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Abstract: Parameterization of total whitecap fraction and wind speed relation has a large degree of 7 

scattering. Active and residual whitecaps are related to different physical and chemical processes; 8 

thus, parameterization of active and residual whitecaps separately is likely to diminish the scat-9 

tering and is essential to the understanding of breaking process at the air-sea interface. Infrared 10 

imagery can provide accurate and objective discrimination between stage A and stage B whitecaps. 11 

However, techniques that can separate stage A and stage B whitecaps in visible images are imper-12 

ative for more accessibility. In this research, PIV has been applied to visible imagery data and the 13 

results have been compared with signatures of whitecap lifetime stages in infrared imagery. A 14 

linear relationship between whitecap stage A lifetime and time it takes whitecaps to change veloc-15 

ity direction is found. This relationship can be used to discriminate active and residual whitecaps 16 

objectively. The result shows that the whitecaps stop moving before the whitecap stage A ends. 17 

Reasons that account for this situation have been discussed.  18 

Keywords: Whitecap; Infrared imagery; PIV   19 

 20 

1. Introduction 21 

Under continued influence from the wind, waves grow until they become unstable and break. 22 

The entrainment of air during wave breaking forms bubbles in the water column which 23 

rise to the surface to form whitecaps. Whitecaps can be quantified using whitecap frac-24 

tion (W), which is the percentage of whitecaps over a region of interest. Whitecaps are 25 

often classified as either active (stage A), or residual (stage B) according to their different 26 

features during the whitecap lifetime[1]. Active whitecaps are formed and move along 27 

the crest of breaking waves. Large amounts of bubbles are generated and penetrate be-28 

low the surface during stage A. The bubbles rise and provide the source for stage B, the 29 

surface foam that lingers after wave breaking. Both active and residual whitecaps con-30 

tribute to whitecap fraction (i.e., W = WA + WB).  31 

At each stage of its life, whitecaps have considerable influence on the marine 32 

boundary layer and Earth’s climate. For example, stage A marks an acoustically active 33 

period [2] with significant turbulence, energy dissipation, enhanced ocean mixing, and 34 

increased surface roughness [3]. During this stage, the entrainment of bubbles facilitates 35 

diffusion of gas into the ocean. Returning to the surface, these plumes drag water up-36 

ward bringing with them surface active material creating regions of divergence which 37 

enhance air-sea gas transfer. Stage A whitecap generation also enhances spray through 38 

the tearing of wave crests [4]. Spray droplets formed in this manner enhance sensible and 39 

latent heat fluxes and influence tropical storm intensity [4]. At stage B, the bursting of 40 

bubbles produces film and jet droplets which remain airborne allowing them to reach 41 

moisture equilibrium and transform into sea salt aerosols [5]. Sea salt aerosols have been 42 

found to increase planetary albedo directly and indirectly by acting as cloud condensa-43 

tion nuclei [6]. They have also been linked to the removal of atmospheric surface ozone 44 

and the activation of halogens, leading to ozone depletion [6]. Hence the discrimination 45 

of active and residual whitecaps is essential for accurate parameterization of upper ocean 46 
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processes associated with wave breaking. 47 

Whitecap fraction has been measured extensively (e.g., [1,7–17]) because it is a 48 

suitable forcing variable for parameterization of a myriad air-sea interaction processes. 49 

However, accurate parameterization requires reliable estimates of WA and WB rather than 50 

W alone because processes resulting from wave breaking are associated with stage A or 51 

stage B, not necessarily both. A common approach is to use visible video and separate 52 

residual whitecaps from active whitecaps based on intensity thresholding[13,18]. How-53 

ever, despite active whitecaps generally having greater brightness than residual white-54 

caps [1], the continuous and subtle change of the image intensity from active to residual 55 

whitecaps makes the separation difficult. Algorithms that use image intensity or kine-56 

matic properties have made some improvement in recent years. Scanlon and Ward (2013) 57 

