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Abstract—In this paper, we study the gain and phase
margins achievable by PID controllers in stabilizing linear
time-invariant (LTI) systems. The problem under consideration
amounts to determining the largest ranges of gain and phase
variations such that there exists a single PID controller capable
of stabilizing all the plants within the variation ranges. We
consider low-order systems, notably the first- and second-order
systems. For each class of these systems, we derive explicit
expressions of the maximal gain and phase margins achievable.
The results demonstrate analytically how a plant’s unstable
poles and nonminimum phase zeros may confine the maximal
gain and phase margins attainable by PID control, which lead
to a number of useful observations. First, for minimum phase
systems, we show that the maximal gain and phase margins
achievable by PID controllers coincide with those by general
LTI controllers. Second, for nonminimum phase systems, we
show that LTI controllers perform no better than twice than
PID controllers, in the sense that the maximal gain and phase
margins achievable by general LTI controllers are within a
factor of two of those by PID controllers, whereas the former
is measured on a logarithmic scale and latter on a linear scale.
Finally, we show that PID and PD controllers achieve the same
maximal margins, indicating that integral control is immaterial
in improving a system’s robustness in feedback stabilization.
These results thus provide useful insights into PID control, and
from a system robustness perspective, offer an interpretation
on the effectiveness of PID controllers.

I. INTRODUCTION

The primary goal of feedback control system design is

to maintain stability and performance robustness in the

presence of uncertainties and disturbances. Various criteria

can be used to measure robustness, of which the gain and

phase margin are two conspicuous measures of robustness

employed in the classical control design theory and practice.

These measures define the relative stability degree, or the

distance from instability of a system when subject to gain

or phase perturbations in the system’s frequency response.

In spite of a variety of available robustness measures thanks
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to the developments of robust optimal control theory [1],

including, e.g., gap metric and structured singular value, for

their simplicity and effectiveness the gain and phase margins

continue to be the essential attributes in the contemporary

robustness analysis (see, e.g., [2], [3], [4], [5], [6], [7] and

the references therein). Accordingly, the maximal gain and

phase margins provide fundamental limits of robust feedback

stabilization, serving to determine the largest ranges of

gain and phase variations so that a system can be robustly

stabilized. In turn, they also serve as indicators on how

difficult a feedback system is to control.

A vast volume of work is in existence on gain margin and

phase margin problems, and various time- and frequency-

domain analysis techniques have been explored for linear

time-invariant (LTI) systems (see, e.g., [8], [9], [10], [11]

and the references therein). Of these, it has been long

well-known that linear quadratic (LQ) state-feedback regu-

lators are capable of achieving satisfactory stability margins

for continuous-time feedback systems. In particular, when

reaching optimality in the limit, optimal LQ controllers can

produce an infinite gain margin and a ±60◦ phase margin

[12], a property later found to hold in general for multi-

input, multi-output systems [2]. It is also known, however,

that when extended to LQG optimal control, these desirable

margins may vanish [13]. Furthermore, as shown in [14],

there exists no counterpart of this property to discrete-time

systems, but generally a limit to gain and phase margins

achievable by LQ control.

Our focus in this paper dwells on the gain and phase

margins attainable by PID control. Earlier results on the

gain and phase margin enhancement by PID controllers

include, e.g., [15], [16], where simple formulas and schemes

were devised to tune PID controller parameters such that

the required gain and phase margins can be fulfilled. As

a step further beyond, in the present paper we seek to

quantify analytically the maximal gain and phase margins

achievable by PID controllers. The problem amounts to

determining the variation ranges of the system’s gain and

phase so that a single PID controller can robustly stabilize

the entire family of the plants for all possible variations

within the ranges, thus furnishing fundamental limits of

robustness as measured by the gain and phase margins. For

this purpose, we consider low-order systems. Specifically,

we consider first- and second-order unstable plants, with

one or two unstable poles and possibly nonminimum phase

zeros. It is useful to note that the gain and phase margin
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maximization problems are meaningful only for unstable

plants; sheer by their nature, the problems become moot

for stable plants: the maximal gain margin is infinitely large

and the maximal phase margin is equal to 180o. It is also

worth pointing out that with its limited degree of freedom,

PID control is effective essentially for first- and second-

order plants [17], [18]; in fact, in industrial control systems,

where PID control is most prevalent, one typically employs

first- and second-order plant models. This simplicity in

the plant model, albeit somewhat restrictive, renders the

problems analytically tractable. On the other hand, high-

order plants will generally pose a challenging parametric,

nonlinear optimization problem, to which such analytical

results become unavailable.

