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Abstract—This letter presents a framework for synthe-
sizing a robust full-state feedback controller for systems
with unknown nonlinearities. Our approach characterizes
input-output behavior of the nonlinearities in terms of local
norm bounds using available sampled data corresponding
to a known region about an equilibrium point. A challenge
in this approach is that if the nonlinearities have explicit
dependence on the control inputs, an a priori selection
of the control input sampling region is required to deter-
mine the local nhorm bounds. This leads to a “chicken and
egg” problem, where the local norm bounds are required
for controller synthesis, but the region of control inputs
needed to be characterized cannot be known prior to syn-
thesis of the controller. To tackle this issue, we constrain
the closed-loop control inputs within the sampling region
while synthesizing the controller. As the resulting synthe-
sis problem is non-convex, three semi-definite programs
(SDPs) are obtained through convex relaxations of the main
problem, and an iterative algorithm is constructed using
these SDPs for control synthesis. Two numerical exam-
ples are included to demonstrate the effectiveness of the
proposed algorithm.

Index Terms—Stability of nonlinear systems, robust con-
trol, LMIs, numerical algorithms.

[. INTRODUCTION

LARGE portion of the existing literature on nonlinear
control comprises model-based approaches (e.g., back-
stepping, feedback linearization [1]) that depend on the avail-
ability of a sufficiently accurate analytical model of the system
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or plant to be controlled. There is an inherent assumption that
such an analytic model can be obtained from the fundamental
laws governing the system. However, there are many instances
where a reliable and/or accurate analytical model of the system
cannot be obtained in practice. Robust control theory can also
be used to design a stabilizing controller for a nonlinear system
under the assumption that at least a nominal realization of the
system, either linear time-invariant (LTI) or linear time-varying
(LTV), can be obtained (see, e.g., [2], [3], [4, Ch. 9]). In this
setting, the system is described in linear fractional transfor-
mation (LFT) form, where the nominal system is connected
in feedback with a ‘perturbation’ that captures all aspects of
the system that do not fit within an LTI or LTV framework
(e.g., nonlinearity, uncertainty, time delays). The control syn-
thesis is then based on the input-output (I/O) properties of
the perturbation, which are assumed to hold for some known
structure and/or set of perturbations (e.g., integral quadratic
constraints [5], structured singular value [6]). For a complex
system, however, it is not trivial to quantify these I/O prop-
erties and ascertain if the accompanying assumptions hold,
especially when the analytical form of the perturbation is not
explicitly known.

Data-driven techniques are now becoming increasingly pop-
ular to overcome these issues [7]. For example, strategies are
being proposed for determining I/O properties from sampled
data (like dissipation inequalities [8] and passivity [9]). Also,
data-driven approaches for robust control, with a focus on per-
turbations representing parametric uncertainties and unknown
nonlinearity driven by states and/or parameters, are gaining
popularity [10], [11], [12]. However, the class of perturbations
for which the unknown nonlinearity is a function of both the
states and control inputs is relatively less studied. Existing
data-driven methods for this class of perturbations are either
guaranteed to work in a small neighborhood of the equilib-
rium [13] or require extensive tuning of the associated control
parameters to satisfy the underlying assumptions [14]. In light
of these challenges associated with purely data-driven control,
we have adopted an approach where I/O properties of the per-
turbation are established through data and subsequently used
for control synthesis.

We consider a general nonlinear system and partition it into
an LFT form, where the nominal system captures the system’s
LTI dynamics about an equilibrium and the perturbation
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comprises higher-order nonlinearities, which are functions of
both the states and control inputs and are not necessarily
known analytically. Assuming I/O samples of the perturba-
tion are available, local norm bounds are derived. A robust
state-feedback controller is synthesized that asymptotically
stabilizes the nonlinear system locally within the sampled
region for all perturbations satisfying the norm bounds. Since
the norm bounds, which depend on control inputs, are used
in the synthesis, the synthesized controller must ensure that
the control inputs remain within the sampling set. Moreover,
the main synthesis problem involves non-convex constraints.
We relax the main problem into three semi-definite programs
(SDPs) that are solved iteratively. To summarize, the contribu-
tion of this letter is an iterative control synthesis method that
results in local asymptotic stabilization of a nonlinear system,
where the system’s nonlinearities are analytically unknown,
but available through sampling, and depend explicitly on
control inputs.