[17] combined intensity, texture, shape and location of whitecaps to determine the stages 58 

of whitecaps. Mironov and Dulov (2008)[19] created a set of criteria to detect whitecaps 59 

based on their propagation direction and change in area. Kleiss and Melville (2009, 60 

2010)[20,21] also discriminated active whitecaps manually according to the criteria re-61 

lated to brightness and propagation direction. Despite improvements, the methods based 62 

on intensity thresholding and additional criteria remain subjective and contribute to the 63 

wide spread of WA data [22].  64 

Satellite-based radiometric observations of the ocean surface brightness temperature 65 

TB at microwave frequencies (1–37 GHz) afford another independent method for esti-66 

mating whitecap fraction W(TB) (e.g., [23]). Availability of W(TB) on a global scale over 67 

long periods provides a consistent database of W over a range of conditions. By virtue of 68 

its measuring principle, passive microwave observations of TB provide the total whitecap 69 

fraction [24]. Some work has been done to separate WA and WB from W(TB), (e.g., [16,25]), 70 

but more work is required to fully use such a database to identify stage A and stage B 71 

whitecaps independently. Efforts have also been made to model WA. For example, Kleiss 72 

and Melville (2009, 2010)[20,21] built a method based on Phillips wave breaking param-73 

eters to estimate WA. Anguelova and Hwang (2016)[22] develop a method based on Phil-74 

lips theory to parameterize WA with energy dissipation rate (ε). However, both methods 75 

are parameterization models built or calibrated based on photographic data so that the 76 

subjective influence mentioned before cannot be avoided [22].   77 

Infrared (IR) imagery provides a more reliable and objective choice to discriminate 78 

active and residual whitecaps because of their different brightness at IR wavelengths. 79 

Jessup et al. (1997)[26] used infrared imaging to investigate wave breaking dissipation 80 

and temperature change due to disruption and recovery of the surface skin layer. 81 

Marmorino and Smith (2005)[27] observed both active and residual whitecaps that ap-82 

pear bright (warmer) and dark (cooler) respectively compared to the ambient water using 83 

airborne infrared remote sensing. Potter et al. (2015)[25] provided evidence for the 84 

dichotomic signal from whitecaps in IR imagery and built a method to discriminate 85 

whitecaps in stage A and stage B solely based on time series of brightness temperature. 86 

They showed that the clear dichotomic signal from whitecap foam in IR provides objec-87 

tive, unambiguous separation of active and residual whitecaps not readily available 88 

through other measurement techniques. This can lead to more accurate parameterization 89 

of the processes associated with each stage.  90 

Application of IR imagery has its limitations. Principally, high resolution, fast re-91 

sponse IR cameras necessary to capture the subtle temperature changes are orders of 92 

magnitude more expensive that off-the-shelf video cameras, often rending their use cost 93 

prohibitive. Furthermore, IR imagery systems which are bulky yet delicate are difficult to 94 

set up for field work especially when whitecaps are pervasive and environmental condi-95 

tions can hamper operations. The maintenance of IR cameras, including the streaming 96 

system and associated hardware, also create challenges for long-term, continuous ob-97 

servations, meaning operating IR in remote and unmanned locations is especially chal-98 

lenging. 99 
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Here, a novel technique for identifying whitecap stages is introduced. This method 100 

utilizes visible and IR imagery of whitecaps captured simultaneously. Time series of 101 

thermal properties used to identify stages A and B observed in IR are compared to time 102 

series of kinematic property observed in visible imagery. It will be shown that kinematic 103 

properties of visible imagery can be used to identify whitecap stages. The technique 104 

provides a means to objectively identify whitecaps stages akin to that afforded by IR 105 

imaging while avoiding the cost and complication of IR equipment. This method of stage 106 

discrimination independent from IR imagery is invaluable for whitecaps research be-107 

cause it provides the opportunity to fill data gaps in WA and WB using inexpensive video 108 

cameras and some simple image processing steps. The manuscript is laid out as follows: 109 

