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Abstract: Parameterization of total whitecap fraction and wind speed relation has a large degree of
scattering. Active and residual whitecaps are related to different physical and chemical processes;
thus, parameterization of active and residual whitecaps separately is likely to diminish the scat-
tering and is essential to the understanding of breaking process at the air-sea interface. Infrared
imagery can provide accurate and objective discrimination between stage A and stage B whitecaps.
However, techniques that can separate stage A and stage B whitecaps in visible images are imper-
ative for more accessibility. In this research, PIV has been applied to visible imagery data and the
results have been compared with signatures of whitecap lifetime stages in infrared imagery. A
linear relationship between whitecap stage A lifetime and time it takes whitecaps to change veloc-
ity direction is found. This relationship can be used to discriminate active and residual whitecaps
objectively. The result shows that the whitecaps stop moving before the whitecap stage A ends.
Reasons that account for this situation have been discussed.

Keywords: Whitecap; Infrared imagery; PIV

1. Introduction

Under continued influence from the wind, waves grow until they become unstable and break.
The entrainment of air during wave breaking forms bubbles in the water column which
rise to the surface to form whitecaps. Whitecaps can be quantified using whitecap frac-
tion (W), which is the percentage of whitecaps over a region of interest. Whitecaps are
often classified as either active (stage A), or residual (stage B) according to their different
features during the whitecap lifetime[1]. Active whitecaps are formed and move along
the crest of breaking waves. Large amounts of bubbles are generated and penetrate be-
low the surface during stage A. The bubbles rise and provide the source for stage B, the
surface foam that lingers after wave breaking. Both active and residual whitecaps con-
tribute to whitecap fraction (i.e., W= Wa+ Whs).

At each stage of its life, whitecaps have considerable influence on the marine
boundary layer and Earth’s climate. For example, stage A marks an acoustically active
period [2] with significant turbulence, energy dissipation, enhanced ocean mixing, and
increased surface roughness [3]. During this stage, the entrainment of bubbles facilitates
diffusion of gas into the ocean. Returning to the surface, these plumes drag water up-
ward bringing with them surface active material creating regions of divergence which
enhance air-sea gas transfer. Stage A whitecap generation also enhances spray through
the tearing of wave crests [4]. Spray droplets formed in this manner enhance sensible and
latent heat fluxes and influence tropical storm intensity [4]. At stage B, the bursting of
bubbles produces film and jet droplets which remain airborne allowing them to reach
moisture equilibrium and transform into sea salt aerosols [5]. Sea salt aerosols have been
found to increase planetary albedo directly and indirectly by acting as cloud condensa-
tion nuclei [6]. They have also been linked to the removal of atmospheric surface ozone
and the activation of halogens, leading to ozone depletion [6]. Hence the discrimination
of active and residual whitecaps is essential for accurate parameterization of upper ocean
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processes associated with wave breaking.

Whitecap fraction has been measured extensively (e.g., [1,7-17]) because it is a
suitable forcing variable for parameterization of a myriad air-sea interaction processes.
However, accurate parameterization requires reliable estimates of Wa and Wsrather than
W alone because processes resulting from wave breaking are associated with stage A or
stage B, not necessarily both. A common approach is to use visible video and separate
residual whitecaps from active whitecaps based on intensity thresholding[13,18]. How-
ever, despite active whitecaps generally having greater brightness than residual white-
caps [1], the continuous and subtle change of the image intensity from active to residual
whitecaps makes the separation difficult. Algorithms that use image intensity or kine-
matic properties have made some improvement in recent years. Scanlon and Ward (2013)
[17] combined intensity, texture, shape and location of whitecaps to determine the stages
of whitecaps. Mironov and Dulov (2008)[19] created a set of criteria to detect whitecaps
based on their propagation direction and change in area. Kleiss and Melville (2009,
2010)[20,21] also discriminated active whitecaps manually according to the criteria re-
lated to brightness and propagation direction. Despite improvements, the methods based
on intensity thresholding and additional criteria remain subjective and contribute to the
wide spread of Wadata [22].