Notation: The symbol N, is a shorthand for the set
{1,2,...,n}, and ||-|| denotes the 2-norm for vectors and spec-
tral norm for matrices. An n-dimensional vector of zeros with
the i-th entry equal to one is denoted by 1,,. We use A > 0
to denote a symmetric, positive definite matrix A. The max-
imum singular value of M is denoted by o (M). For a given
E > 0, an ellipsoid centered at the origin is denoted by
&E(E) = {x € R"[|E~'x| < 1}. Finally, B, denotes the closed
unit-norm ball in R".

[I. PROBLEM FORMULATION
Consider a nonlinear dynamic system of the form

x = f(x, u), (D

where x € R™ and u € R™ are the state and control input
vectors, respectively, and f : R™ x R™ — R™ is a nonlinear
function subject to the following assumption.

Assumption 1: f is not precisely known. However, there
exists at least one equilibrium (xq, ug) such that f(xg, ug) = 0,
and A = %'(XOMU)’ B, = g—u|(XO,uO) are known.

All the developments in this letter are based on the above
assumption. If multiple equilibria are known, we choose the
one that is relevant for the problem at hand. Next, by setting
X = Xg + 6X, u = ug + du, we can rewrite (1) as

8% = ASx + B du + A(Sx, Su), )

where A, By are as defined in Assumption 1, and A : R™ x
R™ — R™ is a function that captures the higher-order terms.
Note that A, whose analytical form is not available, is a func-
tion of both §x, du. Also, we assume that A is memoryless
and static. Thus, system (2) can be expressed in an LFT form
having the nominal LTI dynamics 6x = Adx + Bjéu and the
perturbation A.

Although A is not known analytically, we assume that a
finite number of input-output samples of A are available from
either experiments or high-fidelity numerical simulations. We
also assume that the sampling is carried out in a known region
around the equilibrium, such as over a N-point grid where
N is large. We refer to this region as the sampling region
S = X x U, where X ¢ R™ and U C R™ are known,
compact sets that contain the respective origins in the inte-
riors. Therefore, we have access to N input-output samples

{(6x®, su®), A3x®, suP)cnr, where (5xP), su®) € S
for all k € ANy. Upon investigating these samples, we can
deduce the following:

o If the vector A(5x®, su®) corresponding to §x® £
0 and su® £ 0 contains elements that are identi-
cally O, then the original system (1) has states that
are governed by purely LTI dynamics. This, in con-
junction with the nonzero entries (say, n,, of those),
can be used to find a realization of A(sx%, su®) of
the form A((Sx(k), 8u(k)) = [A1 <04, ] , where
Ai : R x R — R, i € N,, are the nonlinearties
corresponding to the nonzero entries. Thus, the above
can be reformulated as A(8x®, su®) = Bow® where

wh = [ng) wi W’(’llfv):l e R™ contains outputs of
all the nonlinearities and By € R properly distributes
the elements of w(®.

o« We can also identify the individual states and control
inputs that drive each nonlinear function A;. Based on
this, the sampled input to A; takes the form v

i
[Sxik) U R 5”(1k) o0

1" € R+ which
is equivalent to vl(»k) = C;x® 4+ D;su® with C; €
ROutmdxne . e RO=AMIXn known, Therefore, for
each k € Ny, we have wl(k) = Ai(vgk)), i€ N,,.
Although expressed in this form, it is understood that
each A; maps R™ x R™ to R.

o The samples can be used to prescribe empirical norm
bounds on the inputs-outputs of each A;. Specifically,
we intend to find y; > O for each i € an such that

2
(wl(k))2 <y? ”VEk) H holds for all k € Ny. To this end,

for each pair (i,k) € N, x Ny, we define yi(k) =
2
((wgk))2 / Hvl(k) H )1/2 and stack all such bounds in a matrix
T
I = [r‘l Iy - an], where T'; = [Vi(]) Vi(Z) Vi(N) )
The empirical bounds are then specified as the maxi-
mum over each column, i.e., y; = maxI;. If we seek
the bounds over a region D C S, the same procedure can
be repeated with the sampled data corresponding to .