Section 2 is Materials and Methods, Section 3 is Results and Discussion, and Section 4 is 110 

Conclusion.  111 

2. Materials and Methods 112 

2.1. Instrumentation 113 

Data used here were collected during a Gulf of Mexico cruise aboard the R/V Peli-114 

can. The principal objective of this cruise was to understand whitecap foam decay using 115 

infrared (IR) remote sensing. The R/V Pelican set sail on 4th March 2020 from Louisiana 116 

Universities Marine Consortium (LUMCON), Chauvin, Louisiana, and spent 5 days 117 

around 27N, 91W in the Gulf of Mexico. Figure 1.a shows the route of the cruise. The 118 

ship stayed on the stations denoted in Figure 1.a approximately 12 hours each day for 119 

data collection and transited between stations at night. During the cruise, the wind 120 

speeds were in the range of 4-18 m/s and significant wave height was 1.3-2.7 m. Because 121 

of the weather condition and data quality, the events investigated in this study are all 122 

from data collected on 6th March when maximum wind speeds and significant wave 123 

height were 16 m/s and 2.2 m. Figure 2 shows the wind speed data collected by onboard 124 

and significant wave height from NDBC (National Data Buoy Center) station 41040, 125 

which was the closest station with wave condition data to the ship, on 6th March. The 126 

wind speed data is at an interval of 20 minutes and there is data missing from 12:20 to 127 

14:00 and from 15:20 to 16:20. The wave height data is at an interval of one hour. Two IR 128 

cameras and three visible cameras were used throughout the cruise to collect whitecap 129 

images. One of the visible cameras was mounted near the IR cameras (as is shown in 130 

Figure 1.b) to make sure the footprint of IR cameras fell within that of the visible camera.  131 

 
 

(a) (b) 

Figure 1. (a) Route of the cruise (red dots denote the stop stations); (b) Schematic of cameras fields of view: FLIR (red); 132 

GoPro (green) 133 
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134 
Figure 2. Wind speed and significant wave height conditions for 6th March when the IR and visible 135 

imagery analyzed in this study collected. 136 

During the cruise, a total of 50 hours video was recorded by visible cameras and 137 

over 60 hours video was recorded by infrared cameras. Three GoPro Hero 8 Black digital 138 

video cameras constituted the visible imagery system, where the linear field-of-view 139 

(FOV) lens (55.2 Vertical FOV; 85.8 Horizontal FOV; 19 mm focal length) were applied 140 

without fisheye effect. The video was recorded at 60 Hz with 19201080-pixel resolution. 141 

The infrared imagery system was comprised of a FLIR model X8500sc infrared camera 142 

(hereinafter called ‘FLIR camera’) and ATOM 1024 infrared camera (hereinafter called 143 

‘ATOM camera’). The FLIR camera was sensitive to the radiation in the spectral range 144 

from 1.5 to 5.0 m with a thermal sensitivity of about 0.02 K and a resolution of 145 

12801024 pixels. The lens used in FLIR camera has 39.74 vertical FOV, 48.62 horizontal 146 

FOV and 25 mm focal length. The ATOM camera was sensitive to 8-14 m with a thermal 147 

sensitivity of about 0.05 K and a resolution of 1024768 pixels, and had a lens with 13 mm 148 

focal length, 29.27 vertical FOV and 38.39 horizontal FOV. The sampling rate of IR im-149 

agery system was at 30Hz.  150 

The infrared imagery system was settled in a black weather casing on the port-side 151 

at a height of 4 m above the mean water level (MWL). One of the three GoPro cameras 152 

was mounted at the top of the infrared imagery system to yield an overlapped region 153 

with the infrared cameras. The tilt angle of FLIR and ATOM cameras were both 42 154 

(acute angle between camera axis and vertical axis at static state), while the tilt angle of 155 

GoPro camera was 74. The tilt angle of GoPro camera set so the horizon was visible in 156 

the images for future rectification. The FLIR camera field of view upon the water surface 157 

was ~28 m2 and the ATOM camera was ~10 m2. The overlap area between GoPro and 158 

