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Abstract—This letter presents a framework for synthe-
sizing a robust full-state feedback controller for systems
with unknown nonlinearities. Our approach characterizes
input-output behavior of the nonlinearities in terms of local
norm bounds using available sampled data corresponding
to a known region about an equilibrium point. A challenge
in this approach is that if the nonlinearities have explicit
dependence on the control inputs, an a priori selection
of the control input sampling region is required to deter-
mine the local norm bounds. This leads to a “chicken and
egg” problem, where the local norm bounds are required
for controller synthesis, but the region of control inputs
needed to be characterized cannot be known prior to syn-
thesis of the controller. To tackle this issue, we constrain
the closed-loop control inputs within the sampling region
while synthesizing the controller. As the resulting synthe-
sis problem is non-convex, three semi-definite programs
(SDPs) are obtained through convex relaxations of the main
problem, and an iterative algorithm is constructed using
these SDPs for control synthesis. Two numerical exam-
ples are included to demonstrate the effectiveness of the
proposed algorithm.

Index Terms—Stability of nonlinear systems, robust con-
trol, LMIs, numerical algorithms.

I. INTRODUCTION

A
LARGE portion of the existing literature on nonlinear

control comprises model-based approaches (e.g., back-

stepping, feedback linearization [1]) that depend on the avail-

ability of a sufficiently accurate analytical model of the system
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or plant to be controlled. There is an inherent assumption that

such an analytic model can be obtained from the fundamental

laws governing the system. However, there are many instances

where a reliable and/or accurate analytical model of the system

cannot be obtained in practice. Robust control theory can also

be used to design a stabilizing controller for a nonlinear system

under the assumption that at least a nominal realization of the

system, either linear time-invariant (LTI) or linear time-varying

(LTV), can be obtained (see, e.g., [2], [3], [4, Ch. 9]). In this

setting, the system is described in linear fractional transfor-

mation (LFT) form, where the nominal system is connected

in feedback with a ‘perturbation’ that captures all aspects of

the system that do not fit within an LTI or LTV framework

(e.g., nonlinearity, uncertainty, time delays). The control syn-

thesis is then based on the input-output (I/O) properties of

the perturbation, which are assumed to hold for some known

structure and/or set of perturbations (e.g., integral quadratic

constraints [5], structured singular value [6]). For a complex

system, however, it is not trivial to quantify these I/O prop-

erties and ascertain if the accompanying assumptions hold,

especially when the analytical form of the perturbation is not

explicitly known.

Data-driven techniques are now becoming increasingly pop-

ular to overcome these issues [7]. For example, strategies are

being proposed for determining I/O properties from sampled

data (like dissipation inequalities [8] and passivity [9]). Also,

data-driven approaches for robust control, with a focus on per-

turbations representing parametric uncertainties and unknown

nonlinearity driven by states and/or parameters, are gaining

popularity [10], [11], [12]. However, the class of perturbations

for which the unknown nonlinearity is a function of both the

states and control inputs is relatively less studied. Existing

data-driven methods for this class of perturbations are either

guaranteed to work in a small neighborhood of the equilib-

rium [13] or require extensive tuning of the associated control

parameters to satisfy the underlying assumptions [14]. In light

of these challenges associated with purely data-driven control,

we have adopted an approach where I/O properties of the per-

turbation are established through data and subsequently used

for control synthesis.

We consider a general nonlinear system and partition it into

an LFT form, where the nominal system captures the system’s

LTI dynamics about an equilibrium and the perturbation
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comprises higher-order nonlinearities, which are functions of

both the states and control inputs and are not necessarily

known analytically. Assuming I/O samples of the perturba-

tion are available, local norm bounds are derived. A robust

state-feedback controller is synthesized that asymptotically

stabilizes the nonlinear system locally within the sampled

region for all perturbations satisfying the norm bounds. Since

the norm bounds, which depend on control inputs, are used

in the synthesis, the synthesized controller must ensure that

the control inputs remain within the sampling set. Moreover,

the main synthesis problem involves non-convex constraints.