Using the above information, system (2) can be rewritten as

8x = Adx + B;éu + Bow,
wi = Ai(vi), i € Ny, 3)
v, = (Cidx + D;du), i e N,

with the following standing assumption for a given D C S.

Assumption 2: Let y;, i € N, be the empirical bounds
corresponding to D. Each input-output tuple (v;, w;) satisfies
the bound y; in D, i.e., w? < p2||lvil|%, for all (8x,8u) € D
and for all i € V,,,. Also, for each i € A, , let Ap, be the set
of functions A; : D — R for which the bound y; holds.

The above assumption is reasonable since our knowledge
is restricted to the extent provided by the sampled data and
analytical forms of A;s are unknown. Now, we are interested
in designing a state-feedback control law du = Kéx for the
open-loop system (3), under Assumption 2 with D = X, x U,
for some X, C X, U, € U containing the respective origins
in the interiors. The closed-loop system thus becomes

5% = (A + B1K)éx + Bow,
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wi = Ai(vi), i€N,,,
Vi = (Cl + DiK)SX, i € le' (4)

The goal is to synthesize K to certify the closed-loop
system (4) asymptotically stable in the largest local region
X, € X, for a choice of U. € U and the corresponding bounds
y; and set of functions Ap,, i € an- However, as the synthe-
sis uses y;, we need to verify whether the closed-loop control
trajectories satisfy su = Kéx € U, for K to be consistent with
the data. This requires the use of an iterative approach, which
is described in detail in the synthesis presented in the next
section. Before discussing the control synthesis, we outline a
few useful matrix inequality results.

Lemma 1 (Young’s Relation [15]): Consider X € R™*" and
Y € R™*". For any S > 0, it holds that

XY +Y'X <X'S"!X +Y'SY. 5)

A special case of Lemma 1 that will prove useful in the
control synthesis presented in the next section considers S = 1,
X =H e R»* and Y = Hy € R™*" which leads to

H'H > H'H, + HJH — H] Ho,. (6)

Ill. CONTROL SYNTHESIS

This section describes the synthesis of a static state-
feedback controller K, which requires breaking the main
synthesis problem into different sub-problems and iterating
over these sub-problems to obtain a controller that is certi-
fied to render the closed-loop system (4) asymptotically stable
within X.. We will start by specifying structures of the sets
X¢ and U, that will be used in the remainder of this letter. The
local region X, is taken to be a family of ellipsoids param-
eterized by W > 0, i.e.,, X; = &, (W), where W is chosen
appropriately such that X, € X. Slmllarly, we take U, = rB,,,
where r > 0 is the parameter related to the control input mag-
nitude and is chosen such that U, C U. With these sets defined,
the main synthesis problem is summarized in the next result.

Theorem 1: Let W > 0 and r > 0 be chosen such that
X =&, (W) € Xand U, =rB,, C U, respectively. Suppose
Assumption 2 holds with D = X, x U,. Then, the closed-
loop system (4) is locally asymptotically stable in X, for all
A; € Ap,, i € N, if there exist P > 0, K € R™*"x, 7 > 0,
and A; > 0, i € N, , such that

w?

P(A +B/K) + (A+BK)'P PBZ
B]P 0,
@T
[ }Z, ®
t<r, (9
where A = —diag(Aq, ..., Ay, ), and
A A
z = —diag(—;l, L), @ = [M®1. ..., APy, ], (10)
Ny
with ®; = CT +K'D], i e \,,,.