Our contribution can be summarized as follows. In Section

II, we introduce the gain and phase margin maximization

problems achievable by PID control, including the general

PID controller structure and the subclasses of proportional,

PI, and PD controllers. The gain and phase margin maxi-

mization problems will then be formulated and tackled as

parametric nonlinear programming problems, for first-order

systems in Section III and second-order systems in Section

IV. Section V shows the maximal gain and phase margins

achieved by PI controllers and provides a special case for

second-order systems. In each case, we derive explicit ex-

pressions of the maximal achievable gain and phase margins,

which demonstrate explicitly how plant unstable poles and

nonminimum phase zeros may limit the margins achievable.

In an intuitively plausible finding, our results throughout

show that the integral control tends to reduce the gain and

phase margins. As such, PID and PD controllers achieve the

same maximal margins. The paper concludes in Section VI.

Due to space constraint, throughout this paper we omit

all the technical proofs.

II. PRELIMINARIES AND PROBLEM FORMULATION

We consider the feedback system depicted in Fig.1, in

which P (s) represents the plant model, and K(s) a finite-

dimensional stabilizing LTI controller. Suppose that P (s) is

stabilized by K(s). Then if P (s) is perturbed by uncertain-

P(s)

K(s)

Fig. 1: Standard feedback control structure

ties in the form of gain or phase within a small range, by

continuity, the controller K(s) can still stabilize the plant

despite the variations. But how large may the gain or phase

variation be tolerated, before the closed-loop system loses

its stability?

The gain/phase margin maximization problems address

the question above. Consider the family of plants

Pα =
{

αP (s) : 1 ≤ α < µ
}

. (1)

For a given plant model P (s), its maximal gain margin is

defined as

kM = sup{µ : There exists some K (s) stabilizing
αP (s) , ∀α ∈ [1, µ)}.

Similarly, consider the family of plants

Qθ =
{

e−jθP (s) : θ ∈ [−ν, ν]
}

. (2)

The maximal phase margin is defined by

θM = sup{ν : There exists some K (s) stabilizing
e−jθP (s) , ∀θ ∈ [−ν, ν]}.

Stated in words, the maximal gain margin kM and the max-

imal phase margin θM determine, respectively, the maximal

ranges of gain and phase variations within which the families

of Pα and Qθ can be robustly stabilized by a LTI controller.

Remark 2.1: More generally, we may consider µ ≤ α ≤ µ̄.

Suppose that µ0P (s) can be stabilized for some µ0 ∈ [µ, µ̄].
We may define analogously

k̄M = sup{µ̄ : There exists some K (s) stabilizing
αP (s) , ∀α ∈ [µ0, µ̄)},

and

kM = inf{µ : There exists some K (s) stabilizing
αP (s) , ∀α ∈ (µ, µ0]}.

A more general notion of the maximal gain margin can then

be defined as k̄M/kM .

Define the system’s complementary sensitivity function by

T (s) = P (s)K (s) [1 + P (s)K (s)]
−1

.

The following result, quoted from [19], [20], provides ana-

lytical expressions of kM and θM , and shows that they can

be determined by solving a standard H∞ optimal control

problem.

Proposition 2.1:

(i). If P is stable or minimum-phase, then the maximal

gain margin kM = ∞. Otherwise,

kM =

(

γopt + 1

γopt − 1

)2

, (3)

(ii). If P is stable or minimum-phase, then the maximal

phase margin θM = π. Otherwise,

θM = 2sin−1 1

γopt
, (4)

where

γopt = inf {‖T (s)‖
∞

: K (s) stabilizes P (s)} ,
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with ‖T (s)‖∞ being the H∞ norm of the complementary

sensitivity function T (s).
Of particular interest in this paper are maximal robustness

margins achievable by PID controllers; that is, K (s) =
KPID (s), where

KPID (s) = kp +
ki
s

+ kds. (5)

Correspondingly, the maximal gain and phase margins

achievable by PID controllers are defined by

kPID
M = sup{µ : There exists KPID (s) stabilizing

αP (s) ∀α ∈ [1, µ)},

θPID
M = sup{ν : There exists KPID (s) stabilizing

e−jθP (s) ∀θ ∈ [−ν, ν]}.

Likewise, it is of interest to consider subclasses of PID

controllers, such as proportional, PI, and PD controllers,

given by

KP (s) = kp, KPI(s) = kp +
ki

s , KPD (s) = kp + kds,
(6)

respectively. We shall denote the corresponding maximal

gain and phase margins with the corresponding superscripts

P, PI, and PD. In the sequel, at times it will also be more

convenient to quantify the gain margins on the logarithmic

scale, i.e., by log kM and log kPID
M , respectively.