We relax the main problem into three semi-definite programs

(SDPs) that are solved iteratively. To summarize, the contribu-

tion of this letter is an iterative control synthesis method that

results in local asymptotic stabilization of a nonlinear system,

where the system’s nonlinearities are analytically unknown,

but available through sampling, and depend explicitly on

control inputs.

Notation: The symbol Nn is a shorthand for the set

{1, 2, . . . , n}, and ‖·‖ denotes the 2-norm for vectors and spec-

tral norm for matrices. An n-dimensional vector of zeros with

the i-th entry equal to one is denoted by 1ni . We use A > 0

to denote a symmetric, positive definite matrix A. The max-

imum singular value of M is denoted by σ̄ (M). For a given

E > 0, an ellipsoid centered at the origin is denoted by

En(E) = {x ∈ R
n|

∥

∥E−1x
∥

∥ ≤ 1}. Finally, Bn denotes the closed

unit-norm ball in R
n.

II. PROBLEM FORMULATION

Consider a nonlinear dynamic system of the form

ẋ = f(x, u), (1)

where x ∈ R
nx and u ∈ R

nu are the state and control input

vectors, respectively, and f : Rnx × R
nu → R

nx is a nonlinear

function subject to the following assumption.

Assumption 1: f is not precisely known. However, there

exists at least one equilibrium (x0, u0) such that f(x0, u0) = 0,

and A = ∂f
∂x

|(x0,u0), B1 = ∂f
∂u

|(x0,u0) are known.

All the developments in this letter are based on the above

assumption. If multiple equilibria are known, we choose the

one that is relevant for the problem at hand. Next, by setting

x = x0 + δx, u = u0 + δu, we can rewrite (1) as

δẋ = Aδx + B1δu + !(δx, δu), (2)

where A, B1 are as defined in Assumption 1, and ! : Rnx ×
R

nu → R
nx is a function that captures the higher-order terms.

Note that !, whose analytical form is not available, is a func-

tion of both δx, δu. Also, we assume that ! is memoryless

and static. Thus, system (2) can be expressed in an LFT form

having the nominal LTI dynamics δẋ = Aδx + B1δu and the

perturbation !.

Although ! is not known analytically, we assume that a

finite number of input-output samples of ! are available from

either experiments or high-fidelity numerical simulations. We

also assume that the sampling is carried out in a known region

around the equilibrium, such as over a N-point grid where

N is large. We refer to this region as the sampling region

S = X × U, where X ⊂ R
nx and U ⊂ R

nu are known,

compact sets that contain the respective origins in the inte-

riors. Therefore, we have access to N input-output samples

{(δx(k), δu(k)),!(δx(k), δu(k))}k∈NN
, where (δx(k), δu(k)) ∈ S

for all k ∈ NN . Upon investigating these samples, we can

deduce the following:

• If the vector !(δx(k), δu(k)) corresponding to δx(k) )=
0 and δu(k) )= 0 contains elements that are identi-

cally 0, then the original system (1) has states that

are governed by purely LTI dynamics. This, in con-

junction with the nonzero entries (say, nw of those),

can be used to find a realization of !(δx(k), δu(k)) of

the form !(δx(k), δu(k)) =
[

$1 · · · 0 $nw · · ·
]T

, where

$i : R
nx × R

nu → R, i ∈ Nnw are the nonlinearties

corresponding to the nonzero entries. Thus, the above

can be reformulated as !(δx(k), δu(k)) = B2w(k) where

w(k) =

[

w
(k)
1 w

(k)
2 · · · w

(k)
nw

]T
∈ R

nw contains outputs of

all the nonlinearities and B2 ∈ R
nx×nw properly distributes

the elements of w(k).