Proof: We estabhsh the proof in three parts: first, we derive
a condition that ensures asymptotic stability of the closed-loop
system within the local region X, under the assumption that
sdu = Kéx € U, for all §x € X; then, we obtain the equivalent

stability condition (7); finally, we constrain the control signal
such that Su = Kéx € U, for all §x € X., which leads to (8)
and (9).

Part-1: Define the candidate Lyapunov function V =
8x"PSx with P > 0. Taking the time-derivative of V and
using (4) results in

V = 5x' P8k 4 8% Pox
_ [6x]"[P(A+B/K)+ (A+BK)P PB,]|[sx
W BJP 0 |lw/

The inputs and outputs of each A; can be rewritten

using (4) as

vi| _[(Ci+DK) 0 qfsx (11
wi| = 0 nollw]
Now, suppose du = Kéx € U, holds for all §x e Xe. Then
under Assumption 2 with D = X, xU,, we have w yl lv; ||2

for each A; € Ap,, i € N,
equivalently given by

V,'T)/l-ZI 0 Vi >0
wi 0 -1 wil| — ’

This, along with (11), leads to a quadratic constraint (QC) in
6x and w for each i € an» expressed as

sx]" v 0 5x -0
w 0 — 1,15 =

where ®; = C;r + KTD;F. In the current setting, all QCs of
the form (13) for A; € Ap,, i € N, hold for all §x € X..
This would imply, through the S-procedure, that V < 0 for all
3x € X, if there exists A; > 0, i € A, such that

and for all éx € Xc, which is

w?

(12)

(13)

PA +BK)+ (A+B,K)'P PB,
BIP 0
Ry
v ®; <I> 0
+ Dk [ 0 —1, 17

Ry; *n
i=1 i Mw;

} <0. (14

This concludes the first part of the proof where we have
derived a condition for local asymptotic stability.

Part-2: Making the restriction that A; > 0 for all i € ./\f,,w,
allows for (14) to be rewritten as

PAA+BK)+(A+B,K)TP PB,
B]P A

_Z[ <I>TA g} 0.

where A = —Y " A; iln,, ln; = —diag(ry, ...,

matrix in the sum above can be expressed as

b dTh 0 2@ | Vfl a7 0
A.i 1 fd —_—— . . .
0 0 0 J\ @7 0]

which leads to
- T
O .._1|O
_0}(-) M . (6

Ty 2
Z —)»,’@,’K—i’_q);r)ui 0 _
0 0

i=1

(15)

An,). Bach
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where E and ® are as shown in (10). Thus, (15) becomes

P(A+BK)+ (A+B/K)'P PB;
BIP A

[ (s] -

Applying the Schur complement to (17) leads to (7), which
completes the proof for the equivalent stability condition.

Part-3: To obtain a controller K that satisfies the assumption
used in Part-1 (i.e., su = Kéx € U, holds for all 6x € X.) and
is, therefore, consistent with the values of y; used, we need to
ensure ||du|| = || Kéx|| < r. A bound on ||§u]| is found using
the definition of ¢ (-) and knowing that ||W’18x|| < 1, for all
8x € X,, which yields

a7

Isul = [Ksx| = HKWW—lax”

< 6(KW)HW_1SXH < 5 (KW). (18)
Thus, ensuring 0 (KW) < r guarantees that ||fu|| < r. We
first find a T > 0 such that 6 (KW) < t. This condition can
be expressed equivalently as t2I > (KWWKT), applying the
Schur complement to which leads to (8). Finally, specifying
7 < r means ||fu| < 6(KW) < t < r. This completes the
last part of the proof. |

Remark 1: Note that although we have considered the 2-
norm bound in this letter, Theorem 1 is suitable for other
quadratic characterizations of I/O behavior (of the form (12))
of the nonlinearities (e.g., weighted 2-norm bounds). This
would involve suitably modifying the stability condition (7).