Throughout this paper we consider first- and second-

order plants. This consideration stems partly from the fact

that industrial processes are often modeled by low-order,

and in fact, mostly first-order systems, and partly due to

the limitation of PID controllers in controlling high-order

dynamics. Indeed, in the latter vein, it is worth noting that

PID control is known to be essentially limited to first- and

second-order systems [18], [21], and that in general PID

controllers may not be able to stabilize certain third- and

higher-order unstable systems.

III. FIRST-ORDER UNSTABLE SYSTEMS

In this section, we provide explicit expressions of maximal

gain and phase margins of first-order systems achievable by

PID controllers. The results show explicitly the dependence

of these measures on the system’s unstable pole and non-

minimum phase zero.

A. PI Control

We first consider the first-order unstable plants,

P (s) =
β0s+ β1

s− p
, p > 0. (7)

Without loss of generality, it is assumed that β0 ≥ 0 and

β1 6= 0. Note that in the case β0 6= 0, derivative control will

result in an improper system. For this reason, in this section,

we shall focus on PI controllers.

Theorem 3.1: Let P (s) be given by (7). Then the following

statements hold:

(i). For β0 > 0,

kPI
M = kPM =







max

{

|β1| /β0

p
,

p

|β1| /β0

}

, β1 < 0

∞, β1 > 0
,

θPI
M = θPM =







cos−1 2
√

β0 |β1| /p

β0 + (|β1| /p)
, β1 < 0

π, β1 > 0

.

(8)

(ii). For β0 = 0,

kPID
M = kPD

M = kPM = ∞,
θPID
M = θPD

M = 2θPM = π.
(9)

The explicit expressions given in Theorem 3.1 lead us

to a number of useful observations. First, it is clear that

integral control has no effect in maximizing either the gain

or phase margin. This is consistent with one’s intuition;

integral control has its essential utility in tracking reference

signals, which is seen as a conflict with a system’s stability

robustness and henceforth with increasing the system’s gain

and phase margins. Secondly, we note that for minimum

phase plants (β0 > 0 and β1 > 0) of relative degree

zero, proportional control suffices to achieve the maximum

possible infinite gain margin and a phase margin of ±180◦.

For nonminimum phase plants (β0 > 0 and β1 < 0), it is

instructive to consider

P (s) =
s− z

s− p
, p > 0, z > 0. (10)

In this case, it follows from Theorem 3.1 that

kPI
M = kPM = max

{

z

p
,
p

z

}

.

θPI
M = θPM = cos−1 2

√

z/p

1 + (z/p)
.

(11)

It is interesting to see that

θPI
M = θPM = cos−1

2
√

kPM

1 + kPM
= cos−1

2
√

kPI
M

1 + kPI
M

. (12)

A subsequent comparison of (11) with Proposition 2.1 (cf.

Corollary 3.1) shows that for a first-order nonminimum

phase plant, the maximal phase margin achievable by pro-

portional control is half that achievable by general LTI

controllers, and when measured on the logarithmic scale, the

maximal gain margin is also half that by LTI controllers.

We conclude this section with a comparison of the maxi-

mal gain and phase margins herein with those achievable

by the general LTI controllers. The following corollary

states the comparison for both the PI controller KPI (s).
The results show that for a first-order nonminimum phase

plant, the maximal gain and phase margins achievable by a

proportional controller are half as good as those by general

LTI controllers.

Corollary 3.1: Let P (s) be given by (10). Then

kM =
(

kPI
M

)2
=

(

kPM
)2
.

θM = 2θPI
M = 2θPM .

(13)
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Example 3.1: In this example, we give a companion

between the maximal margins attainable by PI controllers

and those by general LTI controllers. In this case we take

p = 2 and let z vary in the interval [0.5, 8]. Fig.2 plots

the corresponding gain margins 20log10k
PI
M and 20log10kM

(both in dB) as a function of z, while Fig.3 shows the

corresponding phase margins θPI
M and θM . We find from

the figures that when z = p, the gain and phase margins

both vanish.
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25

Fig. 2: Maximal gain margin kPI
M of system (10) with

comparison to kM in [19]
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Fig. 3: Maximal phase margin θPI
M of system (10) with

comparison to θM in [19]

IV. SECOND-ORDER UNSTABLE SYSTEMS

This section presents the main results for the second-order

unstable plants, which include minimum phase systems and

nonminimum phase systems. In general, the computation

of the gain and phase margins for second-order plants

poses a more difficult problem. Throughout this section,

our development seeks to recast the gain and phase max-

imization problems as one of nonlinear programming. Since

the derivations are lengthy, we omit the proofs of the

subsequent results. For their essential flavor, we employ the

KKT condition to obtain values of the proportional and

integral gains as the necessary solution to the nonlinear

programming problems under consideration, which show

that unequivocally in all cases, the optimal integral gain is

ki = 0, and the optimal proportional gain kp is a certain

boundary value. The maximal gain and phase margins are

then obtained by solving a univariate optimization problem,

defined in terms of a function of the derivative gain kd alone.