• We can also identify the individual states and control

inputs that drive each nonlinear function $i. Based on

this, the sampled input to $i takes the form v
(k)
i =

[δx
(k)
1 · · · 0 · · · δu

(k)
1 · · · 0 · · · ]T ∈ R

nx+nu which

is equivalent to v
(k)
i = Ciδx(k) + Diδu(k) with Ci ∈

R
(nx+nu)×nx , Di ∈ R

(nx+nu)×nu known. Therefore, for

each k ∈ NN , we have w
(k)
i = $i(v

(k)
i ), i ∈ Nnw .

Although expressed in this form, it is understood that

each $i maps R
nx × R

nu to R.

• The samples can be used to prescribe empirical norm

bounds on the inputs-outputs of each $i. Specifically,

we intend to find γi > 0 for each i ∈ Nnw such that

(w
(k)
i )2 ≤ γ 2

i

∥

∥

∥
v
(k)
i

∥

∥

∥

2
holds for all k ∈ NN . To this end,

for each pair (i, k) ∈ Nnw × NN , we define γ
(k)
i =

((w
(k)
i )2/

∥

∥

∥
v
(k)
i

∥

∥

∥

2
)1/2 and stack all such bounds in a matrix

& =
[

&1 &2 · · · &nw

]

, where &i =

[

γ
(1)
i γ

(2)
i · · · γ

(N)
i

]T
.

The empirical bounds are then specified as the maxi-

mum over each column, i.e., γi = max &i. If we seek

the bounds over a region D ⊆ S , the same procedure can

be repeated with the sampled data corresponding to D.

Using the above information, system (2) can be rewritten as

δẋ = Aδx + B1δu + B2w,

wi = $i(vi), i ∈ Nnw , (3)

vi = (Ciδx + Diδu), i ∈ Nnw ,

with the following standing assumption for a given D ⊆ S .

Assumption 2: Let γi, i ∈ Nnw be the empirical bounds

corresponding to D. Each input-output tuple (vi, wi) satisfies

the bound γi in D, i.e., w2
i ≤ γ 2

i ‖vi‖2, for all (δx, δu) ∈ D

and for all i ∈ Nnw . Also, for each i ∈ Nnw , let !Di
be the set

of functions $i : D → R for which the bound γi holds.

The above assumption is reasonable since our knowledge

is restricted to the extent provided by the sampled data and

analytical forms of $is are unknown. Now, we are interested

in designing a state-feedback control law δu = Kδx for the

open-loop system (3), under Assumption 2 with D = Xc ×Uc

for some Xc ⊆ X, Uc ⊆ U containing the respective origins

in the interiors. The closed-loop system thus becomes

δẋ = (A + B1K)δx + B2w,
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wi = $i(vi), i ∈ Nnw ,

vi = (Ci + DiK)δx, i ∈ Nnw . (4)

The goal is to synthesize K to certify the closed-loop

system (4) asymptotically stable in the largest local region

Xc ⊆ X, for a choice of Uc ⊆ U and the corresponding bounds

γi and set of functions !Di
, i ∈ Nnw . However, as the synthe-

sis uses γi, we need to verify whether the closed-loop control

trajectories satisfy δu = Kδx ∈ Uc for K to be consistent with

the data. This requires the use of an iterative approach, which

is described in detail in the synthesis presented in the next

section. Before discussing the control synthesis, we outline a

few useful matrix inequality results.

Lemma 1 (Young’s Relation [15]): Consider X ∈ R
m×n and

Y ∈ R
m×n. For any S > 0, it holds that

XTY + YTX ≤ XTS−1X + YTSY. (5)