Satellite-based radiometric observations of the ocean surface brightness temperature
T at microwave frequencies (1-37 GHz) afford another independent method for esti-
mating whitecap fraction W(Ts) (e.g., [23]). Availability of W(Ts) on a global scale over
long periods provides a consistent database of W over a range of conditions. By virtue of
its measuring principle, passive microwave observations of Ts provide the total whitecap
fraction [24]. Some work has been done to separate Waand Wsfrom W(Ts), (e.g., [16,25]),
but more work is required to fully use such a database to identify stage A and stage B
whitecaps independently. Efforts have also been made to model Wa. For example, Kleiss
and Melville (2009, 2010)[20,21] built a method based on Phillips wave breaking param-
eters to estimate Wa. Anguelova and Hwang (2016)[22] develop a method based on Phil-
lips theory to parameterize Wa with energy dissipation rate (¢). However, both methods
are parameterization models built or calibrated based on photographic data so that the
subjective influence mentioned before cannot be avoided [22].

Infrared (IR) imagery provides a more reliable and objective choice to discriminate
active and residual whitecaps because of their different brightness at IR wavelengths.
Jessup et al. (1997)[26] used infrared imaging to investigate wave breaking dissipation
and temperature change due to disruption and recovery of the surface skin layer.
Marmorino and Smith (2005)[27] observed both active and residual whitecaps that ap-
pear bright (warmer) and dark (cooler) respectively compared to the ambient water using
airborne infrared remote sensing. Potter et al. (2015)[25] provided evidence for the
dichotomic signal from whitecaps in IR imagery and built a method to discriminate
whitecaps in stage A and stage B solely based on time series of brightness temperature.
They showed that the clear dichotomic signal from whitecap foam in IR provides objec-
tive, unambiguous separation of active and residual whitecaps not readily available
through other measurement techniques. This can lead to more accurate parameterization
of the processes associated with each stage.

Application of IR imagery has its limitations. Principally, high resolution, fast re-
sponse IR cameras necessary to capture the subtle temperature changes are orders of
magnitude more expensive that off-the-shelf video cameras, often rending their use cost
prohibitive. Furthermore, IR imagery systems which are bulky yet delicate are difficult to
set up for field work especially when whitecaps are pervasive and environmental condi-
tions can hamper operations. The maintenance of IR cameras, including the streaming
system and associated hardware, also create challenges for long-term, continuous ob-
servations, meaning operating IR in remote and unmanned locations is especially chal-
lenging.
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Here, a novel technique for identifying whitecap stages is introduced. This method
utilizes visible and IR imagery of whitecaps captured simultaneously. Time series of
thermal properties used to identify stages A and B observed in IR are compared to time
series of kinematic property observed in visible imagery. It will be shown that kinematic
properties of visible imagery can be used to identify whitecap stages. The technique
provides a means to objectively identify whitecaps stages akin to that afforded by IR
imaging while avoiding the cost and complication of IR equipment. This method of stage
discrimination independent from IR imagery is invaluable for whitecaps research be-
cause it provides the opportunity to fill data gaps in Wa and Ws using inexpensive video
cameras and some simple image processing steps. The manuscript is laid out as follows:
Section 2 is Materials and Methods, Section 3 is Results and Discussion, and Section 4 is
Conclusion.

2. Materials and Methods
2.1. Instrumentation

Data used here were collected during a Gulf of Mexico cruise aboard the R/V Peli-
can. The principal objective of this cruise was to understand whitecap foam decay using
infrared (IR) remote sensing. The R/V Pelican set sail on 4" March 2020 from Louisiana
Universities Marine Consortium (LUMCON), Chauvin, Louisiana, and spent 5 days
around 27°N, 91°W in the Gulf of Mexico. Figure 1.a shows the route of the cruise. The
ship stayed on the stations denoted in Figure 1.a approximately 12 hours each day for
data collection and transited between stations at night. During the cruise, the wind
speeds were in the range of 4-18 m/s and significant wave height was 1.3-2.7 m. Because
of the weather condition and data quality, the events investigated in this study are all
from data collected on 6 March when maximum wind speeds and significant wave
height were 16 m/s and 2.2 m. Figure 2 shows the wind speed data collected by onboard
and significant wave height from NDBC (National Data Buoy Center) station 41040,
which was the closest station with wave condition data to the ship, on 6% March. The
wind speed data is at an interval of 20 minutes and there is data missing from 12:20 to
14:00 and from 15:20 to 16:20. The wave height data is at an interval of one hour. Two IR
cameras and three visible cameras were used throughout the cruise to collect whitecap
images. One of the visible cameras was mounted near the IR cameras (as is shown in
Figure 1.b) to make sure the footprint of IR cameras fell within that of the visible camera.
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Figure 1. (a) Route of the cruise (red dots denote the stop stations); (b) Schematic of cameras fields of view: FLIR (red);