A. Minimum Phase Systems

We begin with minimum phase plants that contain a pair

of unstable poles p1, p2, described by

P (s) =
β0s+ β1

(s− p1) (s− p2)
, Re (p1) > 0, Re (p2) > 0,

(14)

where β0 ≥ 0, β1 > 0. To ensure that P (s) is a real rational

plant, we assume that p1 and p2 are either real poles or a

complex conjugate pair.

Theorem 4.1: Let P (s) be given by (14). Then the

following statements hold:

(i).

kPM =

{

none, when β0 = 0
∞, when β0 6= 0

,

kPID
M = kPD

M = ∞,
(15)

(ii).

θPM =

{

none, when β0 = 0
π
2
, when β0 6= 0

,

θPID
M = θPD

M =

{

π
2
, when β0 = 0

π, when β0 6= 0
.

(16)

Remark 4.1: It is clear from Theorem 4.1 that for second-

order systems the maximal gain and phase margins achiev-

able by PID control are the same as those by general LTI

controllers, provided that the plant is minimum phase and

has a relative degree no greater than one. On the other hand,

if the plant does have a relative degree greater than one, then

the maximal phase margin is reduced to π/2, despite that

the maximal gain margin remains unchanged.

B. Nonminimum Phase Systems

Now we extend our results to second-order nonminimum

phase plants. We consider first the plant described by

P (s) =
s− z

(s− p1) (s− p2)
, Re (p1) > 0, Re (p2) > 0,

(17)

where likewise, we assume that p1 and p2 are either real or

complex conjugate.

Theorem 4.2: Let P (s) be given by (17). For KPD (s)
and KPID (s) to stabilize P (s), it is necessary that p1 +
p2 6= (p1p2/z)+z. Then under this condition, the following

statements hold:

(i). For p1 + p2 < (p1p2/z) + z, then

kPID
M = kPD

M =











z2

z (p1+p2)−p1p2
, if p1+p2 > p1p2/z,

p1p2
z (p1+p2)−z2

, if p1+p2 ≤ p1p2/z.

(18)
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Otherwise, for p1 + p2 > (p1p2/z) + z,

kPID
M = kPD

M =
z (p1 + p2)

z2 + p1p2
. (19)

(ii). Define

θ̂ (kp) =

2
∑

i=1

tan−1ω(kp)

pi
− tan−1ω(kp)

z
− tan−1ω(kp)

kp
,

(20)

where

ω(kp) =

√

p21p
2
2 − z2k2p

k2p + z2 − p21 − p22
. (21)

Then for p1 + p2 < (p1p2/z) + z,

θPID
M = θPD

M =






max
{

|θ̂ (p1 + p2 − z) |, |θ̂
(

k̄p
)

|
}

, if p1 + p2 > z,

max
{

|θ̂ (0+) |, |θ̂
(

k̄p
)

|
}

, if p1 + p2 ≤ z,

(22)

where k̄p ∈ (p1 + p2 − z, p1p2/z) is a positive solution to

the polynomial equation

zk5p−z2k4p + z ((p1 + p2)(z−p1−p2 − p1p2/z) + 2p1p2) k
3
p

+ 2p21p
2
2k

2
p +

(

p1p2(p1 + p2)(p
2
1 + p22 − p1p2)+ zp1p2·

(p1p2 − z(p1 + p2))) kp + p21p
2
2

(

z2 − p21 − p22
)

= 0.
(23)

Otherwise, for p1 + p2 > (p1p2/z) + z,

θPID
M = θPD

M = max
{

θ̂ (p1 + p2 − z) , θ̂
(

k̄p
)

}

, (24)

where k̄p ∈ (p1p2/z, p1 + p2 − z) is a solution to the

equation (23).