A special case of Lemma 1 that will prove useful in the

control synthesis presented in the next section considers S = I,

X = H ∈ R
nx×nx and Y = H0 ∈ R

nx×nx , which leads to

HTH ≥ HTH0 + HT
0 H − HT

0 H0. (6)

III. CONTROL SYNTHESIS

This section describes the synthesis of a static state-

feedback controller K, which requires breaking the main

synthesis problem into different sub-problems and iterating

over these sub-problems to obtain a controller that is certi-

fied to render the closed-loop system (4) asymptotically stable

within Xc. We will start by specifying structures of the sets

Xc and Uc that will be used in the remainder of this letter. The

local region Xc is taken to be a family of ellipsoids param-

eterized by W > 0, i.e., Xc = Enx(W), where W is chosen

appropriately such that Xc ⊆ X. Similarly, we take Uc = rBnu ,

where r > 0 is the parameter related to the control input mag-

nitude and is chosen such that Uc ⊆ U. With these sets defined,

the main synthesis problem is summarized in the next result.

Theorem 1: Let W > 0 and r > 0 be chosen such that

Xc = Enx(W) ⊆ X and Uc = rBnu ⊆ U, respectively. Suppose

Assumption 2 holds with D = Xc × Uc. Then, the closed-

loop system (4) is locally asymptotically stable in Xc for all

$i ∈ !Di
, i ∈ Nnw , if there exist P > 0, K ∈ R

nu×nx , τ > 0,

and λi > 0, i ∈ Nnw , such that




P(A + B1K) + (A + B1K)TP PB2 "

BT
2 P # 0

"
T 0 $



 < 0, (7)

[

τ 2I K

KT W−1W−1

]

≥ 0, (8)

τ ≤ r, (9)

where # = −diag(λ1, . . . , λnw), and

$ = −diag(
λ1

γ 2
1

I, . . . ,
λnw

γ 2
nw

I), " =
[

λ1%1, . . . , λn%nw

]

, (10)

with %i = CT
i + KTDT

i , i ∈ Nnw .

Proof: We establish the proof in three parts: first, we derive

a condition that ensures asymptotic stability of the closed-loop

system within the local region Xc under the assumption that

δu = Kδx ∈ Uc for all δx ∈ Xc; then, we obtain the equivalent

stability condition (7); finally, we constrain the control signal

such that δu = Kδx ∈ Uc for all δx ∈ Xc, which leads to (8)

and (9).

Part-1: Define the candidate Lyapunov function V =

δxTPδx with P > 0. Taking the time-derivative of V and

using (4) results in

V̇ = δxTPδẋ + δẋTPδx

=

[

δx

w

]T[

P(A + B1K) + (A + B1K)TP PB2

BT
2 P 0

][

δx

w

]

.

The inputs and outputs of each $i can be rewritten

using (4) as

[

vi

wi

]

=

[

(Ci + DiK) 0

0 1T
nwi

][

δx

w

]

. (11)

Now, suppose δu = Kδx ∈ Uc holds for all δx ∈ Xc. Then,

under Assumption 2 with D = Xc×Uc, we have w2
i ≤ γ 2

i ‖vi‖2

for each $i ∈ !Di
, i ∈ Nnw , and for all δx ∈ Xc, which is

equivalently given by

[

vi

wi

]T[

γ 2
i I 0

0 − 1

][

vi

wi

]

≥ 0. (12)

This, along with (11), leads to a quadratic constraint (QC) in

δx and w for each i ∈ Nnw , expressed as

[

δx

w

]T
[

γ 2
i %i%

T
i 0

0 − 1nwi
1T

nwi

]

[

δx

w

]

≥ 0, (13)

where %i = CT
i + KTDT

i . In the current setting, all QCs of

the form (13) for $i ∈ !Di
, i ∈ Nnw hold for all δx ∈ Xc.

This would imply, through the S-procedure, that V̇ < 0 for all

δx ∈ Xc if there exists λi ≥ 0, i ∈ Nnw such that

[

P(A + B1K) + (A + B1K)TP PB2

BT
2 P 0

]

+

nw
∑

i=1

λi

[

γ 2
i %i%

T
i 0

0 − 1nwi
1T

nwi

]

< 0. (14)

This concludes the first part of the proof where we have

derived a condition for local asymptotic stability.

