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Abstract—In this paper, we study the gain and phase
margins achievable by PID controllers in stabilizing linear
time-invariant (LTI) systems. The problem under consideration
amounts to determining the largest ranges of gain and phase
variations such that there exists a single PID controller capable
of stabilizing all the plants within the variation ranges. We
consider low-order systems, notably the first- and second-order
systems. For each class of these systems, we derive explicit
expressions of the maximal gain and phase margins achievable.
The results demonstrate analytically how a plant’s unstable
poles and nonminimum phase zeros may confine the maximal
gain and phase margins attainable by PID control, which lead
to a number of useful observations. First, for minimum phase
systems, we show that the maximal gain and phase margins
achievable by PID controllers coincide with those by general
LTI controllers. Second, for nonminimum phase systems, we
show that LTI controllers perform no better than twice than
PID controllers, in the sense that the maximal gain and phase
margins achievable by general LTI controllers are within a
factor of two of those by PID controllers, whereas the former
is measured on a logarithmic scale and latter on a linear scale.
Finally, we show that PID and PD controllers achieve the same
maximal margins, indicating that integral control is immaterial
in improving a system’s robustness in feedback stabilization.
These results thus provide useful insights into PID control, and
from a system robustness perspective, offer an interpretation
on the effectiveness of PID controllers.

I. INTRODUCTION

The primary goal of feedback control system design is
to maintain stability and performance robustness in the
presence of uncertainties and disturbances. Various criteria
can be used to measure robustness, of which the gain and
phase margin are two conspicuous measures of robustness
employed in the classical control design theory and practice.
These measures define the relative stability degree, or the
distance from instability of a system when subject to gain
or phase perturbations in the system’s frequency response.
In spite of a variety of available robustness measures thanks
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to the developments of robust optimal control theory [1],
including, e.g., gap metric and structured singular value, for
their simplicity and effectiveness the gain and phase margins
continue to be the essential attributes in the contemporary
robustness analysis (see, e.g., [2], [3], [4], [5], [6], [7] and
the references therein). Accordingly, the maximal gain and
phase margins provide fundamental limits of robust feedback
stabilization, serving to determine the largest ranges of
gain and phase variations so that a system can be robustly
stabilized. In turn, they also serve as indicators on how
difficult a feedback system is to control.

A vast volume of work is in existence on gain margin and
phase margin problems, and various time- and frequency-
domain analysis techniques have been explored for linear
time-invariant (LTT) systems (see, e.g., [8], [9], [10], [11]
and the references therein). Of these, it has been long
well-known that linear quadratic (LQ) state-feedback regu-
lators are capable of achieving satisfactory stability margins
for continuous-time feedback systems. In particular, when
reaching optimality in the limit, optimal LQ controllers can
produce an infinite gain margin and a £60° phase margin
[12], a property later found to hold in general for multi-
input, multi-output systems [2]. It is also known, however,
that when extended to LQG optimal control, these desirable
margins may vanish [13]. Furthermore, as shown in [14],
there exists no counterpart of this property to discrete-time
systems, but generally a limit to gain and phase margins
achievable by LQ control.

Our focus in this paper dwells on the gain and phase
margins attainable by PID control. Earlier results on the
gain and phase margin enhancement by PID controllers
include, e.g., [15], [16], where simple formulas and schemes
were devised to tune PID controller parameters such that
the required gain and phase margins can be fulfilled. As
a step further beyond, in the present paper we seek to
quantify analytically the maximal gain and phase margins
achievable by PID controllers. The problem amounts to
determining the variation ranges of the system’s gain and
phase so that a single PID controller can robustly stabilize
the entire family of the plants for all possible variations
within the ranges, thus furnishing fundamental limits of
robustness as measured by the gain and phase margins. For
this purpose, we consider low-order systems. Specifically,
we consider first- and second-order unstable plants, with
one or two unstable poles and possibly nonminimum phase
zeros. It is useful to note that the gain and phase margin
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maximization problems are meaningful only for unstable
plants; sheer by their nature, the problems become moot
for stable plants: the maximal gain margin is infinitely large
and the maximal phase margin is equal to 180°. It is also
worth pointing out that with its limited degree of freedom,
PID control is effective essentially for first- and second-
order plants [17], [18]; in fact, in industrial control systems,
where PID control is most prevalent, one typically employs
first- and second-order plant models. This simplicity in
the plant model, albeit somewhat restrictive, renders the
problems analytically tractable. On the other hand, high-
order plants will generally pose a challenging parametric,
nonlinear optimization problem, to which such analytical
results become unavailable.