GoPro (green)
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135 Figure 2. Wind speed and significant wave height conditions for 6" March when the IR and visible
136 imagery analyzed in this study collected.
137 During the cruise, a total of 50 hours video was recorded by visible cameras and
138 over 60 hours video was recorded by infrared cameras. Three GoPro Hero 8 Black digital
139 video cameras constituted the visible imagery system, where the linear field-of-view
140 (FOV) lens (55.2° Vertical FOV; 85.8° Horizontal FOV; 19 mm focal length) were applied
141 without fisheye effect. The video was recorded at 60 Hz with 1920x1080-pixel resolution.
142 The infrared imagery system was comprised of a FLIR model X8500sc infrared camera
143 (hereinafter called ‘FLIR camera’) and ATOM 1024 infrared camera (hereinafter called
144 ‘ATOM camera’). The FLIR camera was sensitive to the radiation in the spectral range
145 from 1.5 to 5.0 pm with a thermal sensitivity of about 0.02 K and a resolution of
146 1280x1024 pixels. The lens used in FLIR camera has 39.74° vertical FOV, 48.62° horizontal
147 FOV and 25 mm focal length. The ATOM camera was sensitive to 8-14 pm with a thermal
148 sensitivity of about 0.05 K and a resolution of 1024x768 pixels, and had a lens with 13 mm
149 focal length, 29.27° vertical FOV and 38.39° horizontal FOV. The sampling rate of IR im-
150 agery system was at 30Hz.
151 The infrared imagery system was settled in a black weather casing on the port-side
152 at a height of 4 m above the mean water level (MWL). One of the three GoPro cameras
153 was mounted at the top of the infrared imagery system to yield an overlapped region
154 with the infrared cameras. The tilt angle of FLIR and ATOM cameras were both 42°
155 (acute angle between camera axis and vertical axis at static state), while the tilt angle of
156 GoPro camera was 74°. The tilt angle of GoPro camera set so the horizon was visible in
157 the images for future rectification. The FLIR camera field of view upon the water surface
158 was ~28 m? and the ATOM camera was ~10 m2 The overlap area between GoPro and
159 FLIR cameras was about 16.25 m2 Figures 3.a and 3.b show the same whitecap observed
160 simultaneously by the GoPro camera and FLIR camera. While the visible image fails to
161 show evidence of brightness intensity difference between stages A and B, (Figure 3.a), the
162 stages are clear in IR where stage A is brighter than the ambient water and stage B is
163 darker (Figure 3.b). Two additional GoPro cameras were mounted on the port and star-
164 board sides of the upper deck 7.6 m above the MWL. These recorded wide-angle views of

165 the ocean surface and horizon.
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(@)

(b)
Figure 3. (a) Whitecaps include active and residual foams in a visible image; (b) Whitecaps include active and residual
foams in an IR image. The bright patches are active whitecaps, and the dark patches are residual whitecaps.

2.2. Image Processing

Data from the IR system was stored in a DVR Express Core, which provided
streaming of infrared images and generated RAW images with time stamps every 15
minutes. The GoPro camera generated MPEG-4 files every 10 minutes and time stamping
the records by its intrinsic system.

Considering dichotomic difference between whitecaps stages in IR images,
thresholding is a straightforward method to separate stage A and B whitecaps from
background water and the transition of whitecap lifetime stage can be identified easily.
Following Potter et al., (2015)[25], for each breaking event, thresholds were applied to
isolate the bright pixels (active whitecaps) and dark pixels (residual whitecaps) and used
to quantify their temporal evolution. In infrared images, two threshold values are needed
to identify brighter whitecaps in stage A and darker foams in stage B from ambient wa-
ter. A typical outcome of this processing applied to the event is shown in Figure 4. The
transition from stage A to stage B was determined to be the time when the area of stage A
was less than stage B (Figure 4).