Part-2: Making the restriction that λi > 0 for all i ∈ Nnw ,

allows for (14) to be rewritten as
[

P(A + B1K) + (A + B1K)TP PB2

BT
2 P #

]

−
nw
∑

i=1

[

−λi%i
γ 2

i

λi
%

T
i λi 0

0 0

]

< 0, (15)

where # = −
∑nw

i=1 λi1nwi
1T

nwi
= −diag(λ1, . . . , λnw). Each

matrix in the sum above can be expressed as
[

−λi%i
γ 2

i

λi
%

T
i λi 0

0 0

]

=

[

λi%i

0

]

(

−
γ 2

i

λi

I

)

[

λi%
T
i 0

]

,

which leads to

nw
∑

i=1

[

−λi%i
γ 2

i

λi
%

T
i λi 0

0 0

]

=

[

"

0

]

($)−1

[

"

0

]T

, (16)
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where $ and " are as shown in (10). Thus, (15) becomes
[

P(A + B1K) + (A + B1K)TP PB2

BT
2 P #

]

−
[

"

0

]

($)−1

[

"

0

]T

< 0. (17)

Applying the Schur complement to (17) leads to (7), which

completes the proof for the equivalent stability condition.

Part-3: To obtain a controller K that satisfies the assumption

used in Part-1 (i.e., δu = Kδx ∈ Uc holds for all δx ∈ Xc) and

is, therefore, consistent with the values of γi used, we need to

ensure ‖δu‖ = ‖Kδx‖ ≤ r. A bound on ‖δu‖ is found using

the definition of σ̄ (·) and knowing that
∥

∥W−1δx
∥

∥ ≤ 1, for all

δx ∈ Xc, which yields

‖δu‖ = ‖Kδx‖ =

∥

∥

∥
KWW−1δx

∥

∥

∥

≤ σ̄ (KW)

∥

∥

∥
W−1δx

∥

∥

∥
≤ σ̄ (KW). (18)

Thus, ensuring σ̄ (KW) ≤ r guarantees that ‖δu‖ ≤ r. We

first find a τ > 0 such that σ̄ (KW) ≤ τ . This condition can

be expressed equivalently as τ 2I ≥ (KWWKT), applying the

Schur complement to which leads to (8). Finally, specifying

τ ≤ r means ‖δu‖ ≤ σ̄ (KW) ≤ τ ≤ r. This completes the

last part of the proof.

Remark 1: Note that although we have considered the 2-

norm bound in this letter, Theorem 1 is suitable for other

quadratic characterizations of I/O behavior (of the form (12))

of the nonlinearities (e.g., weighted 2-norm bounds). This

would involve suitably modifying the stability condition (7).

Remark 2: Theorem 1 holds for any Xc = Enx(W) ⊆ X and

Uc = rBnu ⊆ U, with the values of γi computed from the sam-

pled data corresponding to the chosen region D = Xc × Uc.

Hence, one could ideally select W > 0 such that Xc is the

largest ellipsoid contained in X, choose a r > 0, and find

a feasible point satisfying all the constraints in Theorem 1

to obtain a controller which would asymptotically stabilize

the closed-loop system (4) for all initial conditions within

this ellipsoid. However, it is not trivial to find such a feasi-

ble point for the constraints involved. Specifically, the matrix

inequality (7) is non-convex, as it is bilinear in the variables

P, K. Also, " is quadratic in the variables λi, K. The bilin-

earity issue is well-known and can be addressed by applying

a congruence transformation and a change of variables (see,

e.g., [15, p. 119]). However, the matrix inequality in (8) then

becomes non-convex in the transformed variables. We address

these issues by reformulating and/or relaxing these constraints

into convex ones. The convex constraints are then used to

set up three different semi-definite programs (SDPs) for the

controller synthesis.