Remark 4.2: Again, similar to the core of first-order plants,

Theorem 4.2 reveals that the integral control has no effect to

improve the gain and phase margins; in fact, from the proof

of Theorem 4.2, one can see that a non-zero integral control

gain ki will make the gain and phase margins smaller. On

the other hand, the theorem also shows that the derivative

control improves the margins. Consider, for example,the case

p1 + p2 ≤ p1p2/z in (18). In this case, it follows from

theorem 4.2 and (26) that

kPD
M =

p1 + p2
p1 + p2 − z

kPM .

Example 4.1: In this example, we draw a companion

between the maximal margins achievable by PID controllers

and those by general LTI controllers. Towards this end, it

was found in [22] that

γopt =

2
∏

i=1

∣

∣

∣

∣

pi + z

pi − z

∣

∣

∣

∣

.

We consider the second-order system (17) with two real

poles and a pair of unstable complex conjugate poles,

respectively.

Real unstable poles p1 > 0, p2 > 0: In this case we

take p1 = 2, p2 = 6 and let z vary in the interval [0.5, 8].
Fig.4 plots the corresponding gain margins 20log10k

PID
M and

20log10kM (both in dB) as a function of z. Likewise, when

z = p1, p2, the gain margin vanishes.

Complex conjugate unstable poles p1 = σ + jν, p2 =
σ − jν, σ > 0: We take σ = 4, ν = 1 and let z vary

in the interval [0.5, 8] in a similar manner. Fig.5 shows the

corresponding gain margins 20log10k
PID
M and 20log10kM

(both in dB) as a function of z.

In both cases, we observe from the figure that kM is no

greater than
(

kPID
M

)2
, and when measured on the logarith-

mic scale, kM is no greater than twice kPID
M . A deeper

investigation reveals that this is true in general, as evidenced

by the following corollary.

Corollary 4.1: Let P (s) be given by (17). Then,

kPID
M ≤ kM ≤

(

kPID
M

)2
. (25)
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Fig. 4: Maximal gain margin kPID
M of system (17) with

comparison to kM in [19]
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Fig. 5: Maximal gain margin kPID
M of system (17) with

comparison to kM in [19]

V. PI CONTROL AND SPECIAL CASES

In the preceding section, we have shown that the maximal

phase margin can be determined by solving a polynomial

equation. In this section we consider PI controllers and

other related problems. We show that in these cases, explicit

expressions of the maximal phase margins can be obtained,
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which solutions of polynomial equations are no longer

needed. The results too reinforce the proceeding conclusion

that the integral gain has no effect in improving the gain and

phase margins.

Theorem 5.1: Let P (s) be given by (17). For KPI (s) to

stabilize P (s), it is necessary that p1 + p2 < p1p2/z. Then

under this condition, the following statements hold:

(i).

kPI
M = kPM =

p1p2
z (p1 + p2)

. (26)

(ii).

θPI
M = θPM = tan−1ω0

z
− tan−1ω0

p1
− tan−1ω0

p2
, (27)

where

ω0 =

{

z (p1 + p2)

2 (p1 + p2 − z)

(

p21 + p22
p1 + p2

− z − p1p2/z+

√

(z − p1p2/z)
2
+ (p1 − p2)

2

(

1− 2
z + p1p2/z

p1 + p2

)

)}1/2

.

The optimal PI coefficients are given by k∗i = 0, and

k∗p =

√

p1 + p2
z

(ω2
0 + p1p2). (28)

VI. CONCLUSION

In this paper we have studied the gain and phase margins

of LTI systems attainable using PID controllers. The problem

is to seek the largest margins of gain and phase, which

are the intrinsic limits under which a PID controller may

exist to stabilize the family of plants with gain and phase

values varying within the margins. We derived analytical

expressions for the maximal gain and phase margins for

first- and second-order plants. Of these, we found that for

minimum phase systems up to the second order, the maxi-

mal gain and phase margins achievable by PID controllers

coincide with those by general LTI controllers, and that for

nonminimum phase systems, the maximal gain and phase

margins achievable by LTI controllers are at most twice

those by PID controllers; here the gain margin is measured

on the logarithmic scale and the phase margin is measured

on the linear scale. It is worth noting that in all cases,

the maximal gain and phase margins are attained with no

integral control; in other words, the maximal gain and phase

margins achievable by PID controllers coincide with those

by PD controllers. This is consistent with one’s intuition,

since integral control is generally intended for achieving

such performance objective as reference tracking, which by

nature is in conflict with stability robustness as measured

by gain and phase margins. The results consequently shed

useful lights into PID control, and reaffirm analytically, from

a system robustness perspective, long-held heuristics on the

effectiveness of PID controllers.
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