Our contribution can be summarized as follows. In Section
II, we introduce the gain and phase margin maximization
problems achievable by PID control, including the general
PID controller structure and the subclasses of proportional,
PI, and PD controllers. The gain and phase margin maxi-
mization problems will then be formulated and tackled as
parametric nonlinear programming problems, for first-order
systems in Section III and second-order systems in Section
IV. Section V shows the maximal gain and phase margins
achieved by PI controllers and provides a special case for
second-order systems. In each case, we derive explicit ex-
pressions of the maximal achievable gain and phase margins,
which demonstrate explicitly how plant unstable poles and
nonminimum phase zeros may limit the margins achievable.
In an intuitively plausible finding, our results throughout
show that the integral control tends to reduce the gain and
phase margins. As such, PID and PD controllers achieve the
same maximal margins. The paper concludes in Section VI.

Due to space constraint, throughout this paper we omit
all the technical proofs.

II. PRELIMINARIES AND PROBLEM FORMULATION

We consider the feedback system depicted in Fig.1, in
which P(s) represents the plant model, and K (s) a finite-
dimensional stabilizing LTI controller. Suppose that P(s) is
stabilized by K (s). Then if P(s) is perturbed by uncertain-

P(s)

v

K(s)

A

Fig. 1: Standard feedback control structure

ties in the form of gain or phase within a small range, by
continuity, the controller K (s) can still stabilize the plant
despite the variations. But how large may the gain or phase

variation be tolerated, before the closed-loop system loses
its stability?
The gain/phase margin maximization problems address

the question above. Consider the family of plants
Py ={aP(s) I<a<up }. (1)

For a given plant model P(s), its maximal gain margin is
defined as

kar = sup{u : There exists some K (s) stabilizing
aP(s), Vae[l,u)}.

Similarly, consider the family of plants
Qo ={e'P(s)

The maximal phase margin is defined by

bel-v ). )

Orr = sup{v : There exists some K (s) stabilizing
e P (s), VO € [-v,v]}.

Stated in words, the maximal gain margin k;; and the max-
imal phase margin ), determine, respectively, the maximal
ranges of gain and phase variations within which the families
of &, and Qy can be robustly stabilized by a LTI controller.
Remark 2.1: More generally, we may consider p < a < [i.
Suppose that 110 P (s) can be stabilized for some 1 € [p, fi).
We may define analogously B

kar = sup{fi : There exists some K (s) stabilizing
ab (8)7 Va € [Movﬂ)}v

and

ky = inf{p : There exists some K (s) stabilizing
aP (s), Vo€ (u,pol}-

A more general notion of the maximal gain margin can then
be defined as ks /k ;.
Define the system’s complementary sensitivity function by

T(s)=P(s)K (s)[1+P(s) K (s)] "

The following result, quoted from [19], [20], provides ana-
lytical expressions of kj; and 6j;, and shows that they can
be determined by solving a standard H., optimal control
problem.

Proposition 2.1:

@i). If P is stable or minimum-phase, then the maximal
gain margin kj; = co. Otherwise,

opt + 1)
kM:<W+ ) ©)
Vopt_l

@ii). If P is stable or minimum-phase, then the maximal
phase margin 65, = m. Otherwise,

1
9M = QSin_l 5 (4)
Yopt

where

Yopt = inf {||T'(s)||, : K (s) stabilizes P (s)},
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with ||T(s)||c being the Ho, norm of the complementary
sensitivity function 7T'(s).

Of particular interest in this paper are maximal robustness
margins achievable by PID controllers; that is, K (s) =
Kp[D (S), where

ks
Kprp (s) = ky + St kqs. &)

Correspondingly, the maximal gain and phase margins
achievable by PID controllers are defined by

EPIP = sup{p : There exists Kprp (s) stabilizing
aP(s) Ya e [1,u)},
6PIP = sup{v : There exists Kpsp (s) stabilizing

e 0P (s) VO € [~v,v]}.

