from
the range [(—1500, —1500), (1500, 1500)]. The velocity
of each UAV is randomly sampled from the range
[(=10,-10), (10,10)] m/s once every second. Lastly,
the parameters in the communication model are con-
figured as B = 105 Ny = 107'2, and S4(t) =
6 — 20logio(d(t)). It is worthy of remark that our
method does not require any knowledge of the mobility,
computation or communication models.

C. Simulation Results

1) Impact of Parameter b: We first study the impact
of the key parameter in our method, i.e., the length of the
input sub-vectors b, by evaluating the performance of our
method at different values of b. To reduce uncertainty,
each experiment in our simulation study is repeated for
25 times and the mean execution times are recorded.
As shown in Fig. 2, in all four scenarios, the execution
time of our method first decreases as b increases, and
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Fig. 2. Impact of parameter b on the performance of the proposed
strategy.

then increases after b reaches a certain value. The best
b is thus the one that leads to the minimum mean
execution time, which varies in different scenarios. Fig.
2 also reveals that with the increase of the problem size
(characterized by N; and N,) or the decrease of the
amount of computing resources available (indicated by
P), the time required for conducting the computation
task increases.

In subsequent experiments, we use the best-
performing b to configure our method in each scenario,
which are marked with big dots in Fig. 2. For the choice
of s, length of the sub-vectors in the traditional coded
convolution strategy, we follow the selection guideline
provided in [10] and set s as the integer from range

[ %,min(Nl,NQ)] that maximizes |e(s)
€(s) is given by:

, Where

2) Comparison Studies: We first study the case when
stragglers with long communication/computation delay
are present. Fig. 3 compares the performance of different
strategies when 50% of the worker nodes randomly
selected are such stragglers. It shows that our method
achieves the highest efficiency in all scenarios and the
uncoded convolution strategy is the least efficient.

To better understand the three strategies, we further
conduct a stress test by varying the percentages of the
stragglers with long delays. Fig. 4 shows the results of
the stress test for different strategies in Scenario 4. As we
can see, the performance of all three strategies degrade
with the increase of the straggler ratio and our method
achieves the best performance in all cases. It can also be
observed that the uncoded strategy is the most sensitive
to stragglers, as indicated by the immediate increase of

its execution time when the straggler ratio becomes non-
zero. Nevertheless, the execution time of our method
does not increase much until the straggler ratio exceeds
around 83%, demonstrating its high resilience to uncer-
tain stragglers.

Lastly, we investigate the case when node failures or
node leaves can happen. As the master node cannot
receive any results from such stragglers, the results
received from other worker nodes may not be suffi-
cient enough for the master node to reconstruct the
convolution a * x, leading to task failures. Therefore,
in this study, we measure the task success rate (ratio
of successful runs) of each strategy at the presence of
such type of stragglers. Fig. 5 shows the success rates
of different strategies, where each strategy runs 2000
times in each scenario. In each simulation run, 0 up to
P worker nodes can fail. The result demonstrates that our
method is highly resilient to node failures. It is worthy
noting that our method can successfully complete the
task as long as there is a worker node alive, which can
be the master node itself. Moreover, even if the master
node loses connection with all worker nodes, as long as
there is a new node joining later, the task will resume.

VI. CONCLUSION

This paper introduces an efficient, resilient, and
privacy-aware distributed computing strategy for vector
convolution tasks in heterogeneous and mobile UAV-
based NAC systems. It combines the coding theory with
a novel task decomposing and allocation mechanism to
achieve a high resilience to uncertain stragglers with
the minimal computation redundancy. As input data
is encoded, it also provides some protection for data
privacy. The simulation results show that the proposed
strategy outperforms existing solutions in both efficiency
and resilience, especially when a large number of high-
latency computing nodes are present or frequent node
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Fig. 3. Comparison of different strategies when 50% of the worker
nodes are stragglers with long communication/computation delays.
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Fig. 5. The task success rate of different strategies when node
failures/leaves can happen.

leaves/failures happen. Moreover, our method is adaptive
to the dynamic network changes in UAV-based NAC
systems and can complete the task as long as there is a
worker node alive, which can be the master node itself.

In the future, we will design intelligent strategies
to automate the configuration for the key parameter b,
and extend the proposed strategy to real CNN-based
applications. We will also develop hardware testbed for
UAV-based NAC and conduct flight tests to evaluate the
performance of the proposed strategy.
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