We start by deriving an alternative form of (7) using a

congruence transformation with diag(P−1, I, I) as






AR + B1F + RAT + FTBT
1 B2 "̃

BT
2 # 0

"̃
T

0 $






< 0, (19)

where R = P−1, F = KP−1 = KR, and "̃ =
[

λ1%̃1, . . . , λnw%̃nw

]

with %̃i = RCT
i + FTDT

i . Note that (19)

is not an LMI in the variables R, F, λi. However, if the values

of λis are known or given, (19) is an LMI in R, F. Another

approach for deriving an LMI form of (19) is by setting

λi = λ and applying a congruence transformation on (19)

with diag(
√

λI, (1/
√

λ)I, (1/
√

λ)I). These steps lead to





AR + B1F + RAT + FTBT
1 B2 "̄

BT
2 − I 0

"̄
T

0 $̄



 < 0, (20)

where the λ is absorbed into the definitions of R and F

(i.e., R = λR, F = KλR) for consistent notation, $̄ =

diag(− 1

γ 2
1

I, . . . ,− 1
γ 2

nw

I), and "̄ =
[

%̃1, . . . , %̃nw

]

.

Because of the change of variables introduced above, we

need to suitably modify the constraint σ̄ (KW) ≤ τ . To this

end, we state our first convex reformulation of (8) next.

Lemma 2: Let W > 0 be given and K = FR−1. Then,

σ̄ (KW) ≤
√

β if there exists β > 0 such that
[

βI F

FT (W−1R)T + (W−1R) − I

]

≥ 0. (21)

Proof: Performing a congruence transformation with

diag(I, R) on (8) results in
[

τ 2I F

FT (W−1R)T(W−1R)

]

≥ 0. (22)

Using Lemma 1 with S = X = I and Y = W−1R, we relax

the bilinear term (W−1R)T(W−1R) as

(W−1R)T(W−1R) ≥ (W−1R)T + (W−1R) − I. (23)

Therefore, (22) is implied by (21), which ensures that

σ̄ (KW) ≤ τ . Defining β = τ 2 completes the proof.

Alternatively, we can find a different relaxation of the bilin-

ear term (W−1R)T(W−1R) for a given R0. This is analogous

to linearizing the bilinear term about R0, which is similar to

the convex overbounding approach in [16].

Lemma 3: Let W > 0, R0 > 0 be given and K = FR−1.

Then, σ̄ (KW) ≤
√

β if there exists β > 0 such that
[

βI F

FT T1

]

≥ 0, (24)

where T1 = (W−1R)T(W−1R0) + (W−1R0)
T(W−1R) −

(W−1R0)
T(W−1R0).

Proof: We have already established that σ̄ (KW) ≤ τ ⇐⇒
(22). Then, using (6) with H = W−1R and H0 = W−1R0

leads to

(W−1R)T(W−1R) ≥ (W−1R)T(W−1R0)

+ (W−1R0)
T(W−1R) − (W−1R0)

T(W−1R0). (25)

Therefore, (22) is implied by (24), which ensures that

σ̄ (KW) ≤ τ . Denoting β = τ 2 completes the proof.

Finally, to express (24) in terms of the variables K and P,

instead of F and R, we perform a congruence transformation

with diag(I, P) on (24) to obtain
[

βI K

KT T2

]

≥ 0, (26)

where T2 = W−1W−1R0P + P(W−1R0)
TW−1 −

P(W−1R0)
T(W−1R0)P. The Schur complement is then
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Algorithm 1: Controller Synthesis Algorithm

1 Initialization: Choose W0, r, nmax.
2 for j = 1 : nr do
3 Set r = rj where rj is the j-th entry of r and W = W0. Set

Xc = Enx (W) and Uc = rBnu .
4 repeat
5 Get the sampled data points corresponding to Xc × Uc.

Use those to compute γi, i ∈ Nnw .

6 Get β*, R*, F* from (28). Set K = F*(R*)−1,
R0 = R*, ct = 1.

7 while ct ≤ nmax & σ̄ (KW) ≥ r do
8 Get β*, P*, {λ*

i } from (29) using R0, K. Set

R0 = (P*)−1.
9 Get β*, R*, F* from (30) using R0, {λ*

i }.