Likewise, it is of interest to consider subclasses of PID
controllers, such as proportional, PI, and PD controllers,
given by

Kp (S) = kp, KPI(S) = kip + %, Kpp (S) = kp + kgs,
(6)
respectively. We shall denote the corresponding maximal
gain and phase margins with the corresponding superscripts
P, PI, and PD. In the sequel, at times it will also be more
convenient to quantify the gain margins on the logarithmic
scale, i.e., by log kps and log kTP, respectively.
Throughout this paper we consider first- and second-
order plants. This consideration stems partly from the fact
that industrial processes are often modeled by low-order,
and in fact, mostly first-order systems, and partly due to
the limitation of PID controllers in controlling high-order
dynamics. Indeed, in the latter vein, it is worth noting that
PID control is known to be essentially limited to first- and
second-order systems [18], [21], and that in general PID
controllers may not be able to stabilize certain third- and
higher-order unstable systems.

III. FIRST-ORDER UNSTABLE SYSTEMS

In this section, we provide explicit expressions of maximal
gain and phase margins of first-order systems achievable by
PID controllers. The results show explicitly the dependence
of these measures on the system’s unstable pole and non-
minimum phase zero.

A. PI Control

We first consider the first-order unstable plants,

P(s) = 5054-51’

s§—p
Without loss of generality, it is assumed that 3; > 0 and
51 # 0. Note that in the case Sy # 0, derivative control will
result in an improper system. For this reason, in this section,
we shall focus on PI controllers.
Theorem 3.1: Let P(s) be given by (7). Then the following
statements hold:

p > 0. @)

@i). For 8y > 0,

1Bl /B0 p }

b ) 0

kﬁf:kﬂ: X{ p 1811 /Bo AL )
00, 61 >0

_12y/BolBil/p
o =05 =1 B+ (Bil/p)’ o
T, Bl >0
®)
(>ii). For 8y = 0,

o =05 =201,

The explicit expressions given in Theorem 3.1 lead us
to a number of useful observations. First, it is clear that
integral control has no effect in maximizing either the gain
or phase margin. This is consistent with one’s intuition;
integral control has its essential utility in tracking reference
signals, which is seen as a conflict with a system’s stability
robustness and henceforth with increasing the system’s gain
and phase margins. Secondly, we note that for minimum
phase plants (8p > 0 and §; > 0) of relative degree
zero, proportional control suffices to achieve the maximum
possible infinite gain margin and a phase margin of £180°.
For nonminimum phase plants (5p > 0 and 8; < 0), it is
instructive to consider

= T.

Pis)=2"2, p>0, z>0. (10)
§—=p
In this case, it follows from Theorem 3.1 that
kf/ = kﬁ[ = max {Z, p}.
b (an
PI P ~1 2V/z/p
9]\' == 91\/[ = COS
1+ (2/p)
It is interesting to see that
24/ k% 24/ k5T
QPI _ 9P _ —1 _ -1 ) 12
1% M = COS 1+k1€[ Ccos 1—|—k11\7 (12)

A subsequent comparison of (11) with Proposition 2.1 (cf.
Corollary 3.1) shows that for a first-order nonminimum
phase plant, the maximal phase margin achievable by pro-
portional control is half that achievable by general LTI
controllers, and when measured on the logarithmic scale, the
maximal gain margin is also half that by LTI controllers.

We conclude this section with a comparison of the maxi-
mal gain and phase margins herein with those achievable
by the general LTI controllers. The following corollary
states the comparison for both the PI controller Kpj (s).
The results show that for a first-order nonminimum phase
plant, the maximal gain and phase margins achievable by a
proportional controller are half as good as those by general
LTI controllers.

Corollary 3.1: Let P(s) be given by (10). Then

kar = (k)" = (k)"

13
Onr — 2001 — 297 (13)
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Example 3.1: In this example, we give a companion
between the maximal margins attainable by PI controllers
and those by general LTI controllers. In this case we take
p = 2 and let z vary in the interval [0.5,8]. Fig.2 plots
the corresponding gain margins 20log; k%7 and 20log, ks
(both in dB) as a function of z, while Fig.3 shows the
corresponding phase margins 647 and 0,;,. We find from
the figures that when z = p, the gain and phase margins
both vanish.