Remark 2: Theorem 1 holds for any X, = &, (W) € X and
U, = rB,, € U, with the values of y; computed from the sam-
pled data corresponding to the chosen region D = X, x U,.
Hence, one could ideally select W > 0 such that X, is the
largest ellipsoid contained in X, choose a r > 0, and find
a feasible point satisfying all the constraints in Theorem 1
to obtain a controller which would asymptotically stabilize
the closed-loop system (4) for all initial conditions within
this ellipsoid. However, it is not trivial to find such a feasi-
ble point for the constraints involved. Specifically, the matrix
inequality (7) is non-convex, as it is bilinear in the variables
P, K. Also, O is quadratic in the variables A;, K. The bilin-
earity issue is well-known and can be addressed by applying
a congruence transformation and a change of variables (see,
e.g., [15, p. 119]). However, the matrix inequality in (8) then
becomes non-convex in the transformed variables. We address
these issues by reformulating and/or relaxing these constraints
into convex ones. The convex constraints are then used to
set up three different semi-definite programs (SDPs) for the
controller synthesis.

We start by deriving an alternative form of (7) using a
congruence transformation with diag(P*] ,LT) as

AR+BF+RAT+F'B] B, ©
Bgr A 0|<0, (19
¢) 0 =
where R = P!, F = KP! = KR, and ® =

[L1®1, ..., Ay, ®,,] with & = RCT + FTD]. Note that (19)
is not an LMI in the variables R, F, ;. However, if the values

of A;s are known or given, (19) is an LMI in R, F. Another
approach for deriving an LMI form of (19) is by setting
A; = XA and applying a congruence transformation on (19)
with diag(v/AL, (1/+/M)I, (1/+/2)I). These steps lead to

AR+B/F+RAT+F'B] B, ©
B;r -1 0| <0, (20
o 0 E

where the A is absorbed into the definitions of R and F
(i,e., R = AR, F = KAR) for consistent notation, E =
diag(—%l, ...,—VLZI), and @ = [®,..., ®, |
Becaulse of the cnﬁange of variables introduced above, we
need to suitably modify the constraint ¢ (KW) < 7. To this
end, we state our first convex reformulation of (8) next.
Lemma 2: Let W > 0 be given and K = FR~!. Then,

o (KW) < /B if there exists 8 > 0 such that

[ﬁl F

FT (W 'R)T + (W-'R) — 1} 20. @D

Proof: Performing a congruence transformation with
diag(I, R) on (8) results in

2
i | F
>
[FT (W‘lR)T(W‘lR)} 0. (22)
Using Lemma 1 with S = X =T and Y = W™!R, we relax
the bilinear term (W™ 'R)T(W~!R) as

W IRTW'R) > W IRT+ W IR - L (23)

Therefore, (22) is implied by (21), which ensures that
&5 (KW) < . Defining 8 = t2 completes the proof. |

Alternatively, we can find a different relaxation of the bilin-
ear term (W‘lR)T(W_lR) for a given Rg. This is analogous
to linearizing the bilinear term about Ry, which is similar to
the convex overbounding approach in [16].

Lemma 3: Let W > 0, Ry > 0 be given and K = FR™!.
Then, 6 (KW) < /B if there exists 8 > 0 such that

I F
|:I€T Tl] 20,

where T; = (W 'R)T(W™Rg) + (W 'R)T(W-IR) —
(W~'Ro)T(W~'Ry).

Proof: We have already established that 6 (KW) <17 «<—
(22). Then, using (6) with H = W~!R and Hy = W™ IRy
leads to

(24)

WIRTW'R) > (W 'R)T(W'Rg)
+ (W IRp)T(W™IR) — (W™IRo) (W™ IRp). (25)

Therefore, (22) is implied by (24), which ensures that
5 (KW) < 1. Denoting 8 = 7> completes the proof. |

Finally, to express (24) in terms of the variables K and P,
instead of F and R, we perform a congruence transformation
with diag(I, P) on (24) to obtain

[ﬂl K] > 0, 26)

K' T,

where T, = W IWIRP + P(W IRy TW!
P(W'R))T(W~!Rp)P. The Schur complement is then
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Algorithm 1: Controller Synthesis Algorithm