FLIR cameras was about 16.25 m2. Figures 3.a and 3.b show the same whitecap observed 159 

simultaneously by the GoPro camera and FLIR camera. While the visible image fails to 160 

show evidence of brightness intensity difference between stages A and B, (Figure 3.a), the 161 

stages are clear in IR where stage A is brighter than the ambient water and stage B is 162 

darker (Figure 3.b). Two additional GoPro cameras were mounted on the port and star-163 

board sides of the upper deck 7.6 m above the MWL. These recorded wide-angle views of 164 

the ocean surface and horizon.  165 
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(a) (b) 

Figure 3. (a) Whitecaps include active and residual foams in a visible image; (b) Whitecaps include active and residual 166 

foams in an IR image. The bright patches are active whitecaps, and the dark patches are residual whitecaps.  167 

2.2. Image Processing 168 

Data from the IR system was stored in a DVR Express Core, which provided 169 

streaming of infrared images and generated RAW images with time stamps every 15 170 

minutes. The GoPro camera generated MPEG-4 files every 10 minutes and time stamping 171 

the records by its intrinsic system.  172 

Considering dichotomic difference between whitecaps stages in IR images, 173 

thresholding is a straightforward method to separate stage A and B whitecaps from 174 

background water and the transition of whitecap lifetime stage can be identified easily. 175 

Following Potter et al., (2015)[25], for each breaking event, thresholds were applied to 176 

isolate the bright pixels (active whitecaps) and dark pixels (residual whitecaps) and used 177 

to quantify their temporal evolution. In infrared images, two threshold values are needed 178 

to identify brighter whitecaps in stage A and darker foams in stage B from ambient wa-179 

ter. A typical outcome of this processing applied to the event is shown in Figure 4. The 180 

transition from stage A to stage B was determined to be the time when the area of stage A 181 

was less than stage B (Figure 4).  182 

 183 

Figure 4. Time series of infrared signal of a breaking event. The whitecaps areas are normalized by 184 

their respective maximum. 185 
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Particle image velocimetry estimates the velocity field based on the correlation be-186 

tween image matrix segments from sequential frames [28]. It is important to remove the 187 

influence of inhomogeneous illumination on the tracers for more accurate results. During 188 

the cruise, the cameras were set at some angle to the water surface rather than orthogo-189 

nally and the uneven illumination caused by the rough surface can also influence the PIV 190 

statistical analysis. In this research, the detailed fluid velocity field information is not 191 

necessary, thus some other natural tracers like wave ripples can be removed. This was 192 

done by applying a thresholding technique that has been applied previously (e.g., [28]) to 193 

isolate whitecaps for use as tracers for PIV analysis[29].  194 

Thresholding on digital images requires determination of a suitable intensity 195 

threshold value manually or automatically to separate particles of interest from back-196 

ground. In visible images, whitecaps typically have a greater intensity than ambient wa-197 

ter; hence, the whitecaps can be identified by pixels with greater intensity value than the 198 

threshold. In this research, Adaptive Thresholding Segmentation (ATS) method created 199 

by Bakhoday-Paskyabi et al. (2016)[30] was applied to determine the threshold values for 200 

each visible and IR images. The threshold is chosen by the application of a triangle algo-201 

rithm [31] to the first derivative of cumulative distribution function for pixels intensity. 202 

The algorithm was compiled and run in Python. It is a robust method with short pro-203 

cessing time. A typical result is shown in Figure 5.b.  204 

  

(a) (b) 

Figure 5. (a) Residual whitecaps in a visible image; (b) Thresholding result of the left panel. 205 