1.0 — Stage A Whitecaps

—— Stage B Whitecaps

0.8 -

0.6 -

0.4 -

0.2 |

Normalized Brightness/Darkness area

0.0 -

0 1 2 3 4 5
Time (second)

Figure 4. Time series of infrared signal of a breaking event. The whitecaps areas are normalized by
their respective maximum.
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Particle image velocimetry estimates the velocity field based on the correlation be-
tween image matrix segments from sequential frames [28]. It is important to remove the
influence of inhomogeneous illumination on the tracers for more accurate results. During
the cruise, the cameras were set at some angle to the water surface rather than orthogo-
nally and the uneven illumination caused by the rough surface can also influence the PIV
statistical analysis. In this research, the detailed fluid velocity field information is not
necessary, thus some other natural tracers like wave ripples can be removed. This was
done by applying a thresholding technique that has been applied previously (e.g., [28]) to
isolate whitecaps for use as tracers for PIV analysis[29].

Thresholding on digital images requires determination of a suitable intensity
threshold value manually or automatically to separate particles of interest from back-
ground. In visible images, whitecaps typically have a greater intensity than ambient wa-
ter; hence, the whitecaps can be identified by pixels with greater intensity value than the
threshold. In this research, Adaptive Thresholding Segmentation (ATS) method created
by Bakhoday-Paskyabi et al. (2016)[30] was applied to determine the threshold values for
each visible and IR images. The threshold is chosen by the application of a triangle algo-
rithm [31] to the first derivative of cumulative distribution function for pixels intensity.
The algorithm was compiled and run in Python. It is a robust method with short pro-
cessing time. A typical result is shown in Figure 5.b.

)

i :

V (Pix)

U (pix) U (pix)

(a)

(b)

Figure 5. (a) Residual whitecaps in a visible image; (b) Thresholding result of the left panel.

2.3. PIV Method

PIV analyzes the correlation between small interrogation regions of subsequent
frames to estimate displacement of particles to infer the velocity field [32]. PIV prevails in
fluid dynamic research to determine instantaneous information about fluid velocity
fields and has also been applied on larger scales to measure the surface water velocity in
hydrographic studies (e.g., [33,34]). Some laboratory experiments investigating
microscale breaking waves in both visible and IR imagery use PIV to estimate the kine-
matic properties (e.g., [35-37]). PIV has also been applied in oceanographic field experi-
ments, especially when other high-resolutions measurement methods (e.g., ADCP) were
absent. Melville and Matusov (2002)[29] used PIV to image sequence individual white-
caps taken from airborne cameras to estimate the normal velocity whitecap boundaries.
Riissmeier et al. (2017)[28] applied PIV to sea surface foam to estimate the surface current
speed and, compared with measurement from ADCP at an offshore station, showed the
reliability of PIV. Inspired by these experiments, PIV was used in this research to esti-
mate the instantaneous velocity field during wave breaking.

Large-scale application of PIV, which is used here, applies similar algorithms to
conventional PIV. However, instead of laser light and artificial tracers, which are typi-
cally used in fluid dynamic laboratory experiments (e.g.,[37,38]), natural light and tracers
(whitecaps) are used in this research. Therefore, the illumination can affect the PIV result
significantly[33]. Enhancement of the images was recommended to improve the pro-
cessing results[33]. In this research, this was done by applying a thresholding technique
to extract whitecaps as tracers for PIV analysis.
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Video clips that contained target whitecaps were transformed into 1920x1080 reso-
lution images sequences at 60 Hz. Suitable region of interest (ROI) was chosen and
cropped for each sample so that only a single whitecap was always in the frame. The
whitecaps were extracted as the tracers of PIV using ATS thresholding method. PIV was
realized through PIVlab, which was built in MATLAB by Thielicke and Stamhuis
(2014)[39]. PIVlab provides multiple passes to do iterative calculations for better results.
The interrogation area was set as 128x128 pixels in the first pass then 64x64, 32x32, and
16x16 in the following passes. Use of 2" (n is an arbitrary integer) as interrogation area is
because PIVlab’s algorithm uses Fast Fourier Transform. The step sizes and offset be-
tween interrogation area, were set to half the width of corresponding interrogation area
[39]. Examples of PIV applied to active and residual whitecaps are shown in Figure 4. The
green arrows are velocity vectors.