1 Initialization: Choose W, r, nmax.
2 forj=1:n,do

3 Set r = rj where r; is the j-th entry of r and W = Wj,. Set
Xe =&, (W) and Ue = rBy,.
4 repeat
5 Get the sampled data points corresponding to X, x Ue.
Use those to compute y;, i € Np,,.
6 Get B*, R*, F* from (28). Set K = F*(R*)~!,
RO = R*, Ct = 1.
7 while ¢; < nmax & 6(KW) > r do
8 Get g*, P*, {17} from (29) using Ry, K. Set
Ro = (PH)~ 1.
9 Get g*, R*, F* from (30) using Ry, {A}}.
10 Set K=F*R" ™, Rg =R*, ¢; = ¢/ + 1.
11 end
12 if 6 (KW) < r then
13 | Update W to get a larger X, = &£, (W) € X.
14 else
15 | Update W to get a smaller X.= &, (W) C X
16 end
17 until The largest X, = &, (W) is certified;
18 Output: K and W.

19 end

applied to (26) to yield
Bl K 0
K' T, P
0 P R;'WWR;'

>0, 27)

where T3 = W'W~!RoP + P(W~'Ro)"W~!. Finally, we
are ready to state the convex optimization problems (namely,
SDPs) that are involved in the iterative controller synthesis.
The SDPs, along with the respective solutions, are given by

(B*.R*,F*) = argming g {8 | (20), (21),R > 0,8 >0}, (28)
(B*.P*, {A}) = argming p {8 1 (1), 27),P >0, >0,

Ai>0,i€e an}v (29

(B*.R*,F*) = argming g g{B | (19), (24),R >0, > 0}. (30)

Note that the SDP in (29) requires known values of K and
Ry, similar to the SDP in (30) which requires the values of
A; and Rg to be known. Thus, the SDP in (28) can be ini-
tially solved to obtain g*, R*,F* and set K = F*(R*)_l,
Ry = R*. The values of K and R can then be utilized in
solving the SDP in (29) to get B*, P*, {A7}. Now, the tuple
P. K, 7, {A;}) with P = P*, v = /B* {A} = {1} satis-
fies (7), (8). However, (9) might not hold and our approach
involves iterating between (29) and (30) to satisfy o (KW) < r,
if that is possible without modifying W. The control synthe-
sis starts from a small ellipsoid X, = &, (W) for a given
r > 0. Iterations are then carried out to certify the largest
possible ellipsoid X, = &, (W) for that r, while simulta-
neously satisfying ¢ (KW) < r. The overall procedure for
control synthesis is summarized in Algorithm 1. Given the
sampling region X x U, Algorithm 1 should be initialized by
choosing a W = Wy > 0 such that X, = &, (W) € X
is sufficiently small. Also as a part of the initialization,
rm = max,sofr | U. = rB,, € U} should be determined
to specify an n,-point grid r = (rg, ..., r,) where ro > 0

P R VL A A B

\j \‘ ——— Velocity Field
VA
\

— — —Boundary of X,

L e

Trajectories

~ e —— |

0.2 |

NI T

T2
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[T U N
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70.27/// )\/ G R M T, R
SN,
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R
(P
' o777
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Fig. 1. Simulation results of the closed-loop system (32) with r = 0.5
and K=[-0.7151 —0.6762].

is chosen to be small. Finally, a maximum iteration number
nmax should be chosen when implementing Algorithm 1. Note
that a variation of the Algorithm 1 can be obtained where
only (28) is utilized (i.e., without the iteration between (29)
and (30)). However, in our experience, this generally leads to
more conservative results.

IV. NUMERICAL EXAMPLES

Two numerical examples are included in this section, con-
cerning two-dimensional single-input systems. The nonlinear-
ity explicitly depends on control inputs in the first example.
The second example considers a system where the nonlinear-
ity is a function of the states only. We choose W = «I, o > 0,
meaning X, = & (W) is a circle of radius « in these exam-
ples. Also, the SDPs in (28)-(30) are solved in MATLAB using
YALMIP [17] and MOSEK [18].