2.3. PIV Method 206 

 PIV analyzes the correlation between small interrogation regions of subsequent 207 

frames to estimate displacement of particles to infer the velocity field [32]. PIV prevails in 208 

fluid dynamic research to determine instantaneous information about fluid velocity 209 

fields and has also been applied on larger scales to measure the surface water velocity in 210 

hydrographic studies (e.g., [33,34]). Some laboratory experiments investigating 211 

microscale breaking waves in both visible and IR imagery use PIV to estimate the kine-212 

matic properties (e.g., [35–37]). PIV has also been applied in oceanographic field experi-213 

ments, especially when other high-resolutions measurement methods (e.g., ADCP) were 214 

absent. Melville and Matusov (2002)[29] used PIV to image sequence individual white-215 

caps taken from airborne cameras to estimate the normal velocity whitecap boundaries. 216 

Rüssmeier et al. (2017)[28] applied PIV to sea surface foam to estimate the surface current 217 

speed and, compared with measurement from ADCP at an offshore station, showed the 218 

reliability of PIV. Inspired by these experiments, PIV was used in this research to esti-219 

mate the instantaneous velocity field during wave breaking. 220 

 Large-scale application of PIV, which is used here, applies similar algorithms to 221 

conventional PIV. However, instead of laser light and artificial tracers, which are typi-222 

cally used in fluid dynamic laboratory experiments (e.g.,[37,38]), natural light and tracers 223 

(whitecaps) are used in this research. Therefore, the illumination can affect the PIV result 224 

significantly[33]. Enhancement of the images was recommended to improve the pro-225 

cessing results[33]. In this research, this was done by applying a thresholding technique 226 

to extract whitecaps as tracers for PIV analysis.  227 
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Video clips that contained target whitecaps were transformed into 19201080 reso-228 

lution images sequences at 60 Hz. Suitable region of interest (ROI) was chosen and 229 

cropped for each sample so that only a single whitecap was always in the frame. The 230 

whitecaps were extracted as the tracers of PIV using ATS thresholding method. PIV was 231 

realized through PIVlab, which was built in MATLAB by Thielicke and Stamhuis 232 

(2014)[39]. PIVlab provides multiple passes to do iterative calculations for better results. 233 

The interrogation area was set as 128128 pixels in the first pass then 6464, 3232, and 234 

1616 in the following passes. Use of 2n (n is an arbitrary integer) as interrogation area is 235 

because PIVlab’s algorithm uses Fast Fourier Transform. The step sizes and offset be-236 

tween interrogation area, were set to half the width of corresponding interrogation area 237 

[39]. Examples of PIV applied to active and residual whitecaps are shown in Figure 4. The 238 

green arrows are velocity vectors. 239 

  

(a) (b) 

  

(c) (d) 

Figure 6. (a) An active whitecap in a visible image; (b) PIV result of the whitecap in the left panel; (c) A residual whitecap 240 

in a visible image; (d) PIV result of the whitecap in the left panel.  241 

3. Results and Discussion 242 

3.1 Signatures of Whitecap Lifetime Stages in PIV results  243 

Twenty-two whitecaps were captured simultaneously by IR and visible cameras. 244 

The average velocity can be achieved from the PIV results for each frame so that a time 245 

series of the average velocity of individual whitecap can be built for an entire record of 246 

wave breaking. Stage A lifetimes of all the samples are over 1 seconds (Table 1) and so 247 

1Hz low-pass filter was applied to smooth the average velocities which could be done 248 

without losing the whitecap decay information. Two types of patterns emerge when 249 

plotting whitecap velocity derived from PIV, examples of which are shown in Figure 7. In 250 

the first (Figure 7.a), the average horizontal and vertical velocity both show a sinusoi-251 

dal-shaped curve at the beginning. The horizontal velocity becomes constant after the 252 

trough, while the vertical velocity becomes constant after the crest. In the second pattern 253 

(Figure 7.b), the horizontal and vertical velocities both show an arctangent-shaped curve 254 

with the vertical velocity lagging the horizontal velocity. Ten of the twenty-two events 255 

follow the pattern in Figure 7.a and twelve follow the pattern in Figure 7.b.  256 
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Table 1. Lifetime of Active Whitecaps in This Study 257 