00 400 500 ‘ ' 300
U (pix) U (pix)

(©) (d)

Figure 6. (a) An active whitecap in a visible image; (b) PIV result of the whitecap in the left panel; (c) A residual whitecap
in a visible image; (d) PIV result of the whitecap in the left panel.

3. Results and Discussion
3.1 Signatures of Whitecap Lifetime Stages in PIV results

Twenty-two whitecaps were captured simultaneously by IR and visible cameras.
The average velocity can be achieved from the PIV results for each frame so that a time
series of the average velocity of individual whitecap can be built for an entire record of
wave breaking. Stage A lifetimes of all the samples are over 1 seconds (Table 1) and so
1Hz low-pass filter was applied to smooth the average velocities which could be done
without losing the whitecap decay information. Two types of patterns emerge when
plotting whitecap velocity derived from PIV, examples of which are shown in Figure 7. In
the first (Figure 7.a), the average horizontal and vertical velocity both show a sinusoi-
dal-shaped curve at the beginning. The horizontal velocity becomes constant after the
trough, while the vertical velocity becomes constant after the crest. In the second pattern
(Figure 7.b), the horizontal and vertical velocities both show an arctangent-shaped curve
with the vertical velocity lagging the horizontal velocity. Ten of the twenty-two events
follow the pattern in Figure 7.a and twelve follow the pattern in Figure 7.b.
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Normalized Averge of Velocity

Table 1. Lifetime of Active Whitecaps in This Study

Lifetime of active whitecaps (se-

cond) Number
1-2 10
2-3 9
>3 3

At each station during the cruise, the ship’s bow was aligned with the wind to avoid
sheltering so that more whitecaps could be observed in the ROI, and to increase ship
stability which reduced inhomogeneous illumination caused by changes to the camera
angle. Therefore, the direction of the wave breaking tends to be horizontal in the videos
(i.e., in the u direction) as discussed in the following paragraphs.
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Figure 7. Time series of average u and v velocity of whitecap foam and normalized whitecap area. (a) and (b) are exam-
ples of the two types of velocity patterns as discussed in the text. The green dots denote the beginning of wave breaking
according to IR images. The red dots denote the last time when the horizontal velocity change the direction. The vertical
dash lines denote the end of stage A.

There were two kinds of tracers, active whitecaps, and residual foam, in the images
processed using PIV. The tracers representing active whitecaps have three components of
velocity, the velocity of breaking wave driven by wind, the surface current velocity, and
the velocity of wave orbital motion[40]. The latter two components are background water
velocity, and it is assumed that the temporal average is a constant. Hence, the horizontal
velocity anomalies are true breaking speed under this assumption. The low-pass filter
mentioned above actually removed the information about wave orbital motion, thus it
will not be discussed here. The residual foam moves with the background water. In some
samples, there was residual foams generated from previous wave breaking already in the
ROI or flowing from nearby into the ROI. The first type of pattern (Figure 7.a) describes
this situation. It also accounts for why the whitecap area is not zero at the beginning of
wave breaking in Figure 7.a. The horizontal velocity is negative at the beginning of wave
breaking and keeps increasing to positive during the growth of active whitecaps. Then
the averaged horizontal velocity starts to decrease around the time when the whitecap
area reaches maximum. At the end of the active stage, the averaged horizontal velocity is
negative like the beginning of wave breaking. In the second type of pattern (Figure 7.b),
there is no preexisting residual foam. The averaged horizontal velocity keeps decreasing,
then changes direction before the active whitecaps turned into residual foam. Therefore,
the existence of tracers of background water at the beginning of wave breaking likely
account for the different temporal velocity patterns.
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288 3.2 Linear Regression Model
289 Whitecaps are formed by wave breaking under the influence of wind. Therefore, to a
290 greater or lesser extent, the parameters related to wind and surface water state can in-
291 fluence whitecaps. Tracking individual whitecaps, the waves grow and break as they
292 move forward. Active whitecaps outpace the ambient water, while residual foam flows
293 with the surface water. This phenomenon suggests that velocity variation of an individ-
294 ual breaking wave is related to the lifetime stages of whitecaps. Jessup et al. (1997)[26]
295 found a linear relationship between the centroid speed of active whitecaps and the re-
296 covery time of the skin layer after wave breaking, which can be used to estimate stage A
297 whitecaps lifetime. In this study, with the advantage of whitecaps recorded simultane-
298 ously using IR and visible remote sensing, the relationship between time scales of kine-
299 matic variation and thermal variation can be determined. The time when a stage A
300 whitecap ends, as quantified using IR, is compared with the time when the averaged
301 horizontal velocity last reaches zero after the peak. The results for all 22 waves are shown
302 in Figure 8. Coefficient of determination, 12 is 0.738, and the linear model is
Ta=1.134xTv + 0.621, (1)