Example-1: Consider a nonlinear system of the form

. X1 [—0.1x] + x3 + u — x1 x5 + ?
x=|."|= - 2 o

b} i 0.1xo +u+x7 —u
with the corresponding equilibrium (xg, ug) = (0, 0). The
nonlinear system in (31) is cast in the form of (2) with

}, (3D

[—0.1 1 1
A= 0 —0.1] B = M
_ [—dxi8xz + 8u*] _ [A1(8x, Su)
A(Sx, du) = I (Sx% — 82 } - [Az((SX, Su) |’

The system is then expressed in closed-loop form as

sk = A+BK)Sx+w, w=[A Ar]",
vi = ([13, 13,] +13,K)ox, vo = ([13, 0] 4 13,K)sx. (32)

Now, Algorithm 1 is implemented with 11 values of r between
0.01 and 0.5. The largest radius certified is @ = 0.508, which
corresponds to r = 0.5 and K = [—0.7151 —0.6762]. The
simulation results of the closed-loop system with this con-
troller are shown in the form of a phase portrait plot in
Fig. 1. Closed-loop trajectories starting from different initial
conditions in the set X, converge to the origin, illustrating
asymptotic convergence in the certified region. The velocity
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Fig. 2. Simulation results of the closed-loop system (33) with K =
[-13.4283 — 13.5242].

field indicates that the largest set X, certified is contained
within an even larger asymptotically stable region. This is
likely due to the local norm bounds holding true for this
larger region. In summary, this example demonstrates that the
proposed method is able to certify local asymptotic stability of
the nonlinear system with state feedback, using only sampling
and no explicit knowledge of the system’s nonlinearities.

Example-2: Consider the inverted pendulum example
in [13, Sec. V-B] in continuous time with the same unstable
equilibrium at (xg, ug) = (0, 0), which corresponds to the pen-
dulum in upright position. The governing system is expressed
in the closed-loop form as

. 01

0x = (|:g —u } (33)
where m =1 =1, g = 9.8, and u = 0.01 (as in [13]). In
this example, By = 1,, C; = [13, 0] and D; = 0. Since the
nonlinearity is independent of du, we do not necessarily need
to constrain the control input. However, performing the iter-
ations in Algorithm 1 to reduce o (KW) in turn reduces the
control effort required, and we let these iterations continue for
nmax = 20. In this setup, the maximum certified radius is o =
«/5, along with the controller K = [—13.4283 —13.5242].
This controller is therefore able to drive the pendulum to its
upright position from an initial displacement of approximately
81 degrees. The simulation results of the system (33) with this
controller are depicted in Fig. 2 where, similar to Example-1,
the vector field indicates that the closed-loop system can be
driven to the equilibrium from a much larger region than the
certified region X.. Indeed, there appears to be a stable mani-
fold with the vector field converging to it (see Fig. 2). Also in
Fig. 2, the red square denotes the local region certified in [13].
In comparison, the proposed controller is able to certify a
much larger region. This improvement was achieved, in part,
by utilizing the knowledge of the nominal LTI system whereas,
the controller in [13] is purely data-driven. This example
thus demonstrates the efficacy of the proposed method over a
purely data-driven framework, given the nominal LTI system
is known.

0

} TR [g(sin(s)q) — 8x1)

V. CONCLUSION AND FUTURE WORK

We presented an iterative method of local stabilization for
nonlinear systems using sampled I/O data. Our approach uses
I/O data to derive local norm bounds and synthesizes a robust
state-feedback controller that is guaranteed to stabilize the
system within the sampling region for the set of nonlinear-
ities satisfying the norm bounds. The iterative steps require
solving SDPs which can be done efficiently using freely avail-
able solvers. One of the numerical examples highlighted the
reduced conservatism in our proposed synthesis method com-
pared to a purely data-driven approach. Our future efforts will
involve introducing parametric uncertainties and exogenous
signals into the proposed framework. Also, we will investigate
other ways to characterize I/O behavior of the nonlinearities
(e.g., weighted 2-norm bounds) and extend our formulation to
the output-feedback case.
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