Lifetime of active whitecaps (se-

cond) 
Number 

1-2 10 

2-3 9 

>3 3 

At each station during the cruise, the ship’s bow was aligned with the wind to avoid 258 

sheltering so that more whitecaps could be observed in the ROI, and to increase ship 259 

stability which reduced inhomogeneous illumination caused by changes to the camera 260 

angle. Therefore, the direction of the wave breaking tends to be horizontal in the videos 261 

(i.e., in the u direction) as discussed in the following paragraphs. 262 

  

(a) (b) 

Figure 7. Time series of average u and v velocity of whitecap foam and normalized whitecap area. (a) and (b) are exam-263 

ples of the two types of velocity patterns as discussed in the text. The green dots denote the beginning of wave breaking 264 

according to IR images. The red dots denote the last time when the horizontal velocity change the direction. The vertical 265 

dash lines denote the end of stage A.  266 

There were two kinds of tracers, active whitecaps, and residual foam, in the images 267 

processed using PIV. The tracers representing active whitecaps have three components of 268 

velocity, the velocity of breaking wave driven by wind, the surface current velocity, and 269 

the velocity of wave orbital motion[40]. The latter two components are background water 270 

velocity, and it is assumed that the temporal average is a constant. Hence, the horizontal 271 

velocity anomalies are true breaking speed under this assumption. The low-pass filter 272 

mentioned above actually removed the information about wave orbital motion, thus it 273 

will not be discussed here. The residual foam moves with the background water. In some 274 

samples, there was residual foams generated from previous wave breaking already in the 275 

ROI or flowing from nearby into the ROI. The first type of pattern (Figure 7.a) describes 276 

this situation. It also accounts for why the whitecap area is not zero at the beginning of 277 

wave breaking in Figure 7.a. The horizontal velocity is negative at the beginning of wave 278 

breaking and keeps increasing to positive during the growth of active whitecaps. Then 279 

the averaged horizontal velocity starts to decrease around the time when the whitecap 280 

area reaches maximum. At the end of the active stage, the averaged horizontal velocity is 281 

negative like the beginning of wave breaking. In the second type of pattern (Figure 7.b), 282 

there is no preexisting residual foam. The averaged horizontal velocity keeps decreasing, 283 

then changes direction before the active whitecaps turned into residual foam. Therefore, 284 

the existence of tracers of background water at the beginning of wave breaking likely 285 

account for the different temporal velocity patterns. 286 

 287 



Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 14 
 

 

3.2 Linear Regression Model   288 

Whitecaps are formed by wave breaking under the influence of wind. Therefore, to a 289 

greater or lesser extent, the parameters related to wind and surface water state can in-290 

fluence whitecaps. Tracking individual whitecaps, the waves grow and break as they 291 

move forward. Active whitecaps outpace the ambient water, while residual foam flows 292 

with the surface water. This phenomenon suggests that velocity variation of an individ-293 

ual breaking wave is related to the lifetime stages of whitecaps. Jessup et al. (1997)[26] 294 

found a linear relationship between the centroid speed of active whitecaps and the re-295 

covery time of the skin layer after wave breaking, which can be used to estimate stage A 296 

whitecaps lifetime. In this study, with the advantage of whitecaps recorded simultane-297 

ously using IR and visible remote sensing, the relationship between time scales of kine-298 

matic variation and thermal variation can be determined. The time when a stage A 299 

whitecap ends, as quantified using IR, is compared with the time when the averaged 300 

horizontal velocity last reaches zero after the peak. The results for all 22 waves are shown 301 

in Figure 8. Coefficient of determination, r2 is 0.738, and the linear model is  302 

TA = 1.134×TV + 0.621, (1) 

where TA is the time taken for stage A of whitecap to end, and TV is the time when the 303 

averaged horizontal velocity of whitecap last reaches zero relative to the beginning of 304 

wave breaking. It can be interpreted that the lifetime of active whitecap is proportional to 305 

the timescale of breaking speed. Therefore, TA and TV in the equation (1) can be replaced 306 

with lifetime of stage A and time it takes for whitecap speed to reach zero, respectively. 307 