303 where Ta is the time taken for stage A of whitecap to end, and Tv is the time when the
304 averaged horizontal velocity of whitecap last reaches zero relative to the beginning of
305 wave breaking. It can be interpreted that the lifetime of active whitecap is proportional to
306 the timescale of breaking speed. Therefore, Ta and Tv in the equation (1) can be replaced
307 with lifetime of stage A and time it takes for whitecap speed to reach zero, respectively.
308 With the help of this linear model, one can apply PIV to visible imagery and substitute
309 the time scale of the breaking speed to estimate the lifetime of stage A. With this infor-
310 mation it can be determined whether a whitecap is in stage A or stage B.
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312 Figure 8. Time when stage A ends against time when averaged horizontal velocity last reaches zero
313 (changes the direction) in the same image sequence. The red line is the least squares linear regres-
314 sion and the green line, y=x, is plotted for comparison.

315

316
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317 Table 2. Linear Regression Summary for Predicting Stage A Ends Time
coefficient 95% CI! t p
Intercept 0.621 [0.118 1.125] 2.575 0.018
slope 1.134 [0.819 1.448] 7.515 0.000
318 ! CI = confidence interval.
319
320 Discrimination of whitecaps stages in this method only requires visible videos. The
321 quality of the images is important for the implementation. Uneven illumination and sun
322 glint are two main factors that can contaminate images [9]. Uneven illumination usually
323 happens when the sea surface is rough, especially around the beginning of wave break-
324 ing. Some areas of ambient water can have similar intensity to whitecaps due to uneven
325 illumination which may lead to the failure of whitecaps extraction through thresholding.
326 The changing illumination makes the bright areas appear to move faster than the real
327 surface water velocity in the PIV algorithm. The situation can be worse at the beginning
328 of stage A because the number of the real tracers is small so uneven illumination can have
329 a bigger influence on the average velocity. Uneven illumination can also affect the pixels
330 filtered by thresholding. Overestimation of active or residual foam through image pro-
331 cessing can lead to errors in the average. The sun glint affects the prediction result in the
332 similar way to uneven illumination. Normally, the image sequence contaminated by sun
333 glint should be discarded, while the influence of uneven illumination can be avoided by
334 omitting the contaminated images at the beginning of wave breaking or increase the
335 threshold value to filter the contaminated area. Increasing the threshold value can filter
336 some pixels representing whitecaps, but it will not affect the estimate of PIV since the
337 quantification of whitecap fraction is not the purpose of this method.
338 According to the linear regression result (Figure 8), the average velocity of white-
339 caps reaches zero earlier than whitecap stage A ends. Two factors may lead to this situa-
340 tion. First, the average velocity reaches zero before the breaking ends. The breaking front
341 proceeds forward while foam after the crest moves in the opposite direction resulting in
342 zero average velocity before the stage A ends. Second, the breaking waves stop moving
343 but keep degassing, especially when the penetration depth of bubbles is deep. Callaghan
344 et al., (2013, 2016) [41,42] conducted a laboratory experiment to explore the whitecap
345 foam decay, where the breaking waves were generated in a seawater channel and rec-
346 orded with above and side-mounted cameras. They found that whitecap lifetime was a
347 function of wave scale, with larger waves having longer whitecap lifetime [41]. A positive
348 power law relationship between whitecap lifetime and averaged bubble penetration
349 depth was also built in their study[42]. However, there appears to be no direct evident to
350 that establishes a relationship between penetration depth and stage A lifetime. It is pos-
351 sible that the penetration depth affects stage B lifetime therefore the whitecap lifetime as
352 a whole. Callaghan et al., (2016)[42] built a model to predict breaking dissipation based
353 on volume time-integral, which is the product of whitecap area, averaged penetration
354 depth and growth timescale (timescale of the whitecap area increase). The breaking dis-
355 sipation has a positive linear relationship with the volume time-integral[42]. Jessup et al.,
356 (1997)[26] found a positive linear relationship between stage A lifetime and velocity of
357 breaking front. Under the assumption that the velocity of breaking front is related to the
358 breaking dissipation, it can be inferred that the volume time-integral has a positive rela-
359 tionship with stage A lifetime based on the research mentioned above. It is indicated that
360 the wave scale and the penetration depth have a positive influence on stage A lifetime. To
361 explore this, we conducted a simple experiment using an off-the-shelf bubble maker
362 typically used in aquariums and a small tank. FLIR was used to observe the bubbles on
363 the water surface. The foam temperature showed no observable decrease until the foam
364 remained on the surface for some time after the bubble generator had been turned off.
365 This provides cursory evidence that whitecap bubbles remained in stage A briefly fol-