10 Set K = F*(R*)−1, R0 = R*, ct = ct + 1.
11 end
12 if σ̄ (KW) ≤ r then
13 Update W to get a larger Xc = Enx (W) ⊆ X.
14 else
15 Update W to get a smaller Xc= Enx (W) ⊆ X.
16 end
17 until The largest Xc = Enx (W) is certified;
18 Output: K and W.
19 end

applied to (26) to yield




βI K 0

KT T3 P

0 P R−1
0 WWR−1

0



 ≥ 0, (27)

where T3 = W−1W−1R0P + P(W−1R0)
TW−1. Finally, we

are ready to state the convex optimization problems (namely,

SDPs) that are involved in the iterative controller synthesis.

The SDPs, along with the respective solutions, are given by

(β*, R*, F*) = arg minβ,R,F

{

β | (20), (21), R > 0,β > 0
}

, (28)
(

β*, P*, {λ*
i }

)

= arg minβ,P,{λi}

{

β | (7), (27), P > 0,β > 0,

λi > 0, i ∈ Nnw

}

, (29)
(

β*, R*, F*
)

= arg minβ,R,F

{

β | (19), (24), R > 0,β > 0
}

. (30)

Note that the SDP in (29) requires known values of K and

R0, similar to the SDP in (30) which requires the values of

λi and R0 to be known. Thus, the SDP in (28) can be ini-

tially solved to obtain β*, R*, F* and set K = F*(R*)−1,

R0 = R*. The values of K and R0 can then be utilized in

solving the SDP in (29) to get β*, P*, {λ*
i }. Now, the tuple

(P, K, τ, {λi}) with P = P*, τ =
√

β*, {λi} = {λ*
i } satis-

fies (7), (8). However, (9) might not hold and our approach

involves iterating between (29) and (30) to satisfy σ̄ (KW) ≤ r,

if that is possible without modifying W. The control synthe-

sis starts from a small ellipsoid Xc = Enx(W) for a given

r > 0. Iterations are then carried out to certify the largest

possible ellipsoid Xc = Enx(W) for that r, while simulta-

neously satisfying σ̄ (KW) ≤ r. The overall procedure for

control synthesis is summarized in Algorithm 1. Given the

sampling region X × U, Algorithm 1 should be initialized by

choosing a W = W0 > 0 such that Xc = Enx(W) ⊆ X

is sufficiently small. Also as a part of the initialization,

rm = maxr>0{r | Uc = rBnu ⊆ U} should be determined

to specify an nr-point grid r = (r0, . . . , rm) where r0 > 0

Fig. 1. Simulation results of the closed-loop system (32) with r = 0.5
and K = [−0.7151 − 0.6762].

is chosen to be small. Finally, a maximum iteration number

nmax should be chosen when implementing Algorithm 1. Note

that a variation of the Algorithm 1 can be obtained where

only (28) is utilized (i.e., without the iteration between (29)

and (30)). However, in our experience, this generally leads to

more conservative results.

IV. NUMERICAL EXAMPLES

Two numerical examples are included in this section, con-

cerning two-dimensional single-input systems. The nonlinear-

ity explicitly depends on control inputs in the first example.

The second example considers a system where the nonlinear-

ity is a function of the states only. We choose W = αI, α > 0,

meaning Xc = E2(W) is a circle of radius α in these exam-

ples. Also, the SDPs in (28)-(30) are solved in MATLAB using

YALMIP [17] and MOSEK [18].

Example-1: Consider a nonlinear system of the form

ẋ =

[

ẋ1

ẋ2

]

=

[

−0.1x1 + x2 + u − x1x2 + u2

−0.1x2 + u + x2
1 − u2

]

, (31)

with the corresponding equilibrium (x0, u0) = (0, 0). The

nonlinear system in (31) is cast in the form of (2) with

A =

[

−0.1 1

0 − 0.1

]

, B1 =

[

1

1

]

,

!(δx, δu) =

[

−δx1δx2 + δu2

δx2
1 − δu2

]

=

[

$1(δx, δu)

$2(δx, δu)

]

.