With the help of this linear model, one can apply PIV to visible imagery and substitute 308 

the time scale of the breaking speed to estimate the lifetime of stage A. With this infor-309 

mation it can be determined whether a whitecap is in stage A or stage B.   310 

 311 

Figure 8. Time when stage A ends against time when averaged horizontal velocity last reaches zero 312 

(changes the direction) in the same image sequence. The red line is the least squares linear regres-313 

sion and the green line, y=x, is plotted for comparison.  314 

 315 

 316 
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Table 2. Linear Regression Summary for Predicting Stage A Ends Time 317 

 coefficient 95% CI1 t p 

Intercept 0.621 [0.118 1.125] 2.575 0.018 

slope 1.134 [0.819 1.448] 7.515 0.000 
1 CI = confidence interval. 318 

 319 

Discrimination of whitecaps stages in this method only requires visible videos. The 320 

quality of the images is important for the implementation. Uneven illumination and sun 321 

glint are two main factors that can contaminate images [9]. Uneven illumination usually 322 

happens when the sea surface is rough, especially around the beginning of wave break-323 

ing. Some areas of ambient water can have similar intensity to whitecaps due to uneven 324 

illumination which may lead to the failure of whitecaps extraction through thresholding. 325 

The changing illumination makes the bright areas appear to move faster than the real 326 

surface water velocity in the PIV algorithm. The situation can be worse at the beginning 327 

of stage A because the number of the real tracers is small so uneven illumination can have 328 

a bigger influence on the average velocity. Uneven illumination can also affect the pixels 329 

filtered by thresholding. Overestimation of active or residual foam through image pro-330 

cessing can lead to errors in the average. The sun glint affects the prediction result in the 331 

similar way to uneven illumination. Normally, the image sequence contaminated by sun 332 

glint should be discarded, while the influence of uneven illumination can be avoided by 333 

omitting the contaminated images at the beginning of wave breaking or increase the 334 

threshold value to filter the contaminated area. Increasing the threshold value can filter 335 

some pixels representing whitecaps, but it will not affect the estimate of PIV since the 336 

quantification of whitecap fraction is not the purpose of this method.  337 

According to the linear regression result (Figure 8), the average velocity of white-338 

caps reaches zero earlier than whitecap stage A ends. Two factors may lead to this situa-339 

tion. First, the average velocity reaches zero before the breaking ends. The breaking front 340 

proceeds forward while foam after the crest moves in the opposite direction resulting in 341 

zero average velocity before the stage A ends. Second, the breaking waves stop moving 342 

but keep degassing, especially when the penetration depth of bubbles is deep. Callaghan 343 

et al., (2013, 2016) [41,42] conducted a laboratory experiment to explore the whitecap 344 

foam decay, where the breaking waves were generated in a seawater channel and rec-345 

orded with above and side-mounted cameras. They found that whitecap lifetime was a 346 

function of wave scale, with larger waves having longer whitecap lifetime [41]. A positive 347 

power law relationship between whitecap lifetime and averaged bubble penetration 348 

depth was also built in their study[42]. However, there appears to be no direct evident to 349 

that establishes a relationship between penetration depth and stage A lifetime. It is pos-350 

sible that the penetration depth affects stage B lifetime therefore the whitecap lifetime as 351 

a whole. Callaghan et al., (2016)[42] built a model to predict breaking dissipation based 352 

on volume time-integral, which is the product of whitecap area, averaged penetration 353 

depth and growth timescale (timescale of the whitecap area increase). The breaking dis-354 

sipation has a positive linear relationship with the volume time-integral[42]. Jessup et al., 355 