366 lowing their arrival on the surface when viewed in IR and supports the idea that white-
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367 caps recorded at sea reached zero velocity before stage A ends. However, information
368 about the factors affecting the time whitecaps take to reach static state is lacking, and a
369 more precise experiment is needed to determine why velocity reaches zero before stage A
370 ends.

371 During wave breaking, wave energy is dissipated through turbulence. The entrain-
372 ing air rises and forms bubbles on the surface, which enlarge the contact area between air
373 and water aiding temperature loss [27]. Stage B whitecaps are a manifestation of this
374 process [25,27]. However, it remains a uncertain whether stage B whitecaps start during
375 the rising of bubbles or after the bubbles reach the water surface. The dissipation process
376 of wave breaking can therefore be divided into two phases, kinetic dissipation dominated
377 by turbulence and internal dissipation dominated by evaporative cooling. It is possible
378 that the kinetic dissipation happens before the internal dissipation so that the breaking
379 crest stop moving before degassing. It is worth further research to clarify the energy
380 transfer during wave breaking.

381 4. Summary and Conclusion

382 Under continued influence from the wind, waves grow until they become unstable
383 and break creating whitecaps. These whitecaps are distinguished as either actively gen-
384 erated (stage A) or decaying (stage B). Stage A whitecaps are formed along the crest of a
385 wave as during breaking, stage B are the patches left on the surface. Whitecap coverage is
386 quantified by whitecap fraction W (W = Wa+ Ws). At each stage of its life, whitecaps have
387 considerable influence on the marine boundary layer so discrimination of whitecaps

388 stages is critical to accurately quantify momentum, energy, and mass transfer. Whitecap
389 stages are easily identified in IR by their dichotomic characteristics but subtle change of
390 image intensity from active to residual stages makes the separation difficult at visible

391 wavelengths. This study provides a novel method to distinguish whitecap stages by ap-
392 plying PIV to visible imagery. This highly accessible and practical method paves the way
393 for affordable and accessible cameras to advance whitecap research through improved
394 quantification and understanding of Wa and Ws.

395 Data were collected during a Gulf of Mexico cruise where breaking waves were

396 captured simultaneously using collocated IR and visible video cameras. The visible im-
397 ages were processed using ATS thresholding to extract whitecaps from background fea-
398 tures and PIV to determine the average tracer (whitecaps) velocity. IR images were pro-
399 cessed with a simple thresholding technique to distinguish stage A whitecaps from the
400 ambient background. Averaged velocity was then compared to the lifetime of stage A.
401 Twenty-two samples were processed this way. A linear relationship was established

402 between the lifetime of stage A and the timescale of averaged velocity. Hence, substitu-
403 tion of the timescale of averaged velocity into the linear model presented yields the stage
404 A whitecap lifetime.

405 The linear regression indicates that the velocity of whitecap reaches zero before

406 whitecap stage A ends, with an average delay of ~1 second. Two possible reasons for this
407 are discussed. The first is the potential non-uniform breaking velocity across an indi-

408 vidual whitecap that results in zero average before the breaking front stops advancing.
409 The second is that the motion of the whitecap stops before degassing ends and stage A
410 persists until all bubbles have returned to the surface. This would have implication

411 breaking wave mechanics such as bubble penetration depth and degassing time. Some
412 preliminary evidence is provided to support the second hypothesis but further investi-
413 gation is needed.

414

415
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