25

Maximal Gain Margin k37 (dB)

I I I I I I
1 2 3 4 5 6 7 8

Fig. 2: Maximal gain margin kt/ of system (10) with
comparison to ks in [19]

@ ~ ®
=} o o
T =

@
S
T

w
S
T

Maximal Phase Margin 657 (deg)
8 &

5}
T

Fig. 3: Maximal phase margin 6%/ of system (10) with
comparison to 6y, in [19]

IV. SECOND-ORDER UNSTABLE SYSTEMS

This section presents the main results for the second-order
unstable plants, which include minimum phase systems and
nonminimum phase systems. In general, the computation
of the gain and phase margins for second-order plants
poses a more difficult problem. Throughout this section,
our development seeks to recast the gain and phase max-
imization problems as one of nonlinear programming. Since
the derivations are lengthy, we omit the proofs of the
subsequent results. For their essential flavor, we employ the
KKT condition to obtain values of the proportional and

integral gains as the necessary solution to the nonlinear
programming problems under consideration, which show
that unequivocally in all cases, the optimal integral gain is
k; = 0, and the optimal proportional gain k, is a certain
boundary value. The maximal gain and phase margins are
then obtained by solving a univariate optimization problem,
defined in terms of a function of the derivative gain k; alone.

A. Minimum Phase Systems

We begin with minimum phase plants that contain a pair
of unstable poles p;, ps, described by

Bos + p1

Ple)= (s —p1) (s —p2)

, Re (pl) >0, Re (pg) > 0,
(14)
where By > 0, 51 > 0. To ensure that P (s) is a real rational
plant, we assume that p; and p, are either real poles or a
complex conjugate pair.
Theorem 4.1: Let P(s) be given by (14). Then the
following statements hold:

@).
pP _ | none when By =0
M ™ oo, when By #0 (15)
KEID = kDD = oo,
(ii).
oP _ { none, when 8y =0
M — ™ )
5 when 5y # 0 (16)

gPID _ gPD _ { 3, when fy =0
M M m, when By # 0
Remark 4.1: 1t is clear from Theorem 4.1 that for second-
order systems the maximal gain and phase margins achiev-
able by PID control are the same as those by general LTI
controllers, provided that the plant is minimum phase and
has a relative degree no greater than one. On the other hand,
if the plant does have a relative degree greater than one, then
the maximal phase margin is reduced to 7/2, despite that
the maximal gain margin remains unchanged.

B. Nonminimum Phase Systems

Now we extend our results to second-order nonminimum
phase plants. We consider first the plant described by

s —Z

PO = e om)

Re(p1) >0, Re(p2) >0,

(I7)
where likewise, we assume that p; and po are either real or
complex conjugate.

Theorem 4.2: Let P(s) be given by (17). For Kpp (s)
and Kpyp (s) to stabilize P(s), it is necessary that p; +
p2 # (p1p2/z)+ z. Then under this condition, the following
statements hold:

(i). For p1 4+ pa < (p1p2/z) + 2, then

2

z
——————, if p1+p2 > pipe/z,
KPID — | PD 0 z(p1 E}ﬁ)—ﬂpz

if p14+p2 < pip2/=.

z (p14p2)— 2%’
(18)
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Otherwise, for p1 + p2 > (p1p2/2) + 2,
z(p1 +p2)

kPID — kPD — . (19)
M M 22 + p1p2
(ii). Define
2
R k k k
0 (k,) = Ztanflw( ») _ tanflw( ») _ tanflw( p))
i=1 DPi z kp
(20)
where
2,2 27.2
piDs — 2 kp
w(k,) = . 21
() ¢%+#—ﬁ—ﬁ

Then for p; + pa < (p1p2/z) + 2,
Gﬂw = G}QD

max {10 (p1 +p2 = 2) |, 18 (ky) |}, if pr+p2> 2,
max {10 (0%) |, 10 (k) 1} if pytpn < 2,
_ (22)
where k, € (p1 + p2 — 2, p1p2/z) is a positive solution to
the polynomial equation

zk3 =22k} + 2 (p1 + p2) (z—p1—p2 — p1p2/2) + 2p1p2) K
+ 2p3p3k. + (p1p2(p1 + p2) (B3 + P3 — p1p2)+ 2p1pa-

(p1p2 — z(p1 + p2))) kp + PiD3 (22 —pi - p%) = 0.

23)
Otherwise, for p1 + p2 > (p1p2/2) + 2,

057 = 0P =max {0 (o1 +p2 - 2), 0 (k) |, 24

where k, € (pipa/z, p1+p2 —2) is a solution to the
equation (23).