(1997)[26] found a positive linear relationship between stage A lifetime and velocity of 356 

breaking front. Under the assumption that the velocity of breaking front is related to the 357 

breaking dissipation, it can be inferred that the volume time-integral has a positive rela-358 

tionship with stage A lifetime based on the research mentioned above. It is indicated that 359 

the wave scale and the penetration depth have a positive influence on stage A lifetime. To 360 

explore this, we conducted a simple experiment using an off-the-shelf bubble maker 361 

typically used in aquariums and a small tank. FLIR was used to observe the bubbles on 362 

the water surface. The foam temperature showed no observable decrease until the foam 363 

remained on the surface for some time after the bubble generator had been turned off. 364 

This provides cursory evidence that whitecap bubbles remained in stage A briefly fol-365 

lowing their arrival on the surface when viewed in IR and supports the idea that white-366 
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caps recorded at sea reached zero velocity before stage A ends. However, information 367 

about the factors affecting the time whitecaps take to reach static state is lacking, and a 368 

more precise experiment is needed to determine why velocity reaches zero before stage A 369 

ends.  370 

During wave breaking, wave energy is dissipated through turbulence. The entrain-371 

ing air rises and forms bubbles on the surface, which enlarge the contact area between air 372 

and water aiding temperature loss [27]. Stage B whitecaps are a manifestation of this 373 

process [25,27]. However, it remains a uncertain whether stage B whitecaps start during 374 

the rising of bubbles or after the bubbles reach the water surface. The dissipation process 375 

of wave breaking can therefore be divided into two phases, kinetic dissipation dominated 376 

by turbulence and internal dissipation dominated by evaporative cooling. It is possible 377 

that the kinetic dissipation happens before the internal dissipation so that the breaking 378 

crest stop moving before degassing. It is worth further research to clarify the energy 379 

transfer during wave breaking.  380 

4. Summary and Conclusion  381 

Under continued influence from the wind, waves grow until they become unstable 382 

and break creating whitecaps. These whitecaps are distinguished as either actively gen-383 

erated (stage A) or decaying (stage B). Stage A whitecaps are formed along the crest of a 384 

wave as during breaking, stage B are the patches left on the surface. Whitecap coverage is 385 

quantified by whitecap fraction W (W = WA + WB). At each stage of its life, whitecaps have 386 

considerable influence on the marine boundary layer so discrimination of whitecaps 387 

stages is critical to accurately quantify momentum, energy, and mass transfer. Whitecap 388 

stages are easily identified in IR by their dichotomic characteristics but subtle change of 389 

image intensity from active to residual stages makes the separation difficult at visible 390 

wavelengths. This study provides a novel method to distinguish whitecap stages by ap-391 

plying PIV to visible imagery. This highly accessible and practical method paves the way 392 

for affordable and accessible cameras to advance whitecap research through improved 393 

quantification and understanding of WA and WB.  394 

Data were collected during a Gulf of Mexico cruise where breaking waves were 395 

captured simultaneously using collocated IR and visible video cameras. The visible im-396 

ages were processed using ATS thresholding to extract whitecaps from background fea-397 

tures and PIV to determine the average tracer (whitecaps) velocity. IR images were pro-398 

cessed with a simple thresholding technique to distinguish stage A whitecaps from the 399 

ambient background. Averaged velocity was then compared to the lifetime of stage A. 400 

Twenty-two samples were processed this way. A linear relationship was established 401 

between the lifetime of stage A and the timescale of averaged velocity. Hence, substitu-402 

tion of the timescale of averaged velocity into the linear model presented yields the stage 403 

A whitecap lifetime. 404 

The linear regression indicates that the velocity of whitecap reaches zero before 405 

whitecap stage A ends, with an average delay of ~1 second. Two possible reasons for this 406 

are discussed. The first is the potential non-uniform breaking velocity across an indi-407 

vidual whitecap that results in zero average before the breaking front stops advancing.  408 

The second is that the motion of the whitecap stops before degassing ends and stage A 409 

persists until all bubbles have returned to the surface. This would have implication 410 

breaking wave mechanics such as bubble penetration depth and degassing time. Some 411 

preliminary evidence is provided to support the second hypothesis but further investi-412 

gation is needed.  413 

 414 
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