The system is then expressed in closed-loop form as

δẋ = (A + B1K)δx + w, w = [$1 $2]T,

v1 =
([

131
132

]

+ 133
K

)

δx, v2 =
([

131
0
]

+ 133
K

)

δx. (32)

Now, Algorithm 1 is implemented with 11 values of r between

0.01 and 0.5. The largest radius certified is α = 0.508, which

corresponds to r = 0.5 and K =
[

−0.7151 −0.6762
]

. The

simulation results of the closed-loop system with this con-

troller are shown in the form of a phase portrait plot in

Fig. 1. Closed-loop trajectories starting from different initial

conditions in the set Xc converge to the origin, illustrating

asymptotic convergence in the certified region. The velocity
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Fig. 2. Simulation results of the closed-loop system (33) with K =

[−13.4283 − 13.5242].

field indicates that the largest set Xc certified is contained

within an even larger asymptotically stable region. This is

likely due to the local norm bounds holding true for this

larger region. In summary, this example demonstrates that the

proposed method is able to certify local asymptotic stability of

the nonlinear system with state feedback, using only sampling

and no explicit knowledge of the system’s nonlinearities.

Example-2: Consider the inverted pendulum example

in [13, Sec. V-B] in continuous time with the same unstable

equilibrium at (x0, u0) = (0, 0), which corresponds to the pen-

dulum in upright position. The governing system is expressed

in the closed-loop form as

δẋ = (

[

0 1

g −µ

]

+ 122
K)δx +

[

0

g(sin(δx1) − δx1)

]

, (33)

where m = l = 1, g = 9.8, and µ = 0.01 (as in [13]). In

this example, B2 = 122
, C1 =

[

131
0
]

and D1 = 0. Since the

nonlinearity is independent of δu, we do not necessarily need

to constrain the control input. However, performing the iter-

ations in Algorithm 1 to reduce σ̄ (KW) in turn reduces the

control effort required, and we let these iterations continue for

nmax = 20. In this setup, the maximum certified radius is α =√
2, along with the controller K =

[

−13.4283 −13.5242
]

.

This controller is therefore able to drive the pendulum to its

upright position from an initial displacement of approximately

81 degrees. The simulation results of the system (33) with this

controller are depicted in Fig. 2 where, similar to Example-1,

the vector field indicates that the closed-loop system can be

driven to the equilibrium from a much larger region than the

certified region Xc. Indeed, there appears to be a stable mani-

fold with the vector field converging to it (see Fig. 2). Also in

Fig. 2, the red square denotes the local region certified in [13].

In comparison, the proposed controller is able to certify a

much larger region. This improvement was achieved, in part,

by utilizing the knowledge of the nominal LTI system whereas,

the controller in [13] is purely data-driven. This example

thus demonstrates the efficacy of the proposed method over a

purely data-driven framework, given the nominal LTI system

is known.

V. CONCLUSION AND FUTURE WORK

We presented an iterative method of local stabilization for

nonlinear systems using sampled I/O data. Our approach uses

I/O data to derive local norm bounds and synthesizes a robust

state-feedback controller that is guaranteed to stabilize the

system within the sampling region for the set of nonlinear-

ities satisfying the norm bounds. The iterative steps require

solving SDPs which can be done efficiently using freely avail-

able solvers. One of the numerical examples highlighted the

reduced conservatism in our proposed synthesis method com-

pared to a purely data-driven approach. Our future efforts will

involve introducing parametric uncertainties and exogenous

signals into the proposed framework. Also, we will investigate

other ways to characterize I/O behavior of the nonlinearities

(e.g., weighted 2-norm bounds) and extend our formulation to

the output-feedback case.
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