Remark 4.2: Again, similar to the core of first-order plants,
Theorem 4.2 reveals that the integral control has no effect to
improve the gain and phase margins; in fact, from the proof
of Theorem 4.2, one can see that a non-zero integral control
gain k; will make the gain and phase margins smaller. On
the other hand, the theorem also shows that the derivative
control improves the margins. Consider, for example,the case
p1 + p2 < pipe/z in (18). In this case, it follows from
theorem 4.2 and (26) that

kPD _

p1+ P2
M ki

prtp—z

Example 4.1: In this example, we draw a companion
between the maximal margins achievable by PID controllers
and those by general LTI controllers. Towards this end, it
was found in [22] that

We consider the second-order system (17) with two real
poles and a pair of unstable complex conjugate poles,
respectively.

Real unstable poles p1 > 0,ps > 0: In this case we
take p; = 2, po = 6 and let z vary in the interval [0.5,8].
Fig.4 plots the corresponding gain margins 20log; k17" and

20log;okar (both in dB) as a function of z. Likewise, when
z = p1, pe2, the gain margin vanishes.

Complex conjugate unstable poles p1 = o + jv,ps =
o —jv, 0 > 0: We take 0 = 4, v = 1 and let z vary
in the interval [0.5, 8] in a similar manner. Fig.5 shows the
corresponding gain margins 20log,,k%/P and 20log; ks
(both in dB) as a function of z.

In both cases, we observe from the figure that kj; is no
greater than (k}/P )2, and when measured on the logarith-
mic scale, kys is no greater than twice kP, A deeper
investigation reveals that this is true in general, as evidenced
by the following corollary.

Corollary 4.1: Let P(s) be given by (17). Then,

PID PID\?2
kP <ku < (kaf®)" (25)
p=2,p2=6
20 T T
| i kar

> o ®

N
T

Maximal Gain Margin kﬁm (dB)
o -] 3

IS
T

N
T

4: Maximal gain margin kﬂID of system (17) with
comparison to ks in [19]

Fig.

oc=4,v=
30 :
— kP e 3%
m 25k
=\
Q \
= \
SF 201
£ A
] \
=
=1
g
O
E
g
<
&
=1

. : : ;0 .PID
5: Maximal gain margin k;;

comparison to ks in [19]

Fig. of system (17) with

V. PI CONTROL AND SPECIAL CASES

In the preceding section, we have shown that the maximal
phase margin can be determined by solving a polynomial
equation. In this section we consider PI controllers and
other related problems. We show that in these cases, explicit
expressions of the maximal phase margins can be obtained,
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which solutions of polynomial equations are no longer
needed. The results too reinforce the proceeding conclusion
that the integral gain has no effect in improving the gain and
phase margins.

Theorem 5.1: Let P(s) be given by (17). For Kp; (s) to
stabilize P(s), it is necessary that p; + pa < p1p2/z. Then
under this condition, the following statements hold:

).

P1p2

kPI _ kP =2
M z(p1+ p2)

(26)

(ii).
w w w
0}\7 = 01@ =tan "2 — tan" ' =2 — tan~! O,
z b1 P2

27

where

z(p1+ 1+ 3
(p1 +p2) <p1 D2y g/t

wn =
0 {2(p1+p2—2) p1+ P2

(2 = pip2/2) + (b1 — p2)? (1

_ 97 +p1p2/z)
p1+ P2

The optimal PI coefficients are given by k} = 0, and

* p1+ P2
ky = \/z(w8 + p1p2).

VI. CONCLUSION

(28)

In this paper we have studied the gain and phase margins
of LTI systems attainable using PID controllers. The problem
is to seek the largest margins of gain and phase, which
are the intrinsic limits under which a PID controller may
exist to stabilize the family of plants with gain and phase
values varying within the margins. We derived analytical
expressions for the maximal gain and phase margins for
first- and second-order plants. Of these, we found that for
minimum phase systems up to the second order, the maxi-
mal gain and phase margins achievable by PID controllers
coincide with those by general LTI controllers, and that for
nonminimum phase systems, the maximal gain and phase
margins achievable by LTI controllers are at most twice
those by PID controllers; here the gain margin is measured
on the logarithmic scale and the phase margin is measured
on the linear scale. It is worth noting that in all cases,
the maximal gain and phase margins are attained with no
integral control; in other words, the maximal gain and phase
margins achievable by PID controllers coincide with those
by PD controllers. This is consistent with one’s intuition,
since integral control is generally intended for achieving
such performance objective as reference tracking, which by
nature is in conflict with stability robustness as measured
by gain and phase margins. The results consequently shed
useful lights into PID control, and reaffirm analytically, from
a system robustness perspective, long-held heuristics on the
effectiveness of PID